expresslogic

C-SPY plugin

Introduction to the ThreadX Debugger Plugin for the IAR Embedded Workbench
C-SPYDebugger

This document describes the IAR C-SPY Debugger plugin for the ThreadX RTOS. The ThreadX RTOS
awareness plugin is delivered and installed as a part of the IAR Embedded Workbench™ IDE. The plugin
provides extensive system information about all ThreadX resources, including threads, timers, queues,
semaphores, mutexes, event flags, block pools, and byte pools. In addition, the plugin provides execution
profile and performance metric information, when enabled by the developer.

For more information regarding the plugin, please visit Express Logic’s website via
www.expresslogic.com or send a request to info@expresslogic.com.

Enabling the Plugin
Enabling the ThreadX kernel awareness plugin is easy; simply follow these steps:

Start IAR Embedded Workbench™
Choose Project -> Options

Select Debugger

Select Plugins tab

Select ThreadX from the plugin list

ahrwdnPE

The plugin is now enabled and will be available on the next debug session of this project.

Introduction to the ThreadX plugin

The plugin introduces several elements in the C-SPY user interface. First, when the debugger is started
the ThreadX menu item is visible, as shown:

ﬁ IAR Embedded Workbench IDE

File Edit View Project Debug Disassembly J-Link ThreadX Tools Window Help
ay-4=1- 11 | | -

22 LEZZ|X

—
[y

http://www.expresslogic.com/

Selecting the ThreadX menu item yields the following pull-down menu, which contains selections for
viewing various ThreadX information as well as thread-specific stepping control. The following shows the
ThreadX pull-down menu:

r.
Z IAR Embedded Workbench IDE

File Edit View Project Debug Disassembly J—Link[ThIeadX]TooIs Window Help

D@ E| BR[| Thread List [
E|‘|E&£EEE|X| Message Queues
T 4B B g 3;| Sernaphores
J x demo_threadx.c iz |
lDebug vl while (1) Byte Pools 3
Filas Cl { Block Pools
El&]demo_threadx |- | | /% Tnoren Timers
A cstartup_bd.s & thread _0_ Event Flag Groups
demo_threadx.c
|— [tz /% Sleep Execution Profile
tx_execution_p... tx_thread Communication Performance Metrics
=
asm_initialize_la.. Memory Performance Metrics
L@ (1 Output /* St e o _
status = Synchronization Performance Metrics T

Thread Performance Metrics

_f* Check Timer Performance Metrics
if ({staty
} break Step Owver
1 Step Into
Step Out
 roid thread 1, Mext Statement
I Instruction Step Over

Instruction Step Into

UINT status;

From this menu, information is available for ThreadX threads, message queues, semaphores, mutexes,
byte pools, block pools, timers and event flag groups. In addition, execution profiling and various
performance metric information is available.

Thread-specific Breakpoints

Thread-specific breakpoints are available via a right-click on an existing breakpoint and selecting the Edit
Breakpoint option. Once selected, the following dialog may be used to make the breakpoint thread-
specific:

Edit Breakpoint 28

. Code |

Break: At:
iger_plugin_new'stm3210c-eval‘thread<demo_threadx.c}.188.9

(Fr——)

Task specific

Break. only if zelected task iz active
[thread] v]

]9][Cancel]

@ Condttion true Skip count: 1] Task
(7 Condttion changed

0K || cancel |

In this example, the breakpoint will only stop the processor if thread 0 is executing at this location in the
program.

Thread-specific Stepping

Thread-specific stepping is available from the main Thread X menu and the thread-specific toolbar icons
as shown:

If more than one thread can execute the same code, there is a need both for thread-specific breakpoints
and for thread-specific stepping. For example, consider some utility function, called by several different
threads. Stepping through such a function to verify its correctness can be quite confusing without thread-
specific stepping. Standard stepping usually works as follows (slightly simplified):

When you invoke a step command, the debugger computes one or more locations where that step will
end, sets corresponding temporary breakpoints and simply starts execution. When execution hits one of
the breakpoints, they are all removed and the step is finished.

Now, during that brief (or not so brief) execution, basically anything can happen in an application with
multiple threads. In particular, a thread switch may occur and another thread may hit one of the
breakpoints before the original thread does. It may appear that you have performed a normal step, but
now you are watching another thread. The other thread could have called the function with another
argument or be in another iteration of a loop, so the values of local variables could be totally different.
Hence, there is a need for thread-specific stepping.

The step commands on the Thread X menu and on the corresponding toolbar behave just like the normal
stepping commands, but they will make sure that the step does not finish until the original thread reaches
the step destination.

