J-Link / J-Trace
User Guide

Software Version V6.14
Manual Rev. 6
Date: April 7, 2017

Document: UM08001

D
/ SEGGER

A product of SEGGER Microcontroller GmbH & Co. KG

www.segger.com




Disclaimer

Specifications written in this document are believed to be accurate, but are not guar-
anteed to be entirely free of error. The information in this manual is subject to
change for functional or performance improvements without notice. Please make sure
your manual is the latest edition. While the information herein is assumed to be
accurate, SEGGER Microcontroller GmbH & Co. KG (the manufacturer) assumes no
responsibility for any errors or omissions. The manufacturer makes and you receive
no warranties or conditions, express, implied, statutory or in any communication with
you. The manufacturer specifically disclaims any implied warranty of merchantability
or fitness for a particular purpose.

Copyright notice

You may not extract portions of this manual or modify the PDF file in any way without
the prior written permission of the manufacturer. The software described in this doc-
ument is furnished under a license and may only be used or copied in accordance
with the terms of such a license.

© 2017 SEGGER Microcontroller GmbH & Co. KG, Hilden / Germany
Trademarks
Names mentioned in this manual may be trademarks of their respective companies.

Brand and product names are trademarks or registered trademarks of their respec-
tive holders.

Contact address
SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

Email: support@segger.com
Internet: http://www.segger.com

Revisions
This manual describes the J-Link and J-Trace device.

For further information on topics or routines not yet specified, please contact us.

Revision Date By Explanation

Chapter "Working with J-Link and J-Trace"
V6.14 Rev. 6 |170407 |NV | * Section "J-Link scriptfiles": Updated
"JLINK_ExecCommand()" description
Chapter "J-Flash SPI"

Updated screenshots
Chapter "Working with J-Link and J-Trace"
* Section "J-Link scriptfiles":
V6.14 Rev. 4 | 170317 |NV Added: "JLINK_ExecCommand()"
Section "Keil MDK-ARM" added

for Command string execution

V6.14 Rev. 5 170320 |EL

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Revision Date By Explanation

Chapter "Working with J-Link and J-Trace"
* Section "J-Link scriptfiles":
Added: "OnTraceStart()" and
V6.14 Rev. 3 | 170220 |NV "JLINK_TRACE_Portwidth"
Chapter "Trace"
* Added crossreference to
"JLINK_TRACE_Portwidth"

Chapter "Introduction”
*Added Subsubsection "Software and Hardware
Features Overview" to all device Subsections.
V6.14 Rev. 2 170216 |NV | *Edited Subsection ""J-Trace ARM.
*Section "Target interfaces and adapters":
edited "RESET" to "nRESET" and updated
description.

Chapter "Working with J-Link and J-Trace"
* Section "Exec Commands": Updated
SetResetPulselen
TraceSampleAdjust
Chapter "Trace"
* Section "Tracing via trace pins": Updated

V6.14 Rev. 1 170210 |NV

Chapter "Working with J-Link"

* Section "Exec Commands": Updated
SelectTraceSource
SetRAWTRACEPinDelay
ReadIntoTraceCache

Chapter "Trace" added .

V6.14 Rev. 0 | 170201 |AG

Chapter "Working With J-Link"
V6.10a Rev. 0 | 160820 |EL * Section "Exec Commands": Updated
ExcludeFlashCacheRanges.

Chapter "Introduction"
* Removed "Model Fature Lists"
V6.00i Rev. 0 |160802 |EL |Chapter "Adding Support for New Devices":
renamed to "Open Flash Loader"
Chapter "Open Flash Loader" updated.

Chapter "J-Flash SPI"

V6.00 Rev. 1 1160617 \EL * Added chapter "Custom Command Sequences"

V6.00 Rev. 0 | 160519 |AG |Chapter "Adding Support for New Devices" added.

Chapter "Related Software"
V5.12f Rev. 0 | 160503 |AB * Section "J-Link RTT Viewer" updated and moved
from section "RTT".

Chapter "Working with J-Link and J-Trace"

V5.12d Rev. 1 1160427 | AG * Section "J-Link script files" updated.

Chapter "Working with J-Link and J-Trace"

V>.12d Rev. 0 | 160425 | AG * Section "J-Link script files" updated.

Chapter "Related Software"
V5.12c Rev. 1 |160418 NG * Section "J-Link Commander"
Typo fixed.

Chapter "Related Software"
* Section "J-Link Commander"

Commands and commandline options added.
Chapter "Working with J-Link and J-Trace"
V5.12c Rev. 0 | 160413 |NG * Section "Command strings"

Command "SetRTTTelnetPort" added.
Chapter "Flash Download"

* Section "Debugging applications that change
flash contents at runtime" added.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Revision

Date

By

Explanation

V5.10u Rev. O

160317

AG

Chapter "Monitor Mode Debugging"
* Section "Target application performs reset"
added.

V5.10t Rev. O

160314

AG

Chapter "Monitor Mode Debugging"
* Section "Enable Monitor Debugging" updated.
* Section "Forwarding of Monitor Interrupts"
added.

V5.10 Rev. 3

160309

EL

Chapter "J-Flash SPI" updated.

V5.10 Rev. 2

160215

AG

Chapter "RTT" updated.

V5.10 Rev. 1

151204

AG

Chapter "RDI" updated.
Chapter "Semihosting" added.

V5.10 Rev. 0

151127

NG

Chapter "Related Software"
* Section "J-Scope" removed.

V5.02m Rev. 0

151125

AG

Chapter "Working with J-Link and J-Trace"
* Section "The J-Link settings file" added.
Chapter "Low Power Debugging" added.

V5.02| Rev. 0

151123

AG

Various Chapters
* Some typos corrected.

V5.02i Rev. 1

151106

RH

Chapter "J-Flash SPI"
* Section "Send custom commands" added.

V5.02i Rev. 0

151105

RH

Chapter "Related Software"
* Section "J-Link Commander"
exec command added.
Chapter "Working with J-Link and J-Trace"
* Section "Command strings"
New commands added.

V5.02f Rev. 1

151022

NG

Chapter "Related Software"
* Section "J-Scope" updated.

V5.02f Rev. 1

151022

EL

Chapter "Target interfaces and adapters"
* Section "Reference volatge (VTref)" added.

V5.02f Rev. 0

151007

RH

Chapter "Working with J-Link and J-Trace"
* Section "J-Link script files" updated.

V5.02e Rev. 0

151001

AG

Chapter "Working with J-Link and J-Trace"
* Section "J-Link script files" updated.

V5.02c Rev. 1

150925

NG

Chapter "Licensing"
* Sectin "Original SEGGER products" updated.
Chapter "Flash download"
* Section "Setup for various debuggers (CFI
flash)" updated.

V5.02c Rev. 0

150916

RH

Chapter "Flash download"
* Section "Setup for various debuggers (SPIFI
flash)" added.

V5.02c Rev. 0

150914

RH

Chapter "Introduction"
* Section "J-Link / J-Trace models" updated.
* Section "Supported OS"
Added Windows 10

V5.02a Rev. 0

150903

AG

Chapter "Monitor Mode Debugging" added.

V5.02 Rev. O

150820

AG

Chapter "Working with J-Link and J-Trace"
* Section "Command strings"
"DisableCortexMXPSRAutoCorrectTBit" added.

V5.02 Rev. 0

150813

AG

Chapter "Monitor Mode Debugging" added.

V5.00 Rev. 1

150728

NG

Chapter "Related Software"
* Section "J-Link Commander"
Sub-Section "Command line options" updated.

J-Link / J-Trace (UMOQ8001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




Revision

Date

By

Explanation

V5.00 Rev. 0

150609

AG

Chapter "Flash download"
* Section "QSPI flash support" added.
Chapter "Flash breakpoints"
* Section "Flash Breakpoints in QSPI flash" added

V5.00 Rev. 0

150520

EL

Chapter "J-Flash SPI"
* Initial version added

V4.99b Rev. 0

150520

EL

Chapter "Related Software"
* Section "J-Link STM32 Unlock"
- Added command line options

V4.99a Rev. 0

150429

AG

Chapter "Target interfaces and Adapters"
Chapter "20-pin J-Link connector”, section
"Pinout for SPI" added.

V4.98d Rev. 0

150427

EL

Chapter "Related Software"
* Section "Configure SWO output after device
reset" updated.

V4.98b Rev. 0

150410

AG

Chapter "Licensing"
* Section "J-Trace for Cortex-M" updated.

V4.98 Rev. 0

150320

NG

Chapter "Related Software"
* Section "J-Link Commander"
Sub-Section "Commands" added.
Chapter "Working with J-Link and J-Trace"
* Section "J-Link script files" updated

V4.96f Rev. 0

150204

JL

Chapter "Related Software"
* Section "GDB Server"
Exit code description added.

V4.96 Rev. 0

141219

JL

Chapter "RTT" added.
Chapter "Related Software"
* Section "GDB Server"
Command line option "-strict" added.
Command line option "-timeout" added.

V4.90d Rev. 0

141112

NG

Chapter "Related Software"
* Section "J-Link Remote Server" updated.
* Section "J-Scope" updated.

V4.90c Rev. 0

140924

JL

Chapter "Related Software"
* Section "JTAGLoad" updated.

V4.90b Rev. 1

140813

EL

Chapter "Working with J-Link and J-Trace"
* Section "Connecting multiple J-Links / J-Traces
to your PC" updated
Chapter "J-Link software"
* Section "J-Link Configurator" updated.

V4.90b Rev. 0

140813

NG

Chapter "Related Software"
* Section "J-Scope" added.

V4.86 Rev. 2

140606

AG

Chapter "Device specifics"
* Section "Silicon Labs - EFM32 series devices"
added

V4.86 Rev. 1

140527

JL

Chapter "Related Software"
* Section "GDB Server"
Command line options -halt / -nohalt added.
Description for GDB Server CL version added.

V4.86 Rev. 0

140519

AG

Chapter "Flash download"
Section "Mentor Sourcery CodeBench" added.

V4.84 Rev. 0

140321

EL

Chapter "Working with J-Link"
* Section "Virtual COM Port (VCOM) improved.
Chapter "Target interfaces and adapters"
* Section "Pinout for SWD + Virtual COM Port
(VCOM) added."

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




Revision

Date

By

Explanation

V4.82 Rev. 1

140228

EL

Chapter "Related Software"

* Section "Command line options"

Extended command line option -speed.
Chapter "J-Link software and documentation
package"

* Section "J-Link STR91x Commander"
Added command line option parameter to
specify a customized scan-chain.

Chapter "Working with J-Link"

* Section "Virtual COM Port (VCOM) added.
Chapter "Setup"

* Section "Getting started with J-Link and DS-5"

V4.82 Rev. 0

140218

JL

Chapter "Related Software"
* Section "GDB Server"
Command line option -notimout added.

V4.80f Rev. 0

140204

JL

Chapter "Related Software"
* Section "GDB Server"
Command line options and remote commands
added.

V4.80 Rev. 1

131219

L/
NG

Chapter "Related Software"
* Section "GDB Server"
Remote commands and command line options
description improved.
Several corrections.

V4.80 Rev. 0

131105

JL

Chapter "Related Software"
* Section "GDB Server"
SEGGER-specific GDB protocol extensions
added.

V4.76 Rev. 3

130823

JL

Chapter "Flash Download"

* Replaced references to GDB Server manual.
Chapter "Working withc J-Link"

* Replaced references to GDB Server manual.

V4.76 Rev. 2

130821

JL

Chapter "Related Software"
* Section "GDB Server"
Remote commands added.

V4.76 Rev. 1

130819

JL

Chapter "Related Software"
* Section "SWO Viewer"
Sample code updated.

V4.76 Rev. 0

130809

JL

Chapter "Related Software"

* Sections reordered and updated.
Chapter "Setup"

* Section "Using JLinkARM.dIl moved here.

V4.71b Rev. 0

130507

JL

Chapter "Related Software"
* Section "SWO Viewer"
Added new command line options.

V4.66 Rev. 0

130221

JL

Chapter "Introduction"
* Section "Supported OS"
Added Linux and Mac OSX

V4.62b Rev. 0

130219

EL

Chapter "Introduction"
* Section "J-Link / J-Trace models"
Clock rise and fall times updated.

V4.62 Rev. O

130129

JL

Chapter "Introduction"
* Section "J-Link / J-Trace models"
Sub-section "J-link ULTRA" updated.

V4.62 Rev. 0

130124

EL

Chapter "Target interfaces and adapters"
* Section "9-pin JTAG/SWD connector"
Pinout description corrected.

J-Link / J-Trace (UMOQ8001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




Revision Date By Explanation
Chapter "Intoduction”
V4.58 Rev. 1 1121206 |AG * Section "J-Link / J-Trace models" updated.
Chapter "Working with J-Link"
* Section "J-Link script files"
V4.58 Rev. 0 | 121126 |JL Sub-section "Executing J-Link script files"
updated.
Chapter "Related Software"
* Section "J-Link SWO Viewer"
V4.56b Rev. 0 1121112 1JL Added sub-section "Configure SWO output
after device reset"
Chapter "Related Software"
* Section "J-Link Commander"
V4.56a Rev. 0 | 121106 |IL Renamed "Commander script files" to
"Commander files" and "script mode" to
"batch mode".
V4.56 Rev. 0 | 121022 |AG Renam:ed "J-Link TCP/IP Server" to "J-Link Remote
Server".
Chapter "Related Software"
V4.54 Rev. 1 [121009 |JIL * Section "TCP/IP Server", subsection "Tunneling
Mode" added.
Chapter "Flash Breakpoints"
* Section "Licensing" updated.
V4.54 Rev. 0 [120913 |EL |Chapter "Device specifics"
* Section "Freescale", subsection "Data flash
support" added.
V4.53c Rev. 0 | 120904 |EL | Chapter "Licensing” .
) ) * Section "Device-based license" updated.
Chapter "Flash download"
* Section "J-Link commander" updated.
Chapter "Support and FAQs"
V4.51h Rev. 0 1120717 | EL * Section "Frequently asked questions" updated.
Chapter "J-Link and J-Trace related software"
* Section "J-Link Commander" updated.
Chapter "Working with J-Link"
V4.51e Rev. 1 | 120704 |EL * Section "Reset strategies" updated and
corrected. Added reset type 8.
Chapter "Device specifics"
V4.51e Rev. 0 | 120704 |AG * S[»)ection "ST" ugdated and corrected.
Chapter "J-Link and J-Trace related software"
V4.51b Rev. 0 | 120611 \EL * Section "SWO Viewer" added.
Chapter "Device specifics"
* Section "ST", subsection "ETM init"
for some STM32 devices added..
V4.51a Rev. 0 | 120606 |EL * Section "Texas Instruments" updated.
Chapter "Target interfaces and adapters"
* Section "Pinout for SWD" updated.
Chapter "Device specifics"
V4.47a Rev. 0 1120419 | AG * S[»)ection "TexaspInstruments" updated.
V4.46 Rev. 0 120416 |EL |Chapter "Support" updated.
V4.42 Rev. 0 | 120214 | EL Chapter "Working with J-Link"

* Section "J-Link script files" updated.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




Revision Date By Explanation

Chapter "Flash download" added.
Chapter "Flash breakpoints" added.
Chapter "Target interfaces and adapters"
V4.36 Rev. 1 110927 |EL * Section "20-pin JTAG/SWD connector" updated.
Chapter "RDI" added.
Chapter "Setup" updated.
Chapter "Device specifics" updated.
Chapter "Working with J-Link"
* Section "J-Link script files" updated.
Chapter "Introduction"
V4.26 Rev. 1 | 110513 KN * Section "J-Link / J-Trace models" corrected.

V4.26 Rev. 0 110427 KN | Several corrections.

Chapter "Introduction"

* Section "J-Link / J-Trace models" corrected.
Chapter "Device specifics"

* Section "ST Microelectronics" updated.

Chapter "Device specifics"
* Section "Samsung" added.
Chapter "Working with J-Link"
* Section "Reset strategies" updated.
Chapter "Target interfaces and adapters"
* Section "9-pin JTAG/SWD connector" added.
Chapter "J-Link and J-Trace related software"
* Section "J-Link software and documentation
package in detail" updated.

V4.36 Rev. 0 | 110909 |AG

V4.24 Rev. 1 |110228 |AG

V4.24 Rev. 0 | 110216 |AG

v4.23d 110202 1AG Chapter "Introduction"
* Section "Built-in intelligence for
supported CPU-cores" added.
Chapter "Working with J-Link"
* Section "Reset strategies" updated.
Chapter "Device specifics"
* Section "Freescale" updated.
Va.21g 101130 | AG Chapter "Flash download and flash breakpoints
* Section "Supported devices" updated
* Section "Setup for different debuggers
(CFI flash)" updated.
Chapter "Device specifics"
v4.21 101025 1AG * Section "Freescale" updated.
, Chapter "Working with J-Link"
v4.20j 101013 1 AG * Section "Reset strategies" updated.
Chapter "Working with J-Link"
V4.20b 100923 | AG * Section "Reset strategies" updated.
Chapter "Working with J-Link"
* Section "J-Link script files" updated.
* Section "Command strings" upadted.
Chapter "Target interfaces and adapters"
20 100818 | AG * Section "19-pin JTAG/SWD and Trace
connector" corrected.
Chapter "Setup"
* Section "J-Link configurator added."
89 100630 |AG |Several corrections.
Chapter "J-Link and J-Trace related software"
88 100622 | AG * Section "SWO Analyzer" added.
87 100617 |AG |Several corrections.

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Revision Date By Explanation
Chapter "Introduction"
* Section "J-Link / J-Trace models" updated.
86 100504 | AG Chapter "Target interfaces and adapters"
* Section "Adapters" updated.
Chapter "Introduction"
85 100428 | AG * Section "J-Link / J-Trace models" updated.
Chapter "Working with J-Link and J-Trace"
* Several corrections
84 100324 | KN Chapter Flash download & flash breakpoints
* Section "Supported devices" updated
Chapter "Introduction"
83 100223 KN * Section "J-Link / J-Trace models" updated.
Chapter "Working with J-Link"
82 100215 1 AG * Section "J-Link script files" added.
Chapter "Device Specifics"
* Section "Luminary Micro" updated.
81 100202 | KN Chapter "Flash download and flash breakpoints"
* Section "Supported devices" updated.
Chapter "Flash download and flash breakpoints
80 100104 | KN * Section "Supported devices" updated
Chapter "Working with J-Link and J-Trace"
* H n : n
79 091201 | AG Sectl?'n_ Res_et ﬁtrategles updated.
Chapter "Licensing
* Section "J-Link OEM versions" updated.
Chapter "Licensing"
78 091023 | AG * Section "J-Link OEM versions" updated.
Chapter "Introduction"
77 090910 | AG * Section "J-Link / J-Trace models" updated.
Chapter "Introduction"
* Section" Specifications" updated
* Section "Hardware versions" updated
76 090828 | KN * Section "Common features of the J-Link product
family" updated
Chapter "Target interfaces and adapters"
* Section "5 Volt adapter" updated
Chapter "Introduction"
* Section "J-Link / J-Trace models" updated.
7> 090729 | AG Chapter "Working with J-Link and J-Trace"
* Section "SWD interface" updated.
Chapter "Introduction"
* Section "Supported IDEs" added
* Section "Supported CPU cores" updated
74 090722 |KN * Section "Model comparison chart" renamed to
"Model comparison"
* Section "J-Link bundle comparison chart"
removed
Chapter "Introduction”
* Section "J-Link and J-Trace models" added
* Sections "Model comparison chart" &
"J-Link bundle comparison chart"added
Chapter "J-Link and J-Trace models" removed
73 090701 |KN |Chapter "Hardware" renamed to
"Target interfaces & adapters"
* Section "JTAG Isolator" added
Chapter "Target interfaces and adapters"
* Section "Target board design" updated
Several corrections

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




10

Revision Date By Explanation
Chapter "Working with J-Link"
* Section "J-Link control panel” updated.
Chapter "Flash download and flash breakpoints"
72 030618 | AG * Section "Supported devices" updated.
Chapter "Device specifics"
* Section "NXP" updated.
Chapter "Device specifics"
71 090616 |AG | Section "NXP" updated.
Chapter "Introduction"
70 090605 | AG * Section "Common features of the J-Link
product family" updated.
Chapter "Working with J-Link"
* Section "Reset strategies" updated.
69 090515 |AG * Section "Indicators" updated.
Chapter "Flash download and flash breakpoints"
* Section "Supported devices" updated.
Chapter "J-Link and J-Trace related software"
* Section "J-Link STM32 Commander" added.
68 030428 | AG Chapter "Working with J-Link"
* Section "Reset strategies" updated.
Chapter "Working with J-Link"
67 030402 | AG * Section "Reset strategies" updated.
Chapter "Background information"
* Section "Embedded Trace Macrocell (ETM)"
updated.
66 090327 | AG Chapter "J-Link and J-Trace related software"
* Section "Dedicated flash programming
utilities for J-Link" updated.
65 090320 |AG |Several changes in the manual structure.
Chapter "Working with J-Link"
64 030313 | AG * Section "Indicators" added.
Chapter "Hardware"
63 090212 |AG * Several corrections.
* Section "Hardware Versions" Version 8.0 added.
Chapter "Working with J-Link and J-Trace"
* Section "Reset strategies" updated.
Chapter J-Link and J-Trace related software
* Section "J-Link STR91x Commander
62 090211 | AG (Command line tool)" updated.
Chapter "Device specifics"
* Section "ST Microelectronics" updated.
Chapter "Hardware" updated.
Chapter "Working with J-Link"
61 090120 17Q * Section "Cortex-M3 specific reset strategies"
Chapter "Working with J-Link"
60 090114 | AG * Section "Cortex-M3 specific reset strategies"
Chapter Hardware
* H n H n
59 090108 | KN Section "Target board design for JTAG
updated.
* Section "Target board design for SWD" added.
Chapter "Working with J-Link Pro"
58 090105 |AG * Section "Connecting J-Link Pro the first time"
updated.

J-Link / J-Trace (UMOQ8001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




11

Revision

Date

By

Explanation

57

081222

AG

Chapter "Working with J-Link Pro"
* Section "Introduction" updated.
* Section "Configuring J-Link Pro
via web interface" updated.
Chapter "Introduction"
* Section "J-Link Pro overview" updated.

56

081219

AG

Chapter "Working with J-Link Pro"
* Section "FAQs" added.
Chapter "Support and FAQs"
* Section "Frequently Asked Questions" updated.

55

081218

AG

Chapter "Hardware" updated.

54

081217

AG

Chapter "Working with J-Link and J-Trace"
* Section "Command strings" updated.

53

081216

AG

Chapter "Working with J-Link Pro" updated.

52

081212

AG

Chapter "Working with J-Link Pro" added.
Chapter "Licensing"
* Section "Original SEGGER products" updated.

51

081202

KN

Several corrections.

50

081030

AG

Chapter "Flash download and flash breakpoints"
* Section "Supported devices" corrected.

49

081029

AG

Several corrections.

48

080916

AG

Chapter "Working with J-Link and J-Trace"
* Section "Connecting multiple J-Links /
J-Traces to your PC" updated.

47

080910

AG

Chapter "Licensing" updated.

46

080904

AG

Chapter "Licensing" added.

Chapter "Hardware"
Section "J-Link OEM versions" moved to chapter
"Licensing"

45

080902

AG

Chapter "Hardware"
Section "JTAG+Trace connector" JTAG+Trace
connector pinout corrected.
Section "J-Link OEM versions" updated.

44

080827

AG

Chapter "J-Link control panel” moved to chapter
"Working with J-Link".
Several corrections.

43

080826

AG

Chapter "Flash download and flash breakpoints
Section "Supported devices" updated.

42

080820

AG

Chapter "Flash download and flash breakpoints
Section "Supported devices" updated.

41

080811

AG

Chapter "Flash download and flash breakpoints
updated.

Chapter "Flash download and flash breakpoints",
section "Supported devices" updated.

40

080630

AG

Chapter "Flash download and flash breakpoints"
updated.

Chapter "J-Link status window" renamed to "J-Link
control panel”

Various corrections.

39

080627

AG

Chapter "Flash download and flash breakpoints"
Section "Licensing" updated.
Section "Using flash download and flash
breakpoints with different debuggers" updated.
Chapter "J-Link status window" added.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



12

Revision Date By Explanation
Chapter "Support and FAQs"
Section "Frequently Asked Questions" updated

38 080618 |AG |Chapter "Reset strategies"

Section "Cortex-M3 specific reset strategies"
updated.
Chapter "Reset strategies”
37 080617 |AG | Section "Cortex-M3 specific reset strategies"
updated.
Chapter "Hardware"
Section "Differences between different versions"
updated.

36 080530 | AG Chapter "Working with J-Link and J-Trace"
Section "Cortex-M3 specific reset strategies"
added.

Chapter "J-Link and J-Trace related software"

35 080215 |AG Section "J-Link software and documentation
package in detail" updated.

Chapter "J-Link and J-Trace related software"
Section "J-Link TCP/IP Server (Remote J-Link /
J-Trace use)" updated.

Chapter "Working with J-Link and J-Trace"
Section "Command strings" updated.

34 080212 | AG Chapter "Flash download and flash breakpoints"
Section "Introduction" updated.

Section "Licensing" updated.
Section "Using flash download and flash
breakpoints with different debuggers" updated.

Chapter "Flash download and flash breakpoints"

added

33 080207 |AG |Chapter "Device specifics:"

Section "ATMEL - AT91SAM7 - Recommended init
sequence" added.

Chapter "Device specifics":

32 0080129 | SK Section "NXP - LPC - Fast GPIO bug" list of
device enhanced.

Chapter "Device specifics":

31 0080103 | SK | “goction "NXP - LPC - Fast GPIO bug" updated.

Chapter "Device specifics":

Section "Analog Devices" updated.
Section "ATMEL" updated.
Section "Freescale" added.
Section "Luminary Micro" added.
30 071211 |AG Section "NXP" updated.
Section "OKI" added.
Section "ST Microelectronics" updated.
Section "Texas Instruments" updated.

Chapter "Related software":

Section "J-Link STR91x Commander" updated

29 070912 | SK Chapter "Hardware", section "Target board design"

updated.

Chapter "Related software":

Section "J-LinkSTR91x Commander" added.

Chapter "Device specifics":

28 070912 | SK Section "ST Microelectronics" added.

Section "Texas Instruments" added.
Subsection "AT91SAM9" added.

J-Link / J-Trace (UMOQ8001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




13

Revision

Date

By

Explanation

28

070912

AG

Chapter "Working with J-Link/]-Trace":
Section "Command strings" updated.

27

070827

TQ

Chapter "Working with J-Link/]-Trace":
Section "Command strings" updated.

26

070710

SK

Chapter "Introduction":
Section "Features of J-Link" updated.
Chapter "Background Information":
Section "Embedded Trace Macrocell" added.
Section "Embedded Trace Buffer" added.

25

070516

SK

Chapter "Working with J-Link/]-Trace":
Section "Reset strategies in detail"
- "Software, for Analog Devices ADuC7xxx
MCUs" updated
- "Software, for ATMEL AT91SAM7 MCUs"
added.
Chapter "Device specifics"
Section "Analog Devices" added.
Section "ATMEL" added.

24

070323

SK

Chapter "Setup":
"Uninstalling the J-Link driver" updated.
"Supported ARM cores" updated.

23

070320

SK

Chapter "Hardware":
"Using the JTAG connector with SWD" updated.

22

070316

SK

Chapter "Hardware":
"Using the JTAG connector with SWD" added.

21

070312

SK

Chapter "Hardware":
"Differences between different versions"
supplemented.

20

070307

SK

Chapter "J-Link / J-Trace related software":
"J-Link GDB Server" licensing updated.

19

070226

SK

Chapter "J-Link / J-Trace related software" updated
and reorganized.
Chapter "Hardware"

"List of OEM products" updated

18

070221

SK

Chapter "Device specifics" added
Subchapter "Command strings" added

17

070131

SK

Chapter "Hardware":
"Version 5.3": Current limits added
"Version 5.4" added

Chapter "Setup":
"Installating the J-Link USB driver" removed.
"Installing the J-Link software and documentation
pack" added.

Subchapter "List of OEM products" updated.

"OS support" updated

16

061222

SK

Chapter "Preface": "Company description" added.
J-Link picture changed.

15

060914

(0]0)

Subchapter 1.5.1: Added target supply voltage and
target supply current to specifications.
Subchapter 5.2.1: Pictures of ways to connect J-
Trace.

14

060818

TQ

Subchapter 4.7 "Using DCC for memory reads"
added.

13

060711

(0]0)

Subchapter 5.2.2: Corrected JTAG+Trace connec-
tor pinout table.

12

060628

(0]0)

Subchapter 4.1: Added ARM966E-S to List of sup-
ported ARM cores.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



14

Revision Date By Explanation

Subchapter 5.5.2.2 changed.

11 060607 | SK Subchagter 5.5.2.3 addegl.
ARM9 download speed updated.
Subchapter 8.2.1: Screenshot "Start sequence”
updated.

10 060526 |SK SEbchapter 8.2.2 "ID sequence" removed.
Chapter "Support" and "FAQ" merged.
Various improvements
Chapter "Literature and references" added.
Chapter "Hardware":

Added common information trace signals.

° 060324 | 00 Added timing diagram for trace. ]
Chapter "Designing the target board for trace"
added.

8 060117 |00 Chapter "Related Software": Added JLinkARM.dII.
Screenshots updated.

7 051208 |0OO |Chapter Working with J-Link: Sketch added.
Chapter Working with J-Link: "Connecting multiple
J-Links to your PC" added.

6 051118 | 00 C_ha[?lter Working with J-Link: "Multi core debug-
ging" added.
Chapter Background information: "J-Link firm-
ware" added.

5 051103 |TQ |Chapter Setup: "JTAG Speed" added.
Chapter Background information: "Flash program-
ming" added.

4 051025 100 Cha;g)ter Setup: "Scan chain configuration" added.
Some smaller changes.

3 051021 |TQ |Performance values updated.

2 051011 |TQ |Chapter "Working with J-Link" added.

1 050818 |TW |Initial version.

J-Link / J-Trace (UMOQ8001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




15

About this document

Assumptions

This document assumes that you already have a solid knowledge of the following:

e The software tools used for building your application (assembler, linker, C com-
piler)

e The C programming language
The target processor
DOS command line

If you feel that your knowledge of C is not sufficient, we recommend The C Program-
ming Language by Kernighan and Richie (ISBN 0-13-1103628), which describes the
standard in C-programming and, in newer editions, also covers the ANSI C standard.
How to use this manual

This manual explains all the functions and macros that the product offers. It assumes
you have a working knowledge of the C language. Knowledge of assembly program-
ming is not required.

Typographic conventions for syntax

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text t_hat you entgr at the comm_and—pljompt or that appears on
the display (that is system functions, file- or pathnames).
Parameter Parameters in API functions.
Sample Sample code in program examples.

Sample comment Comments in programm examples.

Reference to chapters, sections, tables and figures or other docu-

Reference
ments.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Emphasis Very important sections.

Table 1.1: Typographic conventions

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



16

CHAPTER

SEGGER Microcontroller GmbH & Co. KG develops
and distributes software development tools and ANSI C
software components (middleware) for embedded sys-
tems in several industries such as telecom, medical
technology, consumer electronics, automotive industry
and industrial automation.

/ SEGGER
SEGGER'’s intention is to cut software development time

for embedded applications by offering compact flexible and easy to use middleware,
allowing developers to concentrate on their application.

Our most popular products are emWin, a universal graphic software package for embed-
ded applications, and embQOS, a small yet efficient real-time kernel. emWin, written
entirely in ANSI C, can easily be used on any CPU and most any display. It is comple-
mented by the available PC tools: Bitmap Converter, Font Converter, Simulator and
Viewer. embOS supports most 8/16/32-bit CPUs. Its small memory footprint makes it
suitable for single-chip applications.

Apart from its main focus on software tools, SEGGER develops and produces programming
tools for flash micro controllers, as well as J-Link, a JTAG emulator to assist in develop-
ment, debugging and production, which has rapidly become the industry standard for

debug access to ARM cores.

Corporate Office:
http://www.segger.com

United States Office:
http://www.segger-us.com

EMBEDDED SOFTWARE
(Middleware)

emWin

Graphics software and GUI

emWin is designed to provide an effi-
cient, processor- and display control-
ler-independent graphical user
interface (GUI) for any application that
operates with a graphical display.

embOS

Real Time Operating System

embOS is an RTOS designed to offer
# the benefits of a complete multitasking

system for hard real time applications
with minimal resources.

embOS/IP

TCP/IP stack

embOS/IP a high-performance TCP/IP
stack that has been optimized for
speed, versatility and a small memory
footprint.

emfFile

File system

emFile is an embedded file system with
F. FAT12, FAT16 and FAT32 support. Var-
ious Device drivers, e.g. for NAND and
NOR flashes, SD/MMC and Compact-
Flash cards, are available.

USB-Stack

USB device/host stack

A USB stack designed to work on any
embedded system with a USB control-
ler. Bulk communication and most stan-
dard device classes are supported.

ED

i

SEGGER TOOLS

Flasher

Flash programmer

Flash Programming tool primarily for micro con-
trollers.

J-Link
JTAG emulator for ARM cores
USB driven JTAG interface for ARM cores.

J-Trace

JTAG emulator with trace

USB driven JTAG interface for ARM cores with
Trace memory. supporting the ARM ETM (Embed-
ded Trace Macrocell).

J-Link / J-Trace Related Software
Add-on software to be used with SEGGER’s indus-
try standard JTAG emulator, this includes flash
programming software and flash breakpoints.

Table 1.1:

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




17

Table of Contents

A 1 11 o To [ [ 1 0] o U 27
1.1 =T LU 1 =T 0 1= 1= 28
1.2 1Y U] 0] oo o o =T I @ 1 T PP 29
1.3 B T 01 o I = 1S .10 o 1= 30
1.3.1 [\ FeYs <Y I alo] g ] o T=1 o 1=Te] o [P PPN 31
1.3.2 JoiNK BASE ..ttt it e 32
1.3.3 JoLiNK PLUS ittt 34
1.3.4 JoiNK UL T R A ottt ittt ettt ettt 37
1.3.5 JoLiNK PRO ittt s 39
1.3.6 J-LiNK LIt ARM ittt e 39
1.3.7 J-LinK Lite CorteXM ittt i e et e e e 41
1.3.8 J-TraCE ARM o e 42
1.3.9 R I = [o Tl o] gl o] o = D | PP 43
1.3.10 L F= T =T AN 2 PP 45
1.4 Common features of the J-Link product family ........ccoooviiiiiiiiiiin e, 47
1.5 1Y U]s] ole] g o =Te I @F 2 U N olo] o =TT PP 48
1.6 Built-in intelligence for supported CPU-COreS .....civvviiiiiiiiiiiiniiiiieiieiieennennns 49
1.6.1 Intelligence in the J-Link firmware ... ..o e 49
1.6.2 Intelligence on the PC-Side (DLL) ..uiiriiiiiiiiii i e e neenne s 49
1.6.3 Firmware intelligence per model ... e 51
1.7 YU o] oo o o =T B 1 0 T L P 53

Y2 W (o7 o 151 o o TP P PP OPPPPPPPPPPPP 55
2 Components requiring a license56
2.2 [ ol=T o F < Y 1< P 57
2.2.1 BUIIE-IN [ICBNSE ottt e s e 57
2.2.2 KeY-Dased [ICBN SO ittt e e 57
2.3 Legal use of SEGGER J-Link software......cccoiiiiiiiiiiii i e 58
2.3.1 Use of the software with 3rd party tools......c.cciiiiiiiii i 58
2.4 Original SEGGER ProduUCES. ....ciiiiiiiiiiii i i i i e r e e aaes 59
2.4.1 JoiNK BASE ..ttt ittt e 59
2.4.2 JoLinNK PLUS ittt 59
2.4.3 B 1] S I3 PSPPI 60
2.4.4 JoLiNK PRO ittt e 60
2.4.5 B = Tol N o ol o] o = D PP 61
2.4.6 = 1= =T AN 2 PP 62
2.4.7 = 1= =T ol 2 PP 62
2.4.8 = 1= =Tl =] = o PP 63
2.5 J-LinK OEM VeISIONS 1t iitiiteiitsaevaes st s sane e sasesesanesnsaneransanesnneanernnaanernnnns 64
2.5.1 Analog Devices: MIDASLINK ..ot e 64
2.5.2 ALMEL SAM-ICE .ttt e 64
2.5.3 D] o T I s C N I o | PP 65
2.5.4 TAR: J-LinK / J-LiNK KS 1ttt it e e e e eaes 65
2.5.5 TAR : J-LiNK LI ittt e 65
2.5.6 LN e I = T ol T PP 66
2.5.7 NXP: J-Link Lite€ LPC EditioN «ouviviiriieiiiiii i s st e s n e e n e eeeaens 66
2.5.8 SEGGER: J-LinK LIt ARM ...ttt 66
2.6 TN OB S ittt ittt s 67
2.7 =T =1 O o] 1= 68

3 J-Link software and documentation package............ooouuuiiiiiiiiiiiiieeen 69

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



18

3.1 oY u = L VA= Y = PP 70
3.2 J-Link Commander (Command line tool) ......cooiiiiiiiiiiiiii e 71
3.2.1 (@0e] o1 0 =1 e =S 72
3.2.2 Command liN€ OPLIONS .. .uiieiiii s e ae s 88
3.2.3 USIiNG COMMANA filES. e e et e e neaes 91
3.3 T | Q] S B Y = V7T 92
3.3.1 J-Link GDB Server CL (Windows, LiNUX, MaC) ...oiiiiiiiiiiiiiiiiiiniiiee e saenne e 92
3.3.2 Debugging with J-Link GDB SeIrVer .....cuiiiiiiiiiiii i ea e 93
3.3.3 Supported remote (MOoNitor) COMMAaNAS . .oiiviiiiiii i i eaeas 98
3.3.4 SEGGER-specific GDB protocol eXteNSioNS ......ccvieiiiiiiiiiiiiiei e 110
3.3.5 Command liN€ OPLIONS ...ciueiiiiii i e eaas 115
3.3.6 Program termination.......oeiiiiii i 126
3.3.7 SEMINOSHING . e 127
3.4 J-Link REMOLE SEIVEI v e 128
3.4.1 List of available comMmMandsS......ccouviriiiii e 128
3.4.2 B8 [T 1] 17 T T 0 T T =P 129
3.5 J-MEM MEMOIY VIBWEE ..ttt eraneans 132
3.6 8 ol = T o PP 133
3.7 R o1 G 2 I Y AT =T P 134
3.7.1 L I VAT oY = o U o J P 134
3.7.2 Connection SettiNgsS.....ovv i e 135
3.7.3 The Terminal TabS ... s e e n e nneans 135
3.7.4 SeNdiNG INPUL. .o s 136
3.7.5 Logging Terminal OULPUL ..o e 136
3.7.6 LOGgiNg Data ..uuiieiiiiii i e 137
3.7.7 Command liN€ OPLIONS ...oiueiiiiii e aeaas 137
3.7.8 Menus and ShOrtCULS ... e 139
3.7.9 Using "virtual" Terminals in RTT ..o aeeea s 141
3.7.10 Using Text Control COAES ...uiiiuiiiiiiiiiii e aeaneaas 141
3.8 J-LIiNK SWO Vi@WT ettt et ettt et e et e e e e e e nae e ees 142
3.8.1 LT 143
3.8.2 List of available command line OptioNS .......oiviiiiiiiiiii e 143
3.8.3 Configure SWO output after device reset ......cocovviiiiiiiiiiiiii 145
3.8.4 Target example code for terminal output ..o 145
3.9 N L L@ I =1 72 =] o N 148
3.10 JTAGLoad (Command lin€ t00l) ...uuriiiiiii i e 149
3.11 J-Link RDI (Remote Debug INterface).....cooviiiieiiiiiiiiii e e e 150
3.11.1 Flash download and flash breakpoints .......ccoviviiiiiiiiii e 150
3.12 Processor SPeCIfiC tOOIS . uuuii it 151
3.12.1 J-Link STR91x Commander (Command line tool) ......ccviiiiiiiiiiiiiiea 151
3.12.2 J-Link STM32 Unlock (Command line tool) ......ccceiiiiiiiiiii e 152
3.13 J-Link Software Developer Kit (SDK) ...uiieiiiiiii i 155
S <] LU ] o PP UPPPTPPPTRPPPPN 157
4.1 Installing the J-Link software and documentation pack ...........cccoeiieiiiiiiintns 158
4.1.1 Y= AU s o] e Tol<Te 1N | o = T PPN 158
4.2 Setting up the USB interface ... ...coiiiiiii e 161
4.2.1 Verifying correct driver installation ... 161
4.2.2 Uninstalling the J-Link USB driVer.....coo i e e e e 162
4.3 Setting up the IP interface ... ..o e 164
4.3.1 Configuring J-Link using J-Link Configurator.........c.cooiiiiiiiiiiiiiiie e 164
4.3.2 Configuring J-Link using the webinterface..........ccoooiiii i 164
4.4 N @ PP 166
4.5 J-Link ConfiguUIator . ....coeiei i et aans 167
4.5.1 Configure J-Links using the J-Link Configurator ...........coooiiiiiiiiiiiiiieeaens 167
4.6 J-Link USB identification......coooiiiiii e 169
4.6.1 Connecting to different J-Links connected to the same host PC via USB ......... 169
4.7 USING the J-LinK DLL .. .euei ittt et et e e e e e e e e e eeenens 171
4.7.1 What is the JLINK DLL? ...ttt e e e e e e e e e e e eneaes 171
4.7.2 Updating the DLL in third-party programs.......c.ccociiiiiiiiiiii i nae e 171
4.7.3 Determining the version of JLINK DLL ..o e 172

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



4.7.4 Determining which DLL is used by @ program ........cccoviiiiiiiiiiiniiieeneeaes 172
4.8 Getting started with J-Link and ARM DS-5.....ciiiiiiiiii e 173
4.8.1 Replacing the RDDI DLL manually ....ccvoeiiiiiiiiiiiii e 173
4.8.2 Using J-Link in DS-5 Development Studio .....ccooviiiiiiiiiiii e 173
5 Working With J-LinK @nd J-TraCe.......ccoeiiiiiiiiiiiiieieee ettt 175
5.1 Connecting the target system ... ..o 176
5.1.1 POWEI-0N SEOUENCE ...ttt ittt et e s e e e s s e e s saae e s saanaeesaanness 176
5.1.2 Verifying target device CONNECLION ......cciiiiiiii i 176
5.1.3 o 0] 0] =7 o 1= 176
5.2 g o= | o] o= PP 177
5.2.1 =TT I T oo [ Tot=1 o] o P 177
5.2.2 INPUE INAICATOr .ttt e e s 179
5.2.3 O TH] o] U ) [ Vo [ Tot=] o o] NPT 179
5.3 JTAG NI ACE . . e e 180
5.3.1 Multiple devices in the scan chain ... e 180
5.3.2 Sample configuration dialog bOXES ..o 180
5.3.3 Determining values for scan chain configuration...............ccooiiiin . 183
5.3.4 B A Y o 1= 1= T PP 184
5.4 RV D I oY = o =Y U 185
5.4.1 oYL B =T o 1= 1= T PP 185
5.4.2 5T L PP 185
5.5 Multi-core debUugging ....oeieeiii i 187
5.5.1 How multi-core debugging WOrKS .......coueiiinii e 187
5.5.2 Using multi-core debugging in detail ... 188
5.5.3 Things you should be aware Of ..o e 189
5.6 Connecting multiple J-Links / J-Traces to your PC ......cccoiiiiiiiiiiiii s 191
5.6.1 HOW dO@S 1T WOIK? e e e 191
5.7 J-Link CONErol Pan@l. e e 193
5.7.1 JLIE= o 13 PP 193
5.8 RESEL Strat@gies .uviueiiii i 199
5.8.1 Strategies for ARM 7/9 deVICES ..iiuiiiri it s e e e ae e 199
5.8.2 Strategies for CortexX-M deViCeS ..o 201
5.9 USiNg DCC fOr MEMOIY @CCESS «..euueneeneaneaeeaeae e ateaneaeeaeaeaeeaaaae e eneaeannns 204
5.9.1 What IS FeqQUITEA? o e e e anaas 204
5.9.2 Target DCC handler ... e e e 204
5.9.3 Target DCC abort handler ... ..o e 204
5.10 The J-Link settings file. ... .o e 205
5.10.1 SEGGER Embedded StUdiO ..o e 205
5.10.2 Keil MDK=ARM (UViISION) ...ttt e et et e e e e e e e e e aaeeens 205
5.10.3 TAR EWARM L.ttt et ettt et ettt e e e e e e 205
5.10.4 Mentor Sourcery CodeBench for ARM.....c.iiiiiiii i e e 205
5.11 J-LinK SCPE fIleS winriiiiii i e e 206
5.11.1 Actions that can be customized .......ooieiiii i 206
5.11.2 Script file API fUNCHIONS ..iviii i e e e na s 208
5.11.3 Global DLL variables ......o.eieie i e 214
5.11.4 (€] o] oF=1 I Y I I ol ] o =] = | = U 217
5.11.5 Script file |anNgUAGE ... e e 219
5.11.6 Script file Writing eXample ..o e 220
5.11.7 Executing J-Link script files ... 220
5.12 (@foT0 0] o =1 a Lo IE=l o] o o =3 PP 223
5.12.1 List of available commands ..o 223
5.12.2 USiNg COMMANA SEFINGS .onuenniiiiie ittt e e e e e aneens 241
5.13 Switching off CPU clock during debug .......ccoooiiiiiiiii e 244
5.14 Cache handling. ... e e 245
5.14.1 (0=l g V=T oo o 1= /=T o TV PP 245
5.14.2 (O Tol a [ ol [=T=Y o I o =T PP 245
5.14.3 Cache handling Of ARM7 COIES ...ttt e e e eneanens 245
5.14.4 Cache handling of ARMO COIES ... cuuiiuiieii it e eneaaens 245
5.15 Virtual COM Port (VCOM) ciiiiiiiii it st s e aas s s e n e s e e s e s e e nnennanes 246
5.15.1 Configuring Virtual COM PoOrt. ..o e 246

