

Flash Loader
Development Guide
UFLX-8

2

COPYRIGHT NOTICE
© 2007–2021 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Eighth edition: April 2021

Part number: UFLX-8

This guide applies to version 1.x of the IAR Flash Loader.

Internal reference: IJOA.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Contents
Introduction .. 7

Introduction to flash loading .. 7

Briefly about flash loading ... 7

The Flash Loader ... 7

Flash loading process overview ... 8

Flash memory concepts .. 9

The IAR Flash Loader ... 9

IAR Flash Loader configuration files .. 10

Implementing the IAR Flash Loader ... 11

Implementing the IAR Flash Loader .. 11

Framework source code ... 12

Device-specific source code functions ... 12

The IAR Flash Loader process .. 13

The IAR Flash Loader process ... 13

The IAR Flash Loader configuration files 16

The flash memory configuration file ... 16

The flash memory system configuration file 16

Overriding the flash memory configuration file 17

Combining overriding constants .. 18

IAR Flash Loader source code example 19

Using the IAR Flash Loader ... 21

Activating the IAR Flash Loader .. 21

Generating debug information for use with the IAR Flash
Loader .. 23

Debugging the flash loader ... 24

Generated debugging log file ... 25

Flash loading without RAM .. 27

Flash loading without RAM .. 27

Macro-based flash loading files ... 27
AFE1_AFE2-1:1

3

4

Macro-based flash loading functions ... 28

Built-in macros for macro-based flash loading 30

__argCount .. 30

__bytes2Word16, __bytes2Word32 .. 30

__getArg .. 31

__makeString ... 31

__readMemoryBuffer .. 31

__writeMemoryBuffer ... 31

Flash loading with a relocatable flash loader 33

Relocatable flash loader flash loading files 33

Relocatable flash memory configuration file 33

Relocatable flash memory system configuration file 33

Building a relocatable flash loader .. 34

Compiler settings ... 34

Linker settings .. 34

Reference information ... 35

Reference information on IAR Flash Loader 35

Flash Loader Overview dialog box .. 35

Flash Loader Configuration dialog box ... 37

IAR Flash Loader functions .. 39

FlashChecksum .. 39

FlashErase .. 40

FlashInit ... 40

FlashSignoff ... 42

FlashWrite .. 42

IAR Flash Loader variables ... 43

frameworkVersion ... 43

The flash memory configuration file .. 43

File contents ... 43

Flash loading microcontroller variants .. 45

The flash memory system configuration file 46

File contents ... 46
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Contents

Constants to override the flash memory configuration file . 48

LAYOUT_OVERRIDE_BUFFER .. 48

LAYOUT_OVERRIDE_BUFSIZE ... 49

SET_BUFSIZE_OVERRIDE .. 50

SET_PAGESIZE_OVERRIDE ... 51
AFE1_AFE2-1:1

5

6

AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Introduction

Introduction
● Introduction to flash loading

● The IAR Flash Loader

Introduction to flash loading
These topics are covered:

● Briefly about flash loading

● The Flash Loader

● Flash loading process overview

● Flash memory concepts

BRIEFLY ABOUT FLASH LOADING

Many development boards use flash memory as the primary code memory. When
downloading and debugging a program, you cannot normally write directly from a
debugger to flash memory, either for functional or performance reasons. Instead, you
must use a dedicated program—a flash loader—that executes on the target system.

Note: Although a flash loader is mostly used for flash memory, it can also be used, for
example, with external RAM or disk-like storage devices. In this guide, flash memory is
the assumed type of memory.

THE FLASH LOADER

A flash loader is usually a small dedicated program, which can program one or more
flash memories. The flash loader is comprised of a set of functions, mainly for writing
or erasing specified portions of flash memory. The debugger downloads this program
into RAM, where it is linked to an address.

To run the program, the debugger sets the PC to one of the functions in the flash loader,
writes data and directives for that function into a RAM buffer, and executes the function.
When the function returns, the execution process will reach a breakpoint to indicate that
the function has finished. The debugger can then proceed to make further calls in the
flash loading process. In short, the debugger calls functions in the flash loader.
AFE1_AFE2-1:1

7

8

Introduction to flash loading

FLASH LOADING PROCESS OVERVIEW

This process overview illustrates how a flash loader downloads an application to flash
memory. In the example, an application image needs to be downloaded, but C-SPY can
only download data directly to RAM.

Downloading an application using a flash loader:

1 A dedicated flash loader is downloaded into RAM. Part of the RAM is reserved as a
download buffer.

2 The image file to be downloaded is written to the RAM buffer.

3 The debugger starts the flash loader. The flash loader reads data from the RAM buffer
and programs the flash memory.

4 The image file now resides in flash memory and can be started. The flash loader and
the RAM buffer are no longer needed, and the full RAM is available to the application
in the flash memory.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Introduction

In practice, the process is more complicated—the RAM buffer is usually much smaller
than the image file to be downloaded, and the flash programming is performed in several
steps. See The IAR Flash Loader process, page 13.

FLASH MEMORY CONCEPTS

C-SPY uses these concepts to describe flash memory characteristics:

● Page—A page is the smallest writable unit of the flash memory. Many flash
memories are restricted to the smallest writable unit, and cannot write less than, for
example 128 or 256 bytes, in a single write operation. C-SPY will not request the
flash loader write anything smaller than a page, and will use padding to fill out a
page if necessary. Some flash memories have no such restrictions, and can specify a
page size of 1 byte.

● Block—A block is the smallest erasable unit of the flash memory. For example, a
flash memory with a 256-byte page size could still require that flash memory should
be erased in 4-Kbyte chunks. The block size must always be a multiple of the page
size. A flash memory can consist of several blocks of different sizes. It can also lack
such restrictions, in which case the block size would be the same as the page size.

● Base address—The base address is the start address of the flash memory when it is
written. Some flash memories are simply memory mapped to a fixed address range,
and the base address is then the start of that range. Other flash memories are
mapped to different addresses when being programmed, and when the application is
executing later. The base address is then the address where these memories are
mapped when being programmed, Yet other flash memories are not memory
mapped at all, but work more like external disk-like devices. The base address is
then simply the preferred address to be used for the start of the memory when it is
being programmed.

From the C-SPY perspective, a flash memory starts at a given address and consists of a
sequence of blocks—possibly of different sizes—each of which consists of a number of
pages. The sequence can also contain gaps.

The IAR Flash Loader
The IAR Flash Loader is a dedicated flash loader program that you can use to perform
flash loading for a specific board using IAR Embedded Workbench. The IAR Flash
Loader has two main functions—FlashWrite and FlashErase—for writing and
erasing specified portions of flash memory.
AFE1_AFE2-1:1

9

10

The IAR Flash Loader

To perform flash loading using IAR Embedded Workbench, you must first implement
the IAR Flash Loader, and then activate the program in the IDE:

● Implementing the IAR Flash Loader—you implement the IAR Flash Loader from
framework source code, supplied with IAR Embedded Workbench, and
device-specific source code that you provide. See Implementing the IAR Flash
Loader, page 11.

● Activating the IAR Flash Loader—once you have built the IAR Flash Loader, you
must activate the program in the IDE. See Activating the IAR Flash Loader, page
21.

To perform flash loading without RAM, see Flash loading without RAM, page 27.

IAR FLASH LOADER CONFIGURATION FILES

The IAR Flash Loader uses two configuration files:

● Flash memory configuration file (.flash) is an XML file that describes the flash
memory elements to the debugger. These include, for example, the flash memory
base address, the flash loader name, and flash memory characteristics, such as block
and page size. The file also specifies which flash loader to use.

For more information, see The flash memory configuration file, page 43.

