

���������	
�����������	
�����������	
�����������	
������
© Copyright 2006, Micriµm, Inc.

All Rights Reserved.

��
���		�

���
��������
����

����������

User Guide

µC/OS-II: V2.81
µC/OS-II Kernel Awareness Plug-in in C-SPY: V2.10

IAR Embedded Workbench: 4.6

www.Micrium.com

µC/OS-II Kernel Awareness V2.10 Page 2/28

Contents

CONTENTS ...2

INTRODUCTION ...3
µC/OS-II KERNEL AWARENESS IN C-SPY ...3
µC/OS-II V2.81 ...3
IAR EMBEDDED WORKBENCH AND C-SPY DEBUGGER ..3

QUICK START ...4

INSTALLATION...5
REQUIREMENTS..5
SETUP ..5
CONFIGURING THE SIMULATOR ...5

USING THE PLUG-IN ...7
STARTING THE PLUG-IN ...7
UPDATING DATA..7
LIST WINDOW CONTROLS ..8
WINDOW MANAGEMENT ...8
DISABLED FEATURES ...8
KERNEL OBJECT NAMES ..9

REFERENCE ..10
DISPLAY CONVENTIONS...10
STATUS ..10
TASK LIST..13
TIMER LIST ..17
SEMAPHORE LIST ...19
MUTEX LIST...20
MAILBOX LIST ...21
QUEUE LIST ...22
EVENT FLAG GROUPS ..23
MEMORY PARTITIONS ..24
CONFIG. CONSTANTS ...25
OPTIONS...26
ABOUT ...27

BIBLIOGRAPHY..28

CONTACTS...28

µC/OS-II Kernel Awareness V2.10 Page 3/28

Introduction
This User Guide describes how to use the µC/OS-II kernel awareness capabilities with the IAR
Embedded Workbench C-SPY Debugger.

• The Quick Start section helps you start using it right away.
• The Installation section explains the installation process in detail.
• The Reference section provides a comprehensive description of all the features.

µC/OS-II Kernel Awareness in C-SPY
The µC/OS-II Kernel Awareness is added to the C-SPY Debugger as a Plug-in which is automatically
loaded when the Debugger is started. The Plug-in can be enabled or disabled in the Project's Options
under the Debugger's Plugins tab. Version 2.10 of the µC/OS-II Kernel Awareness Plug-in is
compatible with version 4.6 (and higher) of the IAR Embedded Workbench.

Kernel Awareness allows you to display µC/OS-II's internal data structures in a convenient series of
Windows integrated with the C-SPY Debugger within the IAR Embedded Workbench. This provides
you with information about each of the active tasks in the target application, about each semaphore,
mutex, mailbox, queue and event flag group along with a list of all the tasks waiting on these kernel
objects, and more. This can become very useful to the embedded developer when testing and
debugging applications.

µC/OS-II V2.81
Although previous versions of µC/OS-II provided many features to support kernel awareness, as of
µC/OS-II V2.6, a name can be assigned to each kernel object, such as a task, a semaphore, a mutex, a
mailbox, a queue, an event flag group, a memory partition and a timer. A kernel aware debugger can
thus display the name of these objects, and allow you to quickly see information about these objects.
Also, V2.6 allows the debugger to obtain the configuration of an application. V2.81 integrates timer
management.

IAR Embedded Workbench and C-SPY Debugger
The IAR Embedded Workbench is a powerful Integrated Development Environment that allows you
to develop and manage a complete embedded application project for a variety of target processors in a
convenient Windows interface. This IDE is the framework where all necessary tools are integrated: a
C/EC++ compiler, an assembler, a linker, an editor, a project manager, and the C-SPYTM Debugger.

The IAR C-SPY Debugger is a high-level language debugger for embedded applications. It is
designed for use with the IAR compilers and assemblers, and is completely integrated in the IAR
Embedded Workbench IDE, providing seamless switching between development and debugging.
Some C-SPY Debuggers are available in a simulator, emulator, and ROM-monitor versions. The
simulator version simulates the functions of the target processor entirely in software. The Emulator
version provides control over an in-circuit emulator, which is connected to the host computer. The
ROM-monitor version provides a low-cost solution to real-time debugging.