Important note: In the standard debugger menu, there are no Instruction Step Over and Instruction
Step commands. This is because the standard Step Over and Step Into commands are context
sensitive, stepping by statement and function call when a source window is active, and stepping by
instruction when the Disassembly window is active. The ThreadX stepping commands

unfortunately are not context sensitive; you must choose which kind of step to perform.

ThreadX Display Windows

The ThreadX plugin introduces 14 additional debugger windows. You can right-click in most of the
windows to enable/disable Color changes in that window. When Color changes are enabled (the default
mode) changes from the last execution are highlighted in the color red.

The Thread List Window

The Thread List Window is arguably the single most important window of the ThreadX plugin.

This window shows a list of all currently created threads in the application (by calls to tx_thread_create)
and a series of items pertaining to their current state. The currently active thread is indicated by an arrow
in the first column (and typically by a state of Running in the State column). The threads are listed in
order of their creation.

The following shows the Thread List Window for the standard ThreadX demonstration. The example
shows that thread 0 is the currently executing thread. All the fields in red have changed since the last
run/step command.

“|* D MName Priority State Run Count Stack Ptr Stack Start Stack End Stack Size Max Stack Usage
= 0 thread0 1 Running 9 0x200013b8 0<20000fd0 0x200013ct 1024 1z
1 thread 1 16 Ready 275 0x20001758 0x200013c8 Ox200017d7 1024 128
¢ threadz 16 Feady 278 0x20001h88 0x200017e0 Ox20007hdf 1024 128
3 thread3 8 semaphore 0 suspended 40 0x20001470 0x20001bed Ox20007fe? 1024 120
4 thread 4 & Resady 40 Ox20002380 Ox2000110 0x200023f 1024 120
5 threadb 4 Ready g 0x20002770 0<200023f8 0x20002747 1024 136
6 threadb 8 rnutex 0 suspended 40 Ox20002b85 0x20002800 0x<20002kf 1024 120
7 thread 7 8 Resdy 40 Ox20002f98 0x20002c08 020003007 1024 120
= Mo Thread
o
£

You can examine a particular thread by double-clicking on the corresponding row in the window. All
debugger windows (Watch, Locals, Register, Call Stack, Source, Disassembly etc) will then show the

state of the program from the point of view of the thread in question. A thread selected in this way is
indicated in the Thread window by a different color (a subdued blue color).

The last column of the display shows the maximum stack usage. As this number approaches the stack
size, the greater the likelihood of a stack overflow.

The last row of the Thread List Window is always No Thread. Double-clicking on this row makes the
debugger show the state of the program as it currently is (that is, as it would be shown without the
ThreadX plugin), in effect always following the active thread.

Note that if a thread has been selected by double-clicking, the debugger will show the state of that
particular thread until another thread (or No Thread) is selected, even if execution is performed by or in
another thread. For example, if thread A is currently active (Running) and you double-click on thread B,
which is Ready, you will see information about the suspended thread B. If you now perform a single-step
by pressing F10, the active thread (A) will perform a single-step, but since you are focused on thread B,
not much will visibly change.

The Execution Profile Window

The Execution Profile Window show exactly where the processing is taking place in the application. The
percentages of time for which the system is idle, in interrupt processing, and in thread processing are
shown. In addition, the percentage of execution time of each thread is also displayed. The information for
this display requires the application and ThreadX to be built with execution profiling enabled, which
requires use of the Execution Profiling Kit.

Please contact Express Logic to receive the Execution Profile Kit (EPK) and for help with any questions
you might have in enabling execution profiling. The ThreadX plugin automatically detects the presence of
execution profiling if it has been enabled. If it is not enabled, this window does not appear.

The following shows the execution profile of the standard ThreadX demonstration:

=

Execution Total Time Execution % Individual Threads Total Time Execution %
ldle Swstern 1] 0.00% thread 0 19737 0.08%
Interrupt 162439 0RB%% thread 1 11241920 46.72%
All Threads 23900631 9932% thread 2 12295982 E1.10%
thread 3 7201 0.30%
Tatal 24063070 100% thread 4 72124 0.30%
o thread & 13365 0.06%
= thread b 92667 0.39%
= thread 7 42275 0.38%
%
E Thread List Execution Profile

In the standard ThreadX demonstration, thread 1 and thread 2 execute continuously, and thus consume
46.72% and 51.10% of the execution, respectively. Since one of these threads is always ready, there is
no idle time, as shown by 0%. The timer interrupt in this simple demonstration represents 0.68% of the
execution.