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



20

6 FIash dOWNIOAd.........cooiiiiiiiiie e a e e e 247
6.1 | g} o [ o u o] o [ PP 248
6.2 I 0T 1= 1 ' 249
6.3 T8 o] oo T =T Ba [V Tl 1= P 250
6.4 Setup for various debuggers (internal flash) ......ccooiiiiiiiiiii s 251
6.4.1 IAR Embedded WOrkbencCh ......c.oiviiiiiiiiiii e ae s 251
6.4.2 LG 1 5 PP 251
6.4.3 Mentor Sourcery CodeBENCh .....iiiiiii i e 254
6.4.4 J-LinNK GD B SO VI .ttt ittt ettt et ettt et e et e 254
6.4.5 B o1 ©e] 0 010 aT=1 0 Lo [=] PP 255
6.4.6 8 X1 G 2 B P 256
6.5 Setup for various debuggers (CFI flash) .....cooviieiiiiiiiii e 257
6.5.1 IAR Embedded Workbench / Keil MDK .....cciiiiiiiiiii it eesesennns 257
6.5.2 N I o] Q€ B S I =T oYL= PP 258
6.5.3 R I o1 Qo] 0 01 g 1= o o [ o PP 258
6.6 Setup for various debuggers (SPIFI flash).....cooiiriiiiiiiii e 259
6.7 QSPI flash SUPPOIT ..uvei et e e e e aaeenens 260
6.7.1 Setup the DLL for QSPI flash download .........ccoeviiiiiiiiiiiii e 260
6.8 Using the DLL flash loaders in custom applications.........ccoooiiiiiiiiiiiiiiinnns 261
6.9 Debugging applications that change flash contents at runtime...................... 262

A =] T o1 (=T= U o0 £ 263
7.1 | g} o [ o u o] o [ PP 264
7.2 I 0T 1= 1 ' 265
7.2.1 Free for evaluation and non-commercial USe ........c.cviiiiiiiiiiii e 265
7.3 T8 o] oo T =T Ba L=V T 1= PP 266
7.4 Setup & compatibility with various debuggers ... 267
7.4.1 ST =1 [ o P 267
7.4.2 Compatibility with various debuggers.......cooiiiiiiiiiii e 267
7.5 Flash Breakpoints in QSPI flash ......oiuiiiiiiii e 268
7.5.1 ST = [ o PP 268
7.6 AN PP 269

8 Monitor MOde DeBUGQING .. ..ueiiiiiiiiiieeeii et 271
8.1 INErOdUCHION e s 272
8.2 Enable Monitor DebUGGING .....iueieiiiiii et 273
8.2.1 GDB based debug SOIULIONS .....ceiiiii e 273
8.2.2 TAR EWARM . ..ttt e et et ettt et e e e e e e anenans 273
8.2.3 Keil MDK=ARM (UVISION) ..uiiii ittt et ettt e e e e e e e e e e e e e e aeenens 274
8.2.4 R 1] @o] 2] 0 =1 Ua 1] ol PP 274
8.2.5 Generic way Of @nNabling ......oeiiiii s 274
8.3 Availability and limitations of monitor mode.........ccooiiiiiiiiiiiici 275
8.3.1 L0021 275
8.3.2 L0012 275
8.4 1o ] aT 1 (o] gl lo o = T PP 276
8.5 Debugging iNterrUPES ... e e 277
8.6 Having servicing interrupts in debug mode ... 278
8.7 Forwarding of Monitor Interrupts .......ooe i 279
8.8 Target application performs reset (Cortex-M) ....ccviiiiiiiiiiiiiii e 280

O LOW POWET DEDUGGING ...eeeteeteieiiieeeeee ettt e e e e e e e e e e e e e e e s e e 281
9.1 INErOdUCHION e s 282
9.2 Activating low power mode handling for J-Link ..., 283
9.2.1 SEGGER Embedded StUdio ......civiiiiii i e 283
9.2.2 KEIl MDK=ARM . .. ittt et ettt et ettt e e e e e e e nenans 283
9.2.3 TAR EWARM . ..ttt e ettt et ettt ettt e e e e e anenans 283
9.2.4 Mentor Sourcery CodeBench for ARM ...t e eae s 283
9.2.5 GDB + GDBServer based setups (EClipSe €tC.) . .civiiiiiiiiiiiiii i iieenaeas 283
9.3 T o o T 0 1= 284

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



O @0 T=T o I o F= T ] 0= T L= USSR 285
10.1 ol e T [0 T o o 286
10.2 LCT=T =T =1 o] e Yol <o 11 o = 287
10.3 AddiNg @ NEW dEVICE vt e e e re e 288
10.4 Editing/Extending an EXiSting DeVICE .....covuiiiiiiiiiiiiii i i es 289
10.5 XML Tags and AttribULES ... 290
10.5.1 N B = 1= o = 1< N 290
10.5.2 S BT ol N 290
10.5.3 S O 11 ] {0 > P 290
10.5.4 <FlashBanKIn o> ... e 293
10.6 EXampPle XML fil@ .o e 295
10.7 Add. Info / Considerations / Limitations .....cooiiiiiiiiiiiiiiii i e 296
10.7.1 CMSIS Flash Algorithms Compatibility .......ccoviiiiiii e 296
10.7.2 Customized FIash Banks .......coviiiiiiiiiiiiii s e e 296
10.7.3 YU 0] oo g o= B @0 T == PP 296
10.7.4 Information for SilicOn Vendors ......ouiiiiiiiiii e 296
10.7.5 Template Projects and HOW TO'S .o.uiiiiiiiiiiiii i ae e e 296

I N T o T T Y 297
11.1 ol o T [ U T o o P 298
11.1.1 What is J-Flash SPI 2. ... .. e a s 298
11.1.2 J-Flash SPI CL (Windows, LiNUX, MAC) ...iviiiiiiiiiiiiiiiii e i ee e e 298
11.1.3 F AU S ettt s 298
11.1.4 REQUITEMENES. i s 298
11.2 T 0 o = T 300
11.2.1 ol e T [0 T o o PP 300
11.3 Getting Started ..oovo i e 301
11.3.1 S = ] o PP 301
11.3.2 Using J-Flash SPI for the first time ..o, 301
11.3.3 1 =] 0 L T o T B 302
11.4 S = o | o 1= 306
11.4.1 ProJeCt SettiNgS . v e 306
11.4.2 Global SetEINGS ..t 309
11.5 Command Line Interface....coveiiiii i e 311
11.5.1 L@ A YT PP 311
11.5.2 Command liNE OPLIONS ...t 311
11.5.3 BatCh PrOCESSING .ovuiiiiiiii i 313
11.5.4 Programming multiple targets in parallel...........c.cooii i 313
11.6 Create a new J-FIash SPI Project ......coceviiiiiiiii i e nena s 315
11.6.1 Creating a new J-Flash SPI project......ccooiiiiiiiiii s 315
11.7 Custom CommaNnd SEQUENCES .....uiiuiiiiiiiiiiie it iaraasarsaasraeaas e aareaeaanns 316
11.7.1 L T A T =) = 1= PP 316
11.7.2 XA O e e 316
11.7.3 J-Flash SPI Command Lin€ VEIrSIiON ....ciiuiiiiiiiiiiiii it sesaeseses e eaes 317
11.8 DEVICE SPECITICS « ettt ettt et e 320
11.8.1 SPI flashes with multiple erase commMands ........ccvviiiiiiiii e 320
11.9 TArgel SYSEEMS it e 321
11.9.1 Which flash devices can be programmed? .......cooiiiiiiiiiiiiiii s 321
11.10 ] o o] o 0 0 = o ol PP 322
11.10.1  PerformanCe VaAlUES ....coeiuiiiiieiii ittt e et et e ae e e et e e e e e ae e e e e eneeaeneanens 322
11.11 Background information .......cciiiiiiii e 323
11.11.1  SPILinterface CONNECHION .. vt e eeneaaens 323
11.12 YU 0] 5o o v 324
11.12.1  TroubleShOOtiNg ....ciiii i e e e e e 324
11.12.2  Contacting SUPPOIT «.uuiiiiii it ar e s r s e e e re e neraeas 324

A I L PP PPP PP 325
12.1 INErOdUCHION . e 326
12.1.1 FEAtUNES ettt e 326
12.2 T 0l = T 327

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



22

12.3 Setup for various debUggers .......ciiiniiiii i 328
12.3.1 IAR Embedded Workbench IDE .....ciiiiiiiiiiiiiiii i e e e e e 328
12.3.2 ARM AXD (ARM Developer SUite, ADS) ...cciiiiiiiiiiiiiiiii it raee s reeaneeaes 331
12.3.3 ARM RVDS (RealView developer SUIte) ....covvviiiiiiiiiiiii i e e 333
12.3.4 L o S 17 U I I PP 338
12.3.5 KEIL MDK (HViSion IDE) «iviiiii i s e e naea s 341
12.4 CONfIGUIAEION L e 344
12.4.1 Configuration file JLINKRDILINT ..ovieiii e e eeeas 344
12.4.2 Using different configurations .........cooioiiiiiii e 344
12.4.3 Using mutliple J-Links simulatenously ........ccooiiiiiiiiii s 344
12.4.4 Configuration didlog .....oeiniieiii e 344
12.5 SEMINOSHING . s 353
12.5.1 Unexpected / unhandled SWIS .....oiiiiiiiiiiii i s aaneeas 353
0 T G N 355
13.1 INErOdUCEION e e 356
13.2 [ [}V 2 I Yo o <= PP 357
13.2.1 Target implementation ..o 357
13.2.2 Locating the Control BIOCK .......ceieie i 357
13.2.3 Internal StrUCEUIrES . v e 357
13.2.4 [T 1T =] 0.0 =T ) o= 358
13.2.5 =T a Vo] g 1= ] Lol =T PP RPPPI 359
13.2.6 MeMOrY fOOEPIINE L e 359
13.3 [ I I 0o T o1 0 0181 g of=1 o Lo o 360
13.3.1 L I I VAT 360
13.3.2 2 I IO 1= o | o PP 360
13.3.3 L I o T T | = 360
13.3.4 RTT in other host @applications ....ccviiiiiiii e 360
13.4 IMPlEMENTAtION .o e s 361
13.4.1 PN o B 1 Vo o = PP 361
13.4.2 Configuration defines .. ..o e 367
13.5 ARM Cortex - Background MemMOrY @CCESS .. .uueiueruernieaierneineaeaaereaneanaaeanenns 369
13.6 EXaMIPIE COOR ottt e e 370
13.7 O PP 371
I I - (! PP PPP PP 373
14.1 INErOdUCHION Lot 374
14.1.1 L T A T3 o Y= Lol g o o= Lol 7P 374
14.1.2 What is streaming trace?. ..o 374
14.1.3 What IS COAE COVAIAgE? .ttt e e e et e e naes 374
14.1.4 What is code profiling 2 ..o 375
14.2 TracCing Via tracCe PN ittt iiii it i s e s e e s a et e e s sanne e s rannneeaannns 376
14.2.1 (Ofe] o () Gl I =T | ol PP 376
14.2.2 Trace signal timing ..o e 376
14.2.3 Adjusting trace signal timing 0N J-Trace ......cooeiiiiii e 376
14.2.4 J-Trace models with support for streaming trace ...........ccooviiiiiiiii e, 378
14.3 Tracing with on-chip trace buffer........cooiiii s 379
14.3.1 CPUs that provide tracing via pins and on-chip buffer...........cccoeiiiiiiiinn 379
14.4 Target devices with trace SUPPOrt......ccviiiiiiii i i e 380
14. SErEeaMING LrACE o e 381
14.5.1 Download and execution address differ .......ccoeviiiiiiiii i 381
14.5.2 Do streaming trace without prior download..........c.ccoiiiiiiiiii s 381
15 DEVICE SPECITICS ..ciieeeeiiiiiiiiieeea ettt a e e e e e e e e e e e et e e e e e bbb b e e e e e e e e e eeeaaeeees 383
15.1 ANAI0G DBVICES .ttt it i e e e e e e 384
15.1.1 AADUCT7 XXX 1ttt teeeaaeesneesaeessaeeeseesaneesane e san e e sane s sane s ann e sane e ane e an e anr e e ras 384
15.2 NI PP 386
15.2.1 F N I Y Y P 387
15.2.2 AT L S AMO ittt 389
15.3 1S o ] o 11 o PP 390

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



15.4 ] 10 1= PP 391
15.5 ENEIrgY MiCrO . i e 392
15.6 =TT o= | [ PP 393
15.6.1 KINEEIS famMilY L 393
15.7 ] 396
15.8 0 o 397
15.9 01 1T o PP 398
15.10 I T 0 V1 = V200 N Tl o 399
15.10.1 UNIOCKING LM3SXXX QEVICES ..uuuiitiiiiii it iitiie st satesarsaaesaraansranssneranannens 400
15.11 P 401
15.11.1 LPC ARM7-based deViCeS . uviiirii ittt et e e et e it e e ae e saneeraneeraneanns 402
15.11.2 Reset (Cortex-M3 based deviCes) .....ooviiiiiiiiiii e 403
15.11.3  LPC288x flash programming.......c.c.vieiiiiiiiiii i e e eaens 403
3T I S I o G 3G 5o S N 403
15.12 ] PP 404
15.13 =] = 405
15.14 =1 1.2 181 T [P 406
3 I A Y | V101 2 PP 406
15.15 Y1 oo ] o T 1= o 1 P 407
15.15.1 EFM32 SEIES AOVICES 1ttt it tie ittt et et a et e ar e ae e aneeaaneeraneenns 407
15.16 S I 4o g e T=1 1=Tot f o] o | ol PP 408
0T I T A N I 2 B I PP 409
15.16.2 STMB2F 10X X tuuttuttiuttterutsanesueease et eateeneaate et sate st aatesaeaaneseaanerieanseaneannens 409
BT NG B O I\ 1C 17 50706 4 PP 411
BT ST O I G 1 2 544 PP 412
15.17 TeXas INSErUMENES . i s e e s s r e e s rannne e s aanne s 413
3T I A 1Y 1 1 1 1 PP 413
15.17.2 AMBEXX / AM B 7 XXt tttiitt ittt ittt ettt ettt 414
15.17.3 OMAPA 30 . ittt it s 414
15,174 OMAP-LL 38 ittt e e 414
15,075 TS 7 0M Lot i i e e e 414
15.17.6 OMAP B30 ittt it e 415
15,07, 7 OMAP S 0.ttt ittt s 415
15.18 B e 1] 11 PP 416
16 Target interfaces and adapters.........ccooviiiiiiiiiiiiiiir e a e 417
16.1 20-Pin J-LinK CONNECEOI ..uiiiti i e e eanes 418
16.1.1 T a Yo Ul Yol N IV 2 PP 418
16.1.2 PINOUL fOr SV D ..ttt s e e e e 421
16.1.3 Pinout for SWD + Virtual COM Port (VCOM)..uiiiiiiii i e 423
16.1.4 o T a Yo U o {o T Y 2 PP 424
16.2 38-pin Mictor JTAG and TraCe CONNECLON ...vviiriiiri it iieeierine i aaneaneaneenns 425
16.2.1 Connecting the target board...... ..o 425
16.2.2 o1 0 15 N 426
16.2.3 Assignment of trace information pins between ETM architecture versions ...... 428
16.2.4 LI = Lol [ | =1 P 428
16.3 19-pin JTAG/SWD and TraCe CONNECEON .. vttt it ei e e et eae e eas 430
16.3.1 Target POWEE SUPPIY turiiiiite it i e e s e e 431
16.4 9-PiN JTAG/SWD CONNMECEOI 1.ttt ittt et et et e e e eaaeeaaneas 432
16.5 Reference voltage (VTref) .o e e 433
16.6 PN I o =] o= PP 434
17 Background iNfOrMAatION ...........oooiiiiiiiiiiii e e e e 435
17.1 B X C PP 436
17.1.1 TESt @CCESS POIT (TAP ) ittt a e a e e a e ae e s e e e e aeanes 436
17.1.2 Data regiSterS .ot 436
17.1.3 INSErUCEION FEISTEN ittt 436
17.1.4 The TAP CONTrOllEr .t e e e eea e 437
17.2 Embedded Trace Macrocell (ETM) .o ae e 439
17.2.1 Trigger CONITION ...u e e 439

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



24

17.2.2 Code tracing and data traCing ....oooviiiiiiiii e 439
17.2.3 J-Trace integration example - IAR Embedded Workbench for ARM................. 439
17.3 Embedded Trace BUffer (ETB) ..covviriieiieiiiiie et e e e e e e eeenens 443
17.4 Flash programming ...cooeoieiiiiiii i r e e e e naeraeans 444
17.4.1 How does flash programming via J-Link / J-Trace wWork? .........ccvviiviniinnnennens 444
17.4.2 Data download t0 RAM ... it e e 444
17.4.3 Data download Via DCC . ...ciiiriiii i i e e raneaas 444
17.4.4 Available options for flash programming ........ccooiiiiiiiiiii e 444
17.5 J-LinK / J-Trace firmMWar . i iie it it ii i et i e s saaa e et rasaeerannsees 446
17.5.1 FIrmMwWare Update . ..o e 446
17.5.2 Invalidating the firmware ... ..o e 446
18 Designing the target board fOr traCe ... 449
18.1 Overview of high-speed board design.........coiieiiiiiiii s 450
18.1.1 AVOIAING SEUDS ..o 450
18.1.2 Minimizing Signal Skew (Balancing PCB Track Lengths) ........ccoviiiiiiiiiintns 450
18.1.3 MiNiMIzZIiNG CroSStalk ......co.eie e e 450
18.1.4 Using impedance matching and termination............c.coooiiiiiiiiic i 450
18.2 Terminating the trace signal ... 451
18.2.1 Rules for series terminators ... ..o 451
18.3 Signal reqUIrEMENTES ...t 452
19 SEMINOSTING .eeeiiiiiiiiie e e e e e e e e e e e e eaeas 453
19.1 INErOdUCHION Lo e 454
19.1.1 N0 AV [ 1 o= [ =P 454
19.1.2 DiSAAVANTAgES ittt ittt e 454
19.2 (X010 Lo [a 1=T ol =YW ] 0] T o v 455
19.3 IMPlEmMENTAtiON Lo 456
19.3.1 1Y 4 O 1 1o U of [0 P 456
19.3.2 Breakpoint iNStrUCiON ..o e 456
19.3.3 J-Link GDBServer optimized VErSION ....c.ciiiiiiiii i i i i aeeas 456
19.4 Communication ProtoCol......ccciiiiiii i 458
19.4.1 [T ] o =T ol o O 458
19.4.2 Command SYS_OPEN (OX01) ..ueuenieiieie et e e e e e e e eeeneas 458
19.4.3 Command SYS_CLOSE (0X02) .uuueiuiiiieieie et e e aae e ee e e e ee e e eneaeeeenens 459
19.4.4 Command SYS_WRITEC (0X03) ...uutiiiiiitiii i it i s e s sae s nneeenneeeaes 459
19.4.5 Command SYS_WRITEOD (OX04) . .cuuiueieieieeieaae e e et e ee e e e e aeeeeanens 459
19.4.6 Command SYS_WRITE (0X05) .ttt i r e e e 459
19.4.7 Command SYS_READ (0X06) tuutiiuiiiiie i i e e e it s i s sae s nee e nneeenes 460
19.4.8 Command SYS_READC (OX07) tuuueueinieaeie et e e e et e e ee e e reeeeaens 460
19.4.9 Command SYS_ISTTY (0X09) . .uuiniieiieiie i e e e e e 460
19.4.10 Command SYS_SEEK (OX0A) ..ueuiiiieie ettt e e e e e s 461
19.4.11 Command SYS_FLEN (OX0C) ..uiiuiiiiiniiieiine it st sinesnesasssnesanesnesnsssneannennens 461
19.4.12 Command SYS_REMOVE (OXOE) ..iuiiriiiiiiiiiiii i iee s e inesesneanneeneas 461
19.4.13 Command SYS_RENAME (OXOF) .euiiiiiiiiiiiii i vine s saee e s nnesesnnenneaens 461
19.4.14 Command SYS_GET_CMDLINE (OX15)..ciuimiiiiii it 462
19.4.15 Command SYS_EXIT (OX18) tiuiiuiiiriiiiiiriiiieeieiieesneiasesesane e seannenneaness 462
19.5 Enabling semihosting in J-Link GDBSErver ......ccvieiiiiiiii e 463
19.5.1 1}V GV = - | P 463
19.5.2 Breakpoint Variant. ... e s 463
19.5.3 J-Link GDBServer optimized variant.......ccoiviiiiiiiic i e 463
19.6 Enabling Semihosting in J-Link RDI + AXD...cciiiiiiiiiiii i eieenaenaeaas 464
20 SUPPOIt AN FAQS ..ot e e e et e et et ettt et e e e e e e e e e e e aeeeeeeararraanana 465
20.1 Measuring download SPEEA ....ci ittt i e 466
20.1.1 Test eNVIFONMENT ..o e 466
20.2 TroUDIEShOOTING « i e 467
20.2.1 (CT=T o T=T =1 o] o Tol=Te U] o= 467
20.2.2 Typical problem SCENAMIOS ..t e i raeas 467
20.3 (oY g w=Tot o1 [o I U] o] 0T o] o (N 469

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



20.4 Frequently Asked QUESLIONS ...uieiiiiiii i e e e 470
P2 R €1 [0 11 T o TP TP PPPPPPPPPP 471
22 Literature and rEIEIENCES ... .cuu i e e e e e e e e e e e eaeeens 477

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



26

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



27

Chapter 1

Introduction

This chapter gives a short overview about J-Link and J-Trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



28 CHAPTER 1 Introduction

1.1  Requirements
Host System

To use J-Link or J-Trace you need a host system running Windows 2000 or later. For a
list of all operating systems which are supported by J-Link, please refer to Supported
OS on page 29.

Target System

A target system with a supported CPU is required.

You should make sure that the emulator you are looking at supports your target CPU.
For more information about which J-Link features are supported by each emulator,
please refer to Model comparison on page 31.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



29

1.2 Supported OS

J-Link/J-Trace can be used on the following operating systems:

Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows Vista
Microsoft Windows Vista x64
Windows 7

Windows 7 x64

Windows 8

Windows 8 x64

Windows 10

Linux

Mac OSX 10.5 and higher

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



30 CHAPTER 1 Introduction

1.3 J-Link/J-Trace models

J-Link / J-Trace is available in different variations, each designed for different pur-
poses / target devices. Currently, the following models of J-Link / J-Trace are avail-

able:

e J-Link BASE

e J-Link PLUS

e J-Link PRO

e J-Link ULTRA+

e J-Trace for Cortex-M

In the following, the different J-Link / J-Trace models are described and the changes
between the different hardware versions of each model are listed. To determine the
hardware version of your J-Link / J-Trace, the first step should be to look at the label
at the bottom side of the unit. J-Links / J-Traces have the hardware version printed
on the back label.

If this is not the case with your J-Link / J-Trace, start JLink.exe. As part of the initial
message, the hardware version is displayed.

l;:-.',; C:\Program Files'\SEGGER" JLinkARM_¥402d", JLink.exe

SEGGER J-Link Commander U4.82d (’'7* for help>

Compiled Mar 12 2889 15:39:38

DLL version U4.82d, compiled Mar 12 2889 15:3%:15

Firmware: J-Link ARM U8 compiled Mar 12 268089 15:28:83
an

UTarget - ©.0800U
JTAG speed: 5 kHz=
J-Link>_

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



31

1.3.1 Model comparison

The following tables show the features which are included in each J-Link / J-Trace
model.

Hardware features

J-Link J-Link J-Link J-Link J-Trace
BASE PLUS | ULTRA+ PRO for Cortex-M
usB yes yes yes yes yes
Ethernet no no no yes no
Tracing:
Cortex-M3/M4
ARM7/9/11, No tracing:
Supported cores Cortex-A5/A8/A9/R4, ARM7/9/11,
Cortex-M0/M0+/M1/M3/M4, Cortex-M0/MO0+/
Renesas RX M1
Cortex-A5/A8/
A9/R4
JTAG yes yes yes yes yes
SWD yes yes yes yes yes
SWO yes yes yes yes yes
ETM Trace no no no no yes

Software features

Software features are features implemented in the software running on the host.
Software features can either come with the J-Link or be added later using a license
string from Segger.

J-Link | J-Link | J-Link | J-Link J"'f';‘rce
BASE PLUS ULTRA+ PRO
Cortex-M
J-Flash yes(opt) |yes yes yes yes
Flash breakpoints! | yes(opt) |yes yes yes yes
Flash download? | yes yes yes yes yes
GDB Server yes yes yes yes yes
RDI yes(opt) |yes yes yes yes

1 In order to use the flash breakpoints with J-Link no additional license for flash
download is required. The flash breakpoint feature allows setting an unlimited num-
ber of breakpoints even if the application program is not located in RAM, but in flash
memory. Without this feature, the number of breakpoints which can be set in flash is
limited to the number of hardware breakpoints (typically two for ARM 7/9, up to six
for Cortex-M) For more information about flash breakpoints, please refer to Flash
breakpoints on page 263.

2 Most IDEs come with its own flashloaders, so in most cases this feature is not
essential for debugging applications in flash. The J-Link flash download feature is
mainly used in debug environments where the debugger does not come with an own
flashloader (for example, the GNU Debugger). For more information about how flash
download via FlashDL works, please refer to Flash download on page 247.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



32 CHAPTER 1 Introduction

1.3.2 J-Link BASE

J-Link BASE is a JTAG emulator designed for ARM cores. It con-
nects via USB to a PC running Microsoft Windows 2000 or later.
For a complete list of all operating systems which are sup-
ported, please refer to Supported OS on page 29. J-Link BASE
has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM.

1.3.2.1 Additional features

e Direct download into flash memory of most popular micro-
controllers supported

Full-speed USB 2.0 interface

Serial Wire Debug supported

Serial Wire Viewer supported

Download speed up to 1 MBytes/second*

Debug interface (JTAG/SWD/...) speed up to 15 MHz

RDI interface available, which allows using J-Link with RDI
compliant software

*The actual speed depends on various factors, such as JTAG/
SWD, clock speed, host CPU core etc.

1.3.2.2 Specifications

The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link BASE.

General

For a complete list of all operating sys-
Supported OS tems which are supported, please refer

to Supported OS on page 29.
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH

Mechanical
Size (without cables) 100mm x 53mm x 27mm
Weight (without cables) 70g
Available interfaces

USB interface USB 2.0, full speed

JTAG 20-pin
(14-pin adapter available)

JTAG/SWD Interface, Electrical

USB powered
Max. 50mA + Target Supply current.

Target interface

Power supply

Target interface voltage (Vif) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
Open drain. Can be pulled low or
Reset Type trIi)stated. P
Reset low level output voltage (Vo) VoL <= 10% of Vi

For the whole target voltage range (1.2V <= Vg <= 5V)

LOW level input voltage (V) ‘VI,_ <= 40% of Vi
Table 1.1: J-Link specifications

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



33

HIGH level input voltage (Viy) Viy >= 60% of Vi
For 1.8V <= V| <= 3.6V

LOW level output voltage (Vo) with a

load of 10 kOhm

HIGH level output voltage (Vpoy) with a
load of 10 kOhm

VOL <= 10% of VIF

VOH >= 90% of VIF

For 3.6 <= V": <=5V

LOW level output voltage (Vg ) with a
load of 10 kOhm
HIGH level output voltage (Vgu) with a
load of 10 kOhm

VOL <= 20% of VIF

VOH >= 80% of VIF

JTAG/SWD Interface, Timing

SWO sampling frequency Max. 7.5 MHz
Data input rise time (T.q;) Trqi <= 20ns
Data input fall time (T¢q;) Ttqi <= 20ns
Data output rise time (Tyqo) Trdo <= 10ns
Data output fall time (T¢go) Tfgo <= 10ns
Clock rise time (T¢) Trc <= 3ns

Clock fall time (T¢c) Tfc <= 3ns

Table 1.1: J-Link specifications

1.3.2.3 Hardware versions

Versions 1-4 (Obsolete)
Obsolete.
Version 5.0 (Obsolete)

Identical to version 4.0 with the following exception:

e Uses a 32-bit RISC CPU.

e Maximum download speed (using DCC) is over 700 Kbytes/second.
JTAG speed: Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:
48 MHz / n, where nis 4, 5, ..., resulting in speeds of:
12.000 MHz (n = 4)

9.600 MHz (n = 5)
8.000 MHz (n = 6)
6.857 MHz (n = 7)
6.000 MHz (n = 8)
5.333 MHz (n = 9)
4.800 MHz (n = 10)

e Supports adaptive clocking.
Version 5.2 (Obsolete)

Identical to version 5.0 with the following exception:
e Target interface: RESET is open drain.

Version 5.3 (Obsolete)

Identical to version 5.2 with the following exception:

e 5V target supply current limited
5V target supply (pin 19) of Kick-Start versions of J-Link is current monitored
and limited. J-Link automatically switches off 5V supply in case of over-current to
protect both J-Link and host computer. Peak current (<= 10 ms) limit is 1A,
operating current limit is 300mA.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



34 CHAPTER 1 Introduction

Version 5.4 (Obsolete)

Identical to version 5.3 with the following exception:
e Supports 5V target interfaces.

Version 6.0 (Obsolete)

Identical to version 5.4 with the following exception:

Outputs can be tristated (Effectively disabling the JTAG interface)
Supports SWD interface.

SWD speed: Software implementation. 4 MHz maximum SWD speed.
J-Link supports SWV (Speed limited to 500 kHz)

Version 7.0 (Obsolete)

Identical to version 6.0 with the following exception:

e Uses an additional pin to the UART unit of the target hardware for SWV support
(Speed limited to 6 MHz).

Version 8.0

Identical to version 7.0 with the following exception:
e SWD support for non-3.3V targets.

Version 9.1
e New design based on STM32F205.

Version 9.2

Identical to version 9.1 with the following exception:

e Pin 1 (VTref) is used for measuring target reference voltage only. Buffers on J-
Link side are no longer powered through this pin but via the J-Link internal volt-
age supplied via USB.

1.3.2.4 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

https://wiki.segger.com/Software_and_Hardware_Features_Overview

1.3.3 J-Link PLUS

J-Link PLUS is a JTAG emulator designed for ARM cores. It con-
nects via USB to a PC running Microsoft Windows 2000 or later.
For a complete list of all operating systems which are sup-
ported, please refer to Supported OS on page 29. J-Link PLUS
has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM. J-Link PLUS
comes with licenses for all J-Link related SEGGER software.

1.3.3.1 Additional features

e Direct download into flash memory of most popular micro-

controllers supported

Full-speed USB 2.0 interface

Serial Wire Debug supported

Serial Wire Viewer supported

Download speed up to 1 MBytes/second*

Debug interface (JTAG/SWD/...) speed up to 15 MHz

RDI interface available, which allows using J-Link with RDI

compliant software

e Comes with built-in licenses for: Unlimited number of breakpoints in flash
(FlashBP), J-Link GDBServer, J-Link RDI, J-Link RDDI and J-Flash (production

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



35

programming software).

*The actual speed depends on various factors, such as JTAG/SWD, clock speed, host
CPU core etc.

1.3.3.2 Specifications

The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link PLUS.

General

For a complete list of all operating sys-
Supported 0OS tems which are supported, please refer

to Supported OS on page 29.
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH

Mechanical
Size (without cables) 100mm x 53mm x 27mm
Weight (without cables) 70g
Available interfaces
USB interface USB 2.0, full speed
. JTAG 20-pin

Target interface (14-pin azlapter available)

JTAG/SWD Interface, Electrical

USB powered
Max. 50mA + Target Supply current.

Power supply

Target interface voltage (Vi) 1.2v ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
Open drain. Can be pulled low or

Reset Type tristated.
Reset low level output voltage (Vo) VoL <= 10% of Vi

For the whole target voltage range (1.2V <= V| <= 5V)
LOW level input voltage (Vy.) ViL <= 40% of Vi
HIGH level input voltage (Viy) Vg >= 60% of Vi

For 1.8V <= Vg <= 3.6V
LOW level output voltage (Vg ) with a
load of 10 kOhm

HIGH level output voltage (Vgp) with a
load of 10 kOhm

VOL <= 10% of VIF

VOH >= 90% of VIF

For 3.6 <= V": <=5V
LOW level output voltage (Vo) with a
load of 10 kOhm

HIGH level output voltage (Vpoy) with a
load of 10 kOhm

VOL <= 20% of VIF

VOH >= 80% of VIF

JTAG/SWD Interface, Timing

SWO sampling frequency Max. 7.5 MHz
Data input rise time (T.q4;) Trgi <= 20ns
Data input fall time (Tgq;) Tegi <= 20ns

Table 1.2: J-Link specifications

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



36 CHAPTER 1 Introduction

Data output rise time (Ty4o) Trdo <= 10ns
Data output fall time (Tego) Ttgo <= 10ns
Clock rise time (T,¢) Trc <= 3ns
Clock fall time (T¢c) Tfc <= 3ns

Table 1.2: J-Link specifications

1.3.3.3 Hardware versions
Version 9.1
e Initial design based on STM32F205.
Version 9.2

Identical to version 9.1 with the following exception:

e Pin 1 (VTref) is used for measuring target reference voltage only. Buffers on J-
Link side are no longer powered through this pin but via the J-Link internal volt-
age supplied via USB.

1.3.3.4 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

e https://wiki.segger.com/Software_and_Hardware_Features_Overview

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



1.3.4 J-Link ULTRA+

37

J-Link ULTRA+ is a JTAG/SWD emulator designed for ARM/Cor-
tex and other supported CPUs. It is fully compatible to the i
standard J-Link and works with the same PC software. Based on

the highly optimized and proven J-Link, it offers even higher
speed as well as target power measurement capabilities due to
the faster CPU, built-in FPGA and High speed USB interface. It
connects via USB to a PC running Microsoft Windows 2000 or
later. For a complete list of all operating systems which are sup-
ported, please refer to Supported OS on page 25. J-link ULTRA+
has a built-in 20-pin JTAG/SWD connector.

1.3.4.1 Additional features

Hi-Speed USB 2.0 interface

Fully compatible to the standard J-Link
Very high performance for all supported CPU cores

Download speed up to 3 MByte/second*
Debug interface (JTAG/SWD/...) speed up to 15 MHz

Serial Wire Debug (SWD) supported
Serial Wire Viewer (SWV) supported

Serial Wire Output (SWO) supported

SWO sampling frequencies up to 100 MHz

Target power can be supplied

Comes with built-in licenses for:

Unlimited number of breakpoints in flash

(FlashBP), J-Link GDBServer, J-Link RDI, J-Link RDDI and J-Flash (production

programming software).

e Target power consumption can be measured with high accuracy.

*The actual speed depends on various factors, such as JTAG/SWD, clock speed, host

CPU core etc.

1.3.4.2 Specifications

The following table gives an overview about the specifications (general, mechanical,
electrical) for J-link ULTRA+. All values are valid for J-link ULTRA hardware version 1.

Note: Some specifications, especially speed, are likely to be improved in the
future with newer versions of the J-Link software (freely available).

General

Supported 0OS

For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 29.

Electromagnetic compatibility (EMC)

EN 55022, EN 55024

Operating temperature

+5°C ... +60°C

Storage temperature

-20°C ... +65 °C

Relative humidity (non-condensing)

Max. 90% rH

Mechanical
Size (without cables) 100mm x 53mm x 27mm
Weight (without cables) 73g
Available interfaces

USB interface

USB 2.0, Hi-Speed

Target interface

20-pin J-Link debug interface connector

JTAG/SWD Interface, Electrical

Target interface voltage (Vif)

1.8V ... 5V

Target supply voltage

4.5V ... 5V

Table 1.3: J-link ULTRA specifications

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



38 CHAPTER 1 Introduction

Target supply current Max. 300mA
Reset Type tOripsetgtigéln. Can be pulled low or
Reset low level output voltage (Vg) VoL <= 10% of Vi
For the whole target voltage range (1.8V <= V| <= 5V)
LOW level input voltage (Vy.) ViL <= 40% of Vi
HIGH level input voltage (Viy) Vig >= 60% of Vi

For 1.8V <= V": <= 3.6V

LOW level output voltage (Vo) with a
load of 10 kOhm

HIGH level output voltage (Voy) with a
load of 10 kOhm

VOL <= 10% of VIF

VOH >= 90% of VIF

For 3.6 <= V”: <=5V

LOW level output voltage (Vg ) with a
load of 10 kOhm
HIGH level output voltage (Vgy) with a
load of 10 kOhm

VOL <= 20% of VIF

VOH >= 80% of VIF

JTAG/SWD Interface, Timing

SWO sampling frequency Max. 100 MHz

Data input rise time (T.q;) Trgi <= 20ns

Data input fall time (T¢g;) T¢q; <= 20ns

Data output rise time (T,4o) Trdo <= 10ns

Data output fall time (Tego) Ttgo <= 10ns

Clock rise time (T,c) T <= 3ns

Clock fall time (T¢c) T¢c <= 3ns
Analog power measurement interface

Sampling frequency 50 kHz

Resolution 1 mA

Table 1.3: J-link ULTRA specifications

1.3.4.3 Hardware versions

Version 1.1

Compatible to J-Link.

e Initial design based on ATMEL SAM3U without FPGA.

Version 4

e New design based on STM32F407 + FPGA (Cyclone IV)Version 4.3
Identical to version 4 with the following exception:

Pin 1 (VTref) is used for measuring target reference voltage only. Buffers on J-Link
side are no longer powered through this pin but via the J-Link internal voltage sup-
plied via USB.

1.3.4.4 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

https://wiki.segger.com/Software_and_Hardware_Features_Overview

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



39

1.3.5 J-Link PRO

J-Link PRO is a JTAG emulator designed for ARM cores. It is
fully compatible to J-Link and connects via Ethernet/USB to a
PC running Microsoft Windows 2000 or later, Linux or Mac OS X.
For a complete list of all operating systems which are sup-
ported, please refer to Supported OS on page 25. J-Link PRO
comes with licenses for all J-Link related SEGGER software.

1.3.5.1 Additional features

e Fully compatible to J-Link

e More memory for future firmware extensions (ARM11, X-
Scale, Cortex R4 and Cortex A8)

e Additional LEDs for power and RESET indication

Comes with web interface for easy TCP/IP configuration

(built-in web server)

Serial Wire Debug supported

Serial Wire Viewer supported

Download speed up to 3 MByte/second

Comes with built-in licenses for: Unlimited number of

breakpoints in flash (FlashBP), J-Link GDBServer, J-Link RDI, J-Link RDDI and J-

Flash (production programming software).

e Embedded Trace Buffer (ETB) support

e Galvanic isolation from host via Ethernet

1.3.5.2 Hardware versions

Version 1.1

Compatible to J-Link.

e Provides an additional Ethernet interface which allows to communicate with J-
Link via TCP/IP.

Version 3

Identical to version 1.1 with the following exception:
e SWD support for non-3.3V targets.

Version 4
e New design based on STM32F407 + FPGA (Cyclone IV)Version 4.3

Identical to version 4 with the following exception:

e Pin 1 (VTref) is used for measuring target reference voltage only. Buffers on J-
Link side are no longer powered through this pin but via the J-Link internal volt-
age supplied via USB.

1.3.5.3 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

e https://wiki.segger.com/Software_and_Hardware_Features_Overview

1.3.6 J-Link Lite ARM

J-Link Lite ARM is a fully functional OEM-version of J-Link. If
you are selling evaluation-boards, J-Link Lite ARM is an inex-
pensive emulator solution for you. Your customer receives a
widely acknowledged debug probe which allows to start right
away with development.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



40 CHAPTER 1 Introduction

1.3.6.1 Additional features

e Very small form factor

Fully software compatible to J-Link

Supports any ARM7/9/11, Cortex-A5/A8/A9, Cortex-M0/M0+/M1/M3/M4, Cortex-
R4/R5 core

JTAG clock up to 4 MHz

SWD, SWO supported for Cortex-M devices

Flash download into supported MCUs

Standard 20-pin 0.1 inch JTAG connector (compatible to J-Link)

1.3.6.2 Specifications

The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Link Lite ARM. All values are valid for J-Link hardware version 8.

General

For a complete list of all operating sys-
Supported OS tems which are supported, please refer

to Supported OS on page 29.
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 28mm x 26mm X 7mm
Weight (without cables) 6g

Mechanical

USB interface USB 2.0, full speed

JTAG 20-pin
(14-pin adapter available)

JTAG/SWD Interface, Electrical

USB powered
Max. 50mA + Target Supply current.

Target interface

Power supply

Target interface voltage (Vif) 3.3V

Target supply voltage 4.5V ... 5V (if powered with 5V on USB)

Target supply current Max. 300mA

LOW level input voltage (Vy) Max. 40% of Vi

HIGH level input voltage (Vi) Min. 60% of Vi
JTAG/SWD Interface, Timing

Data input rise time (T.q;) Max. 20ns

Data input fall time (T¢g;) Max. 20ns

Data output rise time (Tyqo) Max. 10ns

Data output fall time (T¢q0) Max. 10ns

Clock rise time (T,c) Max. 10ns

Clock fall time (T¢c) Max. 10ns

Table 1.4: J-Link Lite specifications

1.3.6.3 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

https://wiki.segger.com/Software_and_Hardware_Features_Overview

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



1.3.7 J-Link Lite CortexM

J-Link Lite CortexM is a specific OEM-version of SEGGER J-Link
Lite which is designed to be used with Cortex-M devices. If you
are selling evaluation-boards, J-Link Lite CortexM is an inex-

41

pensive emulator solution for you. Your customer receives a
widely acknowledged JTAG/SWD-emulator which allows to start right away with

development.

Very small form factor
Fully software compatible to J-Link

JTAG clock up to 4 MHz
SWD, SWO supported

3.3V target interface voltage

1.3.7.1 Specifications

Flash download into supported MCUs
Standard 9- or 19-pin 0.05" Samtec FTSH connector

Any Cortex-M0/M0+/M1/M3/M4 core supported

The following table gives an overview about the specifications (general, mechanical,

electrical) for J-Link Lite Cortex-M.

General

Supported 0OS

For a complete list of all operating sys-
tems which are supported, please refer
to Supported OS on page 29.

Electromagnetic compatibility (EMC)

EN 55022, EN 55024

Operating temperature

+5°C ... +60°C

Storage temperature

-20°C ... +65 °C

Relative humidity (non-condensing)

Max. 90% rH

Size (without cables)

41mm X 34mm X 8mm

Weight (without cables)

69

Mechanical

USB interface

USB 2.0, full speed

Target interface

19-pin 0.05" Samtec FTSH connector
9-pin 0.05" Samtec FTSH connector

JTAG/SWD Interface, Electrical

Power supply

USB powered
Max. 50mA + Target Supply current.

Target interface voltage (Vi)

3.3V

Target supply voltage

4.5V ... 5V

Target supply current

Max. 300mA

LOW level input voltage (Vy)

Max. 40% of VIF

HIGH level input voltage (Viy)

Min. 60% of VIF

JTAG/SWD Interface, Timing

Data input rise time (T,q;) Max. 20ns
Data input fall time (T¢q;) Max. 20ns
Data output rise time (Tq40) Max. 10ns
Data output fall time (T¢qo) Max. 10ns
Clock rise time (T,c) Max. 10ns
Clock fall time (T¢c) Max. 10ns

Table 1.5: J-Link Lite Cortex-M specifications

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




42 CHAPTER 1 Introduction

1.3.7.2 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

https://wiki.segger.com/Software_and_Hardware_Features_Overview

1.3.8 J-Trace ARM

The J-Trace ARM model is an older J-Trace model that has been discontinued. It is
referenced here for completeness. For a supported trace device please refer to chap-
ter J-Trace for Cortex-M on page 43.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



43

1.3.9 J-Trace for Cortex-M

J-Trace for Cortex-M is a JTAG/SWD emulator designed for Cor-
tex-M cores which includes trace (ETM) support. J-Trace for
Cortex-M can also be used as a J-Link and it also supports
ARM7/9 cores. Tracing on ARM7/9 targets is not supported.

1.3.9.1 Additional features

Has all the J-Link functionality
Supports tracing on Cortex-M targets

e Comes with built-in licenses for: Unlimited number of
breakpoints in flash (FlashBP), J-Link GDBServer, J-Link
RDI, J-Link RDDI and J-Flash (production programming
software).