C-SPY can be extended with Plug-ins to provide Kernel Awareness capabilities during debugging.
This is what the µC/OS-II Kernel Awareness Plug-in for C-SPY provides.

µC/OS-II Kernel Awareness V2.10 Page 4/28

Quick Start
These are the minimum steps necessary to start using the µC/OS-II Kernel Awareness Plug-in with
the IAR Embedded Workbench.

1. Run Setup.exe

• Follow the setup instructions to install the µC/OS-II KA Plug-in.

2. Start the IAR Embedded Workbench

3. Open your Project
• The project should be for a functional µC/OS-II application.

4. Start the Debugger

• The µC/OS-II menu will appear in the menu bar, unless there were compiler/linker errors.
• Make sure the application runs for a few hundred clock cycles to allow µC/OS-II to be

initialized.

5. Setup the Simulator (if applicable)
• If you are running the target using a Simulator, you need to simulate the clock tick interrupt

so that µC/OS-II will function in a useful way. That is, if there are no clock ticks, then
µC/OS-II won't work properly.

For the ARM processor, for example:
a. Open Interrupts... from the Low level menu
b. Select Interrupt "IRQ 1 0x18 CPSR.I"
c. Set Repeat Interval = 2500, Latency = 50, Probability = 100, Variance = 2
d. Click Install

This must be done every time the Debugger is started, but fortunately you can use a C-SPY
macro to automate this step. (See Installation section for more details.)

6. Open the µC/OS-II kernel awareness Status window

• Note: This is the first item in the µC/OS-II menu.
• Verify that µC/OS-II is detected.
• Click Update All to make the information reflect the current state of µC/OS-II.

7. Open other µC/OS-II kernel awareness windows

• There is a specific window for each type of µC/OS-II kernel object, as well as windows for
Configuration Constants, Options and About information.

• µC/OS-II windows are managed the same way as other C-SPY Debugger windows in the IDE
workspace. You can also use the features in the Window menu to select or organize the
windows.

See Using the Plug-in and Reference sections for details.

µC/OS-II Kernel Awareness V2.10 Page 5/28

Installation

Requirements
µC/OS-II kernel awareness requires the following:

Software
IAR Embedded Workbench IDE: V4.6 (or higher) for your target processor
µC/OS-II: V2.81 (or higher) with a port for your target processor

Processors
µC/OS-II kernel awareness should work with any processor as long it is supported by C-SPY.

Environment
Windows 95, Windows 98, Windows NT, Window 2000, or Windows XP

Setup
Run Setup.exe and follow the instructions.

If you have multiple installations of the IAR Embedded Workbench, the Plug-in must be installed on
each one for which you wish to use the µC/OS-II KA Plug-in. It must also be installed on each
product family (of a EW installation) for which you wish to use the µC/OS-II KA Plug-in.

The installation process will copy the Plug-in DLL under the plugins directory of each selected IAR
Embedded Workbench installation path.

Configuring the Simulator
If you are running your application using a Simulator, you need to simulate 'clock tick' interrupts so
that µC/OS-II will function in a useful way. That is, if there are no clock ticks, the µC/OS-II tasks
won't be able to delay or timeout.

To avoid configuring the clock tick interrupts every time the Debugger is started (as described in
Quick Start section), you can create a C-SPY macro to perform this task automatically.

1. Create a macro file, which you can name "irq-clock.mac", or edit an existing macro file for
your target, and add this to it:

execUserSetup()
{
 __orderInterrupt("0x18",10000,2500,2,50,100);
}

You can set the interrupt parameters that are appropriate for your context. In the example above:
• 0x18 is the interrupt vector (used for the ARM processor)
• 10000 is the Activation Time

µC/OS-II Kernel Awareness V2.10 Page 6/28

• 2500 is the Repeat Interval. A smaller interval may cause high CPU usage, and even prevent
user code from being excuted since most of the time would be spent in the OS. The right
balance depends on the performance of your computer. A value of 10000 works well on a
Pentium IV running at 1GHz.