● Flash memory system configuration file (.board) is an XML file that specifies the
information needed to perform flash loading for a specific board. You can prepare
this file in advance for various development boards, and create or modify the file in
the IAR Embedded Workbench IDE.

For more information, see The flash memory system configuration file, page 46.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Implementing the IAR Flash Loader

Implementing the IAR
Flash Loader
● Implementing the IAR Flash Loader

● The IAR Flash Loader process

● The IAR Flash Loader configuration files

● Overriding the flash memory configuration file

● IAR Flash Loader source code example

Implementing the IAR Flash Loader
The IAR Flash Loader is a dedicated flash loader program that you can use to perform
flash loading for a specific board using IAR Embedded Workbench. You implement the
IAR Flash Loader from this source code:

● Framework source code—supplied in the IAR Embedded Workbench installation
directory under target\src\flashloader, or available for download as open
source under an Apache license from
http://links.iar.com/cmsis/IAR_flashloader_framework_200.zip.
C-SPY uses labels and variables defined in the framework source code to interact
with the flash loader. See Framework source code, page 12.

● Device-specific source code—a set of functions that you implement to build the
IAR Flash Loader. Includes the FlashWrite, FlashErase, and FlashInit
functions, and other optional functions. See Device-specific source code functions,
page 12.

Note: When you implement the flash loader, consider these points:

● The flash loader must be linked to an address in the RAM.

● The flash loader cannot contain an entry point like a main function.
AFE1_AFE2-1:1

11

12

Implementing the IAR Flash Loader

FRAMEWORK SOURCE CODE

The following files are part of the IAR Flash Loader framework source code:

Copies of the files and flash loader examples are located in the IAR Embedded
Workbench installation directory under target\src\flashloader.

DEVICE-SPECIFIC SOURCE CODE FUNCTIONS

The following functions are used to implement the IAR Flash Loader:

For information about these functions, see IAR Flash Loader functions, page 39.

Files Description

flash_config.h A template for your own configuration file. You should
make a copy of the template and edit the copy according to
the guidelines in the file.

flash_loader_extra.h Additional framework declarations, rarely needed by your
source code.

flash_loader.h Framework declarations, for example, the C prototypes of
your source code.

flash_loader_asm.s Low-level, processor-specific framework source code. Note
that the file might have a different extension depending on
your microcontroller. This file should be part of your flash
loader project. This file should be used as is and not
modified.

flash_loader.c Framework source code. This file should be part of your
flash loader project. It should be used as is and not
modified.

Table 1: Device-specific source code functions

Macro Description

FlashChecksum Optional. Enables checksum verification.

FlashErase Erases one flash memory block.

FlashInit The first function called in the flash loader and which can
initialize the flash memory. Can also provide extra
information to C-SPY before flash programming starts, and
can override the properties specified in the flash memory
configuration file.

FlashSignoff Optional. Cleans up after flash loading.

FlashWrite Writes or copies a number of bytes of data from the RAM
buffer to the flash memory.

Table 2: Device-specific source code functions
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Implementing the IAR Flash Loader

The IAR Flash Loader process
The two most important functions used by the IAR Flash Loader are FlashWrite and
FlashErase:

● FlashWrite—writes or copies a number of bytes (always a multiple of the page
size) of data from the RAM buffer to the flash memory.

● FlashErase—erases one flash memory block.

Using data from the image file, C-SPY repeatedly writes data to the RAM buffer and
invokes the FlashWrite function in the flash loader, with these constraints:

● Writing is sequential, starting at the lower address

● The buffer will always contain a multiple of the page size

● The buffer is padded whenever the data does not naturally fill a page

Before the first page of any given block is written, the FlashErase function is invoked
to erase that whole block.

For reference information on these functions, see IAR Flash Loader functions, page 39.

THE IAR FLASH LOADER PROCESS

This describes the IAR Flash Loader process in detail:

1 C-SPY reads a flash memory system configuration file (.board) and specifies one
or more flash loading passes, one for each flash memory device on the board.

2 For each pass, a specific address range (or subset) of the original image file
(application to be downloaded) is specified. The image file (ELF) is split into a
separate image file for each pass. If there is only one pass, the original image file is
used as is.

3 Each pass specifies a flash memory configuration file (.flash) which, among other
things, designates a specific flash loader.

4 C-SPY downloads the flash loader of the current pass to RAM:

● The macro file of the current pass in C-SPY, specified in the .flash file, is
loaded.

● If this is the first pass:

● The debugger connects to the device. If the C-SPY I-jet driver is used, the
execUserProbeConnect and execUserCoreConnect macro functions are
called.

● The device is reset according to the Project>Options settings. If the I-jet
debug probe is used, the execUserProbeReset and
execUserCoreConnect macro functions are called.
AFE1_AFE2-1:1

13

14

The IAR Flash Loader process

● The execUserFlashInit macro function is called.

● The flash loader executable is downloaded in RAM.

● The execUserFlashPreset macro function is called.

● A software reset is done.

● The execUserFlashReset macro function is called.

5 If the pass specifies an offset, all records from the image file are relocated
accordingly.

6 If the label FlashPreInitEntry exists, C-SPY sets PC to it.

The execution is started and C-SPY regains control when the execution reaches a
special breakpoint.

If the flash loader is relocatable, the FlashPreInitEntry function sets up the
system, so that the debugger can find all relocated symbols.

7 C-SPY sets PC to FlashInit—or technically, to a label that will subsequently call
FlashInit.

8 Parameters are written to the RAM buffer.

9 Execution is started, FlashInit is executed, and C-SPY regains control when
execution reaches a special breakpoint. FlashInit can override some information
from the .flash file, such as the page size and block layout.

10 C-SPY partitions the data from the image file into suitable pieces with respect to the
flash memory page and block layout, and to the size of the RAM buffer.

If the <aggregate> tag value is 1, C-SPY will try to use the RAM download buffer
more efficiently by combining write operations to more than one block. This is a
useful performance optimization if, and only if, block sizes are significantly smaller
than the RAM buffer, so that at least two (or preferably more) blocks will fit in the
download buffer. This element requires that the flash loader can program more than
one block in a single operation.

11 If the block is being written to for the first time, the block must first be erased, go to
step 11. If this is not the first time the block has been written to, go to step 13.

12 The RAM parameters are assigned the size of the block and its address.

13 C-SPY sets PC to FlashErase and starts execution. When the function is done, the
breakpoint is reached.

14 C-SPY writes a piece of the image file to the RAM buffer (the image size that is
downloaded to the RAM buffer is a multiple of the page size).

15 C-SPY sets PC to FlashWrite and starts the execution. When the function is done,
the breakpoint is reached.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Implementing the IAR Flash Loader

16 If there is more data, the procedure returns to step 10. If not:

● C-SPY sets PC to FlashChecksum and starts execution. When the function is
done, the breakpoint is reached. This step is optional.

● C-SPY sets PC to FlashSignoff and starts execution. When the function is
done, the breakpoint is reached. This step is optional.

● The execUserFlashExit macro function is called.

● The C-SPY macro file of the current pass is unloaded, see the first point under
step 4.

17 If there are more passes, the process returns to step 3.

18 The debug information that corresponds to the final application is read. First, these
steps occur:

● If Project>Download>Download active application or
Project>Download>Download file are selected, the device is disconnected and
the remaining points in step 17, and step 18 are skipped.

● The macro file(s) specified according to
Project>Options>Debugger>Setup>Setup macros settings are loaded. The
macro file(s) specified by the DeviceMacros parameter in the .i79 file are also
loaded.

● The device is reset according to Project>Options>Debugger settings.

● The _ExecDevicePreload and execUserPreload macro functions are
called.