With this feature, developers are able to more fully analyze their application to determine how much
processing is still available as well as where most of the processing is taking place. From this information
a developer can determine if there are enough available processor cycles to handle maximum system
loading requirements (safety margin) or to add additional application functionality. Alternatively, if there is
an excessive amount of available cycles, the developer may choose to lower the frequency of the
processor to reduced power consumption. Finally, the information provides an excellent roadmap for
optimization, since it shows exactly where the processing is taking place.

The Thread Performance Metrics Window

The Thread Performance Metrics Window shows a variety of internal ThreadX counters for events such
as thread resumptions, suspensions, preemptions via an API call, interrupt preemptions, priority
inversions, time-slices, relinquishes, timeouts, wait abort API calls, idle and non-idle returns from a
thread. This information is optionally gathered by ThreadX and is enabled by building the ThreadX library
with TX_THREAD_ENABLE_PERFORMANCE_INFO defined.

An example display of thread performance metrics for the standard ThreadX demonstration is shown as
follows:

* | Thread Count Thread Count
Resumptions 595 Time Slices 1]
Suspensions 654 Relinguishes n

w| APl Preemptions 0 Timeouts 0

= Interrupt Preemptions 40 Wait Aborts 1]

=| Priority Inversions 0 Idle Returns 0

E Norddle Returns 90

E

2

&

=

]

£ Thread List | Execution Profile. Thread Performance Metrics | =

This example shows that there were 695 thread resumptions and 689 thread suspensions. There were 40
interrupt preemptions associated with higher-priority thread 0 waking up from its sleep every 10 ticks.
There are also 0 idle returns, meaning that in this example, there is always at least one thread ready for
execution, i.e., no idle time.

From this information, a developer might see an excessive number of thread preemptions, which is
effectively a full context switch. Seeing this, the developer may re-evaluate the assigned thread priorities
in order to reduce the number of thread preemptions and thus reduce overhead.

The Synchronization Performance Metrics Window

The Synchronization Performance Metrics Window shows a variety of counters associated with the
ThreadX synchronization objects, e.g., semaphores, mutexes, and event flag groups. This information is
optionally gathered by ThreadX and is enabled by building the ThreadX library with the following defined:

TX_SEMAPHORE_ENABLE_PERFORMANCE_INFO
TX_MUTEX_ENABLE_PERFORMANCE_INFO
TX_EVENT_FLAGS_ENABLE_PERFORMANCE_INFO

An example display of synchronization performance metrics for the standard ThreadX demonstration is
shown as follows:

* | Mutex Count Ewvent Flags Count Semaphore Count
2| Puts 7% Sets 8 Puts 39
= Gets 1 Gets 8 Gets 11
5| Suspensions 40 Suspensions 8 Suspensions 40
g| Timeouts 0 Timeouts 0 0
S| Priority Inversions 0

% Priarity Inheritance 0

S

[

=

5— Thread List | Execution Profile | Communication Performance Metrics Synchronization Performance Metrics | x

This example shows 81 attempts to obtain a mutex and 78 mutex releases. There are 40 thread
suspensions associated with attempts to obtain a mutex that is not available. It is noteworthy that the
mutex operations exceed that of any other synchronization object. From this information, the developer
may explore ways to reduce the number of mutex operations in order to reduce overhead.

The Communication Performance Metrics Window

The Communication Performance Metrics Window shows a variety of internal ThreadX counters
associated with communication message queues, including total messages sent, messages received,
empty suspensions, full suspensions, queue full errors, and timeouts associated with queue full or empty
conditions. This information is optionally gathered by ThreadX and is enabled by building the ThreadX
library with TX_QUEUE_ENABLE_PERFORMANCE_INFO defined.

An example display of queue performance metrics for the standard ThreadX demonstration is shown as
follows:

*

Queue Count
Q Messages Sent 26213
g Messages Received 26151
B Empty suspensions 256
2| Full suspensions 257
S| Full Errars n
£| Timeouts n
E
m
E
5 Thread List | Execution Profle Communication Performance Metrics | =

This example shows 26,213 messages sent and 26,151 messages received. There were 256 empty
gueue suspensions and 257 queue full conditions. There were no timeouts or queue full errors (attempts
to send to a full queue without a suspension option). From this information, the developer may explore
increasing queue depth in order to reduce the number for queue full suspensions.

The Timer Performance Metrics Window

The Timer Performance Metrics Window shows a variety of internal ThreadX counters associated with
timers, including total activations, reactivations, deactivations, expirations, and internal adjustments. This
information is optionally gathered by ThreadX and is enabled by building the ThreadX library with
TX_TIMER_ENABLE_PERFORMANCE_INFO defined.