• 2 is the Variance
• 50 is the Latency
• 100 is the Probability
(See the IAR Embedded Workbench IDE User Guide for more information)

2. Place the macro file in your project directory (or in a more central location for all your projects).

3. In your IAR EW project, under Project .. Options .. Debugger .. Setup, enable Use macro file
and click the browse button to select your macro file. This causes the macro file to execute
automatically every time the Debugger is started. This should be indicated by an entry in the Debug
Log window stating "Loaded macro file: <path>\irq-clock.mac"

µC/OS-II Kernel Awareness V2.10 Page 7/28

Using the Plug-in
This section describes how to use the features of the µC/OS-II Kernel Awareness Plug-in. The
detailed description for each window is found in the Reference section.

Starting the Plug-in
In the IAR Embedded Workbench, open your project containing a functional µC/OS-II application.
When you start the Debugger (i.e. Project .. Debug), the µC/OS-II menu will appear in the menu
bar, unless there were compiler/linker errors.

You can now open any of the µC/OS-II windows from the µC/OS-II menu.

You should first check the status of µC/OS-II using the Status window, which will indicate if the
application is using µC/OS-II and if µC/OS-II is running. See Status on page 10 for details.

Typically, the debugger will initially break upon entering the main() function of the application. At
this point, µC/OS-II is not initialized, so its status should be "Not Running" but you will be able to
see its version. Also, you can see the application's configuration constants in the Config. Constants
window, which are useful if you need to diagnose how µC/OS-II is configured.

Updating Data
The kernel data will not be available until µC/OS-II has had time to initialize it. In other words,
µC/OS-II's data structures will be initialized only when OSInit() is executed. Because of this, the
information windows will be empty until data is available. Depending on your application, it may
take a few hundred clock cycles to have all the data.

You can monitor the changes in kernel data in different ways:

1. Set breakpoints in the application. If the Auto Update option is enabled (see Options on page
26 for details), the kernel data will be re-read each time a breakpoint is reached, and will be
used to refresh the contents of the windows.

2. Force a Break while the application is running (i.e. Debug .. Break), causing the same effect

as a normal breakpoint.

3. Click Update All in the Status window while the application is running, or select Update

from the context menu of any of the List windows.

Each time, the contents of the open windows change to reflect the current data in µC/OS-II. For
example, you will see the Time (ticks) value increment in the Status window.

µC/OS-II Kernel Awareness V2.10 Page 8/28

List Window Controls
Most µC/OS-II windows are List windows showing columns of information for each item in the list.
These windows have the following special features:

AutoFit Columns
The width of each column is automatically adjusted to fit its content whenever the window is
refreshed. The column's width is set to fit the text in the largest item. This feature can be disabled
from the context menu.

Sort
List items can be sorted by clicking on the header of the column to use as sorting criteria. Clicking
again toggles the sort order between ascending and descending.

Context Menu
Right-clicking anywhere in the window opens the context menu. Every list window has the following
commands in the context menu:

• AutoFit Columns : Enables/Disables AutoFit Columns feature for this window.

• Refresh : Redraws the window contents (using AutoFit if needed) with the currently known

target data (i.e. target data is not re-read from the target).

• Update : Re-reads all the data from the target, and force an update of all the µC/OS-II

windows. This is the same as Update All in the Status window.

Additional commands may be appended to the end of the menu for specific windows. At this time,
only the Task List window has extra context menu commands (See Task List on page 12).

Context menu option selections are lost when the window is closed. These are restored to defaults
when the window is opened again. However, the options are preserved when the debugger is stopped
while the window is open.

Window Management
When the Debugger is re-started, the µC/OS-II windows that were open when it was stopped are
restored, and their settings such as sorting and AutoFit are restored.