● The debug information that corresponds to the final application is read.

● The download is verified (if set in Project>Options>Debugger>Download).

● The _ExecDevicePreReset and execUserPreReset macro functions are
called.

● A software reset is done.

● The _ExecDeviceReset and execUserReset macro functions are called.

● The _ExecDeviceSetup and execUserSetup macro functions are called.

19 C-SPY sets PC to the start address of the final application.

Information about the macro functions

For reference information about the macro functions, see the C-SPY® Debugging Guide
for Arm. The _ExecDevice... macro functions work like the corresponding
execUser... macro functions.

The new namespace _ExecDevice should be used in the device support scope. The
execUser namespace should be used in the application scope. For each defined setup
AFE1_AFE2-1:1

15

16

The IAR Flash Loader configuration files

macro function, C-SPY first calls the _ExecDevice... macro function and then the
execUser... macro function, so the application macro can override any action in the
corresponding device support macro.

The IAR Flash Loader configuration files
The IAR Flash Loader uses two configuration files:

● The flash memory configuration file

● The flash memory system configuration file

THE FLASH MEMORY CONFIGURATION FILE

The flash memory configuration file is an XML file (with the filename extension
.flash) that describes relevant flash memory properties to the debugger. The file
contains both mandatory and optional elements.

The mandatory elements include:

● exe—the path to the flash loader

● flash_base—the flash memory base address

● page—the flash memory page size

● block—the block layout of the flash memory

For example:

<?xml version="1.0" encoding="iso-8859-1"?>

<flash_device>
 <exe>$TOOLKIT_DIR$\config\flash\P8_family\flash_p8.out</exe>
 <flash_base>0x20000</flash_base>
 <page>256</page>
 <block>2 0x100</block>
 <block>3 0x100</block>
</flash_device>

For reference information on the flash memory configuration file, see The flash memory
configuration file, page 43.

THE FLASH MEMORY SYSTEM CONFIGURATION FILE

The flash memory system configuration file is an XML file (with the filename extension
.board) that specifies the information needed to perform flash loading for a specific
board using IAR Embedded Workbench.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Implementing the IAR Flash Loader

A board can contain one or more flash memories, each with its own flash memory
configuration (.flash) file, and during flash programming, each flash memory is
programmed in a separate pass.

If the board has more than one type of flash memory that must be programmed
separately in several passes, this file can contain references to more than one flash
memory through flash memory configuration (.flash) files. In this case, the flash
memory system configuration (.board) file also specifies image address ranges that
belong to different flash memories.

If a board contains two flash memories, where one is used for a boot loader and the other
for the application, only one of them will be relevant for any given project. In this case
you need to have two different flash memory system configuration (.board) files—one
for each kind of project.

You can prepare this file in advance for various development boards, and create or
modify the file using the Project>Options>Debugger>Download dialog box in the
IAR Embedded Workbench IDE, see Activating the IAR Flash Loader, page 21.

For example:

<?xml version="1.0" encoding="iso-8859-1"?>

<flash_board>
 <pass>
 <loader>$TOOLKIT_DIR$\config\flash\flash_p8_2a.flash</loader>
 <range>CODE 0x20000 0x207ff</range>
 <abs_offset>0x10000</abs_offset>
 </pass>
 <ignore>CODE 0x22000 0x220ff</ignore>
 <pass>
 <loader>$TOOLKIT_DIR$\config\flash\flash_p8_2b.flash</loader>
 <range>CODE 0x20800 0x21000</range>
 <abs_offset>0x10000</abs_offset>
 </pass>
</flash_board>

For reference information on the flash memory system configuration file, see The flash
memory system configuration file, page 46.

Overriding the flash memory configuration file
The FlashInit function is the first function called in the flash loader, and as such, can
be used to provide extra information to C-SPY before flash programming starts. To
provide extra information, you override the properties specified in the flash memory
AFE1_AFE2-1:1

17

18

Overriding the flash memory configuration file

configuration (.flash) file using a set of constants defined in the
flash_loader_extra.h header file.

Internally, this functionality requires access to a structure variable, theFlashParams,
defined in the framework, which is used for passing information between C-SPY and
the flash loader.

The variable theFlashParams is declared in the header file, like this:

typedef struct {
 uint32_t base_ptr;
 uint32_t count;
 uint32_t offset_into_block;
 void *buffer;
 uint32_t block_size;
} FlashParamsHolder;

extern FlashParamsHolder theFlashParams;

The constants include:

For reference information on these constants, see Constants to override the flash
memory configuration file, page 48.

COMBINING OVERRIDING CONSTANTS

If required, you can combine these constants to override the properties specified in the
flash memory configuration (.flash) file:

● LAYOUT_OVERRIDE_BUFFER

● SET_BUFSIZE_OVERRIDE

● SET_PAGESIZE_OVERRIDE

Constant Description

LAYOUT_OVERRIDE_BUFFER Overrides the flash loader that will be executed

LAYOUT_OVERRIDE_BUFSIZE Overrides the block layout

SET_BUFSIZE_OVERRIDE Overrides the download buffer size

SET_PAGESIZE_OVERRIDE Overrides the page size

Table 3: IAR Flash Loader constants
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Implementing the IAR Flash Loader

For example:

uint32_t FlashInit(void *base_of_flash, uint32_t image_size
{
 strcpy(LAYOUT_OVERRIDE_BUFFER, "2 0x100,7 0x200,7 0x1000");
 SET_PAGESIZE_OVERRIDE(128); // New page size
 SET_BUFSIZE_OVERRIDE(0x1000); // New buffer size
 return RESULT_OK | OVERRIDE_LAYOUT
 | OVERRIDE_PAGESIZE | OVERRIDE_BUFSIZE;
}

IAR Flash Loader source code example
The following example shows the source code for a complete flash loader—except the
source code for the framework—but with a flash programming algorithm which simply
copies bytes from the RAM buffer to the destination address:

#include "flash_loader.h"

uint32_t FlashInit(void *base_of_flash, uint32_t image_size,
 uint32_t link_address, uint32_t flags)
{
 return RESULT_OK;
}

uint32_t FlashWrite(void *block_start,
 uint32_t offset_into_block,
 uint32_t count,
 char const *buffer)
{
 char *to = (char*)block_start + offset_into_block;
 while (count--)
 {
 *to++ = *buffer++;
 }
 return RESULT_OK;
}
uint32_t FlashErase(void *block_start, uint32_t block_size)
{
 char *p = (char*)block_start;
 while (block_size--)
 {
 *p++ = 0;
 }
 return RESULT_OK;
}

AFE1_AFE2-1:1

19

20

IAR Flash Loader source code example

The parameters to FlashWrite and FlashErase, in combination with the flash
memory base address given in FlashInit, fully specify the addresses of the portions
of the flash memory to be programmed. Thus, a given flash loader can be used for any
number of different flash devices, with different total size, page size, or block layout,
provided that they all use the same flash programming algorithm. The flash memory
configuration file (.flash) is used for specifying such variations between flash
memories.

For reference information on these functions, see IAR Flash Loader functions, page 39.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Using the IAR Flash Loader

Using the IAR Flash
Loader
● Activating the IAR Flash Loader

● Generating debug information for use with the IAR Flash Loader

● Debugging the flash loader

Activating the IAR Flash Loader
When you have built the IAR Flash Loader, you must activate the use of the flash loader
program in the IDE.

To activate the IAR Flash Loader:

1 In the IAR Embedded Workbench IDE, choose Project>Options>Debugger
>Download.
AFE1_AFE2-1:1

21

22

Activating the IAR Flash Loader

2 Select Use flash loader(s) and Override default board file, and specify a flash
memory system configuration file (.board). Use the browse button to select a
predefined file suitable for your system.