1.3.9.2 Specifications

The following table gives an overview about the specifications (general, mechanical,
electrical) for J-Trace for Cortex-M. All values are valid for the latest hardware ver-
sion of J-Trace for Cortex-M.

General

For a complete list of all operating sys-
Supported 0OS tems which are supported, please refer

to Supported OS on page 19.
Electromagnetic compatibility (EMC) EN 55022, EN 55024
Operating temperature +5°C ... +60°C
Storage temperature -20°C ... +65 °C
Relative humidity (non-condensing) Max. 90% rH
Size (without cables) 123mm x 68mm x 30mm
Weight (without cables) 120g

Mechanical

USB interface USB 2.0, Hi-Speed

JTAG/SWD 20-pin
Target interface (14-pin adapter available)

JTAG/SWD + Trace 19-pin

JTAG/SWD Interface, Electrical

USB powered
Max. 50mA + Target Supply current.

Power supply

Target interface voltage (Vif) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
LOW level input voltage (Vy) Max. 40% of Vi
HIGH level input voltage (Viy) Min. 60% of Vi
JTAG/SWD Interface, Timing
Data input rise time (T.q;) Max. 20ns
Data input fall time (T¢q;) Max. 20ns
Data output rise time (Tyqo) Max. 10ns
Data output fall time (T¢qo) Max. 10ns

Table 1.6: J-Trace for Cortex-M3 specifications

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



44 CHAPTER 1 Introduction

Clock rise time (T,¢) Max. 3ns
Clock fall time (T¢c) Max. 3ns

Trace Interface, Electrical

USB powered

Power supply Max. 50mA + Target Supply current.

Target interface voltage (Vi) 1.2V ... 5V

Voltage interface low pulse (Vy) Max. 40% of Vig

Voltage interface high pulse (Viy) Min. 60% of V¢
Trace Interface, Timing

TRACECLK low pulse width (Ty,) Min. 2ns

TRACECLK high pulse width (Typ) Min. 2ns

Data rise time (T,q) Max. 3ns

Data fall time (T¢q) Max. 3ns

Clock rise time (T,¢) Max. 3ns

Clock fall time (T¢c) Max. 3ns

Data setup time (Tg) Min. 3ns

Data hold time (T}) Min. 2ns

Table 1.6: J-Trace for Cortex-M3 specifications

1.3.9.3 Download speed

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware Cortex-M3
190 Kbytes/s (12MHz SWD)
760 KB/s (12 MHz JTAG)

190 Kbytes/s (12MHz SWD)
1440 KB/s (25 MHz JTAG)
Table 1.7: Download speed differences between hardware revisions

J-Trace for Cortex-M3 V2

J-Trace for Cortex-M V3.1

The actual speed depends on various factors, such as JTAG, clock speed, host CPU
core etc.
1.3.9.4 Hardware versions
Version 2
Obsolete.
Version 3.1

Identical to version 2.0 with the following exceptions:

e Hi-Speed USB
e Voltage range for trace signals extended to 1.2 - 3.3 V
e Higher download speed

1.3.9.5 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace
model and version see:

e https://wiki.segger.com/Software_and_Hardware_Features_Overview

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



45

1.3.10 Flasher ARM

Flasher ARM is a programming tool for microcontrollers with on-
chip or external Flash memory and ARM core. Flasher ARM is
designed for programming flash targets with the J-Flash soft-
ware or stand-alone. In addition to that Flasher ARM has all of
the J-Link functionality. For more information about Flasher
ARM, please refer to UM08007, Flasher ARM User’s Guide.

1.3.10.1 Specifications

The following table gives an overview about the specifications
(general, mechanical, electrical) for Flasher ARM.

General

For a complete list of all operating sys-
Supported 0OS tems which are supported, please refer
to Supported OS on page 19.

Mechanical

USB interface USB 2.0, full speed
Target interface JTAG/SWD 20-pin

JTAG Interface, Electrical

USB powered
Max. 50mA + Target Supply current.

Power supply

Target interface voltage (Vi) 1.2v ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA
For the whole target voltage range (1.8V <= Vg <= 5V)
LOW level input voltage (V7)) Max. 40% of Vi
HIGH level input voltage (Viy) Min. 60% of Vi

For 1.8V <= Vg <= 3.6V

LOW level output voltage (Vo) with a
load of 10 kOhm
HIGH level output voltage (Vpy) with a
load of 10 kOhm

Max. 10% of Vg

Min. 90% of V¢

For 3.6 <= V": <=5V

LOW level output voltage (Vg ) with a
load of 10 kOhm
HIGH level output voltage (Vgu) with a
load of 10 kOhm

Max. 20% of Vi

Min. 80% of VIF

SWD Interface, Electrical

USB powered
Max. 50mA + Target Supply current.

1.2V ... 5V (SWD interface is 5V tolerant

Power supply

Target interface voltage (Vi) but can output a maximum of 3.3V SWD
sighals)
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)

Table 1.8: Flasher ARM specifications

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



46

CHAPTER 1 Introduction
Target supply current Max. 300mA
LOW level input voltage (Vy) Max. 0.8V
HIGH level input voltage (Viy) Min. 2.0V

LOW level output voltage (Vg ) with a
load of 10 kOhm

Max. 0.5V

HIGH level output voltage (Vgu) with a
load of 10 kOhm

Min. 2.85V

Table 1.8: Flasher ARM specifications

1.3.10.2 Software and Hardware Features Overview

For detailed information about hardware and software features of your J-Link/J-Trace

model and version see:

https://wiki.segger.com/Software_and_Hardware_Features_Overview

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



47

1.4 Common features of the J-Link product family

e USB 2.0 interface (Full-Speed/Hi-Speed, depends on J-Link model)

e Any ARM7/9/11 (including thumb mode), Cortex-A5/A8, Cortex-M0/M1/M3/M4,
Cortex-R4 core supported

e Automatic core recognition

e Maximum JTAG speed 12/25 MHz (depends on J-Link model)

Seamless integration into all major IDEs (https://segger.com/jlink-ide-integra-

tion.html)

e No power supply required, powered through USB

e Support for adaptive clocking

e All JTAG signals can be monitored, target voltage can be measured

e Support for multiple devices

e Fully plug and play compatible

e Standard 20-pin JTAG/SWD connector, 19-pin JTAG/SWD and Trace connector,
standard 38-pin JTAG+Trace connector

e USB and 20-pin ribbon cable included

¢ Memory viewer (J-Mem) included

e Remote server included, which allows using J-Trace via TCP/IP networks

e RDI interface available, which allows using J-Link with RDI compliant software

e Flash programming software (J-Flash) available

e Flash DLL available, which allows using flash functionality in custom applications

e Software Developer Kit (SDK) available

e Full integration with the IAR C-SPY® debugger; advanced debugging features
available from IAR C-SPY debugger.

e 14-pin JTAG adapter available

e J-Link 19-pin Cortex-M Adapter available

e J-Link 9-pin Cortex-M Adapter available

e Adapter for 5V JTAG targets available for hardware revisions up to 5.3

e Optical isolation adapter for JTAG/SWD interface available

e Target power supply via pin 19 of the JTAG/SWD interface (up to 300 mA to tar-

get with overload protection), alternatively on pins 11 and 13 of the Cortex-M
19-pin trace connector

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



48 CHAPTER 1 Introduction

1.5 Supported CPU cores

J-Link / J-Trace has been tested with the following cores, but should work with any
ARM7/9/11, Cortex-M0/M1/M3/M4 and Cortex-A5/A8/A9/R4 core. If you experience
problems with a particular core, do not hesitate to contact Segger.

ARM7TDMI (Rev 1)
ARM7TDMI (Rev 3)
ARM7TDMI-S (Rev 4)
ARM720T
ARM920T
ARM922T
ARM926EJ]-S
ARMO946E-S
ARM966E-S
ARM1136]F-S
ARM1136]-S
ARM1156T2-S
ARM1156T2F-S
ARM11761Z-S
ARM1176]ZF
ARM11761ZF-S
Cortex-A5
Cortex-A8
Cortex-A9
Cortex-MO
Cortex-M1
Cortex-M3
Cortex-M4
Cortex-R4

Renesas RX

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



49

1.6 Built-in intelligence for supported CPU-cores

In general, there are two ways to support a CPU-core in the J-Link software:

1. Intelligence in the J-Link firmware
2. Intelligence on the PC-side (DLL)

Having the intelligence in the firmware is ideal since it is much more powerful and
robust. The J-Link PC software automatically detects which implementation level is
supported for the connected CPU-core. If intelligence in the firmware is available, it
is used. If you are using a J-Link that does not have intelligence in the firmware and
only PC-side intelligence is available for the connected CPU, a warning message is
shown.

J-Link x.xx Warning |

You are wzing a J-Link which does not have inteligence
! for the selected CPU core [Corkes-k 3] in the firrmware,
Inteligence in the firmware enables J-Link
to generate sequences for the CPLU core,
Wfithout thiz feature, all sequences are generated by the PC.

Inteligence in the firmmware allowes higher target interface speeds
and zignificantly enhances both speed and stability of the
communication with the target CRL.

“ou can uge this J-Link with pour target CPU, but we recommend
uzing a newer madel of J-Link & J-Trace.

1.6.1 Intelligence in the J-Link firmware

On newer J-Links, the intelligence for a new CPU-core is also available in the J-Link
firmware which means that for these J-Links, the target sequences are no longer
generated on the PC-side but directly inside the J-Link. Having the intelligence in the
firmware leads to improved stability and higher performance.

1.6.2 Intelligence on the PC-side (DLL)

This is the basic implementation level for support of a CPU-core. This implementation
is not J-Link model dependent, since no intelligence for the CPU-core is necessary in
the J-Link firmware. This means, all target sequences (JTAG/SWD/...) are generated
on the PC-side and the J-Link simply sends out these sequences and sends the result
back to the DLL. Using this way of implementation also allows old J-Links to be used
with new CPU cores as long as a DLL-Version is used which has intelligence for the
CPU.

But there is one big disadvantage of implementing the CPU core support on the DLL-
side: For every sequence which shall be sent to the target a USB or Ethernet transac-
tion is triggered. The long latency especially on a USB connection significantly affects
the performance of J-Link. This is true especially when performing actions where J-
Link has to wait for the CPU frequently. An example is a memory read/write operation
which needs to be followed by status read operations or repeated until the memory
operation is completed. Performing this kind of task with only PC-side intelligence
requires to either make some assumption like: Operation is completed after a given
number of cycles. Or it requires to make a lot of USB/Ethernet transactions. The first
option (fast mode) will not work under some circumstances such as low CPU speeds,
the second (slow mode) will be more reliable but very slow due to the high number of
USB/Ethernet transactions. It simply boils down to: The best solution is having intel-
ligence in the emulator itself!

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



50 CHAPTER 1 Introduction

1.6.2.1 Limitations of PC-side implementations

e Instability, especially on slow targets
Due to the fact that a lot of USB transactions would cause a very bad perfor-
mance of J-Link, PC-side implementations are on the assumption that the CPU/
Debug interface is fast enough to handle the commands/requests without the
need of waiting. So, when using the PC-side-intelligence, stability cannot be
guaranteed in all cases, especially if the target interface speed (JTAG/SWD/...) is
significantly higher than the CPU speed.

e Poor performance
Since a lot more data has to be transferred over the host interface (typically
USB), the resulting download speed is typically much lower than for implementa-
tions with intelligence in the firmware, even if the number of transactions over
the host interface is limited to a minimum (fast mode).

e No support
Please understand that we cannot give any support if you are running into prob-
lems when using a PC-side implementation.

Note: Due to these limitations, we recommend to use PC-side implementations
for evaluation only.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



51

1.6.3 Firmware intelligence per model

There are different models of J-Link / J-Trace which have built-in intelligence for dif-
ferent CPU-cores. In the following, we will give you an overview about which model
of J-Link / J-Trace has intelligence for which CPU-core.

1.6.3.1 Current models

The table below lists the firmware CPU support for J-Link & J-Trace models currently
available.

ARM ARM Cortex- Cortex-M Renesas

J-Link / J-Trace 719 11 A/R RX600

model

UOISIO/

JTAG JTAG JTAG JTAG SWD JTAG

J-Link BASE 8 ® V) V) ® V]

J-Link PRO 3
J-link ULTRA 1
J-Link Lite ARM 8

J-Link Lite Cortex-M| 8

O 0 0 & A
O 9 0 & A

J-Link Lite RX 8

O 9 0 & Q& Q0
Q& &0 & & O
QO & & & &8 QO
QO QO 0 0 0|0

J-Trace for Cortex-M| 3 Q 6

Table 1.9: Built-in intelligence of current J-Links

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



52 CHAPTER 1 Introduction

1.6.3.2 Older models

The table below lists the firmware CPU support for older J-Link & J-Trace models
which are not sold anymore.

ARM ARM Cortex- Cortex-M Renesas

J-Link / J-Trace 719 11 A/R RX600

model

UOISIO/

JTAG JTAG JTAG JTAG SWD JTAG

J-Link 30 (%] S (%] ;g:tf;‘ép' (%]

3-Link 1O O O O e
3-Link 5@ 0 O O e
J-Link ‘® O O O © o
J-Link 19 O O o © o
J-Link Pro 1 @ (V) ® (V] V) v/
raceforcotextl @ @ ® © | © | Q

Table 1.10: Built-in intelligence of older J-Link models

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



53

1.7 Supported IDEs

J-Link / J-Trace can be used with different IDEs. Some IDEs support J-Link directly,
for other ones additional software (such as J-Link RDI) is necessary in order to use J-
Link. The following tables list which features of J-Link / J-Trace can be used with the
different IDEs.

ARM7/9
Debug Flash Flash Trace
IDE 4 . 3
support download breakpoints support
IAR EWARM yes yes yes yes
Keil MDK yes yes yes no
Rowley yes yes no no
CodeSourcery yes no no no
Yargato (GDB) yes yes yes no
RDI compliant
toolchains such as | yes! yesl yesl! no
RVDS/ADS
ARM Cortex-M3
Debug Flash Flash Trace SWO
IDE 4 .
support download | breakpoints support3 support
IAR EWARM yes yes yes yes yes
Keil MDK yes yes yes yes yes
Rowley yes yes no no no
CodeSourcery yes no no no no
Yargato (GDB) yes yes yes no no
ARM11
ARM11 has currently been tested with IAR EWARM only.
Debug Flash Flash Trace
IDE 4 . 3
support download breakpoints support
IAR EWARM yes no2 no2 no
Rowley yes no? no no
Yargato (GDB) yes no? no? no

A W N =

Coming soon

Requires emulator with trace support
Debug support includes the following: Download to RAM, memory read/write, CPU

Requires J-Link RDI license for download of more than 32KBytes

register read/write, Run control (go, step, halt), software breakpoints in RAM and
hardware breakpoints in flash memory.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




54 CHAPTER 1 Introduction

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



55

Chapter 2

Licensing

This chapter describes the different license types of J-Link related software and the
legal use of the J-Link software with original SEGGER and OEM products.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



56 CHAPTER 2 Licensing

2.1 Components requiring a license

The following programs/features require a full-featured J-Link (PLUS, ULTRA+, PRO,
J-Trace) or an additional license for the J-Link base model:

J-Flash

J-Link RDI

J-Link Debugger

Flash breakpoints (FlashBp)

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



57

2.2 License types

For each of the software components which require an additional license, there are
different types of licenses which are explained in the following.

Built-in License

This type of license is easiest to use. The customer does not need to deal with a
license key. The software automatically finds out that the connected J-Link contains
the built-in license(s). The license is burned into the J-Link debug probe and can be
used on any computer the J-Link is connected to. This type of license applies to the J-
Link PLUS, J-Link ULTRA+ and J-Link Pro.

Key-based license

This type of license is used if you already have a J-Link, but order a license for a J-
Link software component at a later time. In addition to that, the key-based license is
used for trial licenses. To enable this type of license you need to obtain a license key
from SEGGER. Free trial licenses are available upon request from www.segger.com.
This license key has to be added to the J-Link license management. How to enter a
license key is described in detail in Licensing on page 265. Every license can be used
on different PCs, but only with the J-Link the license is for. This means that if you
want to use flash breakpoints with other J-Links, every J-Link needs a license.

2.2.1 Built-in license

This type of license is easiest to use. The customer does not need to deal with a
license key. The software automatically finds out that the connected J-Link contains
the built-in license(s). To check what licenses the used J-Link have, simply open the
J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-
Link’s licenses automatically, as can be seen in the screenshot below.

BN C:\Windows\system32\cmd.exe EI@

SEGGER J-Link Commander U4 88 (7' for helpd>

FlashBP,. FlashDL. JFlash

i 5 1200
: Found SUD DP with ID Bx2BAB1477
: Found Cortex—M4 rBpl. Little endian.
: FPUnit: 6 code (BPF)> slots and 2 literal slots

Target interface gpeed 188 kH=
J-Link>_

The J-Link PLUS in the example above contains licenses for all features. Note that
GDB and FlashDL feature are no longer required.

2.2.2 Key-based license

When using a key-based license, a license key is required in order to enable the fea-
ture. License keys can be added via the J-Link License Manager. How to enter a
license via the license manager is described in Licensing on page 265. Like the built-
in license, the key-based license is only valid for one J-Link, so if another J-Link is
used it needs a separate license.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



58 CHAPTER 2 Licensing

2.3 Legal use of SEGGER J-Link software

The software consists of proprietary programs of SEGGER, protected under copyright
and trade secret laws. All rights, title and interest in the software are and shall
remain with SEGGER. For details, please refer to the license agreement which needs
to be accepted when installing the software. The text of the license agreement is also
available as entry in the start menu after installing the software.

Use of software

SEGGER J-Link software may only be used with original SEGGER products and autho-
rized OEM products. The use of the licensed software to operate SEGGER product
clones is prohibited and illegal.

2.3.1 Use of the software with 3rd party tools

For simplicity, some components of the J-Link software are also distributed by part-
ners with software tools designed to use J-Link. These tools are primarily debugging
tools, but also memory viewers, flash programming utilities as well as software for
other purposes. Distribution of the software components is legal for our partners, but
the same rules as described above apply for their usage: They may only be used with
original SEGGER products and authorized OEM products. The use of the licensed soft-
ware to operate SEGGER product clones is prohibited and illegal.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



59

2.4 Original SEGGER products

All of the follwing SEGGER products are supported by the OSs stated in Chapter 1.2
Supported OS

The following products are original SEGGER products for which the use of the J-Link
software is allowed:

2.4.1 J-Link BASE

J-Link BASE is a JTAG emulator designed for ARM cores. It con-
nects via USB or Ethernet to a PC running Microsoft Windows,
Apple OSX or Linux. J-Link BASE has a built-in 20-pin JTAG con-
nector, which is compatible with the standard 20-pin connector
defined by ARM.

Included Licenses

J-Link Flashloaders
J-Link GDB Server

Optional Licenses:

J-Link Debugger

J-Flash

Unlimited Flash Breakpoints
RDI / RDDI

2.4.2 J-Link PLUS

J-Link PLUS is a USB powered JTAG emu-
lator supporting a large number of CPU cores.

Based on a 32-bit RISC CPU, it can communicate at high speed
with the supported target CPUs. J-Link is used around the world
in tens of thousand places for development and production
(flash programming) purposes.

J-Link is supported by all major IDEs such as IAR EWARM, Keil
MDK, Rowley CrossWorks, Atollic TrueSTUDIO, IAR EWRKX,
Renesas HEW, Renesas e2studio, and many others.

Included Licenses

J-Link Flashloaders

J-Link GDB Server

J-Link Debugger

J-Flash

Unlimited Flash Breakpoints
RDI / RDDI

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



60 CHAPTER 2 Licensing

2.4.3 J-link ULTRA+

J-link ULTRA+ is a JTAG/SWD emulator designed for ARM/Cor-
tex and other supported CPUs. It is fully compatible to the stan-
dard J-Link and works with the same PC software. Based on the
highly optimized and proven J-Link, it offers even higher speed
as well as target power measurement capabilities due to the
faster CPU, built-in FPGA and High speed USB interface.

J-link ULTRA has a built-in 20-pin JTAG/SWD connector.

Included Licenses

J-Link Flashloaders

J-Link GDB Server

J-Link Debugger

J-Flash

Unlimited Flash Breakpoints
RDI / RDDI

2.4.4 J-Link PRO

J-Link PRO is a JTAG emulator designed

for ARM cores. It connects via USB or Ethernet to a PC running
Microsoft Windows, Apple OSX or Linux. J-Link has a built-in
20-pin JTAG connector, which is compatible with the standard
20-pin connector defined by ARM.

Included Licenses

J-Link Flashloaders

J-Link GDB Server

J-Link Debugger

J-Flash

Unlimited Flash Breakpoints
RDI / RDDI

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



61

2.4.5 J-Trace for Cortex-M

J-Link / J-Trace (UM08001)

J-Trace for Cortex-M is a JTAG/SWD emulator designed for Cor-
tex-M cores which include trace (ETM) support. J-Trace for Cor-
tex-M can also be used as a regular J-Link.

Included Licenses

J-Link Flashloaders

J-Link GDB Server

J-Link Debugger

J-Flash

Unlimited Flash Breakpoints
RDI / RDDI

Note:In order to use ETM trace on ARM7/9 targets, a J-Trace is
needed.

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



62

CHAPTER 2

2.4.6 Flasher ARM

Flasher ARM is a programming tool for microcontrollers with on-
chip or external Flash memory and ARM core. Flasher ARM is
designed for programming flash targets with the J-Flash soft-
ware or stand-alone. In addition to that Flasher ARM has all of
the J-Link functionality. Flasher ARM connects via USB or via
RS232 interface to a PC running Microsoft Windows 2000 or
later. Flasher ARM has a built-in 20-pin JTAG connector, which is
compatible with the standard 20-pin connector defined by ARM.

Licensing

Licenses

Comes with built-in licenses for flash download and J-Flash.

2.4.7 Flasher RX

J-Link / J-Trace (UM08001)

Flasher RX is a programming tool for Renesas RX600 series
microcontrollers with on-chip or external flash memory and
Renesas RX core. Flasher RX is designed for programming flash
targets with the J-Flash software or stand-alone. In addition to
that Flasher RX has all of the J-Link RX functionality. Flasher RX
connects via Ethernet, USB or via RS232 interface to a PC run-
ning Microsoft Windows 2000 or later.

Flasher RX itself has a built-in 20-pin JTAG connector but is
shipped with an 14-pin adapter for Renesas RX devices.

Licenses
Comes with built-in licenses for flash download and J-Flash.

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



63

2.4.8 Flasher PPC

Flasher PPC is a programming tool for PowerPC based microcon-
trollers with on-chip or external Flash memory. Flasher PPC is
designed for programming flash targets with the J-Flash soft-
ware or stand-alone. In addition to that Flasher PPC has all of
the J-Link functionality. Flasher PPC connects via USB or via
RS232 interface to a PC running Microsoft Windows 2000 or
later. Flasher PPC has a built-in 20-pin JTAG connector, which is
compatible with the standard 20-pin connector defined by ARM.

Licenses
Comes with built-in licenses for flash download and J-Flash.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



64 CHAPTER 2 Licensing

2.5 J-Link OEM versions

There are several different OEM versions of J-Link on the market. The OEM versions
look different, but use basically identical hardware. Some of these OEM versions are
limited in speed, some can only be used with certain chips and some of these have
certain add-on features enabled, which normally requires a license. In any case, it
should be possible to use the J-Link software with these OEM versions. However,
proper function cannot be guaranteed for OEM versions. SEGGER Microcontroller
does not support OEM versions; support is provided by the respective OEM.

2.5.1 Analog Devices: mIDASLink

mIDASLink is an OEM version of J-Link, sold by Analog Devices. .
Limitations i
mIDASLink works with Analog Devices chips only. This limitation :

can NOT be lifted; if you would like to use J-Link with a device
from an other manufacturer, you need to buy a separate J-Link.

Licenses
Licenses for RDI, J-Link FlashDL and FlashBP are included. Other Doences
licenses can be added. mIDAS-Link,

2.5.2 Atmel: SAM-ICE

SAM-ICE is an OEM version of J-Link, sold by Atmel.
Limitations

SAM-ICE works with Atmel devices only. This limitation can NOT
be lifted; if you would like to use J-Link with a device from an o
other manufacturer, you need to buy a separate J-Link. &

Licenses

Licenses for RDI and GDB Server are included. Other licenses can
be added.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



65

2.5.3 Digi: JTAG Link

Digi JTAG Link is an OEM version of J-Link, sold by Digi Interna-
tional.

Limitations

Digi JTAG Link works with Digi devices only. This limitation can .
NOT be lifted; if you would like to use J-Link with a device from an i
other manufacturer, you need to buy a separate J-Link.

Licenses

License for GDB Server is included. Other licenses can be added.

2.5.4 1AR: J-Link/ J-Link KS

IAR J-Link / IAR J-Link KS are OEM versions of J-Link, sold by IAR.
Limitations

IAR J-Link / IAR J-Link KS cannot be used with Keil MDK. This lim- bt
itation can NOT be lifted; if you would like to use J-Link with Keil |
MDK, you need to buy a separate J-Link. IAR J-Link does not sup-

port kickstart power. o

Licenses N

No licenses are included. All licenses can be added.

JTAG W SWD

2.5.5 IAR: J-Link Lite

IAR J-Link Lite is an OEM version of J-Link, sold by IAR.
Limitations

IAR J-Link Lite cannot be used with Keil MDK. This limitation can
NOT be lifted; if you would like to use J-Link with Keil MDK, you
need to buy a separate J-Link.

JTAG speed is limited to 4 MHz.
Licenses

No licenses are included. All licenses can be added.

Note: IAR J-Link is only delivered and supported as part of Starter-Kits. It is not
sold to end customer directly and not guaranteed to work with custom hardware.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



66 CHAPTER 2 Licensing

2.5.6 I|AR: J-Trace

IAR J-Trace is an OEM version of J-Trace, sold by IAR.
Limitations

IAR J-Trace cannot be used with Keil MDK. This limitation can NOT
be lifted; if you would like to use J-Trace with Keil MDK, you need 4

to buy a separate J-Trace. _{’
Licenses -
No licenses are included. All licenses can be added. .E
#-Téce
2.5.7 NXP: J-Link Lite LPC Edition
J-Link Lite LPC Edition is an OEM version of J-Link, sold by NXP.
Limitations ~ gu
J-Link Lite LPC Edition only works with NXP devices. This limita- < %

tion can NOT be lifted; if you would like to use J-Link with a
device from an other manufacturer, you need to buy a separate
J-Link.

Licenses

No licenses are included.

2.5.8 SEGGER: J-Link Lite ARM

J-Link Lite ARM is a fully functional OEM-version of SEGGER J]-
Link. If you are selling evaluation-boards, J-Link Lite ARM is an
inexpensive emulator solution for you. Your customer receives a
widely acknowledged JTAG-emulator which allows to start right
away with development.

Limitations

JTAG speed is limited to 4 MHz

Licenses

No licenses are included. All licenses can be added.
Note

J-Link Lite ARM is only delivered and supported as part of Starter Kits. It is not sold
to end customers and not guaranteed to work with custom hardware.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



67

2.6 J-LinkOBs

J-Link OBs (J-Link On Board) are single chip versions of J-Link which are used on var-
ious evalboards. It is legal to use J-Link software with these boards.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



68 CHAPTER 2 Licensing

2.7 lllegal Clones

Clones are copies of SEGGER products which use the copyrighted SEGGER Firmware
without a license. It is strictly prohibited to use SEGGER J-Link software with illegal
clones of SEGGER products. Manufacturing and selling these clones is an illegal act
for various reasons, amongst them trademark, copyright and unfair business practise
issues.

The use of illegal J-Link clones with this software is a violation of US, European and
other international laws and is prohibited.

If you are in doubt if your unit may be legally used with SEGGER J-Link software,
please get in touch with us.

End users may be liable for illegal use of J-Link software with clones.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



69

Chapter 3

J-Link software and documenta-
tion package

This chapter describes the contents of the J-Link software and documentation pack-
age which can be downloaded from www.segger.com.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



CHAPTER 3 J-Link software and documentation package

Software overview

The J-Link software and documentation package, which is available for download
from http://www.segger.com/jlink-software.html includes some applications to be
used with J-Link. It also comes with USB-drivers for J-Link and documentations in pdf

format.

Software

Description

JLink Commander

Command-line tool with basic functionality for target analysis.

J-Link GDB Server

The J-Link GDB Server is a server connecting to the GNU
Debugger (GDB) via TCP/IP. It is required for toolchains using
the GDB protocol to connect to J-Link.

J-Link GDB Server
command line ver-
sion

Command line version of the J-Link GDB Server. Same func-
tionality as the GUI version.

J-Link Remote
Server

Utility which provides the possibility to use J-Link / J-Trace
remotely via TCP/IP.

J-Mem Memory
Viewer

Target memory viewer. Shows the memory content of a run-
ning target and allows editing as well.

J-Flash?@®

Stand-alone flash programming application. For more informa-
tion about J-Flash please refer to J-Flash ARM User’s Guide
(UM08003).

J-Link RTT Viewer

Free-of-charge utility for J-Link. Displays the terminal output
of the target using rRTT. Can be used in parallel with a debug-
ger or stand-alone.

J-Link SWO Viewer

Free-of-charge utility for J-Link. Displays the terminal output
of the target using the SWO pin. Can be used in parallel with a
debugger or stand-alone.

J-Link SWO Ana-
lyzer

Command line tool that analyzes SWO RAW output and stores
it into a file.

JTAGLoad

Command line tool that opens an svf file and sends the data in
it via J-Link / J-Trace to the target.

J-Link Configurator

GUI-based configuration tool for J-Link. Allows configuration of
USB identification as well as TCP/IP identification of J-Link. For
more information about the J-Link Configurator, please refer to
J-Link Configurator on page 167.

RDI support?

Provides Remote Debug Interface (RDI) support. This allows
the user to use J-Link with any RDI-compliant debugger.

Processor specific
tools

Free command-line tools for handling specific processors.
Included are: STR9 Commander and STM32 Unlock.

Table 3.1: J-Link / J-Trace related software
a. Full-featured J-Link (PLUS, PRO, ULTRA+) or an additional license for J-Link base model required.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



3.2 J-Link Commander (Command line tool)

J-Link Commander (JLink.exe) is a tool that can be used for verifying proper instal-
lation of the USB driver and to verify the connection to the target CPU, as well as for
simple analysis of the target system. It permits some simple commands, such as
memory dump, halt, step, go etc. to verify the target connection.

Program Files' SEGGER " JLink ARM_¥386" JLink.exe

SEGGER J-Link Commander U3.86
Compiled Jun 27 2888 19:42:43
DLL

*?*' for helpd>

U3.86,. compiled Jun 27 2088 19:42:28
J-Link ARM U6 compiled Jun 27 26888 18:35:51
6.808

: TotallRLen = 4.

IRPrint = Bx81
Found 1 JTAG device.

Total IRLen = 4:

Id of device #8: Bx3FBFAFAF
Found ARM with core Id Bx3FBFBFBF (ARM?7>
J-Link>

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG

71



72

3.2.1 Commands

CHAPTER 3 J-Link software and documentation package

The table below lists the available commands of J-Link Commander. All commands
are listed in alphabetical order within their respective categories. Detailed descrip-
tions of the commands can be found in the sections that follow.

Command (short form) Explanation
Basic

clrBP Clear breakpoint.
clrWp Clear watchpoint.
device Selects a device.
erase Erase internal flash of selected device.
exec Execute command string.
exit (gc, q) Closes J-Link Commander.
exitonerror (eoe) Commander exits after error.
f Prints firmware info.
go (g) Starts the CPU core.
halt (h) Halts the CPU core.
hwinfo Show hardware info.
is Scan chain select register length.
loadfile Load data file into target memory.
log Enables log to file.
mem Read memory.
mem8 Read 8-bit items.
meml6 Read 16-bit items.
mem32 Read 32-bit items.
mem6 4 Read 64-bit items.
mr Measures reaction time of RTCK pin.
ms Measures length of scan chain.
power Switch power supply for target.
r Resets and halts the target.
readAP Reads from a CoreSight AP register.
readDP Reads from a CoreSight DP register.
regs Shows all current register values.
rnh Resets without halting the target.
rreg Shows a specific register value.
rx Reset target with delay.
savebin Saves target memory into binary file.
setBP Set breakpoint.
setPC Set the PC to specified value.
setWp Set watchpoint.
sleep Waits the given time (in milliseconds).
speed Set target interface speed.
st Shows the current hardware status.
step (s) Single step the target chip.
unlock Unlocks a device.
verifybin Compares memory with data file.
wil Write 8-bit items.
w2 Write 16-bit items.
wi Write 32-bit items.
writeAP Writes to a CoreSight AP register.
writeDP Writes to a CoreSight DP register.
wreg Write register.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



73

Command (short form) Explanation
Flasher 1/10
fdelete (fdel) Delete file on emulator.
flist List directory on emulator.
fread (frd) Read file from emulator.
fshow Read and display file from emulator.
fsize (fsz) Display size of file on emulator.
fwrite (fwr) Write file to emulator.
Connection
ip Connect to J-Link Pro via TCP/IP.
usb Connect to J-Link via USB.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



74 CHAPTER 3 J-Link software and documentation package

3.2.1.1 cIrBP

This command removes a breakpoint set by J-Link.

Syntax

clrBP <BP_Handle>

Parameter Meaning
BP_Handle Handle of breakpoint to be removed.
Example
clrBP 1

3.2.1.2 cIrWP

This command removes a watchpoint set by J-Link.

Syntax

clrWP <WP_Handle>

Parameter Meaning
WP_Handle Handle of watchpoint to be removed.
Example
clrwp 0x2

3.2.1.3 device

Selects a specific device J-Link shall connect to and performs a reconnect. In most
cases explicit selection of the device is not necessary. Selecting a device enables the
user to make use of the J-Link flash programming functionality as well as using
unlimited breakpoints in flash memory.

For some devices explicit device selection is mandatory in order to allow the DLL to
perform special handling needed by the device.

Some commands require that a device is set prior to use them.

Syntax

device <DeviceName>

Parameter Meaning
. Valid device name: Device is selected.
DeviceName R . .
?: Shows a device selection dialog.
Example

device stm32f407ig

3.2.1.4 erase
Erases all flash sectors of the current device. A device has to be specified previously.

Syntax

erase

3.2.1.5 exec

Execute command string. For more information about the usage of command strings
please refer to Command strings on page 223.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



75

Syntax

exec <Command>

Parameter Meaning
Command Command string to be executed.
Example

exec SupplyPower = 1

3.2.1.6 exit(gc, q)

This command closes the target connection, the connection to the J-Link and exits J-
Link Commander.

Syntax
a

3.2.1.7 exitonerror (eoe)
This command toggles whether J-Link Commander exits on error or not.

Syntax

ExitOnError <1]|0>\

Parameter Meaning
<1]0> 1: J-Link Commander will now exit on Error.
0: J-Link Commander will no longer exit on Error.
Example
eoe 1
3.2.1.8 f

Prints firmware and hardware version info. Please notice that minor hardware revi-
sions may not be displayed, as they do not have any effect on the feature set.

Syntax
f

3.2.1.9 fdelete (fdel)

On emulators which support file I/O this command deletes a specific file.

Syntax

fdelete <FileName>]

Parameter Meaning
FileName File to delete from the Flasher.
Example

fdelete Flasher.dat

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



76 CHAPTER 3 J-Link software and documentation package

3.2.1.10 flist

On emulators which support file I/O this command shows the directory tree of the
Flasher.

Syntax
flist

3.2.1.11 fread (frd)

On emulators which support file I/O this command reads a specific file. Offset applies
to both destination and source file.

Syntax

fread <EmuFile> <HostFile> [<Offset> [<NumBytes>]]

Parameter Meaning
EmuFile File name to read from.
HostFile Destination file on the host.
Offset Specifies the offset in the file, at which data reading is started.
NumBytes Maximum number of bytes to read.
Example

fread Flasher.dat C:\Project\Flasher.dat

3.2.1.12 fshow

On emulators which support file I/O this command reads and prints a specific file.
Currently, only Flasher models support file I/0.

Syntax

fshow <FileName> [-a] [<Offset> [<NumBytes>]]

Parameter Meaning
FileName Source file name to read from the Flasher.
a If set, Input will be parsed as text instead of being shown as hex.
Offset Specifies the offset in the file, at which data reading is started.
NumBytes Maximum number of bytes to read.
Example

fshow Flasher.dat

3.2.1.13 fsize (fsz)

On emulators which support file I/O this command gets the size of a specific file. Cur-
rently, only Flasher models support file I/0.

Syntax
fsize <FileName>]

Parameter Meaning
FileName Source file name to read from the Flasher.
Example

fsize Flasher.dat

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



77

3.2.1.14 fwrite (fwr)

On emulators which support file I/O this command writes a specific file. Currently,
only Flasher models support file I/0.

NumBytes is limited to 512 bytes at once. This means, if you want to write e.g. 1024
bytes, you have to send the command twice, using an appropriate offset when send-
ing it the second time. Offset applies to both destination and source file.

Syntax
fwrite <EmuFile> <HostFile> [<Offset> [<NumBytes>]]
Parameter Meaning
EmuFile File name to write to.
HostFile Source file on the host
Offset Specifies the offset in the file, at which data writing is started.
NumBytes Maximum number of bytes to write.
Example

fwrite Flasher.dat C:\Project\Flasher.dat

3.2.1.15 go (9)

Starts the CPU. In order to avoid setting breakpoints it allows to define a maximum
number of instructions which can be simulated/emulated. This is particulary useful
when the program is located in flash and flash breakpoints are used. Simulating
instructions avoids to reprogram the flash and speeds up (single) stepping.

Syntax

go [<NumSteps> [<Flags>]]

Parameter Meaning

Maximum number of instructions allowed to be simulated. Instruc-
tion simulation stops whenever a breakpointed instruction is hit, an

NumSteps instruction which cannot be simulated/emulated is hit or when Num-
Steps is reached.
51 0: Do not start the CPU if a BP is in range of NumSteps
ags 1: Overstep BPs
Example

go //Simply starts the CPU

go 20, 1

3.2.1.16 halt (h)
Halts the CPU Core. If successful, shows the current CPU registers.

Syntax
halt

3.2.1.17 hwinfo

This command can be used to get information about the power consumption of the
target (if the target is powered via J-Link). It also gives the information if an over-
current happened.

Syntax

hwinfo

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



78 CHAPTER 3 J-Link software and documentation package

3.2.1.18 ip

Closes any existing connection to J-Link and opens a new one via TCP/IP.
If no IP Address is specified, the Emulator selection dialog shows up.

Syntax
ip [<Addr>]
Parameter Meaning
Valid values:
Add IP Address: Connects the J-Link with the specified IP-Address
* Host Name: Resolves the host name and connects to it.
*: Invokes the Emulator selection dialog.
Example

ip 192.168.6.3

3.2.1.19 is

This command returns information about the length of the scan chain select register.

Syntax
3.2.1.20 loadfile

This command programs a given data file to a specified destination address.
Currently supported data files are:

* . mot
*.srec
*.519
*.s

* . hex
*.bin

Syntax

loadfile <Filename> [<Addr>]

Parameter Meaning
Filename Source filename
Addr Destination address (Required for *.bin files)
Example

loadfile C:\Work\test.bin 0x20000000

3.2.1.21 log

Set path to logfile allowing the DLL to output logging information.
If the logfile already exist, the contents of the current logfile will be overwritten.

Syntax

log <Filename>

Parameter Meaning

Filename Log filename

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



79

Example
log C:\Work\log.txt
3.2.1.22 mem

The command reads memory from the target system. If necessary, the target CPU is
halted in order to read memory.

Syntax
mem [<Zone>:]<Addr>, <NumBytes> (hex)
Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.
Numbytes Number of bytes to read. Maximum is 0x100000.
Example
mem 0, 100

3.2.1.23 mem8

The command reads memory from the target system in units of bytes. If necessary,
the target CPU is halted in order to read memory.

Syntax
mem8 [<Zone>:]<Addr>, <NumBytes> (hex)
Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.
NumBytes Number of bytes to read. Maximum is 0x10000.
Example

mem8 0, 100

3.2.1.24 mem16

The command reads memory from the target system in units of 16-bits. If necessary,
the target CPU is halted in order to read memory.

Syntax
meml6 [<Zone>:]<Addr>, <NumBytes> (hex)
Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.
NumBytes Number of bytes to read. Maximum is 0x8000.
Example

meml6 0, 100

3.2.1.25 mem32

The command reads memory from the target system in units of 32-bits. If necessary,
the target CPU is halted in order to read memory.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



80

CHAPTER 3 J-Link software and documentation package

Syntax
mem32 [<Zone>:]<Addr>, <NumBytes> (hex)
Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.
NumBytes Number of bytes to read. Maximum is 0x4000.
Example

mem32 0, 100

3.2.1.26 mem64

The command reads memory from the target system in units of 64-bits. If necessary,

the target CPU is halted in order to read memory.

Syntax
mem64 [<Zone>:]<Addr>, <NumBytes> (hex)
Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.
NumBytes Number of bytes to read. Maximum is 0x4000.
Example

mem64 0, 100

3.2.1.27 mr

Measure reaction time of RTCK pin.

Syntax

mr [<RepCount>]

Parameter Meaning
RepCount Number of times the test is repeated (Default: 1).
Example
mr 3
3.2.1.28 ms

J-Link / J-Trace (UM08001)

Measures the number of bits in the specified scan chain.

Syntax

ms <ScanChain>

Parameter Meaning

ScanChain Scan chain to be measured.

Example

ms 1

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



81

3.2.1.29 power

This command sets the status of the power supply over pin 19 of the JTAG connector.
The KS(Kickstart) versions of J-Link have the 5V supply over pin 19 activated by
default. This feature is useful for some targets that can be powered over the JTAG
connector.

Syntax

power <State> [perm]

Parameter Meaning
State Valid values: On, Off
perm Sets the specified State value as default.
Example
£
3.21.30r

Resets and halts the target.
Syntax

r

3.2.1.31 readAP

Reads from a CoreSight AP register.

This command performs a full-qualified read which means that it tries to read until
the read has been accepted or too many WAIT responses have been received.

In case actual read data is returned on the next read request (this is the case for
example with interface JTAG) this command performs the additional dummy read
request automatically.

Syntax

ReadAP <RegIndex>

Parameter Meaning
RegIndex Index of AP register to read
Example
//
// Read AP[0], IDR (register 3, bank 15)
//
WriteDP 2, 0x000000FO0 // Select AP[0] bank 15
ReadAP 3 // Read AP[0] IDR

3.2.1.32 readDP

Reads from a CoreSight DP register.

This command performs a full-qualified read which means that it tries to read until
the read has been accepted or too many WAIT responses have been received.

In case actual read data is returned on the next read request (this is the case for
example with interface JTAG) this command performs the additional dummy read
request automatically.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



82 CHAPTER 3 J-Link software and documentation package

Syntax

ReadDP <RegIndex>

Parameter Meaning
RegIndex Index of DP register to read

Example

//

// Read DP-CtrlStat
//

ReadDP 1

3.2.1.33 regs

Shows all current register values.
Syntax

regs

3.2.1.34 rnh

This command performs a reset but without halting the device.

Syntax

rnh

3.2.1.35 rreg

The function prints the value of the specified CPU register.

Syntax

rreg <RegIndex>

Parameter Meaning

RegIndex Register to read.

Example

rreg 15

3.2.1.36 rx

Resets and halts the target. It is possible to define a delay in milliseconds after reset.
This function is useful for some target devices which already contain an application or
a boot loader and therefore need some time before the core is stopped, for example
to initialize hardware, the memory management unit (MMU) or the external bus
interface.

Syntax

rx <DelayAfterReset>

Parameter Meaning

DelayAfter-

Delay in ms.
Reset

Example

rx 10

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



83

3.2.1.37 savebin

Saves target memory into binary file.

Syntax

savebin <Filename>, <Addr>, <NumBytes> (hex)

Parameter Meaning
Filename Destination file
Addr Source address.
NumBytes Number of bytes to read.
Example

savebin C:\Work\test.bin 0x0000000 0x100

3.2.1.38 setBP

This command sets a breakpoint of a specific type at a specified address. Which
breakpoint modes are available depends on the CPU that is used.

Syntax
setBP <Addr> [[A/T]/[W/H]] [S/H]
Parameter Meaning
Addr Address to be breakpointed.
Only for ARM7/9/11 and Cortex-R4 devices:
A/T A: ARM mode

T: THUMB mode

Only for MIPS devices:

W/H W: MIPS32 mode (Word)

H: MIPS16 mode (Half-word)
S: Force software BP

S/H H: Force hardware BP

Example
setBP 0x8000036

3.2.1.39 setPC

Sets the PC to the specified value.
Syntax

setpc <Addr>

Parameter Meaning
Addr Address the PC should be set to.
Example

setpc 0x59C

3.2.1.40 setWP

This command inserts a new watchpoint that matches the specified parameters. The
enable bit for the watchpoint as well as the data access bit of the watchpoint unit are
set automatically by this command. Moreover the bits DBGEXT, CHAIN and the

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG




84

J-Link / J-Trace (UM08001)

CHAPTER 3 J-Link software and documentation package

RANGE bit (used to connect one watchpoint with the other one) are automatically
masked out. In order to use these bits you have to set the watchpoint by writing the

ICE registers directly.