Disabled features
Most of the features of µC/OS-II can be disabled using Configuration Constants. If major features
(Semaphores, Mutexes, Mailboxes, Queues, Event Flag Groups, Memory Partitions, Timers) are
disabled, their corresponding window will show a message like this one for the Semaphore List:

Semaphore functionality disabled.
To enable, set OS_SEM_EN to 1 in OS_CFG.H

Other features can be disabled which will cause some kernel data to be unavailable. In such cases, the
information will be left blank, 'n/a' or '?'. For example, if OS_TASK_STAT_EN is 0 then CPU Usage
will remain n/a in the Status window. Also, most Stack statistics will not be available in the
Task List window if OS_TASK_PROFILE_EN or OS_TASK_CREATE_EXT_EN are 0.

µC/OS-II Kernel Awareness V2.10 Page 9/28

Kernel Object Names
As of V2.6, µC/OS-II allows you to assign names to kernel objects to help identify them in Kernel
Awareness tools:

There are five(5) types of kernel object that can be named:

Kernel Object Type Name-Size Constant Function used to set the
name

Task OS_TASK_NAME_SIZE OSTaskNameSet()
Event (Sem., Mutex, Mailbox, Queue) OS_EVENT_NAME_SIZE OSFlagNameSet()
Event Flag Group OS_FLAG_NAME_SIZE OSFlagNameSet()
Memory Partition OS_MEM_NAME_SIZE OSMemNameSet()
Timer OS_TMR_CFG_NAME_SIZE OSTmrStart()

You can assign a name to an object if its name-size configuration constant is greater than 0. This
constant actually establishes the number of characters allowed for the object names and must account
for a NUL-terminated ASCII string. Object names are assigned to each object after the object is
created by calling its corresponding OS..NameSet() function (refer to the µC/OS-II release notes
for details).

Task names are shown in the Name column of the Task List window and in the Tasks Waiting
column of the Semaphore, Mutex, Mailbox, Queue List windows, as well as in the
Event Flag Group window. Event names are used in the Name column of their corresponding
window and in the Waiting On column of the Task List window.

µC/OS-II Kernel Awareness V2.10 Page 10/28

Reference
This section contains the description of each µC/OS-II Kernel Awareness window with a definition
for each item of information.

Display Conventions
Address values are expressed in hexadecimal format. The width of an address value depends on the
target processor's addressing capabilities (2, 3 or 4 bytes), which is indicated by OSPtrSize.

Numerical values are displayed with a right-justified alignment, while text values are displayed with
left-justification.

Screen output may differ from what is seen here, depending on the system and its configuration.

Status
The Status window shows general information concerning µC/OS-II and contains general controls.

Information

Status
The status of µC/OS-II can be one of the following:

Not Detected µC/OS-II code not present in target application

Debug Disabled OSDebugEn = 0. Debug Mode must be enabled for kernel awareness

Not Running
µC/OS-II has not started running
(Not enough clock cycles occurred to be initialized)

Running µC/OS-II is running

µC/OS-II Kernel Awareness V2.10 Page 11/28

Version
Current version of µC/OS-II in target application. If µC/OS-II is not detected or debug mode is
disabled, then the version shows V?.??. Version 2.62 and above is necessary for Kernel Awareness
to be functional.

Statistics: Ready / Not Ready
Based on the value of OSStatRdy, indicating if the Statistics task is ready. This is only relevant if
OS_TASK_STAT_EN is set.

CPU Usage
Percentage of CPU used. (OSCPUUsage)

Tasks
Total number of tasks running, i.e. includes system tasks. (OSTaskCtr)

Idle Counter
Idle counter. (OSIdleCtr)
This counter is reset by the Reset Counters feature.

Context Switches
Number of context switches. (OSCtxSwCtr)
This counter is reset by the Reset Counters feature.

Nesting – Interrupt
Interrupt nesting level. (OSIntNesting)

Nesting - Multitask Lock
Multitasking lock nesting level. (OSLockNesting)

Step Mode
Indicates the state of the tick step feature:

Value OSTickStepState Description
Disabled 0 Stepping is disabled; Tick runs as normal
Waiting 1 Waiting for µC/OS-View to set OSTickStepState to _ONCE
Stepped 2 Process tick once and wait for next command from µC/OS-View
Unknown any other value Non-supported value

Time (ticks)
Current value of system time (in ticks). (OSTime)

Timer Time
Current value of timer time. (OSTmrTime)
It increments every OS_TICKS_PER_SEC / OS_TMR_CFG_TICKS_PER_SEC.