3 If no such file is available, you can create a new file or click Edit to modify an existing
file. The Flash Loader Overview dialog box is displayed showing one row of
information for each separate flash memory on the board, or for each flash loader pass.

Note: If you edit one of the predefined files located in the IAR Embedded Workbench
installation directory, you will be prompted to save the modified file to a different
directory.

Click New to define a new pass, Edit to modify an existing pass, or Delete to remove a
pass from list.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Using the IAR Flash Loader

4 If you click New or Edit, the Flash Loader Configuration dialog box is displayed.
You can use this dialog box to configure the IAR Flash Loader.

Configure the flash memory system configuration file as required, and click OK.

5 A flash memory system configuration file (.board) is created. See The flash memory
system configuration file, page 46.

Generating debug information for use with the IAR Flash Loader
For the IAR Flash Loader to interact with the IAR C-SPY Debugger, the flash loader
must be built with debug information generated from the ILINK linker. You specify the
options to generate this debug information when you build the IAR Embedded
Workbench project.
AFE1_AFE2-1:1

23

24

Debugging the flash loader

To generate debug information for use with the IAR Flash Loader:

1 In the IAR Embedded Workbench IDE, choose Project>Options>Linker>Output.

2 Select Include debug information in output.

Debugging the flash loader
The flash loader is not a standalone program with a main function, and is therefore not
easy to debug. To enable debugging the flash loader, you should make a simple test
harness when you develop it.

The test harness for debugging the flash loader should contain a main function which
calls FlashInit, FlashWrite, and FlashErase with suitably prepared, or generated,
data and parameters. The program should be linked to a RAM address, from which it
can be debugged as a normal application until the basic flash programming code is
correct.

When you use the flash loader in the flash loading process, you can view the process
details in the generated log file.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Using the IAR Flash Loader

GENERATED DEBUGGING LOG FILE

When you start a debug session which uses flash loaders, the debugger generates a log
file named flash0.trace in the project directory ($PROJ_DIR$) where the active
project file (.ewp) resides. This file is only generated if a file with that name already
exists in that directory.

To enable trace output, create an empty file named flash0.trace, and trace output
will be produced every time a debug session with flash loading is started, until the
generated log file is removed.

If there are multiple flash loading passes, multiple trace files will be generated
(flash0.trace, flash1.trace, etc.). However, you only need to create
flash0.trace to enable tracing.

This is an example log file:

File generated Thu Nov 14 16:48:57 2019

Pass 1 of 1
Starting fragment-style flashloader pass.
FlashInitEntry is at 0x20000348
FlashWriteEntry is at 0x20000350
FlashEraseWriteEntry is at 0x20000358
FlashBreak is at 0x200000C0
FlashBufferStart is at 0x20000400
FlashBufferEnd is at 0x2001EF84
theFlashParams is at 0x2001EF84
FlashChecksumEntry not found
FlashSignoffEntry is at 0x20000360
page size is 8 (0x8)
filler is 0xff
buffer size is 125824 (0xleb80) (0xleb84 before rounding)
SimpleCode records (after offset):
 Record 0: @ 0x8000000[66592 (0x10420) bytes] 0x8000000 -
0x801041f [8 20 0]
AFE1_AFE2-1:1

25

26

Debugging the flash loader

Base of flash at 0x8000000
->init : base @ 0x8000000, image size 0x10420
 Args: (argc = 1)
 --x32
 timing(init): 0.0000 (CPU) 0.0100 (elapsed)
Transaction list:
 Transaction @ 0x8000000 + 0x0 (0x10420 bytes) 5 packet(s).
 Will erase 5 block(s):
 0: 0x8000000 (0x4000 bytes)
 1: 0x8004000 (0x4000 bytes)
 2: 0x8008000 (0x4000 bytes)
 3: 0x800c000 (0x4000 bytes)
 4: 0x8010000 (0x10000 bytes)
->multi_erase: 5 blocks (0x28 bytes in buffer) [0 0 0]
 timing(erase): 0.0468 (CPU) 1.5400 (elapsed)
->write: @ 0x8000000 (0x10420 bytes, offset 0x0 into block @
0x8000000) [8 20 0]
 timing(write): 0.0312 (CPU) 0.2700 (elapsed)
->signoff
 timing(signoff): 0.0000 (CPU) 0.0100 (elapsed)
Duration: 0.23 (CPU) 3.53 (elapsed)
 of which on target: 0.0780 (CPU) 1.8300 (elapsed)
Flash loading pass finished

The log file lists these details:

● addresses of key functions in the flash loader, and basic properties of the flash
memory and flash loader

● data records from the image to be downloaded

● sequence of write and erase operations, which list the start address, size, and at the
end of the line, the three first bytes of the data for that operation

● optionally, at the end of the list file, checksum operations.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Flash loading without RAM

Flash loading without RAM
● Flash loading without RAM

● Built-in macros for macro-based flash loading

Flash loading without RAM
Some devices have extremely little RAM or do not allow access to RAM, so flash
loading cannot be performed the usual way using downloadable flash loader programs.
Instead, you must use C-SPY macros to perform the flash loading. You can leverage the
existing flash loader framework and essentially implement the C functions of the
downloadable flash loaders as equivalent C-SPY macro functions.

These topics are covered:

● Macro-based flash loading files

● Macro-based flash loading functions

MACRO-BASED FLASH LOADING FILES

To support macro-based flash loading, you need these components:

● A separate flash memory configuration file (.flash) that specifies macro-based
flash loading

● A corresponding flash memory system configuration file (.board) file that
references the appropriate .flash file

● An associated macro file (.mac), which normally only contains helper macros like
execUserFlashReset, that must implement a small set of flash loading functions,
see Macro-based flash loading functions, page 28.

Flash memory configuration file (.flash) for macro-based flash
loading

The flash memory configuration file (.flash) that specifies macro-based flash loading
is only slightly different than the usual file to specify flash loading.

The exe tag should contain the single word MACRO instead of a path to a flash loader
executable. You can tentatively use <online>1</online> to support flash
breakpoints.
AFE1_AFE2-1:1

27

28

Flash loading without RAM

Flash memory system configuration file (.board) for macro-based
flash loading

This flash memory system configuration file (.board) must reference the
corresponding flash memory configuration file (.flash) for macro-based flash loading.

You need separate .board files for standard flash loading and macro-based flash
loading respectively.

Macro file (.mac) for macro-based flash loading

This .mac file must contain the flash loading functions, which are C-SPY macro
language implementations of the corresponding functions in the on-target flash loader.

Note: When flash loading without RAM, you must specify the macro (.mac) file in the
flash memory configuration file (.flash) using the element macro.

MACRO-BASED FLASH LOADING FUNCTIONS

When performing macro-based flash loading, the functions are used in a different
manner than the standard functions.

FlashInit function for macro-based flash loading

The FlashInit function used for macro-based flash loading is a simplified version of
the standard FlashInit function.

FlashInit(base_of_flash,
 image_size,
 link_address,
 flags,
 args)
{
 return 0;
}

All arguments are integers (addresses or flags), except the last one. The only flags used
for the flags argument are:

● kERASE_ONLY_FLAG (0x1)—A special return value (except kRESULT_OK(0) or
kRESULT_ERROR(1)), namely kRESULT_ERASE_DONE(3), should be returned if a
full erase was performed by the FlashInit function.

● kMASS_ONLY (0x2)—If possible, perform a mass erase before flash loading
proceeds. The subsequent erase/write sequence will then proceed normally (unless
an error is returned), and it is up to the flash loader to ignore subsequent erase
requests if a mass erase has already been done.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Flash loading without RAM

The args argument is a single string containing all arguments (separated by tab
characters, but this should not be relied upon). Use the built-in macros __argCount and
__getArg to access the arguments, see Built-in macros for macro-based flash loading,
page 30.