Syntax

setWP <Addr> [<AccessType>]

[<Size>] [<Data> [<DataMask> [<AddrMask>]1]]

Parameter Meaning
Addr Address to be watchpointed.
Specifies the control data on which data event has been set:
Accesstype R: read access
W: write access
Size Valid values: S8 | S16 | S32
Specifies to monitor an n-bit access width at the selected address.
Data Specifies the Data on which watchpoint has been set.
Specifies data mask used for comparison. Bits set to 1 are masked
out, so not taken into consideration during data comparison. Please
DataMask note that for certain cores not all Bit-Mask combinations are sup-
ported by the core-debug logic. On some cores only complete bytes
can be masked out (e.g. PIC32) or similar.
Specifies the address mask used for comparison. Bits set to 1 are
masked out, so not taken into consideration during address compar-
AddrMask ison. Please note that for certain cores not all Bit-Mask combina-
tions are supported by the core-debug logic. On some cores only
complete bytes can be masked out (e.g. PIC32) or similar.
Example

setWP 0x20000000 W S8 OxFF

3.2.1.41 sleep

Waits the given time (in milliseconds).

Syntax

sleep <Delay>

Parameter Meaning
Delay Amount of time to sleep in ms.
Example
sleep 200

3.2.1.42 speed

This command sets the speed for communication with the CPU core.

Syntax

speed <Freg>|auto|adaptive

Parameter Meaning
Freq Specifies the interface frequency in kHz.
auto Selects auto detection of JTAG speed.
adaptive Selects adaptive clocking as JTAG speed.

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




85

Example

speed 4000
speed auto

3.2.1.43 st

This command prints the current hardware status. Prints the current status of TCK,
TDI, TDO, TMS, TRES, TRST and the interface speeds supported by the target. Also
shows the Target Voltage.

Syntax

st

3.2.1.44 step (s)

Target needs to be halted before calling this command. Executes a single step on the
target. The instruction is overstepped even if it is breakpointed. Prints out the disas-
sembly of the instruction to be stepped.

Syntax
step

3.2.1.45 unlock

This command unlocks a device which has been accidentally locked by malfunction of
user software.

Syntax

unlock <DeviceName>

Parameter Meaning
Name of the device family to unlock. Supported Devices:
. LM3Sxxx
DeviceName . .
Kinetis
EFM32Gxxx
Example

unlock Kinetis

3.2.1.46 usb

Closes any existing connection to J-Link and opens a new one via USB.
It is possible to select a specific J-Link by port number.

Syntax

usb [<Port>]

Parameter Meaning
Port Valid values: 0..3

Example

usb

3.2.1.47 verifybin

Verifies if the specified binary is already in the target memory at the specified
address.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



86

CHAPTER 3 J-Link software and documentation package
Syntax
verifybin <Filename>, <Addr>
Parameter Meaning
Filename Sample bin.
Addr Start address of memory to verify.
Example

verifybin C:\Work\test.bin 0x0000000

3.2.1.48 wi

The command writes one single byte to the target system.

Syntax
wl [<Zone>:]<Addr>, <Data> (hex)

Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.

Data 8-bits of data to write.
Example

wl 0x10, OxFF

3.2.1.49 w2

The command writes a unit of 16-bits to the target system.

Syntax

w2 [<Zone>:]<Addr>, <Data> (hex)

Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.

Data 16-bits of data to write.
Example

w2 0x0, OxXFFFF

3.2.1.50 w4

J-Link / J-Trace (UM08001)

The command writes a unit of 32-bits to the target system.

Syntax

w4 [<Zone>:]<Addr>, <Data> (hex)

Parameter Meaning
Zone Name of memory zone to access.
Addr Start address.

Data 32-bits of data to write.
Example

w4 0x0, OxAABBCCFF

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



87

3.2.1.51 writeAP

Writes to a CoreSight AP register.
This command performs a full-qualified write which means that it tries to write until
the write has been accepted or too many WAIT responses have been received.

Syntax
WriteAP <RegIndex>, <Data32Hex>
Parameter Meaning
RegIndex Index of AP register to write
Data32Hex Data to write
Example
//
// Select AHB-AP and configure it
//

WriteDP 2, 0x00000000 // Select AP[0] (AHB-AP) bank 0
WriteAP 4, 0x23000010 // Auto-increment, Private access, Access size: word

3.2.1.52 writeDP

Writes to a CoreSight DP register.
This command performs a full-qualified write which means that it tries to write until
the write has been accepted or too many WAIT responses have been received.

Syntax

WriteDP <RegIndex>, <Data32Hex>

Parameter Meaning
RegIndex Index of DP register to write
Data32Hex Data to write
Example
//

// Write DP SELECT register: Select AP 0 bank 15
//

WriteDP 2, 0x000000FO

3.2.1.53 wreg

Writes into a register. The value is written into the register on CPU start.

Syntax

wreg <RegName>, <Data>

Parameter Meaning
RegName Register to write to.
Data Data to write to the specified register.
Example

wreg R14, OxFF

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



88 CHAPTER 3 J-Link software and documentation package

3.2.2 Command line options

J-Link Commander can be started with different command line options for test and
automation purposes. In the following, the command line options which are available
for J-Link Commander are explained. All command line options are case insensitive.

Command Explanation
-AutoConnect Automatically start the target connect sequence
-CommanderScript Passes a CommandFile to J-Link
-CommandFile Passes a CommandFile to J-Link
-Device Pre-selects the device J-Link Commander shall connect to
-ExitOnError Commander exits after error.
-If Pre-selects the target interface
-IP Selects IP as host interface
-JLinkScriptFile Passes a JLinkScriptFile to J-Link
-JTAGConf Sets IRPre and DRPre
-RTTTelnetPort Sets the RTT Telnetport
-SelectEmuBySN Connects to a J-Link with a specific S/N over USB
-SettingsFile Passes a SettingsFile to J-Link
-Speed Starts J-Link Commander with a given initial speed

Table 3.2: Available command line options

3.2.2.1 -AutoConnect

This command can be used to let J-Link Commander automatically start the connect
sequence for connecting to the target when entering interactive mode.

Syntax
-autoconnect <1|0>

Example

JLink.exe -autoconnect 1

3.2.2.2 -CommanderScript

Similar to -CommandFile

3.2.2.3 -CommandFile

Selects a command file and starts J-Link Commander in batch mode. The batch mode
of J-Link Commander is similar to the execution of a batch file. The command file is
parsed line by line and one command is executed at a time.

Syntax
-CommandFile <CommandFilePath>

Example

See Using command files on page 91

3.2.2.4 -Device

Pre-selects the device J-Link Commander shall connect to. For some devices, J-Link
already needs to know the device at the time of connecting, since special handling is
required for some of them. For a list of all supported device names, please refer to
http://www.segger.com/jlink_supported_devices.html.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



89

Syntax
-Device <DeviceName>
Example

JLink.exe -Device STM32F103ZE

3.2.2.5 -ExitOnError

Similar to the exitonerror (eoce) command.

3.2.2.6 -If

Selects the target interface J-Link shall use to connect to the target. By default, J-
Link Commander first tries to connect to the target using the target interface which is
currently selected in the J-Link firmware. If connecting fails, J-Link Commander goes
through all target interfaces supported by the connected J-Link and tries to connect
to the device.

Syntax

-If <TargetInterface>
Example

JLink.exe -If SWD

Additional information

Currently, the following target interfaces are supported:

e JTAG
SWD
3.2.2.7 -IP

Selects IP as host interface to connect to J-Link. Default host interface is USB.
Syntax

-IP <IPAddr>

Example

JLink.exe -IP 192.168.1.17

Additional information

To select from a list of all available emulators on Ethernet, please use * as <I1pPAddr>.

3.2.2.8 -JLinkScriptFile

Passes the path of a J-Link script file to the J-Link Commander. J-Link scriptfiles are
mainly used to connect to targets which need a special connection sequence before
communication with the core is possible. For more information about J-Link
script files, please refer to J-Link script files on page 206.

Syntax
JLink.exe -JLinkScriptFile <File>
Example

JLink.exe -JLinkScriptFile “C:\My Projects\Default.JLinkScript"

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



920 CHAPTER 3 J-Link software and documentation package

3.2.2.9 -JTAGConf

Passes IRPre and DRPre in order to select a specific device in a JTAG-chain.
"-1,-1" can be used to let J-Link select a device automatically.

Syntax
-JTAGConf <IRPre>,<DRPre>

Example

JLink.exe -JTAGConf 4,1
JLink.exe -JTAGConf -1,-1

3.2.2.10 -SelectEmuBySN

Connect to a J-Link with a specific serial number via USB. Useful if multiple J-Links
are connected to the same PC and multiple instances of J-Link Commander shall run
and each connects to another J-Link.

Syntax

-SelectEmuBySN <SerialNo>

Example

JLink.exe -SelectEmuBySN 580011111
3.2.2.11 -RTTTelnetPort

This command alters the RTT telnet port. Default is 19021.
Syntax

-RTTTelnetPort <Port>
Example
JLink.exe -RTTTelnetPort 9100

3.2.2.12 -SettingsFile

Select a J-Link settings file to be used for the target device. The settings file can con-
tain all configurable options of the Settings tab in J-Link Control panel.

Syntax

-SettingsFile <PathToFile>

Example

JLink.exe -SettingsFile "C:\Work\settings.txt"

3.2.2.13 -Speed

Starts J-Link Commander with a given initial speed. Available parameters are "adap-
tive", "auto" or a freely selectable integer value in kHz. It is recommended to use
either a fixed speed or, if it is available on the target, adaptive speeds. Default inter-
face speed is 100kHz.

Syntax
-Speed <Speed_kHz>
Example

JLink.exe -Speed 4000

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



91

3.2.3 Using command files

J-Link commander can also be used in batch mode which allows the user to use J-
Link commander for batch processing and without user interaction. Please do not
confuse command file with J-Link script files (please refer to J-Link script files on
page 206 for more information about J-Link script files). When using J-Link com-
mander in batch mode, the path to a command file is passed to it. The syntax in the
command file is the same as when using regular commands in J-Link commander
(one line per command). SEGGER recommends to always pass the device name via
command line option due some devices need special handling on connect/reset in
order to guarantee proper function.

Example

JLink.exe -device STM32F103ZE -CommanderScript C:\CommandFile.jlink
Contents of CommandeFile.jlink:

si 1

speed 4000

r

h
loadbin C:\firmware.bin, 0x08000000

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



92 CHAPTER 3 J-Link software and documentation package

3.3 J-Link GDB Server

The GNU Project Debugger (GDB) is a freely available and open source debugger. It
can be used in command line mode, but is also integrated in many IDEs like emIDE
or Eclipse.

J-Link GDB Server is a remote server for GDB making it possible for GDB to connect
to and communicate with the target device via J-Link. GDB Server and GDB commu-
nicate via a TCP/IP connection, using the standard GDB remote protocol. GDB Server
receives the GDB commands, does the J-Link communication and replies with the
answer to GDB.

With J-Link GDB Server debugging in ROM and Flash of the target device is possible
and the Unlimited Flash Breakpoints can be used.

It also comes with some functionality not directly implemented in the GDB. These can
be accessed via monitor commands, sent directly via GDB, too.

r- o

EJ] SEGGER J-Link GDB Server V4.74 o B |3
Eile Help
[v Localhogt anly
GDE |I:-:|nne-:ted ko 127.0.0.1 Iritial S*D speed [4000kHz | [~ Stayontop
] [v Show [og window
J-Link, |Ennnected Current 5'WwD speed |4000 kHz ™ Generate logfile
- - - [ Cache reads
EPU|STM32F41NG,EHemﬁmg 330 Little endian ™ ‘erity download
[w |nit regs an start
Log output; Llear log

J=Link is connected. -
Firmware: J-Linlk Pro V4 compiled Jul 16 2013 21:45:59
Hardware: V4.00

SoH: 174200001

Feature(=): RDI, FlashBF, Fla=shDL, JFla=sh., GDE
Checlking target wvoltage. . .

Li=tening on TCP-IP port 2331

Connecting to target.. . Connected to target

Waiting for GDE conhection. . Connected to 127 .0.0.1
Reading all registers

Fead 4 bytes @ addre=s= 0x00000000 (Data = 020001850}
Starting target CFU. ..

m

L .

0 Bytes downloaded 1 JTAG device

The GNU Project Debugger (GDB) is a freely available debugger, distributed under
the terms of the GPL. The latest Unix version of the GDB is freely available from the
GNU committee under: http://www.gnu.org/software/gdb/download/

J-Link GDB Server is distributed free of charge.

3.3.1 J-Link GDB Server CL (Windows, Linux, Mac)

J-Link GDB Server CL is a commandline-only version of the GDB Server.
The command line version is part of the Software and Documentation Package and
also included in the Linux and MAC versions.

Except for the missing GUI, J-Link GDB Server CL is identical to the normal version.
All sub-chapters apply to the command line version, too.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



93

3.3.2 Debugging with J-Link GDB Server

With J-Link GDB Server programs can be debugged via GDB directly on the target
device like a normal application. The application can be loaded into RAM or flash of
the device.

Before starting GDB Server make sure a J-Link and the target device are connected.

3.3.2.1 Setting up GDB Server GUI version

The GUI version of GDB Server is part of the Windows J-Link Software Package
(JLinkGDBServer.exe).

When starting GDB Server a configuration dialog pops up letting you select the
needed configurations to connect to J-Link and the target.

-

SEGGER J-Link GDB Server V4.74 - Config ==

Connectian taJ-Link,

{o 1J5 B [~ Serial Mo

~ TCRPAP

Target device

STM3ZF4171G L]

Litlle endian

Target interface

|5 ~|

Speed

" Auto zelection

~
(v 4000 « | kHz

Command ling option

|-seleu:t USE -device STMIZFA7IG -if SWD -zpeed 4000

] | Cancel

All configurations can optionally be given in the command line options.

Note: To make sure the connection to the target device can be established cor-
retly, the device, as well as the interface and interface speed have to be given on
start of GDB Server, either via command line options or the configuration dialog.

If the target device option (-device) is given, the configuration dialog will not pop
up.

3.3.2.2 Setting up GDB Server CL version

The command line version of GDB Server is part of the J-Link Software Package for
all supported platforms.

On Windows its name is JLinkGDBServerCL.exe, on Linux and Mac it is JLinkGDB-
Server.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



94 CHAPTER 3 J-Link software and documentation package

Starting GDB Server on Windows

To start GDB Server CL on Windows, open the ‘Run’ prompt (Windows-R) or a com-
mand terminal (cmd) and enter <PathTolLinkSoftware>\JLinkGDBServerCL.exe
<CommandLineOptions>.

Starting GDB Server on Linux / Mac

To start GDB Server CL on Linux / Mac, open a terminal and call JLinkGDBServer
<CommandLineOptions>

Command Line Options

When using GDB Server CL, at least the mandatory command line options have to be
given. Additional command line options can be given to change the default behavior
of GDB Server.

For more information about the available command line options, please refer to Com-
mand line options on page 115.

3.3.2.3 GDB Server user interface

The J-Link GDB Server’s user interface shows information about the debugging pro-
cess and the target and allows to configure some settings during execution.

EJ] SEGGER J-Link GDB Server V4.74 === <=
File Help
v Localhost anly
GDE |'W'aiting for connection I Initial 5D speed | 4000 kHz = | [~ Stapontop

. [~ Show log window
J-Link, |D:nnectec| Current S%D zpeed (4000 kHz [~ Generate logfils

[ Cache reads
[ “erify download
[v Init regs on start

CPU [STM32F417IG | 330V Little endian -

0 Bytes downloaded 1 JTAG device

It shows following information:

The IP address of host running debugger.

Connection status of J-Link.

Information about the target core.

Measured target voltage.

Bytes that have been downloaded.

Status of target.

Log output of the GDB Server (optional, if Sshow log window is checked).
Initial and current target interface speed.

Target endianess.

These configurations can be made from inside GDB Server:

Localhost only: If checked only connections from 127.0.0.1 are accepted.

Stay on top

Show log window.

Generate logfile: If checked, a log file with the GDB <-> GDB Server <-> J-Link

communication will be created.

e Verify download: If checked, the memory on the target will be verified after
download.

e Init regs on start: If checked, the register values of the target will be set to a

reasonable value before on start of GDB Server.

3.3.2.4 Running GDB from different programs

We assume that you already have a solid knowledge of the software
tools used for building your application (assembler, linker, C compiler) and
especially the debugger and the debugger frontend of your choice. We
do not answer questions about how to install and use the chosen toolchain.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



95

GDB is included in many IDEs and most commonly used in connection with the GCC
compiler toolchain. This chapter shows how to configure some programs to use GDB
and connect to GDB Server. For more information about any program using GDB,
please refer to its user manual.

emIDE

emIDE is a full-featured, free and open source IDE for embedded development
including support for debugging with J-Link.

To connect to GDB Server with emIDE, the GDB Server configurations need to be set
in the project options at Project -> Properties... -> Debugger.

Select the target device you are using, the target connection, endianess and speed
and enter the additional GDB start commands.

The typically required GDB commands are:

#Initially reset the target
monitor reset

#Load the application

load

Other commands to set up the target (e.g. Set PC to RAM, initialize external flashes)
can be entered here, too.

emIDE will automatically start GDB Server on start of the debug session. If it does
not, or an older version of GDB Server starts, in emIDE click on JLink -> Run the
JLink-plugin configuration.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



96

CHAPTER 3 J-Link software and documentation package

The screenshot below shows a debug session in IDE. For download and more infor-
mation about emIDE, please refer to http://emide.org.

File Edit I ject Build Debug Jlink Plugins Settings Help
. . z s
SR Y IR L I L e \ iPM eIl Bie| EE
: [ <global> ~ | main{void) : int -]
Management x J _ X} Disassembly x
\ .
I= Tomint Function:
o e 10 #include "BSP.h" || Frame start: 00200500
() Workspace 11 0:00100228 push Str
I Blinky_AT915AM7564 12 A — 0x0010022C sub
= D - Y ein 000100230 mov
ot _Delay 0100100234 atr 3, [=p, #4]
B setup 14 */ 0x00100238 bl 0x1000£8 <BSP Init>
2.8 Src 15 static void _Delay(veid) f 0x0010023C mov v0, #0
1 Bspac 16 volatile int i: i 000100240 bl 0x10014c <BSP_SetLED>
a7 000100244 mov x0, #1
[ 8sPh ® o 0x00100248 bl 0x10015c <BSP_ToggleLED
_1 Main.c aa 1 N *009' 0x0010024C ldr 3, [=p, #4]
I || startup.s 18 while (i--); 0100100250 add 3, ra, £
20 B 000100254 atr ¥3, [=0, #4]
21 000100258 bl 0xl00lec < Delay>
22 SERERRRE R AR R AR R AR R AR AR AR AR AR R R R A AR fx0010025C B 02100244 <maintze>
23 * main
2¢ */ =
CPU Registers x 25 int mainivoid) {
RB.. Hex Flags Decimal 28 volatile int cnt;
- a0 A 27 ent = o .
" oo N 28 BSP_Init(); /% In
29 BSP_SetLED(0);
_ 30 T s
31 BSP ToggleLED(1);
e 0x0 o 2® cnties L4
= one N 33 _Delay(): ¢ (il C
I =& 0x0 a }
<
=7 0x0 o : [ Mixed Mode Save to text fle
8 0x0 0
9 ox0 1] by Memory x
| -
=10 0x0 ° Type  Filename/Address Unitsize: | & bit »| GotoAddress:  0x000000
11 0x0 0
1z ox0 B @ Code C:\Tool\C\emIDE V2.1 Example\Vend
1z £ 0x00000000: 04 £0 1f &5 &c 00 10 00 &0 00 5% &5 0F &0 a0 el  .4. »
sp 0x2004£0 2088416 ® Code C\ToolClemIDE V2 1\arm\Bemple\Vend || oonq0n0010- 10 ££ 2£ el S8 10 97 =5 58 20 9 =5 58 30 37 a5 ¥
I @ Code C:\TooNCiemlIDE V21\arm\Example\Vend | 0x00000020: 0% 00 S2 el 04 00 91 34 04 00 82 34 fb ££ £f 3a I
0x00000030: 48 10 3% &5 43 20 9 =5 00 30 =0 =3 02 00 51 el  H.4
0x00000040: 04 30 81 14 £c ££ ££ 1s 00 00 Of el o0 00 <0 e3  .0./E
|| cp== oxs0000013 SUC mode AR 1610612755 0x00000050- 00 £0 23 el 00 00 a0 e3 00 10 =0 e3 24 20 9% e5  .3)
0x00000060: OF e0 a0 el 1% £f 2f el fe £f £f ea le ££ 2f el .2
|| Locals x 0x00000070:  de 00 10 00 §0 0Z 10 00 00 00 20 00 00 00 20 00  O..
| 0x00000080= 00 00 20 00 00 00 20 00 28 02 10 00 db £0 21 e3 ..
Varizble Value 0x00000090: Zc d0 9f e5 d7 £0 21 e3 28 d0 5 e5 dl £0 21 e3 B
ent 000000000 0x00000020: 24 d0 95 5 dZ £0 21 =3 20 40 S£ =5 d3 £0 21 e3  $Di
0x000000b0:  lc &0 3% &5 lc 00 92 e5 OF =0 a0 el 10 ££ 2£ el  .D{
0x00000020: fe ££ ££ e= 00 01 20 00 00 01 20 00 00 00 20 00  py§
0x000000d0- 00 01 20 00 00 05 20 00 08 00 10 00 10 30 S£ e5 ..
0x000000e0: 02 23 a0 &3 00 20 83 =5 01 30 =0 =3 03 00 a0 el  .)
0x00000020: le ££ 2% el 44 =4 ££ ££ 3c 30 5% &5 38 20 9 &5 @+
e o ] 3
Watches (new) % emweres =
it 0 volatile int
| = | flemDE x| €yBuidlog x ¥ Buldmessages | i Searchresuts x| &) Debugger x
At C:/Tool/C/EMIDEV~1.1/arm/Exarple/Vendor/ATMEL ~1/Szc\Main.c:28 .
2t C:/Tool/C/EMIDEV~1.1/arm/Exarple/Vendor/ATMEL ~1/5rc\Main c:29
| E— -E®

WINDOWS-1252 Line 28, Column 7 Insert Read/Write default

- =

Console
GDB can be used stand-alone as a console application.

To connect GDB to GDB Server enter target remote localhost:2331 into the run-
ning GDB. Within GDB all GDB commands and the remote monitor commands are
available. For more information about debugging with GDB refer to its online manual
available at http://sourceware.org/gdb/current/onlinedocs/gdb/.

A typical startup of a debugging session can be like:

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



97

(gdb) file C:/temp/Blinky.elf

Reading symbols from C:/temp/Blinky.elf...done.
(gdb) target remote localhost:2331

Remote debugging using localhost:2331

0x00000000 in 2? ()

(gdb) monitor reset

Resetting target

(gdb) load

Loading section .isr_ vector, size 0x188 1lma 0x8000000
Loading section .text, size 0x568 lma 0x8000188
Loading section .init_array, size 0x8 lma 0x80006f0
Loading section .fini_array, size 0x4 lma 0x80006f8
Loading section .data, size 0x428 1lma 0x80006fc
Start address 0x8000485, load size 2852

Transfer rate: 146 KB/sec, 570 bytes/write.

(gdb) break main

Breakpoint 1 at 0x800037a: file Src\main.c, line 38.
(gdb) continue

Continuing.

Breakpoint 1, main () at Src\main.c:38
38 Cnt = 0;

(gdb)

Eclipse (CDT)

Eclipse is an open source platform-independent software framework, which has typi-
cally been used to develop integrated development environment (IDE). Therefore
Eclipse can be used as C/C++ IDE, if you extend it with the CDT plug-in (http://
www.eclipse.org/cdt/).

CDT means "C/C++ Development Tooling" project and is designed to use the GDB as
default debugger and works without any problems with the GDB Server.

Refer to http://www.eclipse.org for detailed information about Eclipse.

Note: We only support problems directly related to the GDB Server. Problems
and questions related to your remaining toolchain have to be solved on your own.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



98

CHAPTER 3 J-Link software and documentation package

3.3.3 Supported remote (monitor) commands

J-Link GDB Server comes with some functionalities which are not part of the standard
GDB. These functions can be called either via a gdbinit file passed to GDB Server or
via monitor commands passed directly to GDB, forwarding them to GDB Server.

To indicate to GDB to forward the command to GDB Server 'monitor'

has to be

prepended to the call. For example a reset can be triggered in the gdbinit file with
"reset" or via GDB with "monitor reset".

Following remote commands are available:

Remote command

Explanation

clrbp Removes an instruction breakpoint.
cpls Reads or writes from/to cp15 register.
device Select the specified target device.
. Do not check if an abort occurred after memory read
DisableChecks (ARM7/9 only).
EnableChecks Check if an abort occurred after memory read (ARM7/9

only).

flash breakpoints

Enables/Disables flash breakpoints.

getargs Get the arguments for the application.

go Starts the target CPU.

halt Halts the target CPU.

jtagconf Configures a JTAG scan chain with multiple devices on it.
memU8 Reads or writes a byte from/to given address.

memU16 Reads or writes a halfword from/to given address.
memU32 Reads or writes a word from/to given address.

reg Reads or writes from/to given register.

regs Reads and displays all CPU registers.

reset Resets and halts the target CPU.

semihosting breakOn-
Error

Enable or disable halting the target on semihosting error.

semihosting enable

Enables semihosting.

semihosting IOClient

Set semihosting I/O to be handled via Telnet port or GDB.

semihosting ARMSWI

Sets the SWI number used for semihosting in ARM mode.

semihosting ThumbSWI

Sets the SWI number used for semihosting in thumb
mode.

setargs Set the arguments for the application.

setbp Sets an instruction breakpoint at a given address.
sleep Sleeps for a given time period.

speed Sets the JTAG speed of J-Link / J-Trace.

step Performs one or more single instruction steps.

SWO DisableTarget

Undo target configuration for SWO and disable it in J-Link.

SWO EnableTarget

Configure target for SWO and enable it in J-Link.

SWO GetMaxSpeed

Prints the maximum supported SWO speed for J-Link and
Target CPU.

SWO GetSpeedInfo

Prints the available SWO speed and its minimum divider.

waithalt

Waits for target to halt code execution.

wice

Writes to given IceBreaker register.

Table 3.3: GDB remote commands

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




99

Following remote commands are deprecated and only available for backward compa-

bility:
Remote command Explanation
Select the specified target device.
device Note: Use command line option -device
instead.
Select the target interface.
interface . . .
Note: Use command line option -if instead.
Sets the JTAG speed of J-Link / J-Trace.
speed Note: For the initial connection speed, use com-
mand line option -speed instead.

Table 3.4: GDB remote commands

Note: The remote commands are case-insensitive.
Note: Optional parameters are set into square brackets.
Note: The examples are described as follows:

Lines starting with '# are comments and not used in GDB / GDB Server.
Lines starting with '>' are input commands from the GDB.
Lines starting with <’ is the output from GDB Server as printed in GDB.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



100 CHAPTER 3 J-Link software and documentation package

3.3.3.1 cirbp

Syntax
ClrBP [<BPHandle>]

or
cl [<BPHandle>]

Description

Removes an instruction breakpoint, where <BpHandle> is the handle of breakpoint to
be removed. If no handle is specified this command removes all pending breakpoints.

Example

> monitor clrbp 1

or

> monitor ci 1

3.3.3.2 cpl15
Syntax

cpl5 <CRn>, <CRm>, <opl>, <op2> [= <data>]
Description

Reads or writes from/to cp15 register. If <data> is specified, this command writes the
data to the cp15 register. Otherwise this command reads from the cp15 register. For
further information please refer to the ARM reference manual.

Example

#Read:
> monitor cpl5 1, 2, 6, 7
< Reading CP1l5 register (1,2,6,7 = 0x0460B77D)

#Write:
> monitor cpl5 1, 2, 6, 7 = OxXFFFFFFFF

3.3.3.3 device
Note: Deprecated. Use command line option -device instead.
Syntax
device <DeviceName>
Description

Selects the specified target device. This is necessary for the connection and some
special handling of the device.

Note: The device should be selected via commandline option -device when
starting GDB Server.

Example

> monitor device STM32F417IG
< Selecting device: STM32F4171IG

3.3.3.4 DisableChecks
Syntax

DisableChecks

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



101

Description

Disables checking if a memory read caused an abort (ARM7/9 devices only). On some
CPUs during the init sequence for enabling access to the internal memory (for exam-
ple on the TMS470) some dummy reads of memory are required which will cause an
abort as long as the access-init is not completed.

3.3.3.5 EnableChecks
Syntax

EnableChecks
Description

Enables checking if a memory read caused an abort (ARM7/9 devices only). On some
CPUs during the init sequence for enabling access to the internal memory (for exam-
ple on the TMS470) some dummy reads of memory are required which will cause an
abort as long as the access-init is not completed. The default state is: Checks
enabled.

3.3.3.6 flash breakpoints
Syntax

monitor flash breakpoints = <Value>

Description

This command enables/disables the Flash Breakpoints feature.

By default Flash Breapkoints are enabled and can be used for evaluation.

Example

#Disable Flash Breakpoints:
> monitor flash breakpoints = 0
< Flash breakpoints disabled

#Enable Flash Breakpoins:
> monitor flash breakpoints = 1
< Flash breakpoints enabled

3.3.3.7 getargs
Syntax
getargs
Description

Get the currently set argument list which will be given to the application when calling
semihosting command SYS_GET_CMDLINE (0x15). The argument list is given as one
string.

Example

#No arguments set via setargs:
> monitor getargs

< No arguments.

#Arguments set via setargs:

> monitor getargs

< Arguments: test 0 1 2 arg0=4

3.3.3.8 go
Syntax
go

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



102 CHAPTER 3 J-Link software and documentation package

Description
Starts the target CPU.
Example

> monitor go

3.3.3.9 halt
Syntax

halt
Description

Halts the target CPU.
Example

> monitor halt

3.3.3.10 interface

Note: Deprecated. Use command line option -if instead.
Syntax

interface <InterfaceIdentifier>

Description

Selects the target interface used by J-Link / J-Trace.

3.3.3.11 jtagconf
Syntax

jtagconf <IRPre> <DRPre>
Description

Configures a JTAG scan chain with multiple devices on it. <IRPre> is the sum of
IRLens of all devices closer to TDI, where IRLen is the number of bits in the IR
(Instruction Register) of one device. <DRPre> is the number of devices closer to TDI.
For more detailed information of how to configure a scan chain with multiple devices
please refer to See “"Determining values for scan chain configuration” on page 183..

Note: To make sure the connection to the device can be established correctly, it
is recommended to configure the JTAG scan chain via command line options at the
start of GDB Server.

Example

#Select the second device, where there is 1 device in front with IRLen 4
> monitor jtagconf 4 1

3.3.3.12 memU8
Syntax

MemU8 <address> [= <value>]
Description

Reads or writes a byte from/to a given address. If <value> is specified, this com-
mand writes the value to the given address. Otherwise this command reads from the
given address.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



103

Example

#Read:

> monitor memU8 0x50000000

< Reading from address 0x50000000 (Data = 0x04)
#Write:

> monitor memU8 0x50000000 = OxXFF
< Writing OxXFF @ address 0x50000000

3.3.3.13 memU16
Syntax

memUl6 <address> [= <value>]
Description

Reads or writes a halfword from/to a given address. If <value> is specified, this com-
mand writes the value to the given address. Otherwise this command reads from the
given address.

Example

#Read:

> monitor memUl6 0x50000000

< Reading from address 0x50000000 (Data = 0x3004)
#Write:

> monitor memUl6 0x50000000 = OxFFOO
< Writing O0xXFF00 @ address 0x50000000

3.3.3.14 memU32
Syntax

MemU32 <address> [= <value>]
Description

Reads or writes a word from/to a given address. If <value> is specified, this com-
mand writes the value to the given address. Otherwise this command reads from the
given address. This command is similar to the long command.

Example

#Read:
> monitor memU32 0x50000000
< Reading from address 0x50000000 (Data = 0x10023004)

#Write:

> monitor memU32 0x50000000 = 0x10023004
< Writing 0x10023004 @ address 0x50000000

3.3.3.15 reg

Syntax

reg <RegName> [= <value>]

or

reg <RegName> [= (<address>) ]

Description

Reads or writes from/to given register. If <value> is specified, this command writes
the value into the given register. If <address> is specified, this command writes the
memory content at address <address> to register <RegName>. Otherwise this com-
mand reads the given register.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



104 CHAPTER 3

Example

#Write value to register:

> monitor reg pc = 0x00100230

< Writing register (PC = 0x00100230)
#Write value from address to register:
> monitor reg r0 = (0x00000040)

< Writing register (RO = 0x14813004)
#Read register value:

> monitor reg PC
< Reading register (PC = 0x00100230)

3.3.3.16 regs
Syntax
regs
Description
Reads all CPU registers.
Example

> monitor regs

J-Link software and documentation package

< PC = 00100230, CPSR = 20000013 (SVC mode, ARM)
RO = 14813004, R1 = 00000001, R2 = 00000001, R3 = 000003B5
R4 = 00000000, R5 = 00000000, R6 = 00000000, R7 = 00000000

USR: R8 =00000000, R9 =00000000, R10=00000000, R11 =00000000, R12 =00000000

R13=00000000, R14=00000000

FIQ: R8 =00000000, R9 =00000000, R10=00000000, R11 =00000000, R12 =00000000
R13=00200000, R14=00000000, SPSR=00000010

SvC: R13=002004E8, R14=0010025C, SPSR=00000010

ABT: R13=00200100, R14=00000000, SPSR=00000010

IRQ: R13=00200100, R14=00000000, SPSR=00000010

UND: R13=00200100, R14=00000000, SPSR=00000010

3.3.3.17 reset
Syntax

reset

Description

Resets and halts the target CPU. Make sure the device is selected prior to using this
command to make use of the correct reset strategy.

Add. information

There are different reset strategies for different CPUs. Moreover, the reset strategies
which are available differ from CPU core to CPU core. J-Link can perform various
reset strategies and always selects the best fitting strategy for the selected device.

Example

> monitor reset
< Resetting target

3.3.3.18 semihosting breakOnError
Syntax

semihosting breakOnerror <Value>

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



105

Description

Enables or disables halting the target at the semihosting breakpoint / in SVC handler
if an error occurred during a semihosting command, for example a bad file handle for
SYS_WRITE. The GDB Server log window always shows a warning in these cases.
breakOnError is disabled by default.

Example

#Enable breakOnError:
> monitor semihosting breakOnError 1

3.3.3.19 semihosting enable
Syntax

semihosting enable [<VectorAddr>]
Description

Enables semihosting with the specified vector address. If no vector address is speci-
fied, the SWI vector (at address 0x8) will be used. GDBServer will output semihost-
ing terminal data from the target via a separate connection on port 2333. Some IDEs
already establish a connection automatically on this port and show terminal data in a
specific window in the IDE.

For IDEs which do not support semihosting terminal output directly, the easiest way
to view semihosting output is to open a telnet connection to the GDBServer on port
2333. The connection on this port can be opened all the time as soon as GDBServer
is started, even before this remote command is executed.

Example

> monitor semihosting enable
< Semihosting enabled (VectorAddr = 0x08)

3.3.3.20 semihosting IOClient
Syntax
semihosting IOClient <ClientMask>
Description

GDB itself can handle (file) I/O operations, too. With this command it is selected
wheter to print output via TELNET port (2333), GDB, or both.
<ClientMask> is

e 1 for TELNET Client (Standard port 2333) (Default)
e 2 for GDB Client
e or 3 for both (Input via GDB Client)

Example

#Select TELNET port as output source

> monitor semihosting ioclient 1

< Semihosting I/O set to TELNET Client
#Select GDB as output source

> monitor semihosting ioclient 2

< Semihosting I/O set to GDB Client

#Select TELNET port and GDB as output source

> monitor semihosting ioclient 3
< Semihosting I/O set to TELNET and GDB Client

3.3.3.21 semihosting ARMSWI
Syntax

semihosting ARMSWI <Value>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



106 CHAPTER 3 J-Link software and documentation package

Description

Sets the SWI number used for semihosting in ARM mode. The default value for the
ARMSWTI is 0x123456.

Example

> monitor semihosting ARMSWI 0x123456
< Semihosting ARM SWI number set to 0x123456

3.3.3.22 semihosting ThumbSWI
Syntax

semihosting ThumbSWI <Value>
Description

Sets the SWI number used for semihosting in thumb mode. The default value for the
ThumbSWI is 0xAB

Example

> monitor semihosting ThumbSWI O0xAB
< Semihosting Thumb SWI number set to OxAB

3.3.3.23 setargs
Syntax
setargs <ArgumentString>
Description

Set arguments for the application, where all arguments are in one <Argument-
String> separated by whitespaces.

The argument string can be gotten by the application via semihosting command
SYS_GET_CMDLINE (0x15).

Semihosting has to be enabled for getting the argumentstring (semihosting
enable). "monitor setargs" can be used before enabeling semihosting.

The maximum length for <ArgumentString> is 512 characters.

Example

> monitor setargs test 0 1 2 arg0=4
< Arguments: test 0 1 2 arg0=4

3.3.3.24 setbp
Syntax

setbp <Addr> [<Mask>]
Description

Sets an instruction breakpoint at the given address, where <mMask> can be 0x03 for
ARM instruction breakpoints (Instruction width 4 Byte, mask out lower 2 bits) or
0x01 for THUMB instruction breakpoints (Instruction width 2 Byte, mask out lower
bit). If no mask is given, an ARM instruction breakpoint will be set.

Example

#Set a breakpoint (implicit for ARM instructions)
> monitor setbp 0x00000000

#Set a breakpoint on a THUMB instruction
> monitor setbp 0x00000100 0x01

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



107

3.3.3.25 sleep
Syntax
sleep <Delay>
Description

Sleeps for a given time, where <belay> is the time period in milliseconds to delay.
While sleeping any communication is blocked until the command returns after the
given period.

Example

> monitor sleep 1000
< Sleep 1000ms

3.3.3.26 speed

Note: Deprecated. For setting the initial connection speed, use command line
option -speed instead.

Syntax
speed <kHz>|auto|adaptive
Description

Sets the JTAG speed of J-Link / J-Trace. Speed can be either fixed (in kHz), automatic
recognition or adaptive. In general, Adaptive is recommended if the target has an
RTCK signal which is connected to the corresponding RTCK pin of the device (S-cores
only). For detailed information about the different modes, refer to JTAG Speed on
page 184.

The speed has to be set after selecting the interface, to change it from its default
value.

Example

> monitor speed auto
< Select auto target interface speed (8000 kHz)

> monitor speed 4000
< Target interface speed set to 4000 kHz

> monitor speed adaptive
< Select adaptive clocking instead of fixed JTAG speed

3.3.3.27 step
Syntax

step [<NumSteps>]
or

si [<NumSteps>]
Description

Performs one or more single instruction steps, where <NumSteps> is the number of
instruction steps to perform. If <NumSteps> is not specified only one instruction step
will be performed.

Example

> monitor step 3

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



108 CHAPTER 3 J-Link software and documentation package

3.3.3.28 SWO DisableTarget
Syntax

SWO DisableTarget <PortMask[0x01-0xFFFFFFFF]>
Description

Disables the output of SWO data on the target (Undoes changes from SWO Enable-
Target) and stops J-Link to capture it.

Example

#Disable captureing SWO from stimulus ports 0 and 1
> monitor SWO DisableTarget 3
< SWO disabled succesfully.

3.3.3.29 SWO EnableTarget
Syntax

SWO EnableTarget <CPUFreqg[Hz]> <SWOFreq[Hz]> <PortMask|[0x01-0XFFFFFFFF]
<Mode[0]>

Description

Configures the target to be able to output SWO data and starts J-Link to capture it.
CPU and SWO frequency can be 0 for auto-detection.

If CPUFreq is 0, J-Link will measure the current CPU speed.

If SWOFreq is 0, J-Link will use the highest available SWO speed for the selected /
measured CPU speed.

Note: CPUFreq has to be the speed at which the target will be running when
doing SWO.

If the speed is different from the current speed when issuing CPU speed auto-detec-
tion, getting SWO data might fail.

SWOFreq has to be a quotient of the CPU and SWO speeds and their prescalers. To
get available speed, use SWO GetSpeedInfo.

PortMask can be a decimal or hexadecimal Value. Values starting with the Prefix "0Ox"
are handled hexadecimal.

Example

#Configure SWO for stimulus port 0, measure CPU frequency and calculate SWO frequency
> monitor SWO EnableTarget 0 0 1 0

< SWO enabled succesfully.

#Configure SWO for stimulus ports 0-2, fixed SWO frequency and measure CPU frequency
> monitor SWO EnableTarget 0 1200000 5 0

< SWO enabled succesfully.

#Configure SWO for stimulus ports 0-255, fixed CPU and SWO frequency

> monitor SWO EnableTarget 72000000 6000000 OxXFF O
< SWO enabled succesfully.

3.3.3.30 SWO GetMaxSpeed
Syntax
SWO GetMaxSpeed <CPUFrequency [Hz]>
Description

Prints the maximum SWO speed supported by and matching both, J-Link and the
target CPU frequency.

Example

#Get SWO speed for 72MHz CPU speed
> monitor SWO GetMaxSpeed 72000000
< Maximum supported SWO speed is 6000000 Hz.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



109

3.3.3.31 SWO GetSpeedinfo
Syntax
SWO GetSpeedInfo
Description

Prints the base frequency and the minimum divider of the connected J-Link. With this
information, the available SWO speeds for J-Link can be calculated and the matching
one for the target CPU frequency can be selected.

Example

> monitor SWO GetSpeedInfo
< Base frequency: 60000000Hz, MinDiv: 8
# Available SWO speeds for J-Link are: 7.5MHz, 6.66MHz, 6MHz,

3.3.3.32 waithalt
Syntax

waithalt <Timeout>
or

wh <Timeout>
Description

Waits for target to halt code execution, where <Timeout> is the maximum time
period in milliseconds to wait.

Example

#Wait for halt with a timeout of 2 seconds
> monitor waithalt 2000

3.3.3.33 wice
Syntax

wice <RegIndex> <value>

or

rmib <RegIndex> <value>

Description

Writes to given IceBreaker register, where <value> is the data to write.

Example

> monitor wice 0x0C 0x100

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



110 CHAPTER 3 J-Link software and documentation package

3.3.4 SEGGER-specific GDB protocol extensions

J-Link GDB Server implements some functionality which are not part of the standard
GDB remote protocol in general query packets. These SEGGER-specific general query
packets can be sent to GDB Server on the low-level of GDB, via maintanace com-
mands, or with a custom client connected to GDB Server.

General query packets start with a 'q’. SEGGER-specific general queries are followed
by the identifier ‘'Segger’ plus the command group, the actual command and its
parameters.

Following SEGGER-specific general query packets are available:

Query Packet Explanation
gSeggerSTRACE:config Configure STRACE for usage.
gSeggerSTRACE:start Start STRACE.
gSeggerSTRACE: stop Stop STRACE.
gSeggerSTRACE: read Read STRACE data.
gSeggerSWO:start Starts collecting SWO data.
gSeggerSWO: stop Stops collecting SWO data.
gSeggerSWO: read Reads data from SWO buffer.
gSeggerSWO: GetNumBytes Returns the SWO buffer status.
gSeggerSWO:GetSpeedInfo Returns info about supported speeds.

Table 3.5: General Queries

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



111

3.3.4.1 qSeggerSTRACE:config

Syntax
gSeggerSTRACE:config:<ConfigString>

Parameter
ConfigString: String containing the configuration data separating settings by ’;".
Description

Configures STRACE for usage. Configuration for example includes specification of the
trace port width to be used for tracing (1-bit, 2-bit, 4-bit (default) Port-
Width=%Var%.

Note: For more information please refer to UM08002 (J-Link SDK user guide),
chapter STRACE.

Response

<ReturnValue>

ReturnValue is a 4 Byte signed integer.

>=0 O.K.
<0 Error.
Note: ReturnValue is hex-encoded.

Return value 0 is "00000000", return value -1 is "FFFFFFFF".

3.3.4.2 qSeggerSTRACE:start

Syntax
gSeggerSTRACE: start

Description
Starts capturing of STRACE data.

Note: For more information please refer to UM08002 (J-Link SDK user guide),
chapter STRACE.

Response

<ReturnValue>

ReturnValue is a 4 Byte signed integer.

>=0 O.K.
<0 Error.
Note: ReturnValue is hex-encoded.

Return value 0 is "00000000", return value -1 is "FFFFFFFF".

3.3.4.3 gSeggerSTRACE:stop

Syntax
gSeggerSTRACE: stop

Description
Stops capturing of STRACE data.

Note: For more information please refer to UM08002 (J-Link SDK user guide),
chapter STRACE.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



112 CHAPTER 3 J-Link software and documentation package

Response

<ReturnValue>

ReturnValue is a 4 Byte signhed integer.

>=0 O.K.
<0 Error.
Note: ReturnValue is hex-encoded.

Return value 0 is "00000000", return value -1 is "FFFFFFFF".

3.3.4.4 gSeggerSTRACE:read

Syntax
gSeggerSTRACE: read: <NumItems>

Parameter
NumlItems: Maximum number of trace data (addresses) to be read. Hexadecimal.
Description

Read the last recently called instruction addresses. The addresses are returned LIFO,
meaning the last recent address is returned first.