Used Timers
Number of timers used. (OSTmrUsed)

Free Timers
Number of timers in the list of unused timers. (OSTmrFree)

µC/OS-II Kernel Awareness V2.10 Page 12/28

Controls

Update All
Updates all the µC/OS-II data (by reading from the target) and forces a refresh of all the windows to
show the new data. This is automatically done when the target stops at a breakpoint, but it is also
permitted to perform an update while the target is running, although you must be aware that the data
may be in transition while it is being read, and may produce some inconsistencies.

Reset Counters
Resets (to 0) the global Context Switches counter (OSCtxSwCtr) and the global Idle counter
(OSIdleCtr), as well as the Context Switches counter (.OSTCBCtxSwCtr) of every task.

µC/OS-II Kernel Awareness V2.10 Page 13/28

Task List
The Task List window shows information about each task running, as well as its Stack information.

Information

Current Task
The first column indicates the currently running task, with a '>' symbol.

Name
Name of the task. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the task in OSTCBTbl[]. This also corresponds to the order in which the tasks were
created.

Prio
Priority assigned to each task. The default sort criteria for the Task List is the Priority in ascending
order. (.OSTCBPrio) Priority values range from 0 (highest) to 63 (lowest).

µC/OS-II Kernel Awareness V2.10 Page 14/28

State
State of the task. The possible state values are:

State Description Value of .OSTCBStat
Ready Ready to run OS_STAT_RDY

Dly Waiting for time to expire
OS_STAT_RDY
 but .OSTCBDly is non-zero

Sem Waiting on a semaphore OS_STAT_SEM
Mutex Waiting on a mutual exclusion semaphore OS_STAT_MUTEX
Flag Waiting on an event flag group OS_STAT_FLAG
Mbox Waiting for a message at a mailbox OS_STAT_MBOX
Q Waiting for a message at a queue OS_STAT_Q

Sem+Suspended Waiting on a semaphore and task is also
suspended

OS_STAT_SEM + OS_STAT_SUSPEND

Mutex+Suspended Waiting on a mutual exclusion semaphore and
the task is also suspended

OS_STAT_MUTEX + OS_STAT_SUSPEND

Flag+Suspended Waiting on an event flag group and the task is
also suspended

OS_STAT_FLAG + OS_STAT_SUSPEND

Mbox+Suspended Waiting for a message at a mailbox and the
task is also suspended

OS_STAT_MBOX + OS_STAT_SUSPEND

Q+Suspended Waiting for a message at a queue and the task
is also suspended

OS_STAT_Q + OS_STAT_SUSPEND

Dly
Amount of time (in ticks) the task has been delayed (if the State column indicates 'Dly') or, the
amount of time left that the task will be waiting for either the semaphore, the mutex, the event flag
group, the mailbox or the queue (if the State column indicates an object type). The value is 0 if the
task will wait forever for one of the objects. (.OSTCBDly)

Waiting On
Name of the object (if any) for which the task is waiting. This can be either an Event Flag Group or
an Event (Semaphore, Mutex, Mailbox, or Queue).

Msg
Message received from OSMboxPost() or OSQPost(). This pointer is shown in hexadecimal
format. Typically, it will be empty unless you single-step through the code and a 'Post' call deposits a
message either to the mailbox or a queue that the task is waiting for. (.OSTCBMsg)

Ctx Sw
Number of times the task was 'switched-in'. This counter can be reset to 0 by selecting Reset
Counters from the context menu, or by clicking the Reset Counters button in the Status window.
This counter is only available if you set the configuration constant OS_TASK_PROFILE_EN to 1
which should be done when you are using the kernel awareness feature of µC/OS-II.
(.OSTCBCtxSwCtr)

Stk Ptr
Current value of the task's stack pointer (in hexadecimal).