If the return value also has the bit 0x10000 set (kRESULT_OVERRIDE_LAYOUT), C-SPY
expects an alternative layout in the macro variable flashLayoutOverride, as follows:

__var flashLayoutOverride;

FlashInit(base_of_flash,
 image_size,
 link_address,
 flags,
 args)
{
 ...
 flashLayoutOverride = "4 0x4000,1 0x10000,7 0x20000,4 0x4000,
 1 0x10000,7 0x20000";
 return result | 0x010000; // kRESULT_OVERRIDE_LAYOUT
}

FlashWrite function for macro-based flash loading

The FlashWrite function used for macro-based flash loading is similar to the standard
FlashWrite function.

The first three arguments are integer addresses or counts. The fourth argument is a byte
buffer (that is, a macro language native string) of size count. It can be indexed as a byte
array, for example, buffer[7].

FlashWrite(block_start,
 offset_into_block,
 count,
 buffer)
{
 return 0;
}

FlashErase function for macro-based flash loading

The FlashErase function used for macro-based flash loading is similar to the standard
FlashErase function. Both arguments are integers, an address and a size respectively.
AFE1_AFE2-1:1

29

30

Built-in macros for macro-based flash loading

FlashErase(block_start,
 block_size)
{
 return 0;
}

FlashSignoff function for macro-based flash loading

The FlashSignoff function for macro-based flash loading is optional. The
FlashSignoff function is called if the function is defined.

FlashSignoff()
{
 return 0;
}

Built-in macros for macro-based flash loading
This section describes built-in macros that are available for all C-SPY macro
programming, including macro-based flash loading.

__argCount

Syntax __argCount(string)

Description Returns the number of arguments embedded in the given string (this is primarily for the
last parameter of the FlashInit function.) This corresponds to the value of argc in
standard flash loaders.

__bytes2Word16, __bytes2Word32

Syntax __bytes2Word16(buffer, offset)
__bytes2Word32(buffer, offset)

Description Extracts a 16-bit or 32-bit word from the given buffer (string) starting at the given byte
offset into the buffer, using the proper byte order, and returns it as an integer. The offset
does not need to be aligned to a multiple of the word size.

Example __bytes2Word16("ABCDEF", 2)
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Flash loading without RAM

__getArg

Syntax __getArg(n, string)

Description Returns the argument specified with the n value from the given string. This corresponds
to argv[n] in a standard flash loader.

__makeString

Syntax __makeString(count, char)

Description Creates a new buffer (string) with count bytes.

Example __makeString(7, ’b’)

__readMemoryBuffer

Syntax __readMemoryBuffer(count, addr, zone)

Description Reads count bytes from the specified address and returns them as a macro string.

Example __readMemoryBuffer(4, 0X1000, "Memory")

__writeMemoryBuffer

Syntax __writeMemoryBuffer(buffer, count, addr, zone)

Description Writes count bytes from the specified buffer (string) to the specified address.

Example __writeMemoryBugger("ABCDEF", 4, 0X1000, "Memory")
AFE1_AFE2-1:1

31

32

Built-in macros for macro-based flash loading

AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Flash loading with a relocatable flash loader

Flash loading with a
relocatable flash loader
● Relocatable flash loader flash loading files

● Building a relocatable flash loader

Relocatable flash loader flash loading files
There are devices with so many different memory configurations that having one flash
loader per configuration is impractical. One way to solve this is to use a macro-based
flash loader, but that can lead to bad flashing performance. A better solution can be to
build a relocatable flash loader that can be loaded to any memory location, instead of
having a dedicated flash loader for every memory configuration.

Note: Building a relocatable flash loader is only possible if the IAR Embedded
Workbench product you are using has full support for position-independent code and
data (ROPI and RWPI).

To use a relocatable flash loader, you need:

● A separate flash memory configuration file (.flash) that specifies a relocatable
flash loader

● A corresponding flash memory system configuration file (.board) file that
references the appropriate .flash file

● A relocatable flash loader file (.out)

RELOCATABLE FLASH MEMORY CONFIGURATION FILE

The difference between an ordinary flash memory configuration file (.flash) and one
that specifies a relocatable flash loader, is that the file that specifies a relocatable loader
should contain the tag <relocatable_exe>1</relocatable_exe>.

Note: Flash breakpoints are not supported. For example, <online>1</online> is not
allowed.

RELOCATABLE FLASH MEMORY SYSTEM CONFIGURATION
FILE

The flash memory system configuration file (.board) must reference the corresponding
flash memory configuration file (.flash) for the relocatable flash loader.
AFE1_AFE2-1:1

33

34

Building a relocatable flash loader

Building a relocatable flash loader
Building a relocatable flash loader requires very small code changes, but some specific
compiler and linker settings are needed.

COMPILER SETTINGS

To make the flash loader relocatable, you must enable ROPI and RWPI for the entire
project, either in the Project>Options dialog box, or from the command line. This
includes disabling runtime initialization of static C variables (also called dynamic
read/write initialization).

LINKER SETTINGS

To be easily relocatable, the flash loader requires an .icf file that places all code and
data together, starting at address 0x0, with the label FlashPreInitEntry first.

This linker configuration stub can be used as a starting point:

build for ram;
define region RAM_region = mem:[from 0x0 to 0xFF00];
define block CSTACK with alignment = 8, size = 0x400 { };
define block .noinit {};
place at address 0x0000'0000 { block SB {
 first symbol FlashPreInitEntry,
 ro,
 rw,
 block .noinit,
 block CSTACK
 } };
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

Reference information
● Reference information on IAR Flash Loader

● IAR Flash Loader functions

● IAR Flash Loader variables

● The flash memory configuration file

● The flash memory system configuration file

● Constants to override the flash memory configuration file

Reference information on IAR Flash Loader
Reference information about:

● Flash Loader Overview dialog box, page 35

● Flash Loader Configuration dialog box, page 37

Flash Loader Overview dialog box
The Flash Loader Overview dialog box is available from the
Project>Options>Debugger>Download page.

This dialog box lists all defined flash loaders. If you have selected a device on the
Project>Options>General Options>Target page for which there is a flash loader, this
flash loader is by default listed in the Flash Loader Overview dialog box.
AFE1_AFE2-1:1

35

36

Reference information on IAR Flash Loader

Requirements

Available for supported hardware debugger systems.

Display area

Each row in the display area shows how you have set up one flash loader for flashing a
specific part of memory:

Range

The part of your application to be programmed by the selected flash loader.

Offset/Address

The start of the memory where your application will be flashed. If the address
is preceded by an A, the address is absolute. Otherwise, it is a relative offset to
the start of the memory.

Loader Path

The path to the flash loader *.flash file to be used (*.out for old-style flash
loaders).

Loader Relocation

For relocatable flash loaders, this is the start of the target RAM memory where
the flash loader will be downloaded.

Extra Parameters

List of extra parameters that will be passed to the flash loader.

Click on the column headers to sort the list by range, offset/address, etc.

Function buttons

These function buttons are available:

OK

The selected flash loader(s) will be used for downloading your application to
memory.

Cancel

Standard cancel.

New

Displays a dialog box where you can specify what flash loader to use, see Flash
Loader Configuration dialog box, page 37.

Edit

Displays a dialog box where you can modify the settings for the selected flash
loader, see Flash Loader Configuration dialog box, page 37.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

Delete

Deletes the selected flash loader configuration.

Flash Loader Configuration dialog box
The Flash Loader Configuration dialog box is available from the Flash Loader
Overview dialog box.