Note: For more information please refer to UM08002 (J-Link SDK user guide),
chapter STRACE.

Response

<ReturnvValue>[<ItemO><Iteml>...]
ReturnValue is a 4 Byte signhed integer.

>= 0 Number of items read.
<0 Error.

ItemN is a 4 Byte unsigned integer.
0x00000000 - OXFFFFFFFF Address of the executed instruction

Note: ReturnValue and ItemN are hex-encoded.
e.g. 3 Items read: 0x08000010, 0x08000014, 0x08000018
Response will be: 00000003080000100800001408000018

3.3.4.5 qSeggerSWO:start

Syntax
gSeggerSWO:start:<Enc>:<Freg>

Parameter

Enc: Encoding type, only 0 ("UART encoding") is allowed. Hexadecimal.
Freq: The desired interface speed. Hexadecimal.

Description

Starts collecting SWO data with the desired interface speed. The target is not being
touched in any way, therefore you are responsible for doing the necessary target
setup afterwards.

Note: The desired interface speed has to be in a range of 3% more or less of one
of the supported speeds. For more information about calculating the supported
speeds, please refer to gSeggersSwo:GetSpeedInfo.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Response

<ReturnValue>
ReturnValue is "OK" or empty on error.

3.3.4.6 qSeggerSWO:stop

Syntax
gSeggerSWO: stop

Description

113

Stops collecting SWO data and returns the remaining bytes to be read from the

buffer.
Response

<ReturnValue>

ReturnValue is the hexadecimal number of bytes in the buffer or empty on error.

3.3.4.7 qSeggerSWO:read

Syntax
gSeggerSWO: read: <NumBytes>

Description

Reads the specified number of SWO data bytes from the buffer.
Parameter

NumBytes: Number of bytes to read (up to max. 64MB).
Response

<ReturnValue>

ReturnValue is a hex-encoded string or empty on error.

Note: The function will always return as much data bytes as requested. If more

bytes than available are requested, excessive data has undefined values.

3.3.4.8 qSeggerSWO:GetNumBytes
Syntax

gSeggerSWO : GetNumBytes

Description
Returns the amount of available bytes in the buffer.
Response

<ReturnvValue>

ReturnValue is the hexadecimal number of bytes in the buffer or empty on error.

3.3.4.9 qSeggerSWO:GetSpeedinfo

Syntax
agSeggerSTRACE : GetSpeedInfo:<Enc>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



114 CHAPTER 3 J-Link software and documentation package

Parameter
Enc: Encoding type, only 0 ("UART encoding") is allowed. Hexadecimal.
Description

Returns the base frequency and the minimum divider of the connected J-Link. With
this information, the available SWO speeds for J-Link can be calculated and the
matching one for the target CPU frequency can be selected.

Response

<BaseFreqg>, <MinDiv>

ReturnValue is empty on error.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



115

3.3.5 Command line options

There are several command line options available for the GDB Server which allow
configuration of the GDB Server before any connection to a J-Link is attempted or
any connection from a GDB client is accepted.

Note: Using GDB Server CL, device, interface, endian and speed are mandatory
options to correctly connect to the target, and should be given before connection via
GDB. Using GDB Server GUI the mandatory options can also be selected in the con-

figuration dialog.

Command line option Explanation
-device Select the connected target device.

-endian Select the device endianness.

-if Select the interface to connect to the target.
-speed Select the target communication speed.

Table 3.6: Mandatory command line options

Note:

Using multiple instances of GDB Server, setting custom values for port,

SWOPort and TelnetPort is necessary.

Command line option

Explanation

-port Select the port to listen for GDB clients.
-swoport Select the port to listen for clients for SWO RAW output.
-telnetport Select the port to listen for clients for printf output.

Table 3.7: Port selection command line options

The GDB Server GUI version uses persistent settings which are saved across different
instances and sessions of GDB Server. These settings can be toggled via the check-

boxes in the GUI.
Note:

GDB Server CL always starts with the settings marked as default.

For GUI and CL, the settings can be changed with following command line options.
For all persistent settings there is a pair of options to enable or disable the feature.

Command line option Explanation

-ir Initialize the CPU registers on start of GDB Server. (Default)
-noir Do not initialize CPU registers on start of GDB Server.
-localhostonly Allow only localhost connections (Windows default)
-nolocalhostonly Allow connections from outside localhost (Linux default)
-logtofile Generate a GDB Server log file.

-nologtofile Do not generate a GDB Server log file. (Default)

-halt Halt the target on start of GDB Server.

-nohalt Do not halt the target on start of GDB Server. (Default)
-silent Do not show log output.

-nosilent Show log output. (Default)

-stayontop Set the GDB Server GUI to be the topmost window.
-nostayontop Do not be the topmost window. (Default)

-timeout Set the time after which the target has to be connected.
-notimeout Set infinite timeout for target connection.

-vd Verify after downloading.

-novd Do not verify after downloading. (Default)

Table 3.8: Persistent command line options

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



116

CHAPTER 3 J-Link software and documentation package

Following additional command line options are available. These options are tempo-
rary for each start of GDB Server.

Command line option

Explanation

-excdbg Enable exception debugging.

-jtagconf Configures a JTAG scan chain with multiple devices on it.
-log Logs the GDB Server communication to a specific file.
-rtos Selects a RTOS plugin (DLL file)

-singlerun Starts GDB Server in single run mode.

-scriptfile Uses a J-Link scriptfile.

-select Selects the interface to connect to J-Link (USB/IP).

-settingsfile

Selects the J-Link Settings File.

-strict Starts GDB Server in strict mode.

-x Executes a gdb file on first connection.

-xcC Executes a gdb file on every connection.

-cpu Selects the CPU core. Deprecated, use -device instead.

Table 3.9: General command line options

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



117

3.3.5.1 -cpu
Description

Pre-select the CPU core of the connected device, so the GDB Server already knows
the register set, even before having established a connection to the CPU.

Note: Deprecated, please use -device instead. Anyhow, it does not hurt if this
option is set, too.

Syntax

-CPU <CPUCore>

Example

jlinkgdbserver -CPU ARM7_9

Add. information

The following table lists all valid values for <cpUCore>:

<CPUCore> Supported CPU cores
CPU_FAMILY_ ARM7_9 Pre-select ARM7 and ARM9 as CPU cores.
CPU_FAMILY_CORTEX_A_R | Pre-select Cortex-A and Cortex-R as CPU cores.
CPU_FAMILY_CORTEX_M Pre-select Cortex-M as CPU core.
CPU_FAMILY_RX600 Pre-select Renesas RX600 as CPU core.

Table 3.10: GDB allowed values for CPUCore

3.3.5.2 -device
Description

Tells GDBServer to which device J-Link is connected before the connect sequence is
actually performed. It is recommended to use the command line option to select the
device instead of using the remote command since for some devices J-Link already
needs to know the device at the time of connecting to it since some devices need
special connect sequences (e.g. devices with TI ICEPick modules). In such cases, it is
not possible to select the device via remote commands since they are configured
after the GDB client already connected to GDBServer and requested the target regis-
ters which already requires a connection to the target.

Note: Using GDB Server CL this option is mandatory to correctly connect to the
target, and should be given before connection via GDB.

Syntax

-device <DeviceName>

Example

jlinkgdbserver -device AT91SAM7SE256

Add. information

For a list of all valid values for <DeviceName>, please refer to http://www.seg-
ger.com/jlink_supported_devices.html.

3.3.5.3 -endian
Description

Sets the endianess of the target where endianess can either be "little" or "big".

Note: Using GDB Server CL this option is mandatory to correctly connect to the
target, and should be given before connection via GDB.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



118 CHAPTER 3 J-Link software and documentation package

Syntax
-endian <endianess>

Example

jlinkgdbserver -endian little

3.3.5.4 -if

Description

Selects the target interface which is used by J-Link to connect to the device. The
default value is JTAG.

Note: Using GDB Server CL this option is mandatory to correctly connect to the
target, and should be given before connection via GDB.

Syntax
-if <Interface>
Example

jlinkgdbserver -if SWD

Add. information

Currently, the following values are accepted for <Interface>:

JTAG
SWD
FINE
2-wire-JTAG-PIC32

3.3.5.5 -ir

Description

Initializes the CPU register with default values on startup.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via -noir or the GUI.

Example
jlinkgdbserver -ir

3.3.5.6 -excdbg
Syntax

-excdbg <nSteps>
Description

Enables exception debugging. Exceptions on ARM CPUs are handled by exception
handlers. Exception debugging makes the debugging of exceptions more user-
friendly by passing a signal to the GDB client and returning to the causative instruc-
tion.

In order to do this, a special exception handler is required as follows:

__attribute( (naked)) void OnHardFault (void) {
__asm volatile (
" bkpt 10 \n"
" bx 1r \n"
)
}

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



119

The signal passed to the GDB client is the immediate value (10 in the example) of the
software breakpoint instruction. <nsteps> specifies, how many instructions need to
be executed until the exception return occurs. In most cases this will be 2 (which is
the default value), if the handler function is set as the exception handler. If it is
called indirectly as a subroutine from the exception handler, there may be more
steps required.

It is mandatory to have the function declared with the “naked” attribute and to have
the bx 1r instruction immediately after the software breakpoint instruction. Other-
wise the software breakpoint will be treated as a usual breakpoint.

Example

jlinkgdbserver -excdbg 4

3.3.5.7 -jtagconf
Syntax

-jtagconf <IRPre>,<DRPre>
Description

Configures a JTAG scan chain with multiple devices on it. <IRPre> is the sum of
IRLens of all devices closer to TDI, where IRLen is the number of bits in the IR
(Instruction Register) of one device. <DRPre> is the number of devices closer to TDI.
For more detailed information of how to configure a scan chain with multiple devices
please refer to See “"Determining values for scan chain configuration” on page 183..

Example

#Select the second device, where there is 1 device in front with IRLen 4
jlinkgdbserver -jtagconf 4,1

3.3.5.8 -localhostonly
Description

Starts the GDB Server with the option to listen on localhost only (This means that
only TCP/IP connections from localhost are accepted) or on any IP address. To allow
remote debugging (connecting to GDBServer from another PC), deactivate this
option.

If no parameter is given, it will be set to 1 (active).

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax
-LocalhostOnly <State>

Example

jlinkgdbserver -LocalhostOnly 0 //Listen on any IP address (Linux/MAC default)

jlinkgdbserver -LocalhostOnly 1 //Listen on localhost only (Windows default)

3.3.5.9 -log
Description

Starts the GDB Server with the option to write the output into a given log file.
The file will be created if it does not exist. If it exists the previous content will be
removed. Paths including spaces need to be set between quotes.

Syntax

-log <LogFilePath>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



120 CHAPTER 3 J-Link software and documentation package

Example

jlinkgdbserver -log “C:\my path\to\file.log”

3.3.5.10 -logtofile

Description
Starts the GDB Server with the option to write the output into a log file.

If no file is given via -1og, the log file will be created in the GDB Server application
directory.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via -nologtofile or the GUI.

Syntax
-logtofile
Example

jlinkgdbserver -logtofile

jlinkgdbserver -logtofile -log “C:\my path\to\file.log”

3.3.5.11 -halt
Description

Halts the target after connecting to it on start of GDB Server.

For most IDEs this option is mandatory since they rely on the target to be halted
after connecting to GDB Server.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via -nohalt or the GUI.

Syntax

~halt

Example

jlinkgdbserver -halt

3.3.5.12 -noir

Description
Do not initialize the CPU registers on startup.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via -ir or the GUI.

Syntax
-noir

3.3.5.13 -nolocalhostonly
Description

Starts GDB Server with the option to allow remote connections (from outside local-
host).

Same as -localhostonly 0

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



121

Syntax
-nolocalhostonly
3.3.5.14 -nologtofile
Description
Starts the GDB Server with the option to not write the output into a log file.
Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via -nologtofile or the GUI.
Note: When this option is used after -log, no log file will be generated, when -log
is used after this option, a log file will be generated and this setting will be overrid-
den.
Syntax
-nologtofile
Example
jlinkgdbserver -nologtofile // Will not generate a log file

jlinkgdbserver -nologtofile -log “C:\pathto\file.log” // Will generate a log file

jlinkgdbserver -log “C:\pathto\file.log” -nologtofile // Will not generate a log file

3.3.5.15 -nohalt

Description

When connecting to the target after starting GDB Server, the target is not explicitly
halted and the CPU registers will not be inited.
After closing all GDB connections the target is started again and continues running.

Some IDEs rely on the target to be halted after connect. In this case do not use -
nohalt, but -halt.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via -halt or the GUI.

Syntax

-nohalt

Example
jlinkgdbserver -nohalt

3.3.5.16 -nosilent
Description

Starts the GDB Server in non-silent mode. All log window messages will be shown.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax

-nosilent

3.3.5.17 -nostayontop
Description

Starts the GDB Server in non-topmost mode. All windows can be placed above it.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



122

CHAPTER 3 J-Link software and documentation package

Note: For the CL version this setting has no effect.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax

-nostayontop

3.3.5.18 -notimeout

Description

GDB Server automatically closes after a timout of 5 seconds when no target voltage
can be measured or connection to target fails.

This command line option prevents GDB Server from closing, to allow connecting a
target after starting GDB Server.

Note: The recommended order is to power the target, connect it to J-Link and
then start GDB Server.

Syntax

-notimeout

3.3.5.19 -novd

Description

Do not explicitly verify downloaded data.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax

-vd

3.3.5.20 -port

Description

Starts GDB Server listening on a specified port. This option overrides the default lis-
tening port of the GDB Server. The default port is 2331.

Note: Using multiple instances of GDB Server, setting custom values for this
option is necessary.

Syntax
-port <Port>
Example

jlinkgdbserver -port 2345

3.3.5.21 -rtos

Description

Specifies a RTOS plug-in (.DLL file for Windows, .SO file for Linux and Mac). If the
file-name extension is not specified, it is automatically added depending on the PC’s
operating system.

The J-Link software and documentation package comes with RTOS plug-ins for
embOS and FreeRTOS pre-installed in the sub-directory “"GDBServer”. A software
development kit (SDK) for creating your own plug-ins is also available upon request.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



123

Syntax
-rtos <filename>[.dll|.so]
Example

jlinkgdbserver -rtos GDBServer\RTOSPlugin_embOS

3.3.5.22 -scriptfile

Description

Passes the path of a J-Link script file to the GDB Server. This scriptfile is executed
before the GDB Server starts the debugging / identifying communication with the tar-
get. J-Link scriptfiles are mainly used to connect to targets which need a special con-
nection sequence before communication with the core is possible. For more
information about J-Link script files, please refer to J-Link script files on page 206.

Syntax
-scriptfile <ScriptFilePath>
Example

-scriptfile “C:\My Projects\Default.JLinkScript"

3.3.5.23 -select

Description

Specifies the host interface to be used to connect to J-Link. Currently, USB and TCP/
IP are available.

Syntax
-select <Interface>=<SerialNo>/<IPAddr>
Example

jlinkgdbserver -select usb=580011111
jlinkgdbserver -select ip=192.168.1.10

Additional information

For backward compatibility, when USB is used as interface serial numbers from 0-3
are accepted as USB=0-3 to support the old method of connecting multiple J-Links to
a PC. This method is no longer recommended to be used. Please use the “connect via
emulator serial number™ method instead.

3.3.5.24 -settingsfile
Description

Select a J-Link settings file to be used for the target device. The settings fail can con-
tain all configurable options of the Settings tab in J-Link Control panel.

Syntax
-SettingsFile <PathToFile>

Example

jlinkgdbserver -SettingsFile "C:\Temp\GDB Server.jlink"

3.3.5.25 -silent
Description

Starts the GDB Server in silent mode. No log window messages will be shown.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



124

CHAPTER 3 J-Link software and documentation package

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax

-silent

3.3.5.26 -singlerun

Description

Starts GDB Server in single run mode. When active, GDB Server will close when all
client connections are closed.

In normal run mode GDB Server will stay open and wait for new connections.

When started in single run mode GDB Server will close immediately when connecting
to the target fails. Make sure it is powered and connected to J-Link before starting
GDB Server.

Syntax

-s
-singlerun

3.3.5.27 -speed

Description

Starts GDB Server with a given initial speed.

” A\}

Available parameters are “adaptive”, “auto” or a freely selectable integer value in
kHz. It is recommended to use either a fixed speed or, if it is available on the target,
adaptive speeds.

Note: Using GDB Server CL this option is mandatory to correctly connect to the
target, and should be given before connection via GDB.

Syntax
-speed <Speed_kHz>
Example

jlinkgdbserver -speed 2000

3.3.5.28 -stayontop

Description

Starts the GDB Server in topmost mode. It will be placed above all non-topmost win-
dows and maintains it position even when it is deactivated.

Note: For the CL version this setting has no effect.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax

-stayontop

3.3.5.29 -timeout

Description

Set the timeout after which the target connection has to be established. If no con-
nection could be established GDB Server will close.

The default timeout is 5 seconds for the GUI version and 0 for the command line ver-
sion.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



125

Note: The recommended order is to power the target, connect it to J-Link and
then start GDB Server.

Syntax
-timeout <Timeout [ms]>

Example

Allow target connection within 10 seconds.

jlinkgdbserver -timeout 10000

3.3.5.30 -strict
Description

Starts GDB Server in sctrict mode. When strict mode is active GDB Server checks the
correctness of settings and exits in case of a failure.

Currently the device name is checked. If no device name is given or the device is
unknown to the J-Link, GDB Server exits instead of selecting "Unspecified" as device
or showing the device selection dialog.

Syntax
- strict

Example

Following executions of GDB Server (CL) will cause exit of GDB Server.

jlinkgdbserver -strict -device UnknownDeviceName
jlinkgdbservercl -strict

Following execution of GDB Server will show the device selction dialog under Win-
dows or select "Unspecified" directly under Linux / OS X.

jlinkgdbserver -device UnknownDeviceName

3.3.5.31 -swoport
Description

Set up port on which GDB Server should listen for an incoming connection that reads
the SWO data from GDB Server. Default port is 2332.

Note: Using multiple instances of GDB Server, setting custom values for this
option is necessary.

Syntax
-SWOPort <Port>
Example

jlinkgdbserver -SWOPort 2553

3.3.5.32 -telnetport

Description

Set up port on which GDB Server should listen for an incoming connection that gets
target’s printf data (Semihosting and anylized SWO data). Default port is 2333.

Note: Using multiple instances of GDB Server, setting custom values for this
option is necessary.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



126

CHAPTER 3 J-Link software and documentation package

Syntax
-TelnetPort <Port>
Example

jlinkgdbserver -TelnetPort 2554

3.3.5.33 -vd

Description
Verifys the data after downloading it.

Note: For the GUI version, this setting is persistent for following uses of GDB
Server until changed via command line option or the GUI.

Syntax

-vd

3.3.5.34 -x

Description

Starts the GDB Server with a gdbinit (configuration) file. In contrast to the -xc com-
mand line option the GDB Server runs the commands in the gdbinit file once only
direct after the first connection of a client.

Syntax

-x <ConfigurationFilePath>

Example

jlinkgdbserver -x C:\MyProject\Sample.gdb

3.3.5.35 -xc

Description

Starts the GDB Server with a gdbinit (configuration) file. GDB Server executes the
commands specified in the gdbinit file with every connection of a client / start of a
debugging session.

Syntax

-xc <ConfigurationFilePath>

Example

jlinkgdbserver -xc C:\MyProject\Sample.gdb

3.3.6 Program termination

J-Link GDB Server is normally terminated by a close or Ctrl-C event. When the single
run mode is active it will also close when an error occurred during start or after all
connections to GDB Server are closed.

On termination GDB Server will close all connections and disconnect from the target
device, letting it run.

3.3.6.1 Exit codes

J-Link GDB Server terminates with an exit code indicating an error by a non-zero exit
code.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



127

The following table describes the defined exit codes of GDB Server.

Exit code

Description

No error. GDB Server closed normally.

Unknown error. Should not happen.

Failed to open listener port (Default: 2331)

Could not connect to target. No target voltage detected or
connection failed.

Failed to accept a connection from GDB.

Failed to parse the command line options, wrong or missing
command line parameter.

Unknown or no device name set.

-7

Failed to connect to J-Link.

Table 3.11: GDB Server exit codes

3.3.7 Semihosting

Semihosting can be used with J-Link GDBServer and GDB based debug environments
but needs to be explicitly enabled. For more information, please refer to Enabling
semihosting in J-Link GDBServer on page 463.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



128 CHAPTER 3 J-Link software and documentation package

3.4 J-Link Remote Server

J-Link Remote Server allows using J-Link / J-Trace remotely via TCP/IP. This enables
you to connect to and fully use a J-Link / J-Trace from another computer. Perfor-
mance is just slightly (about 10%) lower than with direct USB connection.

=)

W aiting for client on port 19020,

The J-Link Remote Server also accepts commands which are passed to the J-Link
Remote Server via the command line.

3.4.1 List of available commands

The table below lists the commands accepted by the J-Link Remote Server

Command Description
ort Selects the IP port on which the J-Link Remote Server is
por listening.
SelectEmuBySN Selects the J-Link to connect to by its Serial Number.

Table 3.12: Available commands

3.4.1.1 port
Syntax

-port <Portno.>

Example

To start the J-Link Remote Server listening on port 19021 the command should look
as follows:

-port 19021

3.4.1.2 SelectEmuBySN

Syntax
-SelectEmuBySN <S/N>

Example

To select the emulator with Serial Number 268000000 the command should look as
follows:

-SelectEmuBySN 268000000

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



129

3.4.2 Tunneling mode

The Remote server provides a tunneling mode which allows remote connection to a J-
Link / J-Trace from any computer, even from outside the local network.

To give access to a J-Link neither a remote desktop or vpn connection nor changing
some difficult firewall settings is necessary.

When started in tunneling mode the Remote server connects to the SEGGER tunnel
server via port 19020 and registers with its serial number. To connect to the J-Link
from the remote computer an also simple connection to tunnel:<SerialNo> can be
established and the debugger is connected to the J-Link.

Target Debugger
LAN LAN
SEGGER
TCP/IP- Debugger
Server
Internet PC

USB/Ethernet

SERVER

IPStat |E0nnected to 88.84.155.118

R

Total |

USEStat [Idle

7
7

Connected to tunnel server.

Example scenario

A device vendor is developing a new device which shall be supported by J-Link.
Because there is only one prototype, a shipment to SEGGER is not possible.

Instead the vendor can connect the device via J-Link to a local computer and start
the Remote server in tunneling mode. The serial number of the J-Link is then sent to
a to an engineer at SEGGER.

The engineer at SEGGER can use J-Link Commander or a debugger to test and debug
the new device without the need to have the device on the desk.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



J-Link / J-Trace (UM08001)

CHAPTER 3

Start J-Link Remote Server in tunneling mode

J-Link ARM V4.80

EJ I-Flash

ﬂ J-Link Commander

ﬂ J-Link Configurator

] J-Link DLL Updater

EJ J-Link GDB Server

ﬂ J-Link License Manager

EX J-Link RDI Config

ﬂ J-Link Remote Server (Tunneling

ﬂ J-Link Remote Server

B J-Link SWO Viewer

E J-Mem

| License Agreement

§3 Remove J-Link ARM V4,80
Manuals

Processor Specific Utilities
Release Motes

| A Back

| |5-::':-' programs and files j el |

J-Link software and documentation package

Connect to the J-Link / J-Trace via J-Link commander

J-Link Commander can be used to verify a connection to the J-Link can be estab-

lished as follows:
Start J-Link Commander
From within J-Link Commander enter

ip tunnel:<SerialNo>

If the connection was successful it should look like in this screenshot.

3 3-Link ARM V4.54

SEGGER J-Link Commander U4.5%4 (7' for help>
Compiled Sep 11 2012 18:33:18

Can not connect to J-Link via USH.

J-Link*ip tunnel:5700HHAA

Connecting to tunnel:5700000A

DLL verzion U4.54, compiled Sep 11 2812 18:32:59
Firmware: J-Link U? compiled Oct 2 2812 @9:11:43
Hardware: U?.88

S/M: 590880600

UTarget = 3.312U

Info: TotallRLen = 2. IRPrint = BxA6811

Info: Found Cortex—M4 vBpl,. Little endian.

Info: TPIU fitted.

Info: ETH fitted.

Info: FPUnit: 6 code <BP» slots and 2 literal slots
Found 2 JTAG devices, Total IRLen = %:

#@ Id: @x4BABB477,. IBLen: B4, IRPrint: BAxl,. CoreSight JTAG-DP {ARM>
#1 Id: BxB6413041, IRLen: @5, IRPrint: Bxl, STM32 Boundary Scan

Cortex—M4 identified.
JTAG speed: 188 kH=z
J-Link>

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Troubleshooting

131

Problem

Solution

Remote server cannot connect to tunnel
server.

1. Make sure the Remote server is not
blocked by any firewall.

2. Make sure port 19020 is not blocked
by any firewall.

3. Contact network admin.

J-Link Commander cannot connect to
tunnel server.

1. Make sure Remote server is started
correctly.

2. Make sure the entered serial number is
correct.

3. Make sure port 19020 is not blocked
by any firewall. Contact network admin.

Table 3.13:

To test whether a connection to the tunnel server can be established or not a network

protocol analyzer like Wireshark can help.

The network transfer of a successful connection should look like:

88.84.155.118 192.168.11.31

j-Tink = 51439 [5YN, ACK] Seg=0 A

192.168.11. 31 88.84.155.118 TCP
192.168.11. 31 88.84.155.118 TCP
192.168.11. 31 88.84.155.118 TCP
88.84.155.118 192.168.11.31 TCP
88.84.155.118 192.168.11.31 TCP
88.84.155.118 192.168.11.31 TCP
192.168.11. 31 88.84.155.118 TCP
192.168.11. 31 88.84.155.118 TCP
88.84.155.118 192.168.11.31 TCP

J-Link / J-Trace (UM08001)

51439 = j-link
51439 = j-link
51439 = j-link
j-Tlink = 51439
j-Tlink = 51439
j-Tlink = 51439
51439 = j-link
51439 = j-link
j-Tlink = 51439

[AaCK]
[P5H,
[P5H,
[AaCK]
[AaCK]
[P5H,
[P5H,
[P5H,
[AacK]

Seg=1 Ack=1
ACK] seg=l A
ACK] sSeg=5 A
Seg=1 Ack=5 !
Seg=1 Ack=9
ACK] seg=l A
ACK] Seg=9 A
ACK] seqg=13 .
Seg=5 Ack=80

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



132

3.5 J-Mem Memory Viewer

CHAPTER 3

J-Link software and documentation package

J-Mem displays memory contents of target systems and allows modifications of RAM
and SFRs (Special Function Registers) while the target is running. This makes it pos-
sible to look into the memory of a target system at run-time; RAM can be modified
and SFRs can be written. You can choose between 8/16/32-bit size for read and write
accesses. J-Mem works nicely when modifying SFRs, especially because it writes the
SFR only after the complete value has been entered.

"'?" J-Mem

File Target Options Help

Address: IDxD l_x_2|x_4| Refresh |

[ [0 x]

Address B|1|2|3|4|5|6|7|8|9|R|B|C|D|E|F|RSCII lﬁl
FF EA FE FF FF EAn FE FF EA ... .aals

I
AAAAAA] FE
AAAAAAZA | 58
AAAAAA3A | 48
AARERR4A | B8
AARAAASA | 2C
AARAAR6A | 24
AAAAAAT7A | FE
AAAAAASA | B0
AAREEA?A | BA
AEAEEEAE | 12
[
[
[
[
[
[
[
[
[
[

IBBBRREA | C1
IBBBBBCH | B1
IBBREADA | 81
IBBBRRED | B4
IBBBBBFA | BA

IBBBA1606 | B8
IBAAA1 88
IBAAA1 74
IBAAA1 an
IBBBB1408 | EE

FF
1]
an
1]
an
an
FF
F@
BS
a2
62
63
6E
21
48
a1
F@
an
E@
54

FF
9F
9F
Ap
9F
9F
FF
FF
1A
an
81
81
as
41
@B
38
FF
an
@B
FB

EA
E5
E5
E1
E5
E5
EA
FF
48
60
6E
6E
av
43
42
an
FF
an
68
D1

FE
58
D1
60
aF
18
FE
25
9F
18
42
as
FC
an
a1
44
6C
12
54
ac

IBBBBA6AA (W6 B8 8@ En FE FF

FF
an
F@
an
ER
FF
FF
a1
21
42
av
av
D5
4A
60
FD
an
4/
68
31

FF
9F
21
48
Ap
2F
FF
an
[
a1
FC
FC
BE
ac
a1
FF
an
13
15
ac

EA
E5
E3
E2
E1
E1
EA
an
43
62
D5
D5
48
4B
BC
FF
an
48
68
32

5C
@aF
48
13
18
FE
an
68
1?
81
81
a1
BE
53
an
a1
78
78
an
81

av
ER
80
F@
FF
FF
an
an
4A
6E
6E
6B
42
58
47
a6
an
B4
2B
42

an
Ap
9F
21
2F
FF
21
an
an
Gc?
as
a3
a1
48
ca
an
an
81
a3
ac

EA
E1
E5
E3
E1
EA
an
an
60
av
av
22
68
ic
46
an
an
BA
Da
D2

?C
18
D2
an
24
FE
1
DD
1?
FC
FC
an
a1
iF
an
as
34
11
5B
53

FF
F@
Da
ER
FF
an
12
42
D5
D5
43
28
28
FC
i¢
F1
iC
1E
68

2F
21
Ap
9F
FF
an
an
80
17
a4
a2
as
F?
FF
1?
FF
12
Eb
14

EL P...P......... /.
E3 B..... te..... L
El ....".B...t.....
E5 evccnnnn- s5..
En $..... A omanan

DB .tAC. .1 KSP@. . <.

FF .H.I.'...G.F.

18 . .B.Deeeann.n
FF ....l...p..4...
1D to...JHpoeaon..
5C ...hTh.h.+..[..\
68 .T...1.2.B..Sh.h =]

Connected

ARM core id: 3FOFOFOF | Speed: 4000kHz 2

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



133

3.6 J-Flash

J-Flash is an application to program data images to the flash of a target device. With
J-Flash the internal flash of all J-Link supported devices can be programmed, as well
as common external flashes connected to the device. Beside flash programming all
other flash operations like erase, blank check and flash content verification can be
done.

J-Flash requires an additional license from SEGGER to enable programming. For
license keys, as well as evaluation licenses got to http://www.segger.com or contact
us directly.

L, J-Flash ARM [C:\Program Files\Segger\J-Flash ARM\Default jflash]
Fle Edit View Iaget Opt indow  Help

Mame
Connection

Init JTAG speed
JTAG speed | Aulo

TAP rumber <riot used>

IR len <riot used>

Chip Generic: ARM 7 /AR
Clock speed | <don't care>

Endian Litle
Check careld | No

ARMcareld | 00
Use target Rk | No

FiéM address | 00
FiM size KB
Use DCL made | Yes

Manutacturer o device selected
Device o device selected
Size o device selected
Flash |d o device selected
Base addiess o device selected

Organization | no devics selectsd

Application log started
- Flash ARM (-Flash compiled Jul 4 2005 14,27.20)
- LinkARM.dil [DLL compiled Jun 30 2005 10:57:30)
Ficading flash deviee list [C:\Program FileshS eggertd Flash ARM:Flash.csv]
- List of flash devices rsad suscessfully [147 Devicss)
Ficading MCU deviee list [C\Frogram FileshS eggert] Flash ARMUMCL. csv]
- List of MCU devices read suscsssfully (50 Devices)

Dpen prajeet file [C:AProgram Files\Segger'J-Flash ARM\Default flash]
- Project opened

5 4%

|List of MEU devices read sucsessfully (50 Devices) Nat connected Y

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



134

CHAPTER 3 J-Link software and documentation package

3.7 J-Link RTT Viewer

B J-Link RTT Viewer V4.96 =3 EcR ===

File Terminals Input Data Help

.AIITerminals Terminal 1

SEGGER Real -Time-Terminal Sample
Available colors:

BLACK: RTT CTRL BG BLACK
RED: RTT CTRL BG RED
GREEN: RTT CTRL BG GREEN
YELLOW: RTT CTRL BG YELLOW
BLUE: RTT CTRL BG BLUE
MAGENTA : RTT CTRL BG MAGENTA
CYAN: RTT CTRL BG CYAN

WHITE:
BRIGHT BLACK: RTT CT TEXT GH ILACK 12 CTRL BG BLACK
BRIGHT RED:

BRIGHT GREEN:  RTT ¢ TEXT CRE RTT CTRL BG BRIGHT GREEN
BRIGHT YELLOW: RTT CT RTT CTRL BG BRIGHT YELLOW
BRIGHT BLUE:

BRIGHT MAGENTA:

BRIGHT CYAN: RTT CTRL TEXT BRIGHT CYAN RTT CTRL BG BRIGHT CYAN
BRIGHT WHITE: RTT CTRL TEXT BRIGHT BLACK  LSgUReyeVMBeRpo:Nle sl chi

Pres= 'x' to erase screen and send again.

| Enter ‘ Clear

0.001 ...

J-Link RTT Viewer is a Windows GUI application to use all features of RTT in one
application. It supports:

Displaying terminal output of Channel 0.

Up to 16 virtual Terminals on Channel 0.

Sending text input to Channel 0.

Interpreting text control codes for colored text and controlling the Terminal.
Logging terminal data into a file.

Logging data on Channel 1.

For general information about RTT, please refer to RTT on page 355.

3.7.1 RTT Viewer Startup

Make sure J-Link and target device are connected and powered up.

Start RTT Viewer by opening the executable (JLinkRTTViewer.exe) from the installa-
tion folder of the J-Link Software or the start menu. Unless the command line
paramter -autoconnect is set, the Configuration Dialog will pop up.

Configure the Connection Settings as described below and click OK. The connection
settings and all in app configuration will be saved for the next start of J-Link RTT
Viewer.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



135

3.7.2 Connection Settings

J-Link RTT Viewer V5.12f | Configuration ==
Connection to J-Link

@ USE [/]Serial Mo 174200001
TICPAP

Existing Session

Specify Target Device

MKBEFN2MOXXX18 (=]
Target Interface & Speed

SWD v ||12000 ~|KkHz

RTT Control Block
Auto Detection Address @ Search Range

Ok l | Cancel

RTT Viewer can be used in two modes:

e Stand-alone, opening an own connection to J-Link and target.
e In attach mode, connecting to an existing J-Link connection of a debugger.

Stand-alone connection settings

In stand-alone mode RTT Viewer needs to know some settings of J-Link and target
device.

Select USB or TCP/IP as the connection to J-Link. For USB a specific J-Link serial
number can optionally be entered, for TCP/IP the IP or hostname of the J-Link has to
be entered.

Select the target device to connect to. This allows J-Link to search in the known RAM
of the target.

Select the target interface and its speed.

The RTT Control Block can be searched for fully automatically, it can be set to a fixed
address or it can be searched for in one or more specific memory ranges.

Attaching to a connection
In attach mode RTT Viewer does not need any settings. Select Existing Session.

For attach mode a connection to J-Link has to be opened and configured by another
application like a debugger or simply J-Link Commander. If the RTT Control Block
cannot be found automatically, configuration of its location has to be done by the
debugger / application.

3.7.3 The Terminal Tabs

RTT Viewer allows displaying the output of Channel 0 in different "virtual" Terminals.

The target application can switch between terminals with
SEGGER_RTT_SetTerminal() and SEGGER_RTT_TerminalOut().

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



136 CHAPTER 3 J-Link software and documentation package

RTT Viewer displays the Terminals in different tabs.

All Terminals | Terminal 0 | Terminal 1 | Terminal 2

EGGER Real-Time-Terminal Sample

debug information

All Terminals

The All Terminals tab displays the complete output of RTT Channel 0 and can display
the user input (Check Input -> Echo input... -> Echo to "All Terminals").

Each output line is prefixed by the Terminal it has been sent to. Additionally, output
on Terminal 1 is shown in red, output on Terminals 2 - 15 in gray.

Terminal 0 - 15

Each tab Terminal 0 - Terminal 15 displays the output which has been sent to this
Terminal. The Terminal tabs interpret and display Text Control Codes as sent by the
application to show colored text or erase the screen.

By default, if the RTT application does not set a Terminal Id, the output is displayed
in Terminal 0.

The Terminal 0 tab can additionally display the user input. (Check Input -> Echo
input... -> Echo to "Terminal 0")

Each Terminal tab can be shown or hidden via the menu Terminals -> Terminals... or
their respective shortcuts as described below.

3.7.4 Sending Input

RTT Viewer supports sending user input to RTT Down Channel 0 which can be read by
the target application with SEGGER_RTT_GetKey() and SEGGER_RTT_Read().

Input can be entered in the text box below the Terminal Tabs.

RTT Viewer can be configured to directly send each character while typing or buffer it
until Enter is pressed (Menu Input -> Sending...).

In stand-alone mode RTT Viewer can retry to send input, in case the target input
buffer is full, until all data could be sent to the target via Input -> Sending... ->
Block if FIFO full.

Sending input @

Please Wait...
43 of 69 Bytes sent to target.

3.7.5 Logging Terminal output

The output of Channel 0 can be logged into a text file. The format is the same as
used in the All Terminals tab.

Terminal Logging can be started via Logging -> Start Terminal Logging...

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



3.7.6 Logging Data

137

Additionally to displaying output of Channel 0, RTT Viewer can log data which is sent
on RTT Channel 1 into a file. This can for example be used to sent instrumented
event tracing data. The data log file contains header and footer and the binary data
as received from the application.

Data Logging can be started via Logging -> Start Data Logging...

Note: Data Logging is only available in stand-alone mode.

3.7.7 Command line options

J-Link RTT Viewer can be configured via command line parameters. In the following,
the command line options which are available for J-Link RTT Viewer are explained. All
command line options are case insensitive. Short and long command names have the

same syntax.

Command line option

Explanation

-d, --device

Select the connected target device.

-Ct, --connection

Sets the connection type

-if, -—interface

Sets the interface type

-ip, --host The IP address of the J-Link
-S, --speed Interface speed in kHz
-sn, --serialnumber |Select the J-Link with a specific S/N

-ra, --rttaddr

Sets the address of the RTT control block

-fr, --rttrange

Specify RTT search range

-a, ——autoconnect

Automatically connect to target, suppress settings dialog

Table 3.14: Command line options

3.7.7.1 --device

Selects the device J-Link RTT Viewer shall connect to.

Syntax
--device <DeviceName>

Example

JLinkRTTViewer.exe --device STM32F103ZE

3.7.7.2 --connection

Sets the connection type. The connection to the J-Link can either be made directly
over USB, IP or using an existing running session (e.g. the IDE’s debug session). In
case of using an existing session, no further configuration options are required.

Syntax

--connection <usb|ip|sess>

Example

JLinkRTTViewer.exe --connection ip

3.7.7.3 --interface

Sets the interface J-Link shall use to connect to the target. As interface types FINE,
JTAG and SWD are supported.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



138 CHAPTER 3 J-Link software and documentation package

Syntax

--interface <fine|jtag|swd>
Example

JLinkRTTViewer.exe --interface swd

3.7.7.4 --host

Enter the IP address or hostname of the J-Link. This option only applies, if connection
type IP is used. Use * as <IPAddr> for a list of available J-Links in the local subnet.

Syntax
--host <IPAddr>
Example

JLinkRTTViewer.exe --host 192.168.1.17

3.7.7.5 --speed

Sets the interface speed in kHz for target communication.

Syntax
--speed <speed>
Example

JLinkRTTViewer.exe --speed 4000

3.7.7.6 --serialnumber

Connect to a J-Link with a specific serial number via USB. Useful if multiple J-Links
are connected to the same PC and multiple instances of J-Link RTT Viewer shall run
and each connects to another J-Link.

Syntax
--serialnumber <SerialNo>
Example

JLinkRTTViewer.exe --serialnumber 580011111

3.7.7.7 --rttaddr

Sets a fixed address as location of the RTT control block. Automatic searching for the
RTT control block is disabled. The Address can be

Syntax

--rttaddr <RTTCBAddr>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Example

JLinkRTTViewer.exe -rttaddr 0x20000000

3.7.7.8 --rttrange

139

Sets one or more memory ranges, where the J-Link DLL shall search for the RTT con-

trol block.
Syntax

--rttrange <RangeStart[Hex]> <RangeSize >[,

Example

JLinkRTTViewer.exe -rttrange

3.7.7.9 --autoconnect

"20000000 400"

<RangelStart [Hex]> <RangelSize>]>

Let J-Link RTT Viewer connect automatically to the target without showing the Con-
nection Settings (see Connection Settings on page 135).

Syntax
-—-autoconnect

Example

JLinkRTTViewer.exe --autoconnect

3.7.8 Menus and Shortcuts

Menu entry Contents Shortcut

File

> Conmect. .. Opens the connect dialog and con- 2
nects to the targets

-> Disconnect Disconnects from the target F3

s Exit Closes connection and exit RTT Alt-F4
Viewer.

Terminals

—> add next terminal Opens the next available Terminal Alt-A
Tab.

-> Clear active terminal CI_ears the currently selected ter- Alt-R
minal tab.

-> Close active terminal Closes the active Terminal Tab. Alt-W

-> Open Terminal on output

If selected, a terminal is automati-
cally created, if data for this termi-
nal is received.

Table 3.15: RTT Viewer Menus and Shortcuts

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



140

CHAPTER 3

J-Link software and documentation package

Menu entry Contents Shortcut
-> Show Log Opens or closes the Log Tab. Alt-L
Terminals -> Terminals...
) . Alt-Shift-0
--> Terminal 0 - 15 Opens or closes the Terminal Tab. Alt-Shift-F
Input
> Clear input field _Clears the input field without send- [3uttor'1
ing entered data. Clear
Input -> Sending...
If selected, entered input will be
--> Send on Input sent directly to the target while
typing.
If selected, entered input will be
--> Send on Enter .
sent when pressing Enter.
If checked, RTT Viewer will retry to
--> Block if FIFO full send all input to the target when
the target buffer is full.
Input -> End of line...
--> Windows format (CR+LF)
--> Unix format (LF) Selects the end of line character to
--> Mac format (CR) be sent on Enter.
--> None
Input -> Echo input...
——s Echo to "all Terminals" If checked, sent input will be dis-
played in the All Terminals Tab.
——> Echo to "Terminal 0" If checked, sent input will be dis-
played in the Terminal Tab 0.
Logging
-> Start Terminal log- Starts logging terminal data to a F5
ging... file.
. . Stops logging terminal data and -
-> Stop Terminal logging closes the file. Shift-F5
> Start Data logging... :tfe;lr;s logging data of Channel 1 to F6
> Stop Data logging fS”t((a)ps logging data and closes the Shift-F6
Help
-> About... Shows version info of RTT Viewer. F12
-> J-Link Manual... Opens the J-Link Manual PDF file. F11
-> RTT Webpage... Opens the RTT webpage. F10

Table 3.15: RTT Viewer Menus and Shortcuts

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



141

Menu entry Contents Shortcut

Right-Click on Tab

-> Close Terminal Closes this Terminal Tab Alt-W

Clears the displayed output of this
Terminal Tab.

Table 3.15: RTT Viewer Menus and Shortcuts

-> Clear Terminal Alt-R

3.7.9 Using "virtual" Terminals in RTT

For virtual Terminals the target application needs only Up Channel 0. This is espe-
cially important on targets with low RAM.

If nothing is configured, all data is sent to Terminal 0.

The Teminal to output all following via Write, WriteString or printf can be set with
SEGGER_RTT_SetTerminal() .

Output of only one string via a specific Terminal can be done with
SEGGER_RTT_TerminalOut().

The sequences sent to change the Terminal are interpreted by RTT Viewer. Other
applications like a Telnet Client will ignore them.

3.7.10 Using Text Control Codes

RTT allows using Text Control Codes (ANSI escape codes) to configure the display of
text.

RTT Viewer supports changing the text color and background color and can erase the
Terminal.

These Control Codes are pre-defined in the RTT application and can easily be used in
the application.

Example 1:

SEGGER_RTT_WriteString (0,
RTT_CTRL_RESET"Red: "
RTT_CTRL_TEXT_BRIGHT_RED"This text is red. "
RTT_CTRL_TEXT BLACK""
RTT_CTRL_BG_BRIGHT RED"This background is red. "
RTT_CTRL_RESET"Normal text again.");

s

Example 2:

SEGGER_RTT printf (0, "%$sTime:%s%s %.7d\n",
RTT CTRL_RESET,
RTT_CTRL_BG_BRIGHT RED,
RTT CTRL_TEXT BRIGHT WHITE,
1111111
)
//
// Clear the terminal.
// The first line will not be shown after this command.
//
SEGGER_RTT WriteString (0, RTT_CTRL_CLEAR) ;

SEGGER_RTT printf (0, "%$sTime: %s%s%.7d\n",
RTT_CTRL_RESET,
RTT_CTRL_BG_BRIGHT RED,

RTT CTRL_TEXT BRIGHT WHITE,
2222222
)

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



142 CHAPTER 3 J-Link software and documentation package

3.8 J-Link SWO Viewer

Free-of-charge utility for J-Link. Displays the terminal output of the target using the
SWO pin. The stimulus port(s) from which SWO data is received can be chosen by
using the port checkboxes 0 to 31. Can be used in parallel with a debugger or stand-
alone. This is especially useful when using debuggers which do not come with built-in
support for SWO such as most GDB / GDB+Eclipse based debug environments.