µC/OS-II Kernel Awareness V2.10 Page 15/28

Notes on Stack Statistics:
• The following Stack-related information fields can be disabled with the Stack Stats feature in the

context menu or in the Options window.
• Most of these values assume that tasks were created with OSTaskCreateExt(), specifying

OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR for the opt argument. Also, you
need to enable the Statistics task (set OS_TASK_STAT_EN to 1 in OS_CFG.H), and enable
stack checking by the Statistics task (set OS_TASK_STAT_STK_CHK_EN to 1).

Max%
Maximum stack space used by the task expressed as a percentage. For example, a value of 47%
means that, during execution of the task, the total stack space used never exceeded 47%. This value is
reset to 0 by the Reset StkUsed feature of the context menu.

(.OSTCBStkUsed / (.OSTCBStkSize * OSStkWidth))

Cur%
Current stack usage of the task expressed as a percentage. For example, a value of 39% means that
the stack pointer is currently located 39% into the stack.

(abs(.OSTCBStkPtr - .OSTCBStkBase) / (.OSTCBStkSize * OSStkWidth))

Max
Maximum stack space used by the task (in bytes). This value is reset to 0 by the Reset StkUsed
feature of the context menu. (.OSTCBStkUsed)

Cur
Current stack usage of the task (in bytes).

(abs(.OSTCBStkPtr - .OSTCBStkBase))

Size
Number of bytes allocated for the task stack.

(.OSTCBStkSize * OSStkWidth)

Starts @
Address of the beginning of the stack. If the stack, on the processor you are using, grows downwards
(i.e. OS_STK_GROWTH set to 1 in OS_CPU.H) then this indicates the highest address that the stack
pointer can take, otherwise (i.e. OS_STK_GROWTH set to 0), this indicates the lowest address the
stack pointer can take. (.OSTCBStkBase)

Ends @
Address of the end of the stack. If the stack, on the processor you are using, grows downwards (i.e.
OS_STK_GROWTH set to 1 in OS_CPU.H) then this indicates the lowest address that the stack
pointer can take, otherwise (i.e. OS_STK_GROWTH set to 0), this indicates the highest address the
stack pointer can take.

µC/OS-II Kernel Awareness V2.10 Page 16/28

Controls
In addition to the standard context menu features (described in Using the Plug-in section), the
following features are available in the Task List context menu:

• StackStats : Shows/Hides the Stack-related information fields (except Stk Ptr). This is the
same as in the Options window.

• Reset Counters : This has the same effect as the Reset Counters button of the Status

window.

• Reset StkUsed : Resets (to 0) the Stack Used counter (.OSTCBStkUsed) of every task,

represented in the Max% and Max columns.

µC/OS-II Kernel Awareness V2.10 Page 17/28

Timer List
The Timer window shows information about the timers (OS_TMR) in the pool of timers. It is based
on a representation of the timer manager 'wheel' (OSTmrWheelTbl[]).

Information

Spoke#
Spoke number in the wheel. (0 to OS_TMR_CFG_WHEEL_SIZE-1)

#Timers
Number of timers in this Spoke. (.OSTmrEntries of OS_TMR_WHEEL)

Timer Name
Name of the timer. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Match
Value used by the timer manager to determine if a timer has expired. A timer expires when
OSTmrTime == .OSTmrMatch

µC/OS-II Kernel Awareness V2.10 Page 18/28

Option
Type of timer.

Description Value of .OSTmrOpt
One-Shot OS_TMR_OPT_ONE_SHOT
Periodic OS_TMR_OPT_PERIODIC

Delay
Time before the first signaling of a periodic timer (in timer time).

Period
Period with which the timer will repeat (in timer time).

Callback
Pointer to the function to call when timer expires.

CallbackArg
Argument to pass to the callback function when the timer expires.

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 19/28

Semaphore List
The Semaphore window shows information about OS_EVENT structures that were created as
semaphores.

Information

Name
Name of the semaphore. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the semaphore structure in OSEventTbl[]. This also corresponds to the order in which
the events were created.

Count
Value of the semaphore interpreted from .OSEventCnt .