An example display of timer performance metrics for the standard ThreadX demonstration is shown as
follows:

4
Timer Count
Activations 1
Feactvations 2l
.| Deactivations 0
=| Expirations 4z
2| Internal Adjustments 1]
a
i
E
8
&
i}
E Thread List | Execution Profle Timer Performance Metrics | e

This example shows 42 timer expirations. Only 1 timer was activated and this was a periodic timer that
was reactivated 20 additional times. From this information, the developer may explore increasing timer
periods to reduce the number of expirations.

The Memory Performance Metrics Window

The Memory Performance Metrics Window shows a variety of counters associated with the ThreadX
memory management objects, e.g., variable-length byte pools and fixed-length block pools. This
information is optionally gathered by ThreadX and is enabled by building the ThreadX library with the
following defined:

TX_BYTE_POOL_ENABLE_PERFORMANCE_INFO
TX_BLOCK_POOL_ENABLE_PERFORMANCE_INFO

An example display of byte and block pool performance metrics for the standard ThreadX demonstration
is shown as follows:

: Byte Memary Count Block Memory Count
Allocations 10 Allocations 1
Deallocations 1] Deallocations 1

2| Suspensions 0 SUspensions 0

E Timeouts 0 Timeouts 0

a| |Internal Merges 0

E Internal Fragments 10

5| Blocks Searched 10

&

= Thread List | Execution Frofile Memory Performance Metrics |

This example shows 10 byte pool allocations, 10 byte pool fragments, and 10 byte pool searches. In
addition, there is 1 block pool allocation and 1 block pool release. From this information, the developer
may explore adjusting the size of the byte or block pool if there are excessive pool suspensions.

The Semaphores Window

The Semaphores Window shows the status of the currently created semaphores in the application. The
information includes the current semaphore count and the number of threads suspended on the
semaphore along with the name of the first thread suspended. The following is an example of the
semaphore display for the standard ThreadX demonstration:

=
Mamea Count Suspended
semaphaore [0 1 thread 3)
&
=
kS
E—
2 ThreadList Semaphores =

The Mutexes Window

The Mutexes Window shows the status of the currently created mutexes in the application. The
information includes the current mutex owner, the ownership count and the number of threads suspended
on the mutex along with the name of the first thread suspended. The following is an example of the mutex

display for the standard ThreadX demonstration:

Mame Chwner Cwner Count Suspended
mutex [thread ¥ & 1 (thread b)

Thread List Mutexes x

The Event Flag Groups Window

The Event Flag Groups Window shows the status of the currently created event flags in the application.
The information includes the current event flags set and the number of threads suspended on the event
flag group along with the name of the first thread suspended. The following is an example of the event
flag display for the standard ThreadX demonstration:

X
Marme Current Flags Suspended Count
eventflags [0 0
(=1
2
5
g
[T
f——
& Threadlist Event Flag Groups | x

The Message Queues Window

The Message Queues Window shows the status of the currently created message queues in the
application. The information includes the capacity of the queue, number of free entries, number of used
entries, the size of each entry (in terms of 32-bit words), and the number of threads suspended on the
message queue along with the name of the first thread suspended. The following is an example of the
message queue display for the standard ThreadX demonstration:

* | Narme sed Free Capacity Eniry Size Suspended Count Clueus Address
queue 81 19 100 1 0 Ox20003010

i

z

=3

&

(o]

z

EThread List HﬁﬁageQueuE| x

The Timers Window

The Timers Window shows the status of the currently created timers in the application. The information
includes the remaining timer ticks before expiration, the re-initialization ticks (for periodic timers), and the
entry function pointer. The following is an example of the timer display for the standard ThreadX
demonstration:

Marme Femaining Reinitticks Function
timer 0 1 1 timer_0_entry(0)

"
(1]
E Thread List Timers =

The Block Pools Window

The Block Pools Window shows the status of the currently created block pools in the application. The
information includes the number of allocated (used) blocks, free blocks, block size (in bytes), total pool
size, and the number of threads suspended on the block pool along with the name of the first thread
suspended. The following is an example of the block pool display for the standard ThreadX
demonstration:

MNarme Used Free Count Block size Pool size Fool start Suspended
block pool 0 0 12 12 4 100 Ox20003128 I

Black Pools

Thread List Block Pools x

The Byte Pools Window

The Byte Pools Window shows the status of the currently created byte pools in the application. The
information includes the amount of allocated (used) memory, free memory, fragments, total pool size, and
the number of threads suspended on the byte pool along with the name of the first thread suspended.
The following is an example of the byte pool display for the standard ThreadX demonstration:

MName Used Free Size Fragments SearchPtr Poolstat Suspended Count
bryte pool 0 g780 340 9120 12 0x2000320c Ox20000fc8 O

Byte Pools

Thread List Byte Pools x