Use the Flash Loader Configuration dialog box to configure the download to suit your
board. A copy of the default board file will be created in your project directory.

Requirements

Available for supported hardware debugger systems.

Memory range

Specify the part of your application to be downloaded to flash memory. Choose
between:

All

The whole application is downloaded using this flash loader.

Start/End

Specify the start and the end of the memory area for which part of the
application will be downloaded.
AFE1_AFE2-1:1

37

38

Reference information on IAR Flash Loader

Relocate

Overrides the default flash base address, in other words, relocates the location of the
application in memory. This means that you can flash your application to a different
location from where it was linked. Choose between:

Offset

A numeric value for a relative offset. This offset will be added to the addresses
in the application file.

Absolute address

A numeric value for an absolute base address where the application will be
flashed. The lowest address in the application will be placed on this address.
Note that you can only use one flash loader for your application when you
specify an absolute address.

You can use these numeric formats:

● 123456, decimal numbers

● 0x123456, hexadecimal numbers

● 0123456, octal numbers

The default base address used for writing the first byte—the lowest address—to flash is
specified in the linker configuration file used for your application. However, it can
sometimes be necessary to override the flash base address and start at a different location
in the address space. This can, for example, be necessary for devices that remap the
location of the flash memory.

Flash loader path

Use the text box to specify the path to the flash loader file (*.flash) to be used by your
board configuration.

RAM load address

If the flash loader is relocatable, this option overrides the default address in the target
RAM memory that flash loader is downloaded to, in other words, relocates the flash
loader. Use the text box to specify the address.

Extra parameters

Some flash loaders define their own set of specific options. Use this text box to specify
options to control the flash loader. For information about available flash loader options,
see the Parameter descriptions field.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

Parameter descriptions

Displays a description of the extra parameters specified in the Extra parameters text
box.

IAR Flash Loader functions
These functions are used with IAR Flash Loader:

FlashChecksum

Syntax OPTIONAL_CHECKSUM
uint32_t FlashChecksum(void const *block_start, uint32_t
block_size)

Parameters

Description This is an optional function. You implement this function to enable checksum
verification of the downloaded flash memory content. You implement it with a helper
function from the framework, for example, Crc16.

Note: The OPTIONAL_CHECKSUM macro is needed to make sure that this optional
function and its framework wrapper are both included in the linked flash loader.

Return value Either RESULT_OK or RESULT_ERROR.

Macro Description

FlashChecksum Optional. Enables checksum verification.

FlashErase Erases one flash memory block.

FlashInit The first function called in the flash loader and which can
initialize the flash memory. Can also provide extra information to
C-SPY before flash programming starts, and can override the
properties specified in the flash memory configuration file.

FlashSignoff Optional. Cleans up after flash loading.

FlashWrite Writes or copies a number of bytes of data from the RAM buffer
to the flash memory.

Table 4: Summary of IAR Flash Loader functions

block_start Points to the first byte of the block to erase.

block_size Specifies the size, in bytes, of the block to erase.
AFE1_AFE2-1:1

39

40

IAR Flash Loader functions

Example OPTIONAL_CHECKSUM
uint32_t FlashChecksum(void const *begin, uint32_t count
{
 return Crc16((uint8_t const *)begin, count);
}

FlashErase

Syntax uint32_t FlashErase(void *block_start, uint32_t block_size)

Parameters

Description Erases one flash memory block.

Return value Either RESULT_OK or RESULT_ERROR.

FlashInit

Syntax #if USE_ARGC_ARGV
 uint32_t FlashInit(void *base_of_flash, uint32_t image_size,
 uint32_t link_address, uint32_t flags,
 int argc, char const *argv[]);
#else
 uint32_t FlashInit(void *base_of_flash, uint32_t image_size,
 uint32_t link_address, uint32_t flags;
#endif;

Parameters

block_start Points to the first byte of the block to erase.

block_size Specifies the size, in bytes, of the block to erase.

base_of_flash Points to the first byte of the flash memory.

image_size Specifies the size of the image, in bytes, to be written to
flash memory.

link_address Specifies the original link address of the first byte of the
image, before any offsets, or if there are multiple passes,
the first byte of the subset of the image used for this pass.
Not all flash loaders need this parameter.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

Description The FlashInit function is the first function called in the flash loader, and can initialize
the flash memory. This function can provide extra information to C-SPY before flash
programming starts, such as unlocking the flash memory, or can override the properties
specified in the flash memory configuration (.flash) file using a set of macros defined
in the flash_loader_extra.h header file. See Overriding the flash memory
configuration file, page 17.

There are two different prototypes for FlashInit, determined by the value of the
pre-processor macro USE_ARGC_ARGV, which you specify in flash_config.h. If you
need the argv/argc flexibility, you can specify arguments in the flash memory
configuration (.flash) file, or in the Project>Options>Debugger>Download dialog
box in the IAR Embedded Workbench IDE.

Return value Either RESULT_OK or RESULT_ERROR, but also other return values can be used, see
Constants to override the flash memory configuration file, page 48.

flags Specifies optional flags. These flag values are defined:

FLAG_ERASE_ONLY—When set (when the expression,
flags & FLAG_ERASE_ONLY, is non-zero), the flash
loader has been invoked with the sole purpose of erasing
the whole flash memory. If the flash memory supports a
one-step global erase function, it can be invoked directly
from FlashInit, which should return the constant
RESULT_ERASE_DONE. Otherwise, C-SPY will continue
and invoke the FlashErase function for each block.

FLAG_MASS_ERASE—When set, the FlashInit function
is expected to perform a mass erase, if possible. Unless the
function returns an error, the flash loader process will
continue with the normal sequence of write/erase
invocations.

Note that the sequence will be the same regardless of
whether mass erase has been requested or not, or performed
or not. If FlashInit has done a mass erase, subsequent
erase operations can be skipped by the flash loader. If
FlashInit has not done a mass erase, subsequent erase
operations should be performed normally by the flash
loader.
AFE1_AFE2-1:1

41

42

IAR Flash Loader functions

FlashSignoff

Syntax OPTIONAL_SIGNOFF
uint32_t FlashSignoff()

Description This is an optional function. You implement the function to perform a clean-up after
flash loading has finished. The function is called after the last call to FlashWrite (or
after FlashChecksum, if it exists).

Note: The OPTIONAL_SIGNOFF macro is needed to make sure that this optional
function and its framework wrapper are both included in the linked flash loader.

Return value Either RESULT_OK or RESULT_ERROR.

Example OPTIONAL_SIGNOFF
uint32_t FlashSignoff()
{
 return RESULT_OK;
}

FlashWrite

Syntax uint32_t FlashWrite(void *block_start,
 uint32_t offset_into_block,
 uint32_t count,
 char const *buffer)

Parameters

Description Writes or copies a number of bytes (always a multiple of the page size) of data from the
RAM buffer to the flash memory.

Return value Either RESULT_OK or RESULT_ERROR.

block_start Points to the first byte of the block into which this operation
writes.

offset_into_block Specifies how far into the current block that this write
operation shall start. The absolute address of the first byte
to write is block_start + offset_into_block.

count Specifies the number of bytes to write.

buffer A pointer to the buffer that contains the bytes to write.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

IAR Flash Loader variables
This variable is used by the IAR Flash Loader.

frameworkVersion

Syntax frameworkVersion

Description A variable in flash_loader.c used by the debugger to adapt to the framework version
used by the flash loader.

Note: The framework version should never be changed by an individual flash loader. It
is controlled by the framework code.

The flash memory configuration file
The flash memory configuration file is an XML file (with the filename extension
.flash) which describes relevant flash memory properties to the debugger.