Tasks Waiting
Tasks waiting on the semaphore. A task is represented by its Priority followed by its Name (if any). If
more than one task is waiting on the same semaphore, additional rows are added for the same
semaphore with duplicate information in the common columns.

OS_EVENT @
Address of the OS_EVENT structure.

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 20/28

Mutex List
The Mutex window shows information about OS_EVENT structures that were created as Mutual
exclusion semaphores.

Information

Name
Name of the mutex. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the mutex structure in OSEventTbl[]. This also corresponds to the order in which the
events were created.

PIP-Owner (high-byte - low-byte)
The first value is the PIP (Priority Inheritance Priority) of the mutex, interpreted from the 'upper' eight
bits of .OSEventCnt . The second value is the priority of the task that owns the mutex or 255 if the
mutex is available (i.e. not owned), interpreted from the 'lower' eight bits of .OSEventCnt.

Tasks Waiting
Tasks waiting on the mutex. A task is represented by its Priority followed by its Name (if any). If
more than one task is waiting on the same mutex, additional rows are added for the same mutex with
duplicate information in the common columns.

OS_EVENT @
Address of the OS_EVENT structure.

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 21/28

Mailbox List
The Mailbox window shows information about OS_EVENT structures that were created as mailboxes.

Information

Name
Name of the mailbox. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the mailbox structure in OSEventTbl[]. This also corresponds to the order in which the
events were created.

Msg
Current contents of the mailbox. This value is the pointer (.OSEventPtr) to the message.

Tasks Waiting
Tasks waiting on the mailbox. A task is represented by its Priority followed by its Name (if any). If
more than one task is waiting on the same mailbox, additional rows are added for the same mailbox
with duplicate information in the common columns.

OS_EVENT @
Address of the OS_EVENT structure.

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 22/28

Queue List
The Queue window shows information about OS_EVENT structures that were created as message
queues.

Information

Name
Name of the message queue. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the message queue in OSEventTbl[]. This also corresponds to the order in which the
events were created.

Entries
Number of messages currently in the message queue. (.OSQEntries in OS_Q of the queue)

Size
Maximum number of entries allowed in the message queue. (.OSQSize in OS_Q of the queue)

Next Msg
Pointer to the next message available from the queue. Note that if there are no messages in the queue
(.OSQEntries is 0), then this value is meaningless because it contains whatever was in that
message queue position. (.OSQOut in OS_Q of the queue)

Tasks Waiting
Tasks waiting on the message queue. A task is represented by its Priority followed by its Name (if
any). If more than one task is waiting on the same queue, additional rows are added for the same
queue with duplicate information in the common columns.

OS_EVENT @
Address of the OS_EVENT structure.

OS_Q @
Address of the OS_Q structure of the queue. (.OSEventPtr)

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 23/28

Event Flag Groups
The Event Flag Groups window shows information about the OS_FLAG_GRP structures.

Information

Name
Name of the event flag group. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the event flag group in OSFlagTbl[]. This also corresponds to the order in which the
event flag groups were created.

Flags
Current value stored in the event flag group. The number flag bits used to store flags depends on the
definition of OS_FLAGS (in OS_CFG.H). It could be 8, 16 or 32 bits wide.

OS_FLAG_GRP @
Address of the OS_FLAG_GRP structure.

Tasks Waiting
Tasks waiting on the event flag group. A task is represented by its Priority followed by its Name (if
any). If more than one task is waiting on the same event, additional rows are added for the same flag
with duplicate information in the common columns (as seen in the example above).

Wait Type
Condition for which a task will wait. The possible values are:

Wait Type Description Value of .OSFlagNodeWaitType

Any Set A task will wait for ANY of the bits specified in
Waiting For Flags to be SET in Flags.

OS_FLAG_WAIT_SET_ANY/OR

All Set A task will wait for ALL the bits specified in
Waiting For Flags to be SET in Flags.

OS_FLAG_WAIT_SET_ALL/AND

Any Clr A task will wait for ANY of the bits specified in
Waiting For Flags to be CLEARED in Flags.