[l SEGGER J-Link SWO Viewer V4.78] = B |
File Edit Help
_ | 24 23 16 15 8 7 0
Data from stimuius I I O U
Eause| Stop | LClear
Loops-=sec: 4485 -

Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485
Loops-=sec: 4485

Device: STM32F103ZG CPUFreq: 72016 kHz  |SWOFreq: 6000 kHz | 2984 bytes

3.8.0.1 J-Link SWO Viewer CL

Command line-only version of SWO Viewer. All commands avaible for J-Link SWO
Viewer can be used with J-Link SWO Viewer Cl. Similar to the GUI Version,J]-Link
SWO Viewer Cl asks for a device name or CPU clock speed at startup to be able to
calculate the correct SWO speed or to connect to a running J-Link GDB Server

[l c\Program Files (86)\SEGGER\LinkARM_V478j\JLinkSWOViewerCL.exe == |3

SEGGER J-Link SWO Uiewer

Compiled Mouv 22 2813 28:89:16

{c>» 2812 SEGGER Microcontroller GmbH & Co. KG. www.segger.com
Solutions for real time microcontroller applications

Please enter the target CPU frequency or press <{enter?> to select
la device for automatic CPU frequency detection.

CPUFreq > 72000088

Initializing debugger...

Debugger initialized successfully.

Target CPU is running @ 72808 kH=z.
Receiving SW0O data @ 6888 kH=z=.
Data from stimulus portds>: B

Using the syntax given below(List of available command line options), you can
directly start J-Link SWO Viewer Cl with parameters.

E® Command Prompt - "C:\Program Files (x86)\SEGGER\ILinkARM_V478\JLinkSWOViewerCL.exe" -device stm32f103zg =0 =] @

C:x2>"CosProgram Files (x86)>~SEGGER~JLinkARM_U478 j*JLinkEWOVieverCL.exe" —device stm32f183zg
SEGGER J-Link SW0Q Uiewer
Compiled Mouv 22 2813 28:89:16
{c>» 2812 SEGGER Microcontroller GmbH & Co. KG. www.segger.com
Solutions for real time microcontroller applications

Initializing debugger...
Debugger initialized successfully.

Target CPU is running @ 72815 kH=z.
iui SWO data B 6888 kH=.

stimulus portd{s>: @

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



143

3.8.1 Usage

J-Link SWO Viewer is available via the start menu.

It asks for a device name or CPU clock speed at startup to be able to calculate the
correct SWO speed or to connect to a running J-Link GDB Server.

SEGGER J-Link SWO Viewer V4.78] - Config (23]
Fleaze enter the target CPU frequency or select a device for automatic
CPU frequency detection.
Device: |STM32F‘I 0EG Select
CPU frequency [kHz]: |?2D1B Meazure
LCancel |

When running in normal mode J-Link SWO Viewer automatically performs the neces-
sary initialization to enable SWO output on the target, in GDB Server mode the ini-
tialization has to be done by the debugger.

3.8.2 List of available command line options

J-Link SWO Viewer can also be controlled from the command line if used in a auto-
mated test environment etc.

When passing all necessary information to the utility via command line, the configu-
ration dialog at startup is suppressed. Minimum information needed by J-Link SWO
Viewer is the device name (to enable CPU frequency auto detection) or the CPU clock
speed.

The table below lists the commands accepted by the J-Link SWO Viewer.

Command Description
cpufreqg Select the CPU frequency.
device Select the target device.
. Selects a set of itm stimulus ports which should be used
itmmask .

to listen to.

. Selects a itm stimulus port which should be used to listen
1tmport to
outputfile Print the output of SWO Viewer to the selected file.
settingsfile Specify a J-Link settings file.
swofreg Select the CPU frequency.

Table 3.16: Available command line options

3.8.2.1 cpufreq

Defines the speed in Hz the CPU is running at. If the CPU is for example running at
96 MHz, the command line should look as below.

Syntax
-cpufreq <CPUFreqg>

Example

-cpufreg 96000000

3.8.2.2 device

Select the target device to enable the CPU frequency auto detection of the J-Link
DLL. To select a ST STM32F2071G as target device, the command line should look as
below.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



144 CHAPTER 3 J-Link software and documentation package

For a list of all supported device names, please refer to <Ref>

Syntax

-device <DeviceID>

Example

-device STM32F207IG

3.8.2.3 itmmask

Defines a set of stimulusports from which SWO data is received and displayed by
SWO Viewer.

If itmmask is given, itmport will be ignored.

Syntax

-itmmask <Mask>

Example

Listen on ports 0 and 2

-itmmask 0x5

3.8.2.4 itmport

Defines the stimulus port from which SWO data is received and displayed by the SWO
Viewer. Default is stimulus port 0. The command line should look as below.

Syntax

-itmport <ITMPortIndex>

Example

-itmport 0

3.8.2.5 outputfile

Define a file to which the output of SWO Viewer is printed.

Syntax
-outputfile <PathToFile>

Example

-outputfile "C:\Temp\Output.log"

3.8.2.6 settingsfile
Select a J-Link settings file to use for the target device.

Syntax

-settingsfile <PathToFile>

Example

-settingsfile "C:\Temp\Settings.jlink"

3.8.2.7 swofreq

Define the SWO frequency that shall be used by J-Link SWO Viewer for sampling
SWO data.

Usually not necessary to define since optimal SWO speed is calculated automatically
based on the CPU frequency and the capabilities of the connected J-Link.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



145

Syntax

-swofreq <SWOFreqg>

Example

-swofreqg 6000

3.8.3 Configure SWO output after device reset

In some situations it might happen that the target application is reset and it is
desired to log the SWO output of the target after reset during the booting process.
For such situations, the target application itself needs to initialize the CPU for SWO
output, since the SWO Viewer is not restarted but continuously running.

Example code for enabling SWO out of the target application

#define ITM_ENA (* (volatile unsigned int*)0xE0000EO0) // ITM Enable

#define ITM_TPR (*(volatile unsigned int*)O0xE0000E40) // Trace Privilege Register

#define ITM_TCR (* (volatile unsigned int*)0xE0000E80) // ITM Trace Control Reg.

#define ITM_LSR (* (volatile unsigned int*)0xEO000FBO) // ITM Lock Status Register

#define DHCSR (* (volatile unsigned int*)0xEOOOEDFO0) // Debug register

#define DEMCR (*(volatile unsigned int*)O0xEOOQEDFC) // Debug register

#define TPIU_ACPR (*(volatile unsigned int*)0xE0040010) // Async Clock \
// presacler register

#define TPIU_SPPR (*(volatile unsigned int*)0xE00400F0) // Selected Pin Protocol \
// Register

#define DWT_CTRL (* (volatile unsigned int*)0xE0001000) // DWT Control Register

#define FFCR (*(volatile unsigned int*)0xE0040304) // Formatter and flush \
// Control Register

U32 _ITMPort = 0; // The stimulus port from which SWO data is received and displayed.

U32 TargetDiv = 1;// Has to be calculated according to \

// the CPU speed and the output baud rate

static void _EnableSWO() {
U32 StimulusRegs;

//

// Enable access to SWO registers
//

DEMCR |= (1 << 24);

ITM_LSR = 0xC5ACCE55;

//

// Initially disable ITM and stimulus port
// To make sure that nothing is transferred via SWO
// when changing the SWO prescaler etc.

//

StimulusRegs = ITM_ENA;

StimulusRegs &= ~(1 << _ITMPort);

ITM_ENA = StimulusRegs; // Disable ITM stimulus port
ITM_TCR = 0; // Disable ITM

//

// Initialize SWO (prescaler, etc.)

//

TPIU_SPPR = 0x00000002; // Select NRZ mode
TPIU_ACPR = TargetDiv - 1; // Example: 72/48 = 1,5 MHz
ITM_TPR = 0x00000000;

DWT_CTRL = 0x400003FE;

FFCR = 0x00000100;

//

// Enable ITM and stimulus port

//

ITM_TCR = 0x1000D; // Enable ITM

ITM_ENA = StimulusRegs | (1 << _ITMPort); // Enable ITM stimulus port

}

3.8.4 Target example code for terminal output

/*********************************************************************

* SEGGER MICROCONTROLLER GmbH & Co KG *
* Solutions for real time microcontroller applications *
ER R R R I S R R I R R I I S R I R I I I 2 I I I I R R I I R R R I R I R I I I R I 2 2 b E I I I 2 b S 2 b b S S
* *
* (c) 2012-2013 SEGGER Microcontroller GmbH & Co KG *
* *
* Www . Segger . com Support: support@segger.com *

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



146

*

CHAPTER 3

J-Link software and documentation package

*

LR R I I I I I I I R I S I R R I I I R I I I R R I R R I S

It can be used with any IDE.

Simple implementation for output via SWO for Cortex-M processors.
This sample implementation ensures that

output via SWO is enabled in order to gurantee that the application

File SWO.c
Purpose

does not hang
———————— END-OF-HEADER
*/

/*********************************************************************

*

* Prototypes
*/
void SWO_PrintChar (ch

void SWO_PrintString(co

ar c);
nst char *s);

(to be placed in a header file such as SWO.h)

/*********************************************************************

*

* Defines for Cor
*x/

#define ITM_STIM_U32 (*
#define ITM_STIM US8 (*
#define ITM_ENA (*
#define ITM_TCR (*

tex-M debug unit

(volatile
(volatile
(volatile
(volatile

unsigned int

char
unsigned int*)O0xE0000EOO
unsigned int*)O0xE0000E80

) 0xE0000000
) 0OXE0000000
)
)

*
*

)
)
)
)

/7
/7
/7
/7

STIM word access

STIM Byte access

ITM Enable Reg.

ITM Trace Control Reg.

/*********************************************************************

*

SWO_PrintChar ()

* X %

Function description
Checks if SWO is se

*

*

*

If it is set up,
in order to provid
Parameters
Cc: The Chacracte
* Notes

* X %

t up. If it is not,

e data for SWO.

r to be printed.

return,

to avoid program hangs if no debugger is connected.
print a character to the ITM_STIM register

* Additional checks for device specific registers can be added.

*/
void SWO_PrintChar (char
//
// Check if ITM_TCR.I
//
if ((ITM_TCR & 1)
return;
}
/7
// Check if stimulus
//
if

((ITM_ENA & 1)
return;
}
//
// Wait until STIMx 1
// then send data
//

c) {

TMENA is set

0) f

port is enabled

0) f

s ready,

while
ITM_STIM U8 =

((ITM_STIM U8 & 1)
ci

J-Link / J-Trace (UM08001)

0);

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



147

/*********************************************************************
*

* SWO_PrintString ()

*

* Function description

Print a string wvia SWO.
*

*/

void SWO_PrintString(const char *s) {
//
// Print out character per character
//

while (*s) {
SWO_PrintChar (*s++) ;

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



148 CHAPTER 3 J-Link software and documentation package

3.9 SWO Analyzer

SWO Analyzer (swoAnalyzer.exe) is a tool that analyzes SWO output. Status and
summary of the analysis are output to standard out, the details of the analysis are
stored in a file.

g a prohlem>

Usage
SWOAnalyzer.exe <SWOfile>

This can be achieved by simply dragging the SWO output file created by the J-Link
DLL onto the executable.

Creating an SWO output file

In order to create the SWO output file, which is th input file for the SWO Analyzer,
the J-Link config file needs to be modified.

It should contain the following lines:
[SWO]

SWOLogFile="C:\TestSWO.dat"

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



149

3.10 JTAGLoad (Command line tool)

JTAGLoad is a tool that can be used to open and execute an svf (Serial vector format)
file for JTAG boundary scan tests. The data in the file will be sent to the target via J-
Link / J-Trace.

“]JTAGLoad

SEGGER JTAG Load
Compiled 13:33:56 on Dec 2 2885

Executing file [C:xJ_Trace.sufl...

SVF is a standard format for boundary scan vectors to be used with different tools
and targets. SVF files contain human-readable ASCII SVF statements consisting of an
SVF command, the data to be sent, the expected response, a mask for the response
or additional information.

JTAGLoad supports following SVF commands:

ENDDR
ENDIR
FREQUENCY
HDR

HIR
PIOMAP
PIO
RUNTEST
SDR

SIR
STATE
TDR

TIR

A simple SVF file to read the JTAG ID of the target can look like following:

! Set JTAG frequency

FREQUENCY 12000000HZ;

! Configure scan chain

! For a single device in chain, header and trailer data on DR and IR are 0
! Set TAP to IDLE state

STATE IDLE;

! Configure end state of DR and IR after scan operations

ENDDR IDLE;

ENDIR IDLE;

! Start of test

! 32 bit scan on DR, In: 32 0 bits, Expected out: Device ID (0x0BA00477)
SDR 32 TDI (0) TDO (0BA00477) MASK (OFFFFFFF) ;

! Set TAP to IDLE state

STATE IDLE;

! End of test

SVD files allow even more complex tasks, basically everything which is possible via
JTAG and the devices in the scan chain, like configuring an FPGA or loading data into
memory.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



150 CHAPTER 3 J-Link software and documentation package

3.11 J-Link RDI (Remote Debug Interface)

The J-Link RDI software is a remote debug interface for J-Link. It makes it possible to
use J-Link with any RDI compliant debugger. The main part of the software is an RDI-
compliant DLL, which needs to be selected in the debugger. There are two additional
features available which build on the RDI software foundation. Each additional fea-
ture requires an RDI license in addition to its own license. Evaluation licenses are
available free of charge. For further information go to our website or contact us
directly.

Note: The RDI software (as well as flash breakpoints and flash downloads) do
not require a license if the target device is an LPC2xxx. In this case the software ver-
ifies that the target device is actually an LPC 2xxx and have a device-based license.

3.11.1 Flash download and flash breakpoints

Flash download and flash breakpoints are supported by J-Link RDI. For more infor-
mation about flash download and flash breakpoints, please refer to J-Link RDI User’s
Guide (UM08004), chapter Flash download and chapter Breakpoints in flash memory.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



151

3.12 Processor specific tools

The J-Link software and documentation package includes some tools which support
processor specific functionalities, like unlocking a device.

3.12.1 J-Link STR91x Commander (Command line tool)

J-Link STR91x Commander (JLinkSTR91x.exe) is a tool that can be used to configure
STR91x cores. It permits some STR9 specific commands like:

Set the configuration register to boot from bank 0 or 1.

Erase flash sectors.

Read and write the OTP sector of the flash.

Write-protect single flash sectors by setting the sector protection bits.
Prevent flash from communicate via JTAG by setting the security bit.

All of the actions performed by the commands, excluding writing the OTP sector and
erasing the flash, can be undone. This tool can be used to erase the flash of the con-
troller even if a program is in flash which causes the CPU core to stall.

ize of the primary flash manually.

Syntax: fsize Bi11213. vhere B selects a 256 Kbhytes device.
1 a 512 Kbytes device. 2 a 1824 KBytes device
and 3 a 2848 Kbytes device
Show configuration register content and security status
Read memory
Syntax: mem <Addr>. {NumBytes>
Erase flash sectors QTP can not bhe erased>.
Syntax: erase {SectorMaskL>, <SectorMaskH>
SectorMaskL = Bits
SectorMaskH = Bits

Bit nfiguration sector

Bit he User—Code sector

All other hits are ignored
Erase flash bank 8
Erase flash bank 1
Perform a full chip erase
Boot from flash bank x (B and 1 are available>
Sytax: seth {int>
Blank check all flash sectors
Set the security bit. Protects device from read or debuy access
through the JIAG port <{can only be cleared by a full chip erased.

Unsecure the device. Content of configuration register iz saved.
Protect flash sectors.

Syntax: protect <{BankBSectorMask>. {BanklSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8

BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Unprotect flash sectors.

Syntax: unprotect {BankBSectorMask>, {BankiSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bhank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Read OTFP sectors

Write words to the OTP sectors.

Syntax: writeotp <Wordi>, [{Word2>, ..., <UWord8>]

When starting the STR91x commander, a command sequence will be performed
which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the
GPIOs in output. The I0s are maintained in this state until a next JTAG instruction is
sent." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in
the STR91x Commander.
3.12.1.1 Command line options

J-Link STR91x Commander can be started with different command line options. In
the following, the command line options which are available for J-Link STR91x Com-
mander are explained.

-CommandFile

Selects a command file and starts J-Link STR91x Commander in batch mode. The
batch mode of J-Link Commander is similar to the execution of a batch file. The com-
mand file is parsed line by line and one command is executed at a time.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



152

CHAPTER 3 J-Link software and documentation package

Syntax
-CommanderScript <CommandFilePath>

Example
See Using command files on page 91
-DRPre, -DRPost, -IRPre and -IRPost (Scan-Chain Configuration )

STR91x allows to configure a specific scan-chain via command-line. To use this fea-
ture four command line options have to be specified in order to allow a proper con-
nection to the proper device. In case of passing an incomplete configuration, the
utility tries to auto-detect.

Syntax

-DRPre <DRPre>
-DRPost <DRPost>
-IRPre <IRPre>
-IRPost <IRPost>

Example

JLink.exe -DRPre 1 -DRPost 4 -IRPre 16 -IRPost 20

-IP

Selects IP as host interface to connect to J-Link. Default host interface is USB.
Syntax

-IP <IPAddr>

Example

JLinkSTR91x.exe -IP 192.168.1.17

Additional information

To select from a list of all available emulators on Ethernet, please use * as <IpPAddr>.
-SelectEmuBySN

Connect to a J-Link with a specific serial number via USB. Useful if multiple J-Links
are connected to the same PC and multiple instances of J-Link STR91x Commander
shall run and each connects to another J-Link.

Syntax
-SelectEmuBySN <SerialNo>
Example

JLinkSTR91x.exe -SelectEmuBySN 580011111

3.12.2 J-Link STM32 Unlock (Command line tool)

J-Link STM32 Unlock (JLinkSTM32.exe) is a free command line tool which can be
used to disable the hardware watchdog of STM32 devices which can be activated by
programming the option bytes. Moreover the J-Link STM32 Commander unsecures a
read-protected STM32 device by re-programming the option bytes.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



153

Note: Unprotecting a secured device or will cause a mass erase of the flash
memory.

ﬂ C:\Program Files (x86)\SEGGER\Link_V498&\JLinkSTM32.exe

SEGGER J-Link Unlock tool for STM32 devices

Compiled May 5 2015 11:81:58

{c) 2339 2315 SEGGER Microcontroller GmbH & Co. KG. www.segger.com
Solutions for real time microcontroller applications

[E=NHoh/ )

m| o

Exit

STHI2FBxooo
STMI2F1 0000
STHMIZ2F 2000
STHMI2F 3000
STHMI2F oo
STM3 2L »ooo

Please select the correct deulcg ﬁamlly 3

Connecting to J-Link via USB

lzing SWD as target interface.

Target interface speed: 1888 kHz.

UTarget = 3.285U

Reszet target...0.K.

Reset option bytes (may take app. 28 seconds>...0.K.
Press any key to exit.

3.12.2.1 Command Line Options

The J-Link STM32 Unlock Utility can be started with different command line options
for test and automation purposes. In the following, the available command line
options are explained.

-IP

Selects IP as host interface to connect to J-Link. Default host interface is USB.
Syntax

-IP <IPAddr>

Example

JLinkSTM32.exe -IP 192.168.1.17
Additional information

To select from a list of all available emulators on Ethernet, please use * as <IPAddr>.
-SelectEmuBySN

Connect to a J-Link with a specific serial number via USB. Useful if multiple J-Links
are connected to the same PC.

Syntax
-SelectEmuBySN <SerialNo>

Example
JLinkSTM32.exe -SelectEmuBySN 580011111
-Speed

Starts J-Link STM32 Unlock Utility with a given initial speed. Available parameters
are "adaptive", "auto" or a freely selectable integer value in kHz. It is recom-
mended to use either a fixed speed or, if it is available on the target, adaptive
speeds. Default interface speed is 1000 kHz.

Syntax
-Speed <Speed_kHz>
-SetPowerTarget

The connected debug probe will power the target via pin 19 of the debug connector.

Syntax

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



154

CHAPTER 3 J-Link software and documentation package

-SetPowerTarget <Mode>
Example
JLinkSTM32.exe -SetPowerTarget 1 // Target power will be set

-SetDeviceFamily

This command allows to specify a device family, so that no user input is required to
start the unlocking process.

Syntax
-SetDeviceFamily <Parameter>
Parameter

There are two different options to specify the device family to be used:

a) Pass the list index from the list which shows all supported familys on start up

b) Pass the defined device name

Listindex Name

1 STM32F0xxxXx

2 STM32F1xxxx

3 STM32F2xxxXx

4 STM32F3xxxXx

5 STM32F4xxxx

6 STM32L1xxXX
Table 3.17: Available Parameter for -SetDeviceFamily
Example
JLinkSTM32.exe -SetDeviceFamily 6 // Selects STM32L1 series
JLinkSTM32.exe -SetDeviceFamily STM32L1xxxx // Selects STM32L1 series
-Exit

In general, the J-Link STM32 utility waits at the end of the unlock process for any
user input before application closes. This option allows to skip this step, so that the
utility closes automatically.

Syntax
-Exit <Mode>
Example

JLinkSTM32.exe -Exit 1 // J-Link STM32 utility closes automatically

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



155

3.13 J-Link Software Developer Kit (SDK)

The J-Link Software Developer Kit is needed if you want to write your own program
with J-Link / J-Trace. The J-Link DLL is a standard Windows DLL typically used from C
programs (Visual Basic or Delphi projects are also possible). It makes the entire
functionality of J-Link / J-Trace available through its exported functions, such as halt-
ing/stepping the CPU core, reading/writing CPU and ICE registers and reading/writing
memory. Therefore it can be used in any kind of application accessing a CPU core.
The standard DLL does not have API functions for flash programming. However, the
functionality offered can be used to program flash. In this case, a flash loader is
required. The table below lists some of the included files and their respective pur-
pose.

The J-Link SDK requires an additional license and is available upon request from
www.segger.com.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



156 CHAPTER 3 J-Link software and documentation package

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



157

Chapter 4
Setup

This chapter describes the setup procedure required in order to work with J-Link / J-
Trace. Primarily this includes the installation of the J-Link software and documenta-
tion package, which also includes a kernel mode J-Link USB driver in your host sys-
tem.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



158 CHAPTER 4 Setup

4.1 Installing the J-Link software and documentation
pack

J-Link is shipped with a bundle of applications, corresponding manuals and some
example projects and the kernel mode J-Link USB driver. Some of the applications
require an additional license, free trial licenses are available upon request from
www.segger.com.

Refer to chapter J-Link software and documentation package on page 69 for an over-
view of the J-Link software and documentation pack.

4.1.1 Setup procedure

To install the J-Link software and documentation pack, follow this procedure:

Note: We recommend to check if a newer version of the J-Link software and doc-
umentation pack is available for download before starting the installation. Check
therefore the J-Link related download section of our website:
http://www.segger.com/download_jlink.htm|

1. Before you plug your J-Link / J-Trace into your computer's USB port, extract the
setup tool Setup_JLinkARM_V<VersionNumber>.zip. The setup wizard will
install the software and documentation pack that also includes the certified J-
Link USB driver. Start the setup by double clicking Setup_JLinkARM_V<Version-
Number>.exe. The license Agreement dialog box will be opened. Accept the
terms with the Yes button.

#2 License Agreement E

Fleaze read the following license agreement. Use the scroll bar
to wiew the rest of this agreement.

Important - Read carefully: ﬂ

Thiz licenze iz a legal agreement between YOU [either an
individual or a single entity] and SEGGER Microcontroller
Systeme GmbH [called SEGGER).

By downloading and/or using J-Link ARM software, you
agree to be bound by the terms of this agreement.

1. LICENSE AGREEMENT

In thiz agreement 'Licenszor' shall mean SEGGER except

under the following circumstances

If Licensee acquired the product az a bundled component ofLI

Do you accept all the terms of the preceding license agreement?
If 0, click on the ez push button. 1f you select Mo, Setup will
close.

Yes | Mo I

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



159

2. The Welcome dialog box is opened. Click Next > to open the Choose Destina-
tion Location dialog box.

42 welcome E

Thiz program will install J-Link ARk %3.58c on your

% ‘welcome toJ-Link ARM % 3.58c Setup program.
= computer,

Click Cancel to quit Setup, click Next to continue with the
Setup program .

WARMIMG: This program iz protected by coppright law and
international treaties.

Unautharized reproduction or distribution of thiz program, or any
portion of it, may result in severe civil and criminal penalties,
and will be prozecuted to the mazimum extent possible under
law.

Mest » | Cancel |

3. Accept the default installation path C:\Program Files\SEG-
GER\JLinkARM_V<VersionNumber> or choose an alternative location. Confirm
your choice with the Next > button.

;‘?—_ Choose Destination Location

Setup will inztall J-Link ARM %358 in the following folder.

To inztall into a different folder, click Browse, and select
another folder.

*f'ou can chooge not to install J-Link ARM %3.58c by clicking
Cancel to exit Setup.

" Destination Folder

C:A ASEGGERSLinkARM_W358c Browse... |

Cancel |

4. The Choose options dialog is opened.
The Install J-Link Serial Port Driver installs the driver for J-Links with CDC

functionality. It is not preselected since J-Links without CDC functionality do not
need this driver.

The Create entry in start menu creates an entry in start menu. It is prese-
lected.

The Add shortcuts to desktop option can be selected in order to create a
shortcut on the desktop.

Accept or deselect the options and confirm the selection with the Next > button.

#2 Choose options E
Chooze options for creating shortcuts

¥ Create entry in start meru

¥ &dd shortcuts to desktop

Cancel

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



160 CHAPTER 4 Setup

5. The installation process will start.

Installing (=[] =]
£ &
_

— Current File
Copying file:
C:h L SLinkARR_W 358c\USBDriversLinkxB4. sys
AEEEEEEEEEEEEEEEEEEE

&l File:

Time Remaining 0 minutes 0 seconds

< Back | [dEwt |

6. The J-Link DLL Updater pops up, which allows you to update the DLL of an
installed IDE to the DLL verion which is included in the installer. For further infor-
mation about the J-Link DLL updater, please refer to J-Link DLL updater on
page 171.

[E] SEGGER J-Link DLL Updater V4.74a (23]

The following 3rd-party applications uzing JLinkARM.dil have been found:

[J14R Embedded Warkbench for ARM 6.40 (DLL V4.68 in "C:AToo\CHARNARM_VE40B ARMYbIn'") -
[J14R Embedded Warkbench for ARM (DLL ¥4.72 in "C:AT oo CHARNARM_VESOSYARM bR
[[]14R Embedded Warkbench for ARM 6,40 (DLL ¥4.63a in "C:AT oolhCHARNARM_VYE405\ARMbIn")
[[]14R Embedded Warkbench for ARM [DLL ¥4.72a in "C:AT oalhCHARNARM_YEEDTWARMbIn")
[[]14R Embedded Woarkbench for ARM 5.50 [DLL Y4.68 in "C:AToo\CYARVARM_VES0G WARMbIR")
[J14R Embedded Warkbench for ARM 6.10 [DLL V4.68 in "C:AToo\CHARNARM_VET0ANARMYbIn')
[[J14R Embedded Warkbench for ARM 6.21 [DLL V4.68 in "C:AToo\CHARNARM_VE21 CAARMYbIN')
[[J14R Embedded Warkbench for ARM 6.30 (DLL V4.68 in "C:AToo\CHARNARM_VE30AARMYbIn')
[[] Atmel Studio 6.0 [DLL V4.68 in "C:\Program Files [»86]\Atmeldtmel Studio B.0Yavidbg')

[[] Atmel Studio 6.1 [DLL V4.68 in "'C:\Pragram Files [36]\Atmel\Atmel Studio 6.14atbackend")

[J Keil MDK %4.72a [DLL ¥4.68a in "C:\Keil47 2a\ARM S egger”) -

m

Select Al Select Mone

Select the ones you would like to replace by this version.

The previous version will be renamed and kept in the zame folder, allowing manual “undo”.
I cage of doubt, do not replace existing DLL(s).

“Y'ou can always perform this operation at a later time via start menu.

Cancel |

7. The Installation Complete dialog box appears after the copy process. Close the
installation wizard with the Finish > button.
The J-Link software and documentation pack is successfully installed on your PC.

#2 Installation Complete ]

J-Link ARM % 3.58c has been successfully installed.

Press the Finish button to exit this installation.

[Earce! |

8. Connect your J-Link via USB with your PC. The J-Link will be identified and after
a short period the J-Link LED stops rapidly flashing and stays on permanently.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



161

4.2 Setting up the USB interface

After installing the J-Link software and documentation package it should not be nec-
essary to perform any additional setup sequences in order to configure the USB inter-
face of J-Link.

4.2.1 Verifying correct driver installation

To verify the correct installation of the driver, disconnect and reconnect J-Link / J-
Trace to the USB port. During the enumeration process which takes about 2 seconds,
the LED on J-Link / J-Trace is flashing. After successful enumeration, the LED stays
on permanently.

Start the provided sample application JLink.exe, which should display the compila-
tion time of the J-Link firmware, the serial number, a target voltage of 0.000V, a
complementary error message, which says that the supply voltage is too low if no
target is connected to J-Link / J-Trace, and the speed selection. The screenshot below
shows an example.

l;:-.',; C:\Program Files'\SEGGER" JLink ARM_¥386' JLink.exe

SEGGER J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43
i - compiled Jun 27 2888 19:42:28
H 3ELéEk ARM U6 compiled Jun 27 2888 18:35:51

=1
UTarget = B.0868U
JTAG speed: 5 kHz=
J-LinkZ>

In addition you can verify the driver installation by consulting the Windows device
manager. If the driver is installed and your J-Link / J-Trace is connected to your com-
puter, the device manager should list the J-Link USB driver as a node below "Univer-
sal Serial Bus controllers" as shown in the following screenshot:

_.5..'.;; Device Manager M= 3
| actonvew || « = | =2 /aan

=2, YMBASIC

D\g Batteries

Computer
[+ Disk drives
g Dizplay adapters

-8 DYDACD-ROM dives

+ 52 Floppy disk controllers

Floppy digk drives

IDE ATAAATAPI controllers
Keyboards

Mice and other pointing devices
Metwork, adapters

# Ports [COM & LPT)

= Sound, video and game controllers
System devices

¢ Univerzal Serial Bus controllers
Intel 823714B/ER PCl to USBE Universal Host Controller
I-Link driver:

USE Root Hub

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



162 CHAPTER 4 Setup

Right-click on the driver to open a context menu which contains the command Prop-
erties. If you select this command, a J-Link driver Properties dialog box is opened
and should report: This device is working properly.

J-Link driver Properties EHE

General | Ditiver |

G%b J-Link driver
Device type: Univerzal Serial Bus controllers
Manufacturer: Segger
Locatior: J-Link
— Device statu:
Thiz device iz working properly. ;I

If you are having problems with this device, click Troubleshooter to
start the troubleshoater.

Device usage:
Use this device [enable) j

(] 3 | Cancel |

If you experience problems, refer to the chapter Support and FAQs on page 465 for
help. You can select the Driver tab for detailed information about driver provider,
version, date and digital signer.

J-Link driver Properties EHE

General  Driver |

9@ i J-Link driver
Diriver Provider: Segger
Criver Date: 07-01-09

Criver Version: 2650
Digital Signer: Microzoft \Windows Hardware Compatibility Publ
To view details about the driver files loaded for this device, click Driver

Detailz. To uninstall the driver files for this device, click Uningtall. To update
the driver files for this device, click Lpdate Driver.

Uningtall | Update Driver... |

(] 3 | Cancel |

4.2.2 Uninstalling the J-Link USB driver
If J-Link / J-Trace is not properly recognized by Windows and therefore does not enu-
merate, it makes sense to uninstall the J-Link USB driver.
This might be the case when:

e The LED on the J-Link / J-Trace is rapidly flashing.
e The J-Link / J-Trace is recognized as Unknown Device by Windows.

To have a clean system and help Windows to reinstall the J-Link driver, follow this
procedure:

1. Disconnect J-Link / J-Trace from your PC.
2. Open the Add/Remove Programs dialog (Start > Settings > Control Panel
> Add/Remove Programs) and select Windows Driver Package - Segger

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



163

(jlink) USB and click the Change/Remove button.
% Add/Remove Programs M= 3

Currently installed programs: Sork by:l Mame - I
BN 3-Link ARM V3. 66a =

e Windows Driver Package - Segger {jlink) USB
“ {01,09,/2007 2.6.5.0)

Change/Remove

3. Confirm the uninstallation process.

@ All devices uzing this driver will be removed. Do you wish to continue?

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



164 CHAPTER 4 Setup

4.3 Setting up the IP interface

Some emulators of the J-Link family have (or future members will have) an additional
Ethernet interface, to communicate with the host system. These emulators will also
come with a built-in web server which allows configuration of the emulator via web
interface. In addition to that, you can set a default gateway for the emulator which
allows using it even in large intranets. For simplicity the setup process of J-Link Pro
(referred to as J-Link) is described in this section.

4.3.1 Configuring J-Link using J-Link Configurator

The J-Link software and documentation package comes with a free GUI-based utility
called J-Link Configurator which auto-detects all J-Links that are connected to the
host PC via USB & Ethernet. The J-Link Configurator allows the user to setup the IP
interface of J-Link. For more information about how to use the J-Link Configurator,
please refer to J-Link Configurator on page 167.

4.3.2 Configuring J-Link using the webinterface

All emulators of the J-Link family which come with an Ethernet interface also come
with a built-in web server, which provides a web interface for configuration. This
enables the user to configure J-Link without additional tools, just with a simple web
browser. The Home page of the web interface shows the serial number, the current
IP address and the MAC address of the J-Link.

’>’_SEGGEFI J-Link Pro Webserver SEGGER Microcontroller

Home

Metwork information Home
Metwark configuration Emulator information:
System information Firmware build: Dec 22 2008 09:24:26

Serial Number:
Emulator status

about Network information:

Configuration type: User assigned
IP Address: 192.168,90.11 /16
Gateway: 192.168.1.1

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



165

The Network configuration page allows configuration of network related settings
(IP address, subnet mask, default gateway) of J-Link. The user can choose between
automatic IP assignment (settings are provided by a DHCP server in the network)
and manual IP assignment by selecting the appropriate radio button.

’>’_SEGGEFI J-Link Pro Webserver SEGGER Microcontroller

Home

Network configuration

Metwork information

Metwork configuration ¢ Automatic & Manual
System information 7 DHep
IP address: 192

Emulator status
Subnet mask: |255

About

Z §|§
177
1A

Gateway: 192

Change |

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



166 CHAPTER 4 Setup

4.4 FAQs

Q: How can I use J-Link with GDB and Ethernet?
A: You have to use the J-Link GDB Server in order to connect to J-Link via GDB and
Ethernet.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



4.5 J-Link Configurator

167

Normally, no configuration is required, especially when using J-Link via USB. For spe-
cial cases like having multiple older J-Links connected to the same host PC in paral-
lel, they need to be re-configured to be identified by their real serial number when
enumerating on the host PC. This is the default identification method for current J-
Links (J-Link with hardware version 8 or later). For re-configuration of old J-Links or
for configuration of the IP settings (use DHCP, IP address, subnet mask, ...) of a J-
Link supporting the Ethernet interface, SEGGER provides a GUI-based tool, called J-
Link Configurator. The J-Link Configurator is part of the J-Link software and docu-

mentation package and can be used free of charge.
=l

2

Computer

SEGGER
I-Link ARM V4, 35¢
I-Link ARM V4, 358
BN 3-Flash ARM

A 3-Link Commander
4 J-Link DLL Updater
8 3-Link GDB Server via JTAG
E Jink GDB Server via SWD
[EJ 3-Link RDI Config
BA 3-Link TCP-IP Server
E J-Mem
|| License Agreement
3 Remove J-Link ARM V4,352
Eval Board Flash Programmers

Control Panel

Devices and Printers

Default Programs

Help and Support

Run...
Manuals

Processor Spedific Utilities
Release Notes

-

Back

@J Shut down | » |

I |Search programs and files

4.5.1

Configure J-Links using the J-Link Configurator

A J-Link can be easily configured by selecting the appropriate J-Link from the emula-

tor list and using right click -> Configure.

Emulators connected via USE:

=101
Refresh rate: | Marmal d

Nicknarne

Update firmware
Replace firmware

Emulators connected via TCPAP:

i Fi

Select all I Select nonal

| B | Praduct | Mickname | SN | IP Address | MAC Address | Hast Firmware | Ernulator Firrmuare | React Time | Connections | -
s 0 J-Link &RM-Prov3.00 173001007 19216866 00:22:C70203EF 2011 Sep B16:37 2011 Aug 181357 [0Id) 0.49Tms o
s 1 J-Link ARM-Pro 3,00 173001008 19216865(..  O0Z2CFO203F0 2011 Sep 616:37 2011 Aug 181957 (Old) 0.528ms 0
e 2 J-Link ARM-Pra*3.00 173001040 19216884 (.  O02ZCRO20410 2011 Sep B 16:37  2011.ul 26 17:24 (Old) 0.416ms 0
e 3 J-Link ARM-Pra*3.00 172001041 19216887 (. O02ZCTO020471 2011 Sep & 16:37 2011 .Jul 26 17:24 (Old) 0.407ms 0
[CI# 4 JLink ARM-Pra¥3.00 173001042 192168.8E6(.  00:22ZCF02:0472 2011 SepE16:37 2011 Sep 6 16:37 0.622ms 0
[Je 5  J-Link ARM-Pra%3.00 173001043 19216882 00:22:C7:0204:13 2011 Sep 616:37 2011 Aug 11 1730 (0ld) 0.406ms 0 —
e &  J-Link ARM-Pro%3.00 173001044 19216883 (. O022CT020474 2011 Sep B 16:37  2011.Jul 26 17:24 (Ol 0.421ms 0
e 7 J-Link ARM-Pra*3.00 173001045 192168.86(..  O02ZCTO0204158 2011 Sep B 16:37 2011 Sep 6 16:37 0.430ms 0
e &  JLink ARM-Pra%3.00 173001046 192168.4.253.. 0022CT.020476 2011 Sep G 16:37 2011 Sep 6 16:37 0.426ms 0
[J# 3 JLink ARM-Pra*3.00 173001048 192168.62(..  00:22CP020478 2011 SepG16:37 2011 Sep 6 16:37 0.526ms 0
[J® 10  J-Link ARM-Pro%3.00 173001043 15216864 00:22:C7020415 2011 Sep B16:37 2011 Jul 26 17:24 [0ld) 0.403ms 0|
Select all I Select none I
Log:
SEGGER J-Link Conf laur‘at ion U4,26e (betal :I
Logging started @ 2E11-09-21 @3:19
=
Update fimware of selected emulators | Close |

|Reale|I ‘Seard’mg for emulators: Ready

|2[] emulators found v

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



168

CHAPTER 4 Setup

In order to configure an old J-Link, which uses the old USB 0 - 3 USB identification
method, to use the new USB identification method (reporting the real serial number)
simply select "Real SN" as USB identification method and click the OK button. The
same dialog also allows configuration of the IP settings of the connected J-Link if it

supports the Ethernet interface.

Configure J-Link

—E |
General

Product ISEGGEH J-Link AR Pro/3.00

SN [173000305

Mickname I

— USB |dentification
IHeaI SM Vl Real SM I‘I?BDDDSDS

P Configuration
" Automatic [DHCF]  + Manual

IPaddressI 192 | 168 I 90 I 33
Subnet mask | 255 .| 255 I 1] I 1]

Gateway | 255 | 265 | 285 | 255

Cancel

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



169

4.6 J-Link USB identification

In general, when using USB, there are two ways in which a J-Link can be identified:

e By serial number
e By USB address

Default configuration of J-Link is: Identification by serial number. Identification via
USB address is used for compatibility and not recommended.

Background information
"USB address" really means changing the USB-Product ID (PID).

The following table shows how J-Links enumerate in the different identification
modes.

Identification PID Serial number

Serial number is real serial number of the
0x0101 . )
J-Link or user assigned.

USB address 0 (Deprecated) |0x0101 123456
USB address 1 (Deprecated) | 0x0102 123456
USB address 2 (Deprecated) | 0x0103 123456
USB address 3 (Deprecated) |0x0104 123456

Table 4.1: J-Link enumeration in different identification modes

Serial number (default)

4.6.1 Connecting to different J-Links connected to the same
host PC via USB
In general, when having multiple J-Links connected to the same PC, the J-Link to

connect to is explicitly selected by its serial number. Most software/debuggers pro-
vide an extra field to type-in the serial number of the J-Link to connect to.

The following screenshot shows the connection dialog of the J-Flash software:

Project settings ﬂ E

General | Targetlnterfacel CPU I Flazh I Productionl

J-Flash-5RM is a software forJ-Link ARB. [t
requires a license, which can be obtained from
SEGGER [wwww. segger.com).

Thiz software iz capable of programming the flazh

memory of several ARM microz, az well az
external Flash connected to ARM cores.

—Connection to J-Link———————————

" USE |DeviceD 'l
| {* USESH |5SUDxxxx Select |

 ICFP |

r— Uszer interface mode

* Engineering [More options, typically used for setup]

= Simplified [Less options, typically used for production]

QK I Cancel Apply

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



170

The following screenshot shows the connection dialog of IAR EWARM:

Options for node “Generic_Cortex-M" E
Category:

CiC++ Compiler
Assembler
Cubput Converter
Customn Build
Build Actions
Linker
Debugger

Sirmulator

Angel

GDE Server

IAR. ROM-manitar

J-Linkj1-Trace

TI Stellaris
Macraigor

PE micra

ROI

ST-LIMK
Third-Party Driver
TI ®DS100

CHAPTER 4

General Options

Factory Settings |

Setup  Connection | B[eakpointsl

i~ Communication

& USE: ISeriaI number j Senial no: ISSDDxxxx
€ ICRAP:  [IF addiess =l
|F address: Iaaa.bbb.ccc.ddd Serial fo: I
i~ Interface JTAG scan chain
& ITAG [~ JTAG scan chain with multipls targets
T&E rumber: |0
5w

| San chaity cotitaing non-F devices

Freceeding bits: ID

" Log communication

|$F'F| 0J_DIR$cspycomm.log

|

()3 I Cancel |

Setup

A debugger / software which does not provide such a functionality, the J-Link DLL
automatically detects that multiple J-Links are connected to the PC and shows a
selection dialog which allows the user to select the appropriate J-Link to connect to.

-

SEGGER J-Link V4.15y (beta) - Emulater selecticn

[S)

Fleaze select the emulator you want to connect to:

# | USE Identification

1 SW 4234367295

o]

Cancel

L

S

So even in IDEs which do not have an selection option for the J-Link, it is possible to
connect to different J-Links.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



171

4.7 Using the J-Link DLL
4.7.1 Whatis the JLink DLL?

The J-LinkARM.d1l1l is a standard Windows DLL typically used from C or C++, but
also Visual Basic or Delphi projects. It makes the entire functionality of the J-Link / J-
Trace available through the exported functions.

The functionality includes things such as halting/stepping the ARM core, reading/
writing CPU and ICE registers and reading/writing memory. Therefore, it can be used
in any kind of application accessing a CPU core.

4.7.2 Updating the DLL in third-party programs

The JLink DLL can be used by any debugger that is designed to work with it. Some
debuggers are usually shipped with the J-Link DLL already installed. Anyhow it may
make sense to replace the included DLL with the latest one available, to take advan-
tage of improvements in the newer version.

4.7.2.1 Updating the J-Link DLL in the IAR Embedded Workbench for
ARM (EWARM)

It is recommended to use the J-Link DLL updater to update the J-Link DLL in the IAR
Embedded Workbench. The IAR Embedded Workbench IDE is a high-performance
integrated development environment with an editor, compiler, linker, debugger. The
compiler generates very efficient code and is widely used. It comes with the J-
LinkARM.d11l in the arm\bin subdirectory of the installation directory. To update this
DLL, you should backup your original DLL and then replace it with the new one.

Typically, the DLL is located in C:\Program Files\IAR Systems\Embedded Work-
bench 6.n\arm\bin\.

After updating the DLL, it is recommended to verify that the new DLL is loaded as
described in Determining which DLL is used by a program on page 172.

J-Link DLL updater

The J-Link DLL updater is a tool which comes with the J-Link software and allows the
user to update the JLinkarRM.dl1l in all installations of the IAR Embedded Work-
bench, in a simple way. The updater is automatically started after the installation of a
J-Link software version and asks for updating old DLLs used by IAR. The J-Link DLL
updater can also be started manually. Simply enable the checkbox left to the IAR
installation which has been found. Click Ok in order to update the JLinkARM.dll
used by the IAR installation.