You can use constants to override the properties specified in the flash memory
configuration file, see Constants to override the flash memory configuration file, page
48.

FILE CONTENTS

The flash memory configuration file contains the following mandatory and optional
elements:

Mandatory elements

block Specifies the block layout of the flash memory using one
or more of this element, in order. Each element contains
a decimal count value followed by a block size in
hexadecimal form. The element sequence should fully
specify the sequence of blocks for the flash memory. In
the file example, the flash device contains two blocks of
size 0x100, followed by three blocks of size 0x200, for a
total size of 0x800.

exe Specifies the path to the flash loader. The path can
contain an argument variable, such as $TOOLKIT_DIR$.

flash_base Specifies the base address of the flash memory.
AFE1_AFE2-1:1

43

44

The flash memory configuration file

Optional elements

page Specifies the flash memory page size.

aggregate If this element contains 1, C-SPY will try to use the RAM
download buffer more efficiently by combining write
operations to more than one block. This is a useful
performance optimization if, and only if, block sizes are
significantly smaller than the RAM buffer, so that at least
two (or preferably more) blocks will fit in the download
buffer. This element requires that the flash loader can
program more than one block in a single operation.

args Passes arguments to the flash loader, in the form
argc/argv to the FlashInit function. The parameters
should be separated by the newline character.

args_doc Specifies descriptions of the parameters accepted by the
flash loader FlashInit function, that is arguments listed
as args. The descriptions are displayed in the Flash
Loader Configuration dialog box in IAR Embedded
Workbench. This element can contain multiple lines of
text, separated by the newline character.

checks If this element contains 0, the error return values from the
flash loader functions, such as FlashWrite, are not
checked. Disabling these checks will slightly improve
performance. Note that this element should only be used
when these checks are not needed.

filler Specifies a decimal number which is the byte value to use
when padding write operations to page boundaries. The
default value is 255(0xFF).

gap The specified block sequence can also contain one or
more gap elements intermixed with block elements.
Each gap element contains a gap size in hexadecimal
form. The gap size specifies an area within the extent of
the flash memory that does not contain flash memory.
C-SPY will issue an error for any data in the image file
that would be placed in a gap.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

FLASH LOADING MICROCONTROLLER VARIANTS

A microcontroller can have many variants, often with the same type of flash memory,
but with different sizes and addresses, and possibly block layouts. For such a scenario,
you might need several flash memory configuration (.flash) files, but only one flash
loader.

The following table describes variants of the hypothetical P8 processor family:

Because each of the processor variants has a flash memory of the same type, there are
five different flash memory configuration (.flash) files, with each file specifying the
same flash loader, requiring the same flash programming algorithm.

macro Specifies the path to a C-SPY macro file which will be
loaded when the flash loader is downloaded.

These C-SPY macro functions will be called
automatically if they are defined in this macro file:

● execUserFlashInit — called immediately before
loading the flash loader

● execUserFlashReset — called immediately after
the reset that follows the loading of the flash loader.

● execUserFlashExit — called immediately after
flash loading has finished, but before the flash loader
is unloaded.

relocatable_exe Specifies that the flash loader is relocatable. This element
is mutually exclusive with the online element.

online Specifies that the flash loader supports flash breakpoints.
This element is mutually exclusive with the
relocatable_exe element.

Variant
Flash size

(Kbytes)

Flash base

address

Flash block

layout
Configuration file

P8_1 1 0x10000 4 * 0x100 flash_p8_1.flash

P8_2a 2 0x10000 8 * 0x100 flash_p8_2a.flash

P8_2b 2 0x10000 4 * 0x200 flash_p8_2b.flash

P8_4a 4 0x10000 8 * 0x100
4 * 0x200

flash_p8_4a.flash

P8_4b 4 0x20000 16 * 0x100 flash_p8_bb.flash

Table 5: Variants of the hypothetical P8 processor family
AFE1_AFE2-1:1

45

46

The flash memory system configuration file

The flash memory system configuration file
The flash memory system configuration file is an XML file (with the filename extension
.board) that specifies the properties of a development board with respect to flash
memory.

FILE CONTENTS

At the highest level, the flash memory system configuration file contains one or more of
the following elements:.

Mandatory elements

Each pass element in the flash memory system configuration file contains the following
element:

ignore Specifies a subset of the original image file which
should not be subject to flash loading. This element
consists of a segment type (usually CODE), followed
by the address of the first and last byte of the range in
hexadecimal format. The element can be used, for
example, when parts of the original image are to be
downloaded to RAM, or when parts are already
present in ROM. The element can be repeated to
specify several ranges. This is useful to prevent
warning messages about parts of the original image
falling outside any of the flash memories.

pass Specifies a single flash programming pass, for
programming a single flash memory. Many flash
memory system configuration files contain only one
pass element.

Each pass element in the flash memory system
configuration file consists of additional elements—
mandatory and optional, see below.

loader Specifies the path to the flash memory configuration
(.flash) file. The path can contain an argument
variable, such as $TOOLKIT_DIR$.
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

Optional elements

Each pass element in the flash memory system configuration file can contain the
following optional elements:

abs_offset This element is used for writing the image to flash
memory at an address different from the address when
the image was placed by the linker.

For example, if the flash memory is mapped to
memory at an address when it is programmed, and
then later remapped to another address when
executed, you must use an appropriate offset to
compensate when programming the flash memory.
This element specifies an absolute address where the
first byte of the image file should be placed.

args Passes arguments to the flash loader, in the form
argc/argv to the FlashInit function. The
parameters should be separated by the newline
character. The parameters are appended to any
parameters specified in the flash memory
configuration (.flash) file. If the flash loader
handles parameters correctly, these parameters can
override the ones specified in the flash memory
configuration file.

flash_base Specifies the base address of the flash memory when
it is written to. If this element is included, it overrides
the corresponding element in the flash memory
configuration (.flash) file.

range Specifies the subset of the original image file, which
should be programmed in the flash memory. The
contents of this element is a segment type (usually
CODE), followed by the address of the first and last
byte of the range in hexadecimal format. If there is
only one flash memory, the default range is the range
of the whole image file.

Note that if there is more than one pass element, the
range element is mandatory for defining how C-SPY
is to partition the image.
AFE1_AFE2-1:1

47

48

Constants to override the flash memory configuration file

Constants to override the flash memory configuration file
You can override the properties specified in the flash memory configuration (.flash)
file using a set of constants in the FlashInit function. These constants are defined in
the flash_loader_extra.h header file.

The constants are:

For more information about using these constants, see Overriding the flash memory
configuration file, page 17.

LAYOUT_OVERRIDE_BUFFER

Syntax LAYOUT_OVERRIDE_BUFFER

Description This constant can be used to override the flash loader specified in the flash memory
configuration file (.flash) and specify another flash loader to execute.

You can use this constant, for example, when the flash loader detects that the flash
memory does not match the capabilities of the flash loader, which typically occurs when
the wrong flash loader has started. This is normally the result of misconfiguration, which
many flash loaders cannot check.

If the flash loader can detect the flash memory type at runtime, the flash loader can
report the flash memory name to C-SPY and prompt C-SPY to use another flash loader.
You do this by putting a device identifier in the buffer and returning the special return
value RESULT_OVERRIDE_DEVICE.

rel_offset This element is similar to abs_offset, but specifies
a relative offset with which each record in the image
file should be displaced before writing to flash. The
offset can be either a positive or a negative number.

Note that the abs_offset and rel_offset
elements are mutually exclusive, and cannot both be
used in the same pass element.