OS_FLAG_WAIT_CLR_ANY/OR

All Clr A task will wait for ALL the bits specified in
Waiting For Flags to be CLEARED in Flags.

OS_FLAG_WAIT_CLR_ALL/AND

+ Consume Flag will be consumed if condition is satisfied. + OS_FLAG_CONSUME

Waiting for Flags
Bits that a task will wait for to be set (or cleared) in the event flag group, depending on Wait Type.

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 24/28

Memory Partitions
The Memory Partitions window shows information about the OS_MEM structures.

Information

Name
Name of the memory partition. If it has no name, it is set to '?'. See Kernel Object Names on page 9.

Ref
Index of the memory partition in OSMemTbl[]. This also corresponds to the order in which the
memory partitions were created.

Avail%
Available memory as a percentage of the memory partition's size.

Used%
Used memory as a percentage of the memory partition's size.

#Blk Avail
Number of memory blocks available in the memory partition. (.OSMemNFree)

#Blk Used
Number of memory blocks in use in the memory partition. (.OSMemNBlks - OSMemNFree)

#Blk Max
Number of memory blocks allocated in the memory partition when it was created. (.OSMemNBlks)

Blk Size
Size (in bytes) of each memory block. (.OSMemBlkSize)

OS_MEM @
Address of the memory partition.

Starts @
Address of the beginning of the memory partition. (.OSMemAddr) This address is typically the base
of the storage area and is the lowest address of the memory partition. Memory blocks in the memory
partition have an address between Starts@ and Starts@ + (#BlkMax * BlkSize).

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 25/28

Config. Constants
This window lists the µC/OS-II configuration constants in the target application.

Information
A description of the Configuration Constants can be found in OS_DEBUG.C or with their equivalent
definitions in OS_CORE.C.

Controls
There are no special controls for this window in addition to the standard list window controls. See
List Window Controls on page 8 for details.

µC/OS-II Kernel Awareness V2.10 Page 26/28

Options
This window controls the general optional features of the µC/OS-II Kernel Awareness Plug-in. More
specific options can also be found in the context menu of List windows.

Controls

Auto Update
When enabled, the target data is re-read each time a breakpoint is reached, and is used to refresh the
contents of the windows. When disabled, the user must manually update the data, using the Update
command of the context menu in List windows, or the Update All button in the Status window.

Stack Stats
Shows/Hides the Stack-related information fields in the Task List window. These are Max%, Cur%,
Max, Cur, Size, Starts@, and Ends@. This feature is also accessible through the context menu of the
Task List window.

Font: Fixed / Proportional
Selects which type of font to use in List windows. The Plug-in uses either the Fixed or Proportional
font of the Embedded Workbench's Common Fonts. The Common Fonts are configured under
Tools .. Options .. Common Fonts. Font changes only take effect the next time a window is
re-opened, or when a new font is applied through Tools .. Options .. Common Fonts. A smaller font
means you can have smaller windows, which is important on limited screen space. The following
fonts are recommended:

Fixed: Courier New 9pt
Proportional: �����������	
���

Apply
Click Apply to apply the changes.

µC/OS-II Kernel Awareness V2.10 Page 27/28

About
This window shows information about the µC/OS-II Kernel Awareness Plug-in.

Information

Version
Current version of the µC/OS-II Kernel Awareness Plug-in.

Contact
How to contact the Micriµm.

µC/OS-II Kernel Awareness V2.10 Page 28/28

Bibliography

µC/OS-II, The Real-Time Kernel, 2nd Edition
Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Contacts

Micriµm, Inc.
949 Crestview Circle
Weston, FL 33327-1848
954-217-2036
954-217-2037 (FAX)
e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

IAR Systems, Inc.
Century Plaza
1065 E. Hillsdale Blvd
Foster City, CA 94404
USA
+1 650 287 4250
+1 650 287 4253 (FAX)
WEB: http://www.IAR.com
e-mail: info@IAR.com

CMP Books, Inc.
1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950
USA
+1 785 841 1631
+1 785 841 2624 (FAX)
WEB: http://www.rdbooks.com
e-mail: rdorders@rdbooks.com