3, SEGGER J-Link DLL Updater ¥3.86 B

The following 3rd-party applications uzing JLinkARM.dll have been found:

[[]14R Embedded Warkbench for ARM 4.404 (DLL V3.20h in "C:AT oohCHARNARM V4404 4R M bin")

[]14R Embedded Warkbench for ARM 4.414 (DLL ¥3.80c in "C:AT oohCHARNARM_V441 AMARMbIR")

[[]14R Embedded Warkbench for ARM 4.424 [DLL V3,84 in "C:AToo\CHARNARM_V44245AR M bin'")

14R Embedded Workbench for ARM 4.314 [DLL ¥3.82 in "CATooMCHARNWARM_WV4 ANARMBEIR')

[[]14R Embedded Warkbench for ARM 4.304 (DLL ¥3.80c in "C:AT oohCHARNARM_V430454RMbin")

[[114R Embedded Warkbench for ARM 5.10 (DLL ¥3.78d in "C:AT oohCHARARM_WS1 04WARMYbIn")

[[]14R Embedded Warkbench for ARM 5.20 (DLL ¥3.85f in "C:AT oohCAARNARM_W520_betaB854ARMYbin'")
14R Embedded Workbench for ARM 5.20 [DLL V3.85) in "C:AT ool CMARNARM_WE20_beta302\AFMbin')
[[]14R Embedded Warkbench for ARM 5.17 [DLL Y3.78 in "C:AT oo CHARNARM_VST1_BETA_BO7 ARMYbIn')
[]14R Embedded Warkbench for ARM 5.11 [DLL Y3.85h in "C:AT ook CAARNARM_WE11_97994ARMbIn") b
F 14F Embedded ‘Workbench for AR 520 [DLL W3.81k in "C:\Program Filesh AR SystemshEmbedded Workbench 5.0 [E'/ARM 5 20 ALPHA]\AHM;LI

| v

Select Al Select Mone |

Select the ones you would like to replace by this version.
The previous version will be renamed and kept in the zame folder, allowing manual “'undo”.
I cage of doubt, do not replace existing DLL(s).

*f'ou can always perform this operation at a later time via start menu.
Ok I Cancel

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



172 CHAPTER 4 Setup

4.7.3 Determining the version of JLink DLL

To determine which version of the JLinkARM.dll you are using, the DLL version can be
viewed by right clicking the DLL in explorer and choosing Properties from the con-
text menu. Click the version tab to display information about the product version.

jlinkarm.dll Properties 2=l

General Wersion | Securityl Summaryl
File wersion: ~ 3.0.4.0
Description:  SEGGER J-Link ARM interface DLL

Copyright: Copyright © 2004, 2005

r— Other version infarmation

Item name: Walue:
Compary Mame 3.00d ;I
Intemal Mame
Language

Original Filename
Product Mame

QK I Cancel | Apply |

4.7.4 Determining which DLL is used by a program

To verify that the program you are working with is using the DLL you expect it to use,
you can investigate which DLLs are loaded by your program with tools like Sysinter-
nals’ Process Explorer. It shows you details about the DLLs used by your program,
such as manufacturer and version.

8§ Process Explorer - Sysinternals: www.sysinternals.com 10l =|

File ©Options Yiew Process Find DLL  Help

BalrEEs3 & a6 INIINGE

Process | FID | CPU | Diescription | Compan... |
E = Spstem |dle Process 1] 93
T Interupts n'a Hardware Interupts
| DPC: n'a Defered Procedu...
=l System ]
= @. explorer. exe 1148 ‘Windows Explorer  Microgoft...
L procesp.exe 480 1 Syzinternals Proc...  Sysintern...
XlarldePM.exe 1460 |4F Embedded ... |AR Spst...

Mame ¢ | Diescription | Company Marne | ergion | -
I K.evboard Language Indicator Shell...

Microzoft Corporation

SEGGER J-Lin { interface DLL  SEGGER Mi ] . a0
Kemel.dl 1&F C-SPY Debugger Kemel 14F Spstems 4.06.0000. 0000
kemel32.dl Windows MT BASE APl Client DLL  Microsoft Corporation 5.00.2195.6688 |
locale.nls
Logfindowe. dil 18R Log ‘Window 14F Spstems 4.06.0000. 0000
lz32.dll LZ Expand/Compress APl DLL Microzoft Corporation h.00.2195.6611
MFCF.dll MFCOLL Shared Library - Retail Ve... Microzoft Corporation 7.10.3077.0000
mpr.dil Multiple Provider Router DLL Microzoft Corporation h.00.2195.6611 -

CPU Usage: 1% |C0mmit Charge: 12.24% |Pr0cesses: 34 |

Y

Process Explorer is - at the time of writing - a free utility which can be downloaded
from www.sysinternals.com.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



173

4.8 Getting started with J-Link and ARM DS-5

J-Link supports ARM DS-5 Development via the RDDI protocol.

For commercially using J-Link via RDDI in ARM DS-5, an RDI/RDDI license is
required. J-Link models which come with an RDI license, can also be used via RDDI.
RDDI can be evaluated free of charge.

In order to use J-Link in ARM DS-5 Development Studio, the RDDI DLL in DS-5 needs
to be replaced by the SEGGER version of this DLL. The SEGGER version of the RDDI
still allows using ARM’s DSTREAM in DS-5. After installing the J-Link software and
documentation package, the J-Link DLL Updater is started which allows easily updat-
ing the RDDI DLL in DS-5. An backup of the original DLL is made automatically.

4.8.1 Replacing the RDDI DLL manually

If J-Link DLL Updater is unable to find a DS-5 installation and does not list it for
updating, the RDDI DLL can always be replaced manually. For more information
about how to manually update the RDDI DLL, please refer to
SJLINK_INST DIRS\RDDI\ManualInstallation.txt.

4.8.2 Using J-Link in DS-5 Development Studio

Please follow the following steps, in order to use J-Link in DS-5, after replacing the
RDDI DLL accordingly:

e Connect J-Link and target.

e Open ARM DS-5.

e Open DS-5 Project for target.

e Open pebug Configurations...

e Select DS-5 Debugger on the left side.

e Press New button.

e In the Connection tab, select The target from the device database, Bare Metal
Debug, Debug via DSTREAM/RVI.

e C(Click on the Browse... button right to the Text box at the bottom Connection.

e In the Dialog select the J-Link which is connected to the target (e.g.
JLinkUSB:174200001).

Type Tame Details
J-LinklUSE: 59200005 J-Link.
J-LinklISE: 174200001

J-LinkIP:192,168,11,122 J-Link Pro
J-LinkIP:192,168.6.4 J-Link ARM-...
J-LinkIP:192,168.6.1 J-Link ARM-...
Unknown J-LinkIP:192,168.6.2 J-Link ARM-...

oy
'\? y [8]4 I Cancel |

e Click ok.
Add the device name to the connection string (e.g. JLinkUSB:174200001 :Device

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



174

STM32F103ZG).

& Debug Co

igurations

CHAPTER 4

Create, manage, and run configurations

e IEEY

Mame: |JLink_FIash_blinky-MCBSTMSZE-exampIe

Itype filker bext

..... [E] cic++ Application

----- [€] cfc++ Attach to Application
----- [€] CjC++ Postmartem Debugger
----- [€] C/C++ Remote Application
El-#% DS-5 Debugger

----- 5 DSTRAM_Atmel-ATI154M
----- 5 Dstream

----- 5 DSTREAM_flash_blinky-M¢
----- s Lirk

----- 5 Jink_Atmel-AT915AMIG2
----- T 1Lirk_flash_blinky-MCEST!
----- 5 Jlink_STM32F103_5TM32,
----- 5 Jlink_STM32F103_5TM32,
----- 5 ILirk_STM32F40G_Eval_D
----- 5 5TM32ZF103_STM32_SK_D
----- £ STM3ZF103_STM32_SK_R
----- 5 STM32F40G_Eval_Debug
----- 5 5TM32F40G_Eval_Releast
----- s ULink

@' Iron Python Run

@ Tron Python unitkest

Java Applet

Java Application

~Ju it

- Jythan run

@ Jythan unittest

----- B Launch Group

PyDev Django

----- 43 pyDev Google App Run

----eP Python Run

Pythaon unittest

----- q Remaote Java Application

<= Connection . [{gry Files | #5 Debuager ‘-’F 035 Awareness | (9= Arguments Environment
u

—Select target

Select the manufacturer, board, project bype and debug operation ko use, Currently selected:
Keil | Keil MCBSTM3ZE Evaluation Board [ Bare Metal Debug [ Debug of Cortex-M3 via DSTREAM/RYI

Icytecture

=1 Kedl

EJ- Keil MCESTM32E Evaluation Board

| - Bare Metal Debug

: Debug and Trace of Cortex-M3 via DSTREAM/RYL
Debug of Cortex-M3 via DSTREAMIRVI

Debug of Cortex-M3 via ULINKZ

Debug of Cortex-M3 via ULINKpro

[#- Keil MCBSTR Evaluation Board

H- Kyoto

- L3 Electronics
- LOGIC PO

- Marvel

H- Mindspeed

£ Mistral
H
H
H
H
]

- Mufront

- nvIDIA

- MEP

- Crigenboard.org
- pandaboard.org

o W0 I O O s O o O e B B e B

[5-5 Debugger will connect to a DSTREAM or RYI to debug a bare metal application.

[~ Connections

Bare Metal Debug | Connectioii J-LinklJSE: 174200001 : Device STMSZFIDSZGI Browse, .. |

4 I I 3
—I Apply Revert |
Filter matched 32 of 32 items
@j Debug I Close

e C(Click apply.

e In the Files tab, select the application to download.
e In the pebugger tab, select 'Debug from symbol' and enter main or select bpebug
from entry point.

e C(Click apply.

Start a new debug session with the newly created debug configuration.
Now the debug session should start and downloaded the application to the tar-

get.

J-Link / J-Trace (UM08001)

Setup

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



175

Chapter 5
Working with J-Link and J-Trace

This chapter describes functionality and how to use J-Link and J-Trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



176 CHAPTER 5 Working with J-Link and J-Trace

5.1 Connecting the target system

5.1.1 Power-on sequence

In general, J-Link / J-Trace should be powered on before connecting it with the target
device. That means you should first connect J-Link / J-Trace with the host system via
USB and then connect J-Link / J-Trace with the target device via JTAG. Power-on the
device after you connected J-Link / J-Trace to it.

5.1.2 Verifying target device connection

If the USB driver is working properly and your J-Link / ]J-Trace is connected with the
host system, you may connect J-Link / J-Trace to your target hardware. Then start
JLink.exe which should now display the normal J-Link / J-Trace related information
and in addition to that it should report that it found a JTAG target and the target’s
core ID. The screenshot below shows the output of JLink.exe. As can be seen, it
reports a J-Link with one JTAG device connected.

l;:-.',; C:\Program Files'\SEGGER" JLink ARM_¥386' JLink.exe

SEGGER J-Link Commander U3.86 (*?' for helpd

Compiled Jun 27 2888 19:42:43

DLL version U3.86,. compiled Jun 27 2888 19:42:28

Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51
an

JTAG speed: 5 kHz=

Info: TotallRLen = 4, IRPrint = Bx81
Found 1 JTAG device,., Total IRLen = 4:

Id of device #8: Bx3FBFAFAF
Found ARM with core Id Bx3FBFBFBF (ARM?7>
J-Link>

5.1.3 Problems

If you experience problems with any of the steps described above, read the chapter
Support and FAQs on page 465 for troubleshooting tips. If you still do not find appro-
priate help there and your J-Link / J-Trace is an original SEGGER product, you can
contact SEGGER support via e-mail. Provide the necessary information about your
target processor, board etc. and we will try to solve your problem. A checklist of the
required information together with the contact information can be found in chapter
Support and FAQs on page 465 as well.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



177

5.2 Indicators

J-Link uses indicators (LEDs) to give the user some information about the current
status of the connected J-Link. All J-Links feature the main indicator. Some newer J-
Links such as the J-Link Pro / Ultra come with additional input/output Indicators. In
the following, the meaning of these indicators will be explained.

5.2.1 Main indicator

For J-Links up to V7, the main indicator is single color (Green). J-Link V8 comes with
a bi-color indicator (Green & Red LED), which can show multiple colors: green, red
and orange.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



5.2.1.1

CHAPTER 5 Working with J-Link and J-Trace

Single color indicator (J-Link V7 and earlier)

Indicator status

Meaning

GREEN, flashing at 10 Hz

Emulator enumerates.

GREEN, flickering

Emulator is in operation. Whenever the emulator is exe-
cuting a command, the LED is switched off temporarily.
Flickering speed depends on target interface speed. At
low interface speeds, operations typically take longer and
the "OFF" periods are typically longer than at fast
speeds.

GREEN, constant

Emulator has enumerated and is in idle mode.

GREEN, switched off for
10ms once per second

J-Link heart beat. Will be activated after the emulator
has been in idle mode for at least 7 seconds.

GREEN, flashing at 1 Hz

Emulator has a fatal error. This should not normally hap-
pen.

Table 5.1: J-Link single color main indicator

5.2.1.2 Bi-color indicator (J-Link V8)

Indicator status

Meaning

GREEN, flashing at 10 Hz

Emulator enumerates.

GREEN, flickering

Emulator is in operation. Whenever the emulator is exe-
cuting a command, the LED is switched off temporarily.
Flickering speed depends on target interface speed. At
low interface speeds, operations typically take longer and
the "OFF" periods are typically longer than at fast
speeds.

GREEN, constant

Emulator has enumerated and is in idle mode.

GREEN, switched off for
10ms once per second

J-Link heart beat. Will be activated after the emulator
has been in idle mode for at least 7 seconds.

ORANGE

Reset is active on target.

RED, flashing at 1 Hz

Emulator has a fatal error. This should not normally hap-
pen.

Table 5.2: J-Link single color LED main color indicator

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



179

5.2.2 Input indicator
Some newer J-Links such as the J-Link Pro/Ultra come with additional input/output

indicators. The input indicator is used to give the user some information about the
status of the target hardware.

5.2.2.1 Bi-color input indicator

Indicator status Meaning
GREEN Target voltage could be measured. Target is connected.
ORANGE Target voltage could be measured. RESET is pulled low

(active) on target side.

RESET is pulled low (active) on target side. If no target is
RED . ; )
connected, reset will also be active on target side.

Table 5.3: J-Link bi-color input indicator

5.2.3 Output indicator

Some newer J-Links such as the J-Link Pro/Ultra come with additional input/output

indicators. The output indicator is used to give the user some information about the
emulator-to-target connection.

5.2.3.1 Bi-color output indicator

Indicator status Meaning
OFF Target power supply via Pin 19 is not active.
GREEN Target power supply via Pin 19 is active.
Target power supply via Pin 19 is active. Emulator pulls
ORANGE RESET low (active).
RED Emulator pulls RESET low (active).

Table 5.4: J-Link bi-color output indicator

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



180 CHAPTER 5 Working with J-Link and J-Trace

5.3 JTAG interface

By default, only one device is assumed to be in the JTAG scan chain. If you have mul-
tiple devices in the scan chain, you must properly configure it. To do so, you have to
specify the exact position of the CPU that should be addressed. Configuration of the scan
is done by the target application. A target application can be a debugger such as the
IAR C-SPY® debugger, ARM’s AXD using RDI, a flash programming application such
as SEGGER'’s J-Flash, or any other application using J-Link / J-Trace. It is the applica-
tion’s responsibility to supply a way to configure the scan chain. Most applications
offer a dialog box for this purpose.

5.3.1 Multiple devices in the scan chain

J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hard-
ware where multiple chips are connected to the same JTAG connector. As can be seen
in the following figure, the TCK and TMS lines of all JTAG device are connected, while
the TDI and TDO lines form a bus.

—|To1 Devicel Ttop— pltoi Device 0 Toop—

= =
522 528
- - - - - -
XX +TT
¥ 0 F
7]
PEE
L 4TDI TO|@——— |
JTAG

Currently, up to 8 devices in the scan chain are supported. One or more of these
devices can be CPU cores; the other devices can be of any other type but need to
comply with the JTAG standard.

5.3.1.1 Configuration

The configuration of the scan chain depends on the application used. Read JTAG
interface on page 180 for further instructions and configuration examples.

5.3.2 Sample configuration dialog boxes

As explained before, it is the responsibility of the application to allow the user to con-
figure the scan chain. This is typically done in a dialog box; some sample dialog
boxes are shown below.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



SEGGER J-Flash configuration dialog

181

This dialog box can be found at Options|Project settings.

General  Target Interface | CPU I Flash I Productionl

NS |

—JTAG speed before int—————————— JTAG zpeed after init
= Auto selection = Auto selection
= Adaptive clocking = Adaptive clocking
|30 | kHz = 14000 | kHz

{* Simple configuration  Position Im 'l IRLen IU

Ois clozestto TDO.  Sum of IRLens of devices closer
to TDO. IRLen of ARM7/ARMI

—JTAG scan chain information
Werify | Detect
= Auto detection

" Detailed configuration e e
ﬂl Devicename | 1D | IFLen |
oo
T
Aidd Imsert | Delete | Edit | g | [own |

QK I Cancel | Apply

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



182 CHAPTER 5 Working with J-Link and J-Trace

SEGGER J-Link RDI configuration dialog box

This dialog can be found under RDI|Configure for example in IAR Embedded Work-
bench®. For detailed information check the IAR Embedded Workbench user guide.

J-Link RDI Configuration EHE

Generall It JTAG |Flash I Breakpointsl CPU I
—JTAG speed

{* Auto selection
(" Adaptive clocking
|00 ~ | kHz

—v UTAG scan chain with multiple devices

Position ID 'l IR len IU

Ois clozest to TDI. Sum of IRLens of devices closer to TDI.
IFLen of AR chips iz 4.

ety JTAG canfig |
QK I Cancel | Lpply |

IAR J-Link configuration dialog box
This dialog box can be found under Project |Options.

Options for node “at91sam7s-ek™ E

Category: Factory Settings |

General Options
CiC++ Compiler
Assembler

Output Carrverter Setup  Connection | Breakpaints |
Custom Build r— Commurication
Build Actions -
o IDewce 0 vl
Linker Lt
Debugger " ICPAP Iaaa.bbb.ccc.ddd
Sirmulator
Angel rInterface JTAG sean chain
DB Server ¥ JTAG scan chain with multiple targets
IAR. ROM-manitar & JTAG
I-Link)J-Trace = TAP number: |0
LMI FTDI WD W Scan chain containg non-5AM devices
Macraigor b |0
RO Freceeding bits: I
Third-Party Driver
™ Log communication
[(TO0LRIT_DIRg espycomm.iog [

()3 I Cancel |

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



183

5.3.3 Determining values for scan chain configuration

When do | need to configure the scan chain?

If only one device is connected to the scan chain, the default configuration can be
used. In other cases, J-Link / J-Trace may succeed in automatically recognizing the
devices on the scan chain, but whether this is possible depends on the devices
present on the scan chain.

How do | configure the scan chain?

2 values need to be known:

e The position of the target device in the scan chain.
e The total number of bits in the instruction registers of the devices before the tar-
get device (IR len).

The position can usually be seen in the schematic; the IR len can be found in the
manual supplied by the manufacturers of the others devices.

ARM7/ARM9 have an IR len of four.
Sample configurations

The diagram below shows a scan chain configuration sample with 2 devices con-
nected to the JTAG port.

—»|To1 Devicel Ttop— 3 ltoi Device 0 Toop—

- -

528 528

- F F F

+AA +TT
x 0 k=
2EE

L 7TDI TDOl@¢— |

JTAG

Examples

The following table shows a few sample configurations with 1,2 and 3 devices in dif-
ferent configurations.

D_evice 0 D_evice 1 D_evice 2 Position IR len
Chip(IR len) | Chip(IR len) | Chip(IR len)

ARM (4) - - 0 0

ARM (4) Xilinx(8) - 0 0

Xilinx(8) ARM (4) - 1 8

Xilinx(8) Xilinx(8) ARM (4) 2 16

Table 5.5: Example scan chain configurations

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



184 CHAPTER 5 Working with J-Link and J-Trace
D_evice 0 D_evice 1 Qevice 2 Position IR len
Chip(IR len) | Chip(IR len)| Chip(IR len)
ARM (4) Xilinx(8) ARM(4) 0 0
ARM(4) Xilinx(8) ARM (4) 2 12
Xilinx(8) ARM (4) Xilinx(8) 1 8

Table 5.5: Example scan chain configurations

The target device is marked in blue.

5.3.4 JTAG Speed

There are basically three types of speed settings:

e Fixed JTAG speed.
e Automatic JTAG speed.
e Adaptive clocking.

These are explained below.

5.3.4.1 Fixed JTAG speed

The target is clocked at a fixed clock speed. The maximum JTAG speed the target can
handle depends on the target itself. In general CPU cores without JTAG synchroniza-
tion logic (such as ARM7-TDMI) can handle JTAG speeds up to the CPU speed, ARM
cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S,
ARM966EJ]-S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

5.3.4.2 Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

Note: On ARM cores without synchronization logic, this may not work reliably,
because the CPU core may be clocked slower than the maximum JTAG speed.

5.3.4.3 Adaptive clocking

If the target provides the RTCK signal, select the adaptive clocking function to syn-
chronize the clock to the processor clock outside the core. This ensures there are no
synchronization problems over the JTAG interface.

If you use the adaptive clocking feature, transmission delays, gate delays, and syn-
chronization requirements result in a lower maximum clock frequency than with non-
adaptive clocking.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



185

5.4 SWD interface

The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port
with a clock (SWDCLK) and a single bi-directional data pin (SWDIO), providing all the
normal JTAG debug and test functionality. SWDIO and SWCLK are overlaid on the
TMS and TCK pins. In order to communicate with a SWD device, J-Link sends out
data on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one
bit of data is transmitted or received on the SWDIO.

5.4.1 SWD speed

Currently only fixed SWD speed is supported by J-Link. The target is clocked at a
fixed clock speed. The SWD speed which is used for target communication should not
exceed target CPU speed * 10. The maximum SWD speed which is supported by J-
Link depends on the hardware version and model of J-Link. For more information
about the maximum SWD speed for each J-Link / J-Trace model, please refer to J-
Link / J-Trace models on page 30.

54.2 SWO

Serial Wire Output (SWO) support means support for a single pin output signal from
the core. The Instrumentation Trace Macrocell (ITM) and Serial Wire Output (SWO)
can be used to form a Serial Wire Viewer (SWV). The Serial Wire Viewer provides a
low cost method of obtaining information from inside the MCU.

Usually it should not be necessary to configure the SWO speed because this is usually
done by the debugger.

5.4.2.1 Max. SWO speeds

The supported SWO speeds depend on the connected emulator. They can be retrieved
from the emulator. To get the supported SWO speeds for your emulator, use J-Link
Commander:

J-Link> si 1 //Select target interface SWD
J-Link> SWOSpeed

Currently, following speeds are supported:

Emulator Speed formula Resulting max. speed
J-Link V9 60MHz/n, n >= 8 7.5 MHz
J-Link Pro/ULTRA V4 3.2GHz/n, n >= 64 50 MHz

Table 5.6: J-Link supported SWO input speeds

5.4.2.2 Configuring SWO speeds

The max. SWO speed in practice is the max. speed which both, target and J-Link can
handle. J-Link can handle the frequencies described in SWO on page 185 whereas the
max. deviation between the target and the J-Link speed is about 3%.

The computation of possible SWO speeds is typically done in the debugger. The SWO
output speed of the CPU is determined by TRACECLKIN, which is normally the same
as the CPU clock.

Examplei

Target CPU running at 72 MHz. n is be between 1 and 8192.
Possible SWO output speeds are:
72MHz, 36MHz, 24MHz, ...

J-Link V9: Supported SWO input speeds are: 60MHz / n, n>= 8:
7.5MHz, 6.66MHz, 6MHz, ...

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



186 CHAPTER 5 Working with J-Link and J-Trace

Permitted combinations are:

SWO output SWO input Deviation percent
6MHz, n = 12 6MHz, n = 10 0
4MHz, n = 18 4MHz, n = 15 0
<=3
2MHz, n = 36 2MHz, n = 30 0

Table 5.7: Permitted SWO speed combinations

Example 2

Target CPU running at 10 MHz.

Possible SWO output speeds are:

10MHz, 5MHz, 3.33MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent
2MHz, n =5 2MHz, n = 3 0
1MHz, n = 10 1MHz, n = 6 0
769kHz, n = 13 750kHz, n = 8 2.53

Table 5.8: Permitted SWO speed combinations

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



187

5.5 Multi-core debugging

J-Link / J-Trace is able to debug multiple cores on one target system connected to the
same scan chain. Configuring and using this feature is described in this section.

5.5.1 How multi-core debugging works

Multi-core debugging requires multiple debuggers or multiple instances of the same
debugger. Two or more debuggers can use the same J-Link / J-Trace simultaneously.
Configuring a debugger to work with a core in a multi-core environment does not
require special settings. All that is required is proper setup of the scan chain for each
debugger. This enables J-Link / J-Trace to debug more than one core on a target at
the same time.

The following figure shows a host, debugging two CPU cores with two instances of the
same debugger.

Debugger

Instance 1

Both debuggers share the same physical connection. The core to debug is selected
through the JTAG-settings as described below.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



188 CHAPTER 5 Working with J-Link and J-Trace

5.5.2 Using multi-core debugging in detail

1. Connect your target to J-Link / J-Trace.

2. Start your debugger, for example IAR Embedded Workbench for ARM.

3. Choose Project|Options and configure your scan chain. The picture below
shows the configuration for the first CPU core on your target.

Options for node “BTL_AT91_¥430" |

Cateqony:

Factomn Settingz |

General Options

C/C++ Camnpiler Setyp  Connectian |
Agzembler — Communication
Custarm Build
Build Actions ¢ UsB
Linker  TCPAP Iaaa.l:nl:nl:-.n::n::n:.ddd
Debugger
Simulator —JTAG zzan chain
anoe v JTAG hait with multipl
IAR BOM-manitar d zcah chain with multiple targets
R
Macraigor [T Scan chain containg non-4Rk devices

ROI
Third-Party Diriver Freceeding bits; II:I

[ Log communication

I$TEIEILKIT_DIH$Hcsp}ICDmm.IDg J

] I Cancel |

4. Start debugging the first core.
5. Start another debugger, for example another instance of IAR Embedded Work-
bench for ARM.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



189

6. Choose project|Options and configure your second scan chain. The following
dialog box shows the configuration for the second ARM core on your target.

x]

Options for node “BTL_AT91_¥430"

Category: Factory Settings |

eneral Optionz :
C/C++ Compiler Setup  Connection I
Azsembler — Communication
Cuztom Build
Build Actions  Use
Link.er " TCPAP Iaaa.l:ul:ul:u.u:u:n:.ddd
Debugger
Simulator —JTAG zzan chain
Angel W JTAG hain with mulip]
I&R ROM-moritar J zan chain with multiple targets
18P nnter. |
:;:S'I:raig':'r [ Scan chain containg non-4Fk devices
Third-Party Driver Freceeding bits: II:I
[ Log communication
I$TDEILKIT_DIF|$"-.::$|::_I,I::Dmm.quug J

o]

Cancel |

7. Start debugging your second core.

Example:
TAP number | TAP number
Core #1 Core #2 Core #3 debugger #1 | debugger #2
ARM7TDMI |ARM7TDMI-S|ARM7TDMI |0 1
ARM7TDMI | ARM7TDMI | ARM7TDMI 0 2
IA_I;M7TDM ARM7TDMI-S| ARM7TDMI-S| 1 2

Table 5.9: Multicore debugging

Cores to debug are marked in blue.

5.5.3 Things you should be aware of

Multi-core debugging is more difficult than single-core debugging. You should be

aware of the pitfalls related to JTAG speed and resetting the target.

5.5.3.1 JTAG speed

Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores
in the same chain is the minimum of the maximum JTAG speeds.

For example:

e Core #1:
o Core #2:

2MHz maximum JTAG speed
4MHz maximum JTAG speed

e Scan chain: 2MHz maximum JTAG speed

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



190 CHAPTER 5 Working with J-Link and J-Trace

5.5.3.2 Resetting the target

All cores share the same RESET line. You should be aware that resetting one core
through the RESET line means resetting all cores which have their RESET pins con-
nected to the RESET line on the target.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



191

5.6 Connecting multiple J-Links / J-Traces to your PC

In general, it is possible to have an unlimited number of J-Links / J-Traces connected
to the same PC. Current J-Link models are already factory-configured to be used in a
multi-J-Link environment, older J-Links can be re-configured to use them in a multi-

J-link environment.

5.6.1 How does it work?

USB devices are identified by the OS by their product ID, vendor id and serial num-
ber. The serial number reported by current J-Links is a unique number which allows
to have an almost unlimited number of J-Links connected to the same host at the
same time. In order to connect to the correct J-Link, the user has to make sure that
the correct J-Link is selected (by SN or IP). In cases where no specific J-Link is
selected, following pop up will shop and allow the user to select the proper J-Link:

SEGGER J-Link V4.90a - Emulator selection

Fleaze select the emulator you want to connect to:

# | USE Identification
0 5N 174200353

1 SN 284200004
2 SN 421000000
3 SN E51000001
4 SN 53200006

The sketch below shows a host, running two application programs. Each application-
communicates with one CPU core via a separate J-Link.

Application

Instance 1

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



192 CHAPTER 5 Working with J-Link and J-Trace

Older J-Links may report USBO0-3 instead of unique serial humber when enumerating
via USB. For these J-Links, we recommend to re-configure them to use the new enu-
meration method (report real serial number) since the USB0-3 behavior is obsolete.

Re-configuration can be done by using the J-Link Configurator, which is part of the J-
Link software and documentation package. For further information about the J-Link
configurator and how to use it, please refer to J-Link Configurator on page 167.

Re-configuration to the old USB 0-3 enumeration method

In some special cases, it may be necessary to switch back to the obsolete USB 0-3
enumeration method. For example, old IAR EWARM versions supports connecting to a
J-Link via the USB0-3 method only. As soon as more than one J-Link is connected to
the pc, there is no oppertunity to pre-select the J-Link which should be used for a
debug session.

Below, a small instruction of how to re-configure J-Link to enumerate with the old
obsolete enumeration method in order to prevent compatibility problems, a short

instruction is give on how to set USB enumeration method to USB 2 is given:

Config area byte Meaning
0 USB-Address. Can be set to 0-3, OxFF is default which
means USB-Address 0.
Enumeration method
1 0x00 / OxFF: USB-Address is used for enumeration.

0x01: Real-SN is used for enumeration.

Table 5.10: Config area layout: USB-Enumeration settings

Example for setting enumeration method to USB 2:

1. Start J-Link Commander (JLink.exe) which is part of the J-Link software
2. Enter wconf 0 02 // Set USB-Address 2

3. Enter wconf 1 00 // Set enumeration method to USB-Address
4. Power-cycle J-Link in order to apply new configuration.

Re-configuration to REAL-SN enumeration can be done by using the J-Link Configura-
tor, which is part of the J-Link software and documentation package. For further
information about the J-Link configurator and how to use it, please refer to J-Link
Configurator on page 167.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



193

5.7 J-Link control panel

Since software version V3.86 J-Link the J-Link control panel window allows the user
to monitor the J-Link status and the target status information in real-time. It also
allows the user to configure the use of some J-Link features such as flash download,
flash breakpoints and instruction set simulation. The J-Link control panel window can
be accessed via the J-Link tray icon in the tray icon list. This icon is available when
the debug session is started.

sl 1z:as

To open the status window, simply click on the tray icon.

3, I-Link ARM [ [ =]

4 Settingsl BreakMatchI Log I CRU Hegsl Target Powerl Sty I

¥ Show bray icon
¥ Start minimized
V¥ Alwaps on top

Frocess IEI: AToolChARYWARM_W520_beta302%commontbin'larld

J-Link [SEGGER J-Link ARM V.0, SN= |—
Target interface |JTAG: Adaptive Endian [Litle [ 327V |—
Device [AT9154M75256
License | About

|Ready

| Y

5.7.1

Tabs

The J-Link status window supports different features which are grouped in tabs. The
organization of each tab and the functionality which is behind these groups will be
explained in this section

5.7.1.1

General

In the General section, general information about J-Link and the target hardware

are

shown. Moreover the following general settings can be configured:

Show tray icon: If this checkbox is disabled the tray icon will not show from the
next time the DLL is loaded.

Start minimized: If this checkbox is disabled the J-Link status window will show
up automatically each time the DLL is loaded.

Always on top: if this checkbox is enabled the J-Link status window is always
visible even if other windows will be opened.

The general information about target hardware and J-Link which are shown in this
section, are:

Process: Shows the path of the file which loaded the DLL.

J-Link: Shows OEM of the connected J-Link, the hardware version and the Serial
number. If no J-Link is connected it shows "not connected" and the color indica-
tor is red.

Target interface: Shows the selected target interface (JTAG/SWD) and the cur-
rent JTAG speed. The target current is also shown. (Only visible if J-Link is con-
nected)

Endian: Shows the target endianess (Only visible if J-Link is connected)
Device: Shows the selected device for the current debug session.

License: Opens the J-Link license manager.

About: Opens the about dialog.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



194 CHAPTER 5 Working with J-Link and J-Trace

5.7.1.2 Settings

In the Settings section project- and debug-specific settings can be set. It allows the
configuration of the use of flash download and flash breakpoints and some other tar-
get specific settings which will be explained in this topic. Settings are saved in the
configuration file. This configuration file needs to be set by the debugger. If the
debugger does not set it, settings can not be saved. All settings which are modified
during the debug session have to be saved by pressing Save settings, otherwise
they are lost when the debug session is closed.

Section: Flash download

In this section, settings for the use of the J-Link FlashDL feature and related set-
tings can be configured. When a license for J-Link FlashDL is found, the color indi-
cator is green and "License found" appears right to the J-Link FlashDL usage
settings.

B Flash download

* Auto License found

 On ¥ Skip download on CRC match
 Off V¥ Weiify download

IEnabIed, 10272 bytes downloaded

e Auto: This is the default setting of J-Link FlashDL usage. If a license is found
J-Link FlashDL is enabled. Otherwise J-Link FlashDL will be disabled inter-
nally.

e On: Enables the g-Link FlashDL feature. If no license has been found an error
message appears.

e Off: Disables the g-Link FlashDL feature.

e Skip download on CRC match: J-Link checks the CRC of the flash content to
determine if the current application has already been downloaded to the flash. If
a CRC match occurs, the flash download is not necessary and skipped. (Only
available if 7-Link FlashDL usage is configured as Auto or On)

e Verify download: If this checkbox is enabled J-Link verifies the flash content
after the download. (Only available if J-Link FlashDL usage is configured as
Auto or On)

Section: Flash breakpoints:

In this section, settings for the use of the FlashBp feature and related settings can
be configured. When a license for FlashBP is found, the color indicator is green and
"License found" appears right to the FlashBP usage settings.

M Flash breakpoint

* Auto License found

 On I Show info windav during
O pragram

[Enabled

e Auto: This is the default setting of FlashBP usage. If a license has been found
the rlashBp feature will be enabled. Otherwise FlashBpP will be disabled inter-
nally.

e On: Enables the Fl1ashBp feature. If no license has been found an error message
appears.

e Off: Disables the Flashsp feature.

e Show window during program: When this checkbox is enabled the "Program-
ming flash" window is shown when flash is re-programmed in order to set/clear
flash breakpoints.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



195

Flash download and flash breakpoints independent settings

These settings do not belong to the J-Link flash download and flash breakpoints set-
tings section. They can be configured without any license needed.

.3, SEGGER - Control panel [ [ =]
General  Settings | Breakpointsl Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl MA I L4
Log file I~ Ovenide
ﬁc:uunk.mg Clear |—‘
Settings file ™| Ovenide
’7|Not specified —‘

M Flash download M Flash breakpoint
& Auto | License found & Auto | License found
= 0On ¥ Skip download on CRC match  0On ¥ Show info window during
 Of v Verfy download  Of program
|Disabled |Disabled

[T Ovenide device selection

V' Allow caching of flash contents [0On)

¥ Allow instruction s=t simulation

™| @weride memony map

Modity breakpoints during execution IAIIDW j

[ready 319K ARM_GetSpeed (Done) [1.208 sec. in 32 calls 4

e Log file: Shows the path where the J-Link log file is placed. It is possible to
override the selection manually by enabling the Override checkbox. If the Over-
ride checkbox is enabled a button appears which let the user choose the new
location of the log file.

e Settings file: Shows the path where the configuration file is placed. This config-
uration file contains all the settings which can be configured in the Settings tab.

e Override device selection: If this checkbox is enabled, a dropdown list
appears, which allows the user to set a device manually. This especially makes
sense when J-Link can not identify the device name given by the debugger or if a
particular device is not yet known to the debugger, but to the J-Link software.

e Allow caching of flash contents: If this checkbox is enabled, the flash con-
tents are cached by J-Link to avoid reading data twice. This speeds up the trans-
fer between debugger and target.

e Allow instruction set simulation: If this checkbox is enabled, instructions will
be simulated as far as possible. This speeds up single stepping, especially when
FlashBPs are used.

e Save settings: When this button is pushed, the current settings in the Settings
tab will be saved in a configuration file. This file is created by J-Link and will be
created for each project and each project configuration (e.g. Debug_RAM,
Debug_Flash). If no settings file is given, this button is not visible.

e Modify breakpoints during execution: This dropdown box allows the user to
change the behavior of the DLL when setting breakpoints if the CPU is running.
The following options are available:

Allow: Allows settings breakpoints while the CPU is running. If the CPU needs to
be halted in order to set the breakpoint, the DLL halts the CPU, sets the break-
points and restarts the CPU.

Allow if CPU does not need to be halted: Allows setting breakpoints while the
CPU is running, if it does not need to be halted in order to set the breakpoint. If
the CPU has to be halted the breakpoint is not set.

Ask user if CPU needs to be halted: If the user tries to set a breakpoint while
the CPU is running and the CPU needs to be halted in order to set the breakpoint,
the user is asked if the breakpoint should be set. If the breakpoint can be set
without halting the CPU, the breakpoint is set without explicit confirmation by the
user.

Do not allow: It is not allowed to set breakpoints while the CPU is running.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



196

CHAPTER 5 Working with J-Link and J-Trace

5.7.1.3 Break/Watch

In the Break/Watch section all breakpoints and watchpoints which are in the DLL
internal breakpoint and watchpoint list are shown.

.3, SEGGER J-Link ARM - Control panel M= B3
Generall Settings  Break/watch | Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl LI_’|
Breakpoints:
ﬂl Handle | Address | Mode | Permizzion | Implementation I
1 - 0x0200011C Unknown — Any Flash - TRC
2 - 008000128 Unknown — Any Flash - TRC
3 008000124 Unknown — Any Flash - TRC
4 0080001 34, Unknown — Any Flash - TRC
5 008000150 Unknown — Any Flash - TRC
E 0080001 B4, Unknown — Any Flash - TRC

‘watchpoints:
# | Handle | Address | Data | Access |
1 0x8000000¢ 0x08000120 (0x00001000 /it 16-bit

Wectar catch:
# | ector |

[ready 319K ARM_Readmem (Done) 1,494 sec, in 219 calls 4

Section: Code

Lists all breakpoints which are in the DLL internal breakpoint list are shown.

Handle: Shows the handle of the breakpoint.

Address: Shows the address where the breakpoint is set.

Mode: Describes the breakpoint type (ARM/THUMB)

Permission: Describes the breakpoint implementation flags.

Implementation: Describes the breakpoint implementation type. The break-
point types are: RAM, Flash, Hard. An additional TBC (to be cleared) or TBS (to
be set) gives information about if the breakpoint is (still) written to the target or
if it's just in the breakpoint list to be written/cleared.

Note: It is possible for the debugger to bypass the breakpoint functionality of
the J-Link software by writing to the debug registers directly. This means for ARM7/
ARM9 cores write accesses to the ICE registers, for Cortex-M3 devices write accesses
to the memory mapped flash breakpoint registers and in general simple write
accesses for software breakpoints (if the program is located in RAM). In these cases,
the J-Link software cannot determine the breakpoints set and the list is empty.

Section: Data

In this section, all data breakpoints which are listed in the DLL internal breakpoint
list are shown.

Handle: Shows the handle of the data breakpoint.

Address: Shows the address where the data breakpoint is set.

AddrMask: Specifies which bits of Address are disregarded during the compari-
son for a data breakpoint match. (A 1 in the mask means: disregard this bit)
Data: Shows on which data to be monitored at the address where the data
breakpoint is set.

Data Mask: Specifies which bits of Data are disregarded during the comparison
for a data breakpoint match. (A 1 in the mask means: disregard this bit)

Ctrl: Specifies the access type of the data breakpoint (read/write).

CtrIMask: Specifies which bits of Ctrl are disregarded during the comparison for
a data breakpoint match.

5.71.4 Log

In this section the log output of the DLL is shown. The user can determine which
function calls should be shown in the log window.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



197

Available function calls to log: Register read/write, Memory read/write, set/clear
breakpoint, step, go, halt, is halted.

33

Lin!

-Link ARM M= B3

Generall Settingsl BreakAw'atch Log |EIF'U Hegsl Target Powerl Sty I

I~ Registerwite [~ Memory wite [V BF zet ¥ Step ¥ Halt
I~ Registerread [~ Memoryread | BFclear | Go I IsHalted Clear lng |

J-Link ARM U2.85Q [beta) DOLL Log ;I
OLL Compiled: Jun 26 2BBS 17:B5:33
Logging started B 20085-B5-27 15:88
L

i
T
@
I
=
=
o
T
0
i
=

3, Type
5, Type
C. Type

EEE
EEIE
=it
@EE
fifinin}
TET
et}
nun

@Em

L FEEEEEE] ]
i FEFEFEE] ]
i FFFFFFFL)

e
HR
nun
@Em

ddr = Brx@E1EEFES, Tupe = BxFFFFFFF1)

[T e R Iy Pl i iy e et
L R e R T e T Ty T
LTy I Tty N Tty Ty P T i

@@

B BAAAREE1 1
188FDS, Twpe = B:FFFFFFF1)

Ly o

5.7.1.5 CPU Regs

In this section the name and the value of the CPU registers are shown.

3, I-Link ARM [ [ =]

Generall Settingsl BreakMatchI Log CPU Regs | Target Powerl Sty I

Index | Mame | Walue | State | -
a RO (0x0010269C

1 R1 (0x00000050

2 R2 0x00000010

3 R3 (0x00000003 —
4 R4 0x00201100

5 RS (0x00000000

g RE (0x00000000

7 R7 (0x00000000

g CPSR 0x80000053

| R15(PC) 0x00100FES

10 R8_USR (0x00000000

1 R3_USR (0x00000000

12 R10_USR (0x00000000

13 R11_USR (0x00000000

14 R1Z2_USR (0x00000002

15 R13_USR (0x00000000

18 R14_USR (0x00000000 LI

|Ready 4

5.7.1.6 Target Power
In this section currently just the power consumption of the target hardware is shown.

Generall Settingsl BreakMatchI Log I CPU Regs  Target Power | Sty I Devicel MemMapI

r— Current status———— Permanent status
(% Fower enabled " Fower enabled
" Fower disabled (* Fower disabled
— Power information
Consumption |238md, |—
Ready JLINKARM_ExecCommand {Done) 0,008 sec, in 20 calls 4

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



198 CHAPTER 5 Working with J-Link and J-Trace

5.7.1.7 SWV

In this section SWV information are shown.

3, I-Link ARM [ [ =]
Generall Settingsl BreakMatchI Log I CPU Hegsl Target Power 5w |
Statuz IUAF!T encoding, 19200 bps Huost buffer |4 ME |—
Bytes in buffer ID bytes Emulator buffer |4 KE |—
Bytes transferred |235?D bytes
Refresh counter |1 522
|Ready | | 4

e Status: Shows the encoding and the baudrate of the SWV data received by the
target (Manchester/UART, currently J-Link only supports UART encoding).

e Bytes in buffer: Shows how many bytes are in the DLL SWV data buffer.

e Bytes transferred: Shows how many bytes have been transferred via SWYV,
since the debug session has been started.

e Refresh counter: Shows how often the SWV information in this section has
been updated since the debug session has been started.
Host buffer: Shows the reserved buffer size for SWV data, on the host side.
Emulator buffer: Shows the reserved buffer size for SWV data, on the emulator
side.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



199

5.8 Reset strategies

J-Link / J-Trace supports different reset strategies. This is necessary because there is
no single way of resetting and halting a CPU core before it starts to execute instruc-
tions. For example reset strategies which use the reset pin can not succeed on tar-
gets where the reset pin of the CPU is not connected to the reset pin of the JTAG
connector. Reset strategy 0 is always the recommended one because it has been
adapted to work on every target even if the reset pin (Pin 15) is not connected.

What is the problem if the core executes some instructions after RESET?

The instructions which are executed can cause various problems. Some cores can be
completely "confused", which means they can not be switched into debug mode (CPU
can not be halted). In other cases, the CPU may already have initialized some hard-
ware components, causing unexpected interrupts or worse, the hardware may have
been initialized with illegal values. In some of these cases, such as illegal PLL set-
tings, the CPU may be operated beyond specification, possibly locking the CPU.

5.8.1 Strategies for ARM 7/9 devices

5.8.1.1 Type 0: Hardware, halt after reset (normal)

The hardware reset pin is used to reset the CPU. After reset release, J-Link continu-
ously tries to halt the CPU. This typically halts the CPU shortly after reset release;
the CPU can in most systems execute some instructions before it is halted. The num-
ber of instructions executed depends primarily on the JTAG speed: the higher the
JTAG speed, the faster the CPU can be halted.