Constant Description

LAYOUT_OVERRIDE_BUFFER Overrides the flash loader that will be executed

LAYOUT_OVERRIDE_BUFSIZE Overrides the block layout

SET_BUFSIZE_OVERRIDE Overrides the download buffer size

SET_PAGESIZE_OVERRIDE Overrides the page size

Table 6: Summary of IAR Flash Loader constants
AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

Note: The replacement flash loader is specified indirectly, as a flash memory identifier.
C-SPY reads this identifier and uses the identifier as the key in a table lookup to locate
another flash loader. The table is constructed like this:

● C-SPY finds all files with the filename extension flashdict in the
$TOOLKIT_DIR$\config\flashloader directory (and all subdirectories).

● Each such file can contribute a portion of the table.

The file should look like this:

<?xml version="1.0" encoding="iso-8859-1"?>
<loaders>
 <loader>
 <key>P8_16c</key>
 <path>$TOOLKIT_DIR$\config\flashloader\P8\f_p8_16c.flash
 </path>
 </loader>
 <loader>
 <key>P8_16d</key>
 <path>$TOOLKIT_DIR$\config\flashloader\P8\f_p8_16d.flash
 </path>
 </loader>
</loaders>

If the key is found anywhere in the table, the newly specified flash memory
configuration file is used instead.

Return value Either RESULT_OK or RESULT_ERROR.

Example uint32_t FlashInit(void *base_of_flash, uint32_t image_size
{
 if (‘unexpected flash device was found’)
 {
 strcpy(LAYOUT_OVERRIDE_BUFFER, ”P8_16c”);
 return RESULT_OVERRIDE_DEVICE;
 }
}

LAYOUT_OVERRIDE_BUFSIZE

Syntax LAYOUT_OVERRIDE_BUFSIZE

Description This constant can be used to override the block layout of the flash memory specified in
the flash memory configuration file (.flash). The block layout is normally specified
AFE1_AFE2-1:1

49

50

Constants to override the flash memory configuration file

using the block and gap tags in the flash memory configuration file, this constant lets
the flash loader determine the block layout by querying the flash memory itself.

If the flash loader wants to specify a layout, the flash loader should put the layout
description in the flash download buffer and add the constant OVERRIDE_LAYOUT to the
return value of FlashInit. You use this constant to add a pointer to the download
buffer.

The syntax is the same as in the flash memory configuration (.flash) file (a decimal
block count followed by a hexadecimal block size), except that blocks are separated by
comma.

To specify a gap, use a block count of 0. For example, "0 0x1000" specifies a gap of
0x1000 bytes.

Return value Either RESULT_OK or RESULT_ERROR.

Example uint32_t FlashInit(void *base_of_flash, uint32_t image_size
{
 strcpy(LAYOUT_OVERRIDE_BUFSIZE, "2 0x100,7 0x200,7 0x1000");
 return RESULT_OK | OVERRIDE_LAYOUT;
}

SET_BUFSIZE_OVERRIDE

Syntax SET_BUFSIZE_OVERRIDE

Description This constant can be used to override the buffer size specified in the flash memory
configuration file (.flash) and to set the OVERRIDE_BUFSIZE bit in the return value
from the FlashInit function.

The download buffer size is normally determined by the addresses of two labels,
FlashBufferStart and FlashBufferEnd, which get their addresses at link time. To
use the same flash loader for multiple devices which only differ in RAM size, the flash
loader can override the buffer size (if the flash loader can determine the actual amount
of RAM available).

Note: Do not decrease the buffer size.

Return value Either RESULT_OK or RESULT_ERROR.

Example uint32_t FlashInit(void *base_of_flash, uint32_t image_size
{
 SET_BUFSIZE_OVERRIDE(0x1000);// New buffer size
 return RESULT_OK | OVERRIDE_BUFSIZE;
}

AFE1_AFE2-1:1

IAR Flash Loader Development Guide

Reference information

SET_PAGESIZE_OVERRIDE

Syntax SET_PAGESIZE_OVERRIDE

Description This constant can be used to override the page size specified in the flash memory
configuration file (.flash) and to set the bit OVERRIDE_PAGESIZE in the return value
from the FlashInit function.

Return value Either RESULT_OK or RESULT_ERROR.

Example uint32_t FlashInit(void *base_of_flash, uint32_t image_size
{
 SET_PAGESIZE_OVERRIDE(128);// New page size
 return RESULT_OK | OVERRIDE_PAGESIZE;
}

AFE1_AFE2-1:1

51

	Contents
	Introduction
	Introduction to flash loading
	Briefly about flash loading
	The Flash Loader
	Flash loading process overview
	Flash memory concepts

	The IAR Flash Loader
	IAR Flash Loader configuration files

	Implementing the IAR Flash Loader
	Implementing the IAR Flash Loader
	Framework source code
	Device-specific source code functions

	The IAR Flash Loader process
	The IAR Flash Loader process
	Information about the macro functions

	The IAR Flash Loader configuration files
	The flash memory configuration file
	The flash memory system configuration file

	Overriding the flash memory configuration file
	Combining overriding constants

	IAR Flash Loader source code example

	Using the IAR Flash Loader
	Activating the IAR Flash Loader
	Generating debug information for use with the IAR Flash Loader
	Debugging the flash loader
	Generated debugging log file

	Flash loading without RAM
	Flash loading without RAM
	Macro-based flash loading files
	Flash memory configuration file (.flash) for macro-based flash loading
	Flash memory system configuration file (.board) for macro-based flash loading
	Macro file (.mac) for macro-based flash loading

	Macro-based flash loading functions
	FlashInit function for macro-based flash loading
	FlashWrite function for macro-based flash loading
	FlashErase function for macro-based flash loading
	FlashSignoff function for macro-based flash loading

	Built-in macros for macro-based flash loading
	_ _argCount
	Syntax
	Description

	_ _bytes2Word16, _ _bytes2Word32
	Syntax
	Description
	Example

	_ _getArg
	Syntax
	Description

	_ _makeString
	Syntax
	Description
	Example

	_ _readMemoryBuffer
	Syntax
	Description
	Example

	_ _writeMemoryBuffer
	Syntax
	Description
	Example

	Flash loading with a relocatable flash loader
	Relocatable flash loader flash loading files
	Relocatable flash memory configuration file
	Relocatable flash memory system configuration file

	Building a relocatable flash loader
	Compiler settings
	Linker settings

	Reference information
	Reference information on IAR Flash Loader
	Flash Loader Overview dialog box
	Requirements
	Display area
	Function buttons

	Flash Loader Configuration dialog box
	Requirements
	Memory range
	Relocate
	Flash loader path
	RAM load address
	Extra parameters
	Parameter descriptions

	IAR Flash Loader functions
	FlashChecksum
	Syntax
	Parameters
	Description
	Return value
	Example

	FlashErase
	Syntax
	Parameters
	Description
	Return value

	FlashInit
	Syntax
	Parameters
	Description
	Return value

	FlashSignoff
	Syntax
	Description
	Return value
	Example

	FlashWrite
	Syntax
	Parameters
	Description
	Return value

	IAR Flash Loader variables
	frameworkVersion
	Syntax
	Description

	The flash memory configuration file
	File contents
	Mandatory elements
	Optional elements

	Flash loading microcontroller variants

	The flash memory system configuration file
	File contents
	Mandatory elements
	Optional elements

	Constants to override the flash memory configuration file
	LAYOUT_OVERRIDE_BUFFER
	Syntax
	Description
	Return value
	Example

	LAYOUT_OVERRIDE_BUFSIZE
	Syntax
	Description
	Return value
	Example

	SET_BUFSIZE_OVERRIDE
	Syntax
	Description
	Return value
	Example

	SET_PAGESIZE_OVERRIDE
	Syntax
	Description
	Return value
	Example