Some CPUs can actually be halted before executing any instruction, because the start
of the CPU is delayed after reset release. If a pause has been specified, J-Link waits
for the specified time before trying to halt the CPU. This can be useful if a bootloader
which resides in flash or ROM needs to be started after reset.

This reset strategy is typically used if nRESET and nTRST are coupled. If nRESET and
NnTRST are coupled, either on the board or the CPU itself, reset clears the breakpoint,
which means that the CPU can not be stopped after reset with the BP@O0 reset strat-

egy.
5.8.1.2 Type 1: Hardware, halt with BP@0

The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is
programmed to halt program execution at address 0; effectively, a breakpoint is set
at address 0. If this strategy works, the CPU is actually halted before executing a sin-
gle instruction.

This reset strategy does not work on all systems for two reasons:

e If nRESET and nTRST are coupled, either on the board or the CPU itself, reset
clears the breakpoint, which means the CPU is not stopped after reset.

e Some MCUs contain a bootloader program (sometimes called kernel), which
needs to be executed to enable JTAG access.

5.8.1.3 Type 2: Software, for Analog Devices ADuC7xxx MCUs

This reset strategy is a software strategy. The CPU is halted and performs a sequence
which causes a peripheral reset. The following sequence is executed:

The CPU is halted.

A software reset sequence is downloaded to RAM.
A breakpoint at address 0 is set.

The software reset sequence is executed.

This sequence performs a reset of CPU and peripherals and halts the CPU before exe-
cuting instructions of the user program. It is the recommended reset sequence for
Analog Devices ADuC7xxx MCUs and works with these chips only.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



200 CHAPTER 5 Working with J-Link and J-Trace

5.8.1.4 Type 3: No reset

No reset is performed. Nothing happens.

5.8.1.5 Type 4: Hardware, halt with WP

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continu-
ously tries to halt the CPU using a watchpoint. This typically halts the CPU shortly
after reset release; the CPU can in most systems execute some instructions before it
is halted.

The number of instructions executed depends primarily on the JTAG speed: the
higher the JTAG speed, the faster the CPU can be halted. Some CPUs can actually be
halted before executing any instruction, because the start of the CPU is delayed after
reset release

5.8.1.6 Type 5: Hardware, halt with DBGRQ

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continu-
ously tries to halt the CPU using the DBGRQ. This typically halts the CPU shortly after
reset release; the CPU can in most systems execute some instructions before it is
halted.

The number of instructions executed depends primarily on the JTAG speed: the
higher the JTAG speed, the faster the CPU can be halted. Some CPUs can actually be
halted before executing any instruction, because the start of the CPU is delayed after
reset release.

5.8.1.7 Type 6: Software

This reset strategy is only a software reset. "Software reset" means basically no
reset, just changing the CPU registers such as PC and CPSR. This reset strategy sets
the CPU registers to their after-Reset values:

PC=0

CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)

All SPSR registers = 0x10

All other registers (which are unpredictable after reset) are set to 0.

The hardware RESET pin is not affected.

5.8.1.8 Type 7: Reserved

Reserved reset type.

5.8.1.9 Type 8: Software, for ATMEL AT91SAM7 MCUs

The reset pin of the device is disabled by default. This means that the reset strate-
gies which rely on the reset pin (low pulse on reset) do not work by default. For this
reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the
peripherals by writing to the RSTC_CR register. Resetting the peripherals puts all
peripherals in the defined reset state. This includes memory mapping register, which
means that after reset flash is mapped to address 0. It is also possible to achieve the
same effect by writing 0x4 to the RSTC_CR register located at address 0xfffffd00.

5.8.1.10 Type 9: Hardware, for NXP LPC MCUs

After reset a bootloader is mapped at address 0 on ARM 7 LPC devices. This reset
strategy performs a reset via reset strategy Type 1 in order to reset the CPU. It also
ensures that flash is mapped to address 0 by writing the MEMMAP register of the LPC.
This reset strategy is the recommended one for all ARM 7 LPC devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



201

5.8.2 Strategies for Cortex-M devices

J-Link supports different specific reset strategies for the Cortex-M cores. All of the
following reset strategies are available in JTAG and in SWD mode. All of them halt the
CPU after the reset.

Note: It is recommended that the correct device is selected in the debugger so
the debugger can pass the device name to the J-Link DLL which makes it possible for
J-Link to detect what is the best reset strategy for the device. Moreover, we recom-
mend that the debugger uses reset type 0 to allow J-Link to dynamically select what
reset is the best for the connected device.

5.8.2.1 Type 0: Normal

This is the default strategy. It does whatever is the best way to reset the target
device.

If the correct device is selected in the debugger this reset strategy may also perform
some special handling which might be necessary for the connected device. This for
example is the case for devices which have a ROM bootloader that needs to run after
reset and before the user application is started (especially if the debug interface is
disabled after reset and needs to be enabled by the ROM bootloader).

For most devices, this reset strategy does the same as reset strategy 8 does:

1. Make sure that the device halts immediately after reset (before it can execute any
instruction of the user application) by setting the vC_CORERESET in the DEMCR.

2. Reset the core and peripherals by setting the sYSRESETREQ bit in the AIRCR.

3. Wait for the s_RESET_ST bit in the DHCSR to first become high (reset active) and
then low (reset no longer active) afterwards.

4. Clear VC_CORERESET.

5.8.2.2 Type 1: Core

Only the core is reset via the VECTRESET bit. The peripherals are not affected. After
setting the VECTRESET bit, J-Link waits for the s_RESET_ST bit in the Debug Halting
Control and Status Register (DHCSR) to first become high and then low afterwards.
The CPU does not start execution of the program because J-Link sets the
VC_CORERESET bit before reset, which causes the CPU to halt before execution of the
first instruction.

Note: In most cases it is not recommended to reset the core only since most tar-
get applications rely of the reset state of some peripherals (PLL, External memory
interface etc.) and may be confused if they boot up but the peripherals are already
configured.

5.8.2.3 Type 2: ResetPin

J-Link pulls its RESET pin low to reset the core and the peripherals. This normally
causes the CPU RESET pin of the target device to go low as well, resulting in a reset
of both CPU and peripherals. This reset strategy will fail if the RESET pin of the target
device is not pulled low. The CPU does not start execution of the program because J-
Link sets the vVC_CORERESET bit before reset, which causes the CPU to halt before
execution of the first instruction.

5.8.2.4 Type 3: Connect under Reset

J-Link connects to the target while keeping Reset active (reset is pulled low and
remains low while connecting to the target). This is the recommended reset strategy
for STM32 devices. This reset strategy has been designed for the case that communi-
cation with the core is not possible in normal mode so the VvC_CORERESET bit can not
be set in order to guarantee that the core is halted immediately after reset.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



202 CHAPTER 5 Working with J-Link and J-Trace

5.8.2.5 Type 4: Reset core & peripherals, halt after bootloader

Same as type 0, but bootloader is always executed. This reset strategy has been
designed for MCUs/CPUs which have a bootloader located in ROM which needs to run
at first, after reset (since it might initialize some target settings to their reset state).
When using this reset strategy, J-Link will let the bootloader run after reset and halts
the target immediately after the bootloader and before the target application is
started. This is the recommended reset strategy for LPC11xx and LPC13xx devices
where a bootloader should execute after reset to put the chip into the "real" reset
state.

5.8.2.6 Type 5: Reset core & peripherals, halt before bootloader

Basically the same as reset type 8. Performs a reset of core & peripherals and halts
the CPU immediately after reset. The ROM bootloader is NOT executed.

5.8.2.7 Type 6: Reset for Freescale Kinetis devices

Performs a via reset strategy 0 (normal) first in order to reset the core & peripherals
and halt the CPU immediately after reset. After the CPU is halted, the watchdog is
disabled, since the watchdog is running after reset by default. If the target applica-
tion does not feed the watchdog, J-Link loses connection to the device since it is
reset permanently.

5.8.2.8 Type 7: Reset for Analog Devices CPUs (ADI Halt after kernel)

Performs a reset of the core and peripherals by setting the SYSRESETREQ bit in the
AIRCR. The core is allowed to perform the ADI kernel (which enables the debug inter-
face) but the core is halted before the first instruction after the kernel is executed in
order to guarantee that no user application code is performed after reset.

5.8.2.9 Type 8: Reset core and peripherals

J-Link tries to reset both, core and peripherals by setting the sYSRESETREQ bit in the
AIRCR. VC_CORERESET in the DEMCR is also set to make sure that the CPU is halted
immediately after reset and before executing any instruction.

Reset procedure:

1. Make sure that the device halts immediately after reset (before it can execute any
instruction of the user application) by setting the vC_CORERESET in the DEMCR.

2. Reset the core and peripherals by setting the SYSRESETREQ bit in the AIRCR.

3. Wait for the s_RESET_ST bit in the DHCSR to first become high (reset active) and
then low (reset no longer active) afterwards.

4. Clear VC_CORERESET.

This type of reset may fail if:

e J-Link has no connection to the debug interface of the CPU because it is in a low
power mode.

e The debug interface is disabled after reset and needs to be enabled by a device
internal bootloader. This would cause J-Link to lose communication after reset
since the CPU is halted before it can execute the internal bootlader.

5.8.2.10 Type 9: Reset for LPC1200 devices

On the NXP LPC1200 devices the watchdog is enabled after reset and not disabled by
the bootloader, if a valid application is in the flash memory. Moreover, the watchdog
keeps counting if the CPU is in debug mode. When using this reset strategy, J-Link
performs a reset of the CPU and peripherals, using the sYSRESETREQ bit in the AIRCR
and halts the CPU after the bootloader has been performed and before the first

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



203

instruction of the user code is executed. Then the watchdog of the LPC1200 device is
disabled. This reset strategy is only guaranteed to work on "modern" J-Links (J-Link
V8, J-Link Pro, J-link ULTRA, J-Trace for Cortex-M, J-Link Lite) and if a SWD speed of
min. 1 MHz is used. This reset strategy should also work for J-Links with hardware
version 6, but it can not be guaranteed that these J-Links are always fast enough in
disabling the watchdog.

5.8.2.11 Type 10: Reset for Samsung S3FN60D devices

On the Samsung S3FN60D devices the watchdog may be running after reset (if the
watchdog is active after reset or not depends on content of the smart option bytes at
addr 0xC0). The watchdog keeps counting even if the CPU is in debug mode (e.g.
halted by a halt request or halted by vector catch). When using this reset strategy, J-
Link performs a reset of the CPU and peripherals, using the SsYSRESETREQ bit and sets
VC_CORERESET in order to halt the CPU after reset, before it executes a single instruc-
tion. Then the watchdog of the S3FN60D device is disabled.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



204 CHAPTER 5 Working with J-Link and J-Trace

5.9 Using DCC for memory access

The ARM7/9 architecture requires cooperation of the CPU to access memory when the
CPU is running (not in debug mode). This means that memory cannot normally be
accessed while the CPU is executing the application program. The normal way to read
or write memory is to halt the CPU (put it into debug mode) before accessing mem-
ory. Even if the CPU is restarted after the memory access, the real time behavior is
significantly affected; halting and restarting the CPU costs typically multiple millisec-
onds. For this reason, most debuggers do not even allow memory access if the CPU is
running.

However, there is one other option: DCC (Direct communication channel) can be used
to communicate with the CPU while it is executing the application program. All that is
required is the application program to call a DCC handler from time to time. This DCC
handler typically requires less than 1 ps per call.

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link soft-
ware package and can be found in the samples\DCC\IAR directory of the package.

5.9.1 What is required?

e An application program on the host (typically a debugger) that uses DCC.
e A target application program that regularly calls the DCC handler.
e The supplied abort handler should be installed (optional).

An application program that uses DCC is JLink.exe.

5.9.2 Target DCC handler

The target DCC handler is a simple C-file taking care of the communication. The func-
tion DCC_Process () needs to be called regularly from the application program or
from an interrupt handler. If an RTOS is used, a good place to call the DCC handler is
from the timer tick interrupt. In general, the more often the DCC handler is called,
the faster memory can be accessed. On most devices, it is also possible to let the
DCC generate an interrupt which can be used to call the DCC handler.

5.9.3 Target DCC abort handler

An optional DCC abort handler (a simple assembly file) can be included in the appli-
cation. The DCC abort handler allows data aborts caused by memory reads/writes via
DCC to be handled gracefully. If the data abort has been caused by the DCC commu-
nication, it returns to the instruction right after the one causing the abort, allowing
the application program to continue to run. In addition to that, it allows the host to
detect if a data abort occurred.

In order to use the DCC abort handler, 3 things need to be done:

e Place a branch to bcc_abort at address 0x10 ("vector" used for data aborts).

e Initialize the Abort-mode stack pointer to an area of at least 8 bytes of stack
memory required by the handler.

e Add the DCC abort handler assembly file to the application.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



205

5.10 The J-Link settings file

Most IDEs provide a path to a J-Link settings file on a per-project-per-debug-config-
uration basis. This file is used by J-Link to store various debug settings that shall sur-
vive between debug sessions of a project. It also allows the user to perform some
override of various settings. If a specific behavior / setting can be overridden via the
settings file, is explained in the specific sections that describe the behavior / setting.
Since the location and name of the settings file is different for various IDEs, in the
following the location and naming convention of the J-Link settings file for various
IDEs is explained.

5.10.1 SEGGER Embedded Studio

Settings file with default settings is created on first start of a debug session. There is
one settings file per build configuration for the project.

Naming is: _<ProjectName>_<DebugConfigName>.jlink

The settings file is created in the same directory where the project file (*.emProject)
is located.

Example: The SES project is called "MyProject" and has two configurations "Debug"
and "Release". For each of the configurations, a settings file will be created at the
first start of the debug session:

_MyProject_Debug.jlink
_MyProject_Release.jlink

5.10.2 Keil MDK-ARM (uVision)

Settings file with default settings is created on first start of a debug session. There is
one settings file per project.

Naming is: JLinksettings.ini

The settings file is created in the same directory where the project file (*.uvprojx) is
located.

5.10.3 IAR EWARM

Settings file with default settings is created on first start of a debug session. There is
one settings file per build configuration for the project.

Naming is: <ProjectName>_<DebugConfig>.jlink

The settings file is created in a "settings" subdirectory where the project file is
located.

5.10.4 Mentor Sourcery CodeBench for ARM

CodeBench does not directly specify a J-Link settings file but allows the user to spec-
ify a path to one in the project settings under Debugger -> Settings File. We rec-
ommend to copy the J-Link settings file template from
$JLINK_INST DIRS$\Samples\JLink\SettingsFiles\Sample.jlinksettings to the
directory where the CodeBench project is located, once when creating a new project.
Then select this file in the project options.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



206 CHAPTER 5 Working with J-Link and J-Trace

5.11 J-Link script files

In some situations it it necessary to customize some actions performed by J-Link. In
most cases it is the connection sequence and/or the way in which a reset is per-
formed by J-Link, since some custom hardware needs some special handling which
cannot be integrated into the generic part of the J-Link software. J-Link script files
are written in C-like syntax in order to have an easy start to learning how to write J-
Link script files. The script file syntax supports most statements (if-else, while, dec-
laration of variables, ...) which are allowed in C, but not all of them. Moreover, there
are some statements that are script file specific. The script file allows maximum flex-
ibility, so almost any target initialization which is necessary can be supported.

5.11.1 Actions that can be customized

The script file support allows customizing of different actions performed by J-Link.
Depending on whether the corresponding function is present in the script file or not,
a generically implemented action is replaced by an action defined in a script file. In
the following all J-Link actions which can be customized using a script file are listed
and explained.

5.11.1.1 ConfigTargetSettings()
Description

Called before InitTarget(). Maninly used to set some global DLL variables to custom-
ize the normal connect procedure. For ARM CoreSight devices this may be specifying
the base address of some CoreSight components (ETM, ...) that cannot be auto-
detected by J-Link due to erroneous ROM tables etc. May also be used to specify the
device name in case debugger does not pass it to the DLL.

Prototype
void ConfigTargetSettings (void) ;

Notes / Limitations

e May not, under absolutely NO circumstances, call any API functions that perform
target communication.
e Should only set some global DLL variables

5.11.1.2 InitTarget()

Description

Replaces the target-CPU-auto-find procedure of the J-Link DLL. Useful for target
CPUs that are not accessible by default and need some special steps to be executed
before the normal debug probe connect procedure can be executed successfully.
Example devices are MCUs from TI which have a so-called ICEPick JTAG unit on them
that needs to be configured via JTAG, before the actual CPU core is accessible via
JTAG.

Prototype

void InitTarget (void) ;

Notes / Limitations

e If target interface JTAG is used: JTAG chain has to be specified manually before
leaving this function (meaning all devices and their TAP IDs have to be specified
by the user). Also appropriate JTAG TAP number to communicate with during the
debug session has to be manually specified in this function.

e MUST NOT use any MEM_ API functions

e Global DLL variable "CPU" MUST be set when implementing this function, so the
DLL knows which CPU module to use internally.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



207

5.11.1.3 SetupTarget()
Description

If present, called after tnitTarget () and after general debug connect sequence has
been performed by J-Link. Usually used for more high-level CPU debug setup like
writing certain memory locations, initializing PLL for faster download etc.

Prototype

void SetupTarget (void) ;

Notes / Limitations

e Does not replace any DLL functionality but extends it.
e May use MEM_ API functions

5.11.1.4 ResetTarget()
Description

Replaces reset strategies of DLL. No matter what reset type is selected in the DLL, if
this function is present, it will be called instead of the DLL internal reset

Prototype

void ResetTarget (void) ;

Notes / Limitations

e DLL expects target CPU to be halted / in debug mode, when leaving this function
e May use MEM_ API functions

5.11.1.5 InitEMU()
Description

If present, it allows configuration of the emulator prior to starting target communica-
tion. Currently this function is only used to configure whether the target which is
connected to J-Link has an ETB or not. For more information on how to configure the
existence of an ETB, please refer to Global DLL variables on page 214.

Prototype

void InitEMU (void) ;

5.11.1.6 OnTraceStop()

Description

Called right before capturing of trace data is stopped on the J-Link / J-Trace. On
some target, an explicit flush of the trace FIFOs is necessary to get the latest trace
data. If such a flush is not performed, the latest trace data may not be output by the
target

Prototype

void OnTraceStop (void) ;

Notes / Limitations
e May use MEM_ functions

5.11.1.7 OnTraceStart()
Description

If present, called right before trace is started.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



208

CHAPTER 5 Working with J-Link and J-Trace

Used to initialize MCU specific trace related things like configuring the trace pins for
alternate function.

Prototype
int OnTraceStart(void);
Return value
>=0: O.K.
< 0: Error

Notes / Limitations

e May use high-level API functions like JLINK_MEM__ etc.
e Should not call JLINK_TARGET_Halt(). Can rely on target being halted when
entering this function

5.11.2 Script file API functions

In the following, the API functions which can be used in a script file to communicate
with the DLL are explained.

5.11.2.1 MessageBox()

Description

Outputs a string in a message box.

Prototype

api__ int MessageBox(const char * sMsg) ;

5.11.2.2 MessageBox1()

Description

Outputs a constant character string in a message box. In addition to that, a given
value (can be a constant value, the return value of a function or a variable) is added,
right behind the string.

Prototype

api__ int MessageBoxl (const char * sMsg, int v);

5.11.2.3 Repori()

Description
Outputs a constant character string on stdio.

Prototype

api__ int Report(const char * sMsg);

5.11.2.4 Reporti()

Description

Outputs a constant character string on stdio. In addition to that, a given value (can
be a constant value, the return value of a function or a variable) is added, right
behind the string.

Prototype

api__ int Reportl (const char * sMsg, int v);

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



209

5.11.2.5 JTAG_SetDeviceld()

Description

Sets the JTAG ID of a specified device, in the JTAG chain. The index of the device
depends on its position in the JTAG chain. The device closest to TDO has index 0. The
Id is used by the DLL to recognize the device.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 214.
Prototype

api__ int JTAG_SetDeviceId(int DeviceIndex, unsigned int Id);

5.11.2.6 JTAG_GetDeviceld()

Description

Retrieves the JTAG ID of a specified device, in the JTAG chain. The index of the
device depends on its position in the JTAG chain. The device closest to TDO has index
0.

Prototype
api__ int JTAG_GetDeviceId(int DevicelIndex) ;

5.11.2.7 JTAG_WritelR()

Description
Writes a JTAG instruction.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 214.

Prototype

api__ int JTAG_WriteIR(unsigned int Cmd) ;

5.11.2.8 JTAG_StorelR()

Description
Stores a JTAG instruction in the DLL JTAG buffer.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 214.

Prototype

api__ int JTAG_StoreIR(unsigned int Cmd) ;

5.11.2.9 JTAG_WriteDR()

Description
Writes JTAG data.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 214.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



CHAPTER 5 Working with J-Link and J-Trace

Prototype
api__ int JTAG_WriteDR (unsigned __int64 tdi, int NumBits) ;

5.11.2.10 JTAG_StoreDR()

Description
Stores JTAG data in the DLL JTAG buffer.

Before calling this function, please make sure that the JTAG chain has been config-
ured correctly by setting the appropriate global DLL variables. For more information
about the known global DLL variables, please refer to Global DLL variables on

page 214.

Prototype
api__ int JTAG_StoreDR(unsigned _ int64 tdi, int NumBits) ;

5.11.2.11 JTAG_Write()

Description
Writes a JTAG sequence (max. 64 bits per pin).

Prototype
__api__ int JTAG _Write(unsigned __ int64 tms, unsigned __ int64 tdi, int
NumBits) ;

5.11.2.12 JTAG_Store()
Description
Stores a JTAG sequence (max. 64 bits per pin) in the DLL JTAG buffer.
Prototype
__api__ int JTAG_Store(unsigned __ int64 tms, unsigned __ int64 tdi, int
NumBits) ;

5.11.2.13 JTAG_GetU32()
Description

Gets 32 bits JTAG data, starting at given bit position.

Prototype
api__ int JTAG_GetU32 (int BitPos) ;

5.11.2.14 JTAG_WriteClocks()
Description

Writes a given number of clocks.

Prototype
api__ int JTAG_WriteClocks(int NumClocks) ;

5.11.2.15 JTAG_StoreClocks()

Description
Stores a given number of clocks in the DLL JTAG buffer.

Prototype
api__ int JTAG_StoreClocks(int NumClocks) ;

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



211

5.11.2.16 JTAG_Reset()

Description

Performs a TAP reset and tries to auto-detect the JTAG chain (Total IRLen, Number of
devices). If auto-detection was successful, the global DLL variables which determine
the JTAG chain configuration, are set to the correct values. For more information
about the known global DLL variables, please refer to Global DLL variables on
page 214.

Note: This will not work for devices which need some special init (for example to
add the core to the JTAG chain), which is lost at a TAP reset.

Prototype

api___ int JTAG_Reset (void) ;

5.11.2.17 SYS_Sleep()

Description

Waits for a given number of miliseconds. During this time, J-Link does not communi-
cate with the target.

Prototype
api_ int SYS_Sleep(int Delayms) ;

5.11.2.18 JLINK_CORESIGHT_AddAP()

Description

Allows the user to manually configure the AP-layout of the device J-Link is connected
to. This makes sense on targets on which J-Link can not perform a auto-detection of
the APs which are present on the target system. Type can only be a known global J-
Link DLL AP constant. For a list of all available constants, please refer to Global DLL
constants on page 217.

Prototype
api__ int JLINK_CORESIGHT_AddAP (int Index, unsigned int Type);

Example

JLINK_CORESIGHT_AddAP (0, CORESIGHT_AHB_AP); // First AP is a AHB-AP
JLINK_CORESIGHT_AddAP(1l, CORESIGHT_APB_AP); // Second AP is a APB-AP
JLINK_CORESIGHT_AddAP(2, CORESIGHT_JTAG_AP); // Third AP is a JTAG-AP

5.11.2.19 JLINK_CORESIGHT_Configure()

Description

Has to be called once, before using any other _CORESIGHT_ function that accesses
the DAP.

Takes a configuration string to prepare target and J-Link for CoreSight function
usage. Configuration string may contain multiple setup parameters that are set.
Setup parameters are separated by a semicolon.

At the end of the JLINK_CORESIGHT_Configure(), the appropriate target interface
switching sequence for the currently active target interface is output, if not disabled
via setup parameter.

This function has to be called again, each time the JTAG chain changes (for dynami-
cally changing JTAG chains like those which include a TI ICEPick), in order to setup
the JTAG chain again.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



212 CHAPTER 5 Working with J-Link and J-Trace

For JTAG

The SWD -> JTAG switching sequence is output. This also triggers a TAP reset on the
target (TAP controller goes through -> Reset -> Idle state)

The IRPre, DRPre, IRPost, DRPost parameters describe which device inside the JTAG
chain is currently selected for communication.

For SWD

The JTAG -> SWD switching sequence is output.

It is also made sure that the "overrun mode enable" bit in the SW-DP CTRL/STAT reg-
ister is cleared, as in SWD mode J-Link always assumes that overrun detection mode
is disabled.

Make sure that this bit is NOT set by accident when writing the SW-DP CTRL/STAT
register via the _CORESIGHT_ functions.

Prototype
int JLINK_CORESIGHT Configure(const char* sConfig);

Example

if (MAIN_ActiveTIF == JLINK_TIF_JTAG) {
// Simple setup where we have TDI -> Cortex-M (4-bits IRLen) -> TDO
JLINK_CORESIGHT Configure ("IRPre=0;DRPre=0;IRPost=0;DRPost=0;IRLenDevice=4");
} else {
// For SWD, no special setup is needed, just output the switching sequence
JLINK_CORESIGHT Configure("");
}
v = JLINK_CORESIGHT_ ReadDP (JLINK_CORESIGHT_ DP_REG_CTRL_STAT) ;
Reportl ("DAP-CtrlStat: " v);
// Complex setup where we have TDI -> ICEPick (6-bits IRLen) -> Cortex-M (4-bits
IRLen) -> TDO
JLINK_CORESIGHT Configure ("IRPre=0;DRPre=0; IRPost=6;DRPost=1; IRLenDevice=4;");
v = JLINK_CORESIGHT_ ReadDP (JLINK_CORESIGHT_ DP_REG_CTRL_STAT) ;
Reportl ("DAP-CtrlStat: " v)

Known setup parameters

Parameter Type Explanation

IRPre DecValue Sum of IRLen of all JTAG devices in the JTAG chain,
closer to TDO than the actual one J-Link shall commu-
nicate with.

DRPre DecValue Number of JTAG devices in the JTAG chain, closer to
TDO than the actual one, J-Link shall communicate
with.

IRPost DecValue Sum of IRLen of all JTAG devices in the JTAG chain, fol-
lowing the actual one, J-Link shall communicate with.

DRPost DecValue Number of JTAG devices in the JTAG chain, following
the actual one, J-Link shall communicate with.

IRLenDevice DecValue IRLen of the actual device, J-Link shall communicate
with.

PerformTIFInit |DecValue 0: Do not output switching sequence etc. once
JLINK_CORESIGHT_Configure() completes.

5.11.2.20 JLINK_CORESIGHT_ReadAP()
Description

Reads a specific AP register.

For JTAG, makes sure that AP is selected automatically.

Makes sure that actual data is returned, meaning for register read-accesses which
usually only return data on the second access, this function performs this automati-
cally, so the user will always see valid data.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



213

Prototype
int JLINK_CORESIGHT ReadAP (unsigned int RegIndex) ;
Example
v = JLINK_CORESIGHT ReadAP (JLINK_CORESIGHT_AP_REG_DATA) ;
Reportl ("DATA: " Vv);

5.11.2.21 JLINK_CORESIGHT_ReadDP()
Description

Reads a specific DP register.

For JTAG, makes sure that DP is selected automatically.

Makes sure that actual data is returned, meaning for register read-accesses which
usually only return data on the second access, this function performs this automati-
cally, so the user will always see valid data.

Prototype
int JLINK_CORESIGHT_ ReadDP (unsigned int RegIndex) ;
Example
v = JLINK_CORESIGHT ReadDP (JLINK_CORESIGHT_DP_REG_IDCODE) ;
Reportl ("DAP-IDCODE: " V) ;

5.11.2.22 JLINK_CORESIGHT_WriteAP()
Description

Writes a specific AP register.
For JTAG, makes sure that AP is selected automatically.

Prototype
int JLINK_CORESIGHT WriteAP (unsigned int RegIndex, unsigned int Data) ;

Example

JLINK_CORESIGHT WriteAP (JLINK_CORESIGHT_ AP_REG_BD1l, O0x1E);

5.11.2.23 JLINK_CORESIGHT_WriteDP()

Description

Writes a specific DP register.
For JTAG, makes sure that DP is selected automatically.

Prototype

int JLINK_CORESIGHT WriteDP (unsigned int RegIndex, unsigned int Data) ;

Example

JLINK_CORESIGHT WriteDP (JLINK_CORESIGHT_DP_REG_ABORT, O0xlE);

5.11.2.24 JLINK_ExecCommand()

Description
Gives the option to use Command strings in the J-Link script file.

Prototype

int JLINK_ExecCommand (const char* sMsg) ;

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



214

Example

CHAPTER 5 Working with J-Link and J-Trace

JLINK_ExecCommand("TraceSampleAdjust TD=2000");

5.11.3 Global DLL variables

The script file feature also provides some global variables which are used for DLL

configuration. Some of these variables can only be set to some specific values, others
can be set to the whole datatype with. In the following all global variables and their

value ranges are listed and described.

Note: All global variables are treated as unsigned 32-bit values and are zero-ini-
tialized.

Legend

e RO: Variable is read-only

WO: Variable is write-o

nly

R/W: Variable is read-write

Example
v = JTAG_TotalIRLen;

Variable Description R/W
Pre-selects target CPU J-Link is communicating
with. Used in InitTarget() to skip the core auto-
detection of J-Link. This variable can only be set
u— to a known global J-Link DLL constant. For a list WO
of all valid values, please refer to Global DLL con-
stants on page 217.
Example
CPU = ARM926EJS;
Used for JTAG chain configuration. Sets the num-
ber of IR-bits of all devices which are closer to
JTAG_IRPre TDO than the one we want to communicate with. | R/W
Example
JTAG_IRPre = 6;
Used for JTAG chain configuration. Sets the num-
ber of devices which are closer to TDO than the
JTAG_DRPre one we want to communicate with. RO
Example
JTAG_DRPre = 2;
Used for JTAG chain configuration. Sets the num-
ber of IR-bits of all devices which are closer to
JTAG_IRPost TDI than the one we want to communicate with. | RO
Example
JTAG_IRPost = 6;
Used for JTAG chain configuration. Sets the num-
ber of devices which are closer to TDI than the
JTAG_DRPost one we want to "communicate with. RO
Example
JTAG_DRPost = 0;
IR-Len (in bits) of the device we want to commu-
JTAG_IRLen nicate with. RO
Example
JTAG_IRLen = 4;
Computed automatically, based on the values of
JTAG_IRPre, JTAG_DRPre, JTAG_IRPost and
JTAG_TotalIRLen JTAG_DRPost. RO

Table 5.11: Global DLL variables

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




215

Example
EMU_ETB_UseETB = 0;

Variable Description R/W
En-/Disables auto-JTAG-detection of J-Link. Has
to be disabled for devices which need some spe-
cial init (for example to add the core to the JTAG
JTAG_AllowTAPReset chain), which is lost at a TAP reset. WO
Allowed values
0 Auto-detection is enabled.
1 Auto-detection is disabled.
Sets the JTAG interface speed. Speed is given in
kHz.
JTAG_Speed Example R/W
JTAG_Speed = 2000; // 2MHz JTAG speed
Pulls reset pin low / Releases nRST pin. Used to
issue a reset of the CPU. Value assigned to reset
pin reflects the state. 0 = Low, 1 = high.
JTAG_ResetPin Example WO
JTAG_ResetPin = 0;
SYS_Sleep(5); // Give pin some time to get low
JTAG_ResetPin = 1;
Pulls reset pin low / Releases nTRST pin. Used to
issue a reset of the debug logic of the CPU. Value
assigned to reset pin reflects the state. 0 = Low,
JTAG_TRSTPin 1 = high. WO
Example
JTAG_TRSTPin = 0;
SYS_Sleep(5); // Give pin some time to get low
JTAG_TRSTPin = 1;
Pulls TCK pin LOW / HIGH. Value assigned to
JTAG.TCKPin reset pin reflects the state. 0 = LOW, 1 = HIGH. R/W
Example
JTAG_TCKPin = 0;
Pulls TDI pin LOW / HIGH. Value assigned to
JTAG. TDIPin reset pin reflects the state. 0 = LOW, 1 = HIGH. R/W
Example
JTAG_TDIPin = 0;
Pulls TMS pin LOW / HIGH. Value assigned to
JTAG TMSPin reset pin reflects the state. 0 = LOW, 1 = HIGH. R/W
Example
JTAG_TMSPin = 0;
Sets or reads Trace Portwidth. Possible values:
JLINK_TRACE_Portwidth 1,2, 4. Default value is 4. R/W
Example
JLINK_TRACE_Portwidth = 4;
If the connected device has an ETB and you want
to use it with J-Link, this variable should be set
to 1. Setting this variable in another function as
EMU_ETB. TsPresent InitEmu () does not have any effect. WO
Example
void InitEmu(void) {
EMU_ETB_IsPresent = 1;
}
Uses ETB instead of RAWTRACE capability of the
emulator. Setting this variable in another func-
EMU_ETB_UseETB tion as InitEmu() does not have any effect. RO

Table 5.11: Global DLL variables

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



216 CHAPTER 5 Working with J-Link and J-Trace

Variable Description R/W

Selects whether an ETM is present on the target
or not. Setting this variable in another function
EMU_ETM_IsPresent as InitEmu () does not have any effect. R/W
Example

EMU_ETM_TIsPresent= 0;

Uses ETM as trace source. Setting this variable in
another function as InitEmu () does not have any
EMU_ETM_UseETM effect. WO
Example

EMU_ETM_UseETM = 1;

Disables use of hardware units for JTAG trans-
missions since this can cause problems on some
hardware designs. WO
Example

EMU_JTAG_DisableHWTransmissions = 1;

Sets base address of core debug component for
CoreSight compliant devices. Setting this vari-
able disables the J-Link auto-detection of the
core debug component base address. Used on
CORESIGHT CoreBaseAddr |devices where auto-detection of the core debug |R/W
component base address is not possible due to
incorrect CoreSight information.

Example

CORESIGHT_CoreBaseAddr = 0x80030000;

Pre-selects an AP as an AHB-AP that J-Link uses
for debug communication (Cortex-M). Setting
this variable is necessary for example when
debugging multi-core devices where multiple
AHB-APs are present (one for each device). This
function can only be used if a AP-layout has been
configured via JLINK_CORESIGHT_AdJdAP ().
CORESIGHT_ Example WO
IndexAHBAPToUse JLINK_CORESIGHT AdJAP (0, CORESIGHT_AHB_AP) ;
JLINK_CORESIGHT_AddAP (1, CORESIGHT_AHB_AP) ;
JLINK_CORESIGHT_AddAP (2, CORESIGHT_APB_AP) ;

//

// Use second AP as AHB-AP

// for target communication

//

CORESIGHT_TIndexAHBAPToUse = 1;

Pre-selects an AP as an APB-AP that J-Link uses
for debug communication (Cortex-A/R). Setting
this variable is necessary for example when
debugging multi-core devices where multiple
APB-APs are present (one for each device). This
function can only be used if an AP-layout has
been configured via JLINK_CORESIGHT_AddAP ().
CORESIGHT_ Example WO
IndexAPBAPToUse JLINK_CORESIGHT_AJdAP (0, CORESIGHT AHB_AP);
JLINK_CORESIGHT_AddAP (1, CORESIGHT_APB_AP) ;
JLINK_CORESIGHT_AddAP (2, CORESIGHT_APB_AP) ;
//

// Use third AP as APB-AP

// for target communication

//

CORESIGHT_ IndexAPBAPToUse = 2;

EMU_JTAG__
DisableHWTransmissions

Table 5.11: Global DLL variables

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



217

Variable Description R/W
Overrides the default settings to be used by the
DLL when configuring the AHB-AP CSW register.
By default, the J-Link DLL will use the following
settings for the CSW:
Cortex-M0, MO+, M3, M4
[30]==0
[28] == 0
[27]1 == 0
CORESIGHT_ [26] == 0
AHBAPCSWDefaultSetting | [25] == 1 WO
s [24] ==1
Configurable settings
[30] == SPROT: 0 == secure transfer request
[28] == HRPOT[4]: Always O
[27] == HRPOT[3]: 0 == uncachable
[26] == HRPOT[2]: 0 == unbufferable
[25] == HRPOT[1]: 0 == unpriviledged
[24] == HRPOT[O0]: 1 == Data access
Used to determine what reset type is currently
selected by the debugger. This is useful, if the
script has to behave differently in case a specific
reset type is selected by the debugger and the
script file has a ResetTarget () function which
MAIN_ ResetType overrides the J-Link reset strategies. RO
Example
if (MAIN_ResetType == 2) {
[...]
} else {
[...]
}
Returns the currently used target interface used
by the DLL to communicate with the target. Use-
ful in cases where some special setup only needs
. to be done for a certain target interface, e.g.
MAIN_ActiveTIF ITAG. RO
For a list of possible values this variable may
hold, please refer to Constants for global variable
"MAIN_ActiveTIF" on page 219.
Used to check if this is the first time we are run-
ning into InitTarget (). Useful if some init steps
only need to be executed once per debug ses-
sion.Example
MAIN_IsFirstIdentify if (MAIN_IsFirstIdentify == 1) { RO
[...]
} else {

[...1
}

Table 5.11: Global DLL variables

5.11.4 Global DLL constants

Currently there are only global DLL constants to set the global DLL variable cpu. If
necessary, more constants will be implemented in the future.

5.11.4.1 Constants for global variable: CPU

The following constants can be used to set the global DLL variable cpru:

e ARM7
ARM7TDMI

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



218

CHAPTER 5

ARM7TDMIR3
ARM7TDMIR4
ARM7TDMIS
ARM7TDMISR3
ARM7TDMISR4
ARM9
ARM9TDMIS
ARM920T
ARM922T
ARM926E]S
ARM946E]S
ARM966ES
ARM968ES
ARM11
ARM1136
ARM1136]
ARM11363S
ARM1136]F
ARM1136]JFS
ARM1156
ARM1176
ARM11761]
ARM11763S
ARM1176IF
ARM11763]FS
CORTEX_MO
CORTEX_M1
CORTEX_M3
CORTEX_M3R1PO
CORTEX_M3R1P1
CORTEX_M3R2PO
CORTEX_M4
CORTEX_M7
CORTEX_AS
CORTEX_A7
CORTEX_AS8
CORTEX_A9
CORTEX_A12
CORTEX_A15
CORTEX_A17
CORTEX_R4
CORTEX_R5

Working with J-Link and J-Trace

5.11.4.2 Constants for "JLINK_CORESIGHT xxx" functions

APs

e CORESIGHT_AHB_AP

e CORESIGHT_APB_AP

e CORESIGHT_JTAG_AP

e CORESIGHT_CUSTOM_AP

DP/AP register indexes

J-Link / J-Trace (UM08001)

JLINK_CORESIGHT_DP_REG_IDCODE
JLINK_CORESIGHT_DP_REG_ABORT
JLINK_CORESIGHT_DP_REG_CTRL_STAT
JLINK_CORESIGHT_DP_REG_SELECT
JLINK_CORESIGHT_DP_REG_RDBUF
JLINK_CORESIGHT_AP_REG_CTRL
JLINK_CORESIGHT_AP_REG_ADDR
JLINK_CORESIGHT_AP_REG_DATA
JLINK_CORESIGHT_AP_REG_BDO

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



219

JLINK_CORESIGHT_AP_REG_BD1
JLINK_CORESIGHT_AP_REG_BD2
JLINK_CORESIGHT_AP_REG_BD3
JLINK_CORESIGHT_AP_REG_ROM
JLINK_CORESIGHT_AP_REG_IDR

5.11.4.3 Constants for global variable "MAIN_ActiveTIF"

e JLINK_TIF_JTAG
e JLINK_TIF_SWD

5.11.5 Script file language

The syntax of the J-Link script file language follows the conventions of the C-lan-
guage, but it does not support all expresisons and operators which are supported by
the C-language. In the following, the supported operators and expressions are listed.

5.11.5.1 Supported Operators

The following operators are supported by the J-Link script file language:

Multiplicative operators: *, /, %

Additive operators: +, -

Bitwise shift operators: <<, >>)

Relational operators: <, >, <=, >=

Equality operators: ==, 1=

Bitwise operators: &, |,

Logical operators: &&, ||

Assignment operators: =, *=, /=, +=, -=, <<=, >>=, &=, "=, |=

5.11.5.2 Supported type specifiers

The following type specifiers are supported by the J-Link script file language:
void

char

int (32-bit)

__int6e4

5.11.5.3 Supported type qualifiers

The following type qualifiers are supported by the J-Link script file language:
e const

e signed
e unsigned

5.11.5.4 Supported declarators

The following type qualifiers are supported by the J-Link script file language:
e Array declarators

5.11.5.5 Supported selection statements

The following selection statements are supported by the J-Link script file language:

e if-statements
e f-else-statements

5.11.5.6 Supported iteration statements

The following iteration statements are supported by the J-Link script file language:

e while
e do-while

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



220 CHAPTER 5 Working with J-Link and J-Trace

5.11.5.7 Jump statements

The following jump statements are supported by the J-Link script file language:
e return

5.11.5.8 Sample script files

The J-Link software and documentation package comes with sample script files for
different devices. The sample script files can be found at $JLINK_INST_DIRS$\Sam-
ples\JLink\Scripts.

5.11.6 Script file writing example

In the following, a short example of how a J-Link script file could look like. In this
example we assume a JTAG chain with two devices on it (Cortex-A8 4 bits IRLen, cus-
tom device 5-bits IRLen).

void InitTarget (void) {
Report ("J-Link script example.");

JTAG_Reset () ; // Perform TAP reset and J-Link JTAG auto-detection
if (JTAG _TotalIRLen != 9) { // Basic check if JTAG chain information matches
MessageBox ("Can not find xxx device");
return 1;

}

JTAG_DRPre = 0; // Cortex-A8 is closest to TDO, no no pre devices
JTAG_DRPost = 1; // 1 device (custom device) comes after the Cortex-AS8
JTAG_IRPre = 0; // Cortex-A8 is closest to TDO, no no pre IR bits
JTAG_IRPost = 5; // custom device after Cortex-A8 has 5 bits IR len
JTAG_IRLen = 4; // We selected the Cortex-A8, it has 4 bits IRLen
CPU = CORTEX_A8; // We are connected to a Cortex-AS8
JTAG_AllowTAPReset =1; // We are allowed to enter JTAG TAP reset

//

// We have a non-CoreSight compliant Cortex-A8 here
// which does not allow auto-detection of the Core debug components base address.
// so set it manually to overwrite the DLL auto-detection
//
CORESIGHT CoreBaseAddr = 0x80030000;
}

5.11.7 Executing J-Link script files

5.11.7.1 In J-Link commander

When J-Link commander is started it searches for a script file called
Default.JLinkScript in the folder wich contains the JLink.exe and the J-Link DLL
(by default the installation folder e.g. "C:\Program Files\SEGGER\JLinkARM_V456\").
If this file is found, it is executed instead of the standard auto detection of J-Link. If
this file is not present, J-Link commander behaves as before and the normal auto-
detection is performed.

5.11.7.2 In Keil MDK-ARM

Keil MDK-ARM does not provide any native support for J-Link script files so usage of
them cannot be configured from within the GUI of the IDE itself. Anyhow, it is possi-
ble to use a J-Link script file by making use of the auto-search feature of the DLL:

e Navigate to the folder where the uVision project (*.uvproj, *.uvprojx) is located

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



221

that shall use the script file.

=N NCR )
'\;.J'\.) [ 1.+ STM32F407_ETM_Trace_InternallRCL6MHz_KeilV515 » + | 42 || Search STM32F407 ETM _Trace_interna... 0 |
File Edit View Tools Help
Organize « Include in library « Share with + MNew folder ==« [ liéil
47 Favorites Mame . Date modified Type Size
Bl Desktop RTE 15-10-01 10:11 File folder
4. Downloads Src 15-10-01 10:11 File folder
£3 Dropbox || Generic_CortexM.uvoptx 15-09-2513:52 UVOPTX File 12KB
=| Recent Places €] Generic_CortexM.uvprojx 15-09-2513:51 uVision5 Project 17 KB
4 | JLinkSettings.ini 15-09-2513:42 Configuration sett... 1KB
> Bl Desktop
5 items
e Copy the J-Link script file to there
e Rename the J-Link script to JLinkSettings.JLinkScript
=N NCR )
'\;.J'\.) [ 1.+ STM32F407_ETM_Trace_InternallRCL6MHz_KeilV515 » + | 42 || Search STM32F407 ETM _Trace_interna... 0 |
File Edit View Tools Help
Organize « Include in library « Share with + MNew folder ==« [ liéil
" s MName Date modified Type Size
Bl Desktop RTE 15-10-01 10:11 File folder
4. Downloads Src 15-10-01 10:11 File folder
£3 Dropbox || Generic_CortexM.uvoptx 15-09-2513:52 UVOPTX File 12KB
| Recent Places €| Generic_CortexM.uvprojx 09-2513:51 pVision5 Project 17 KB
<k | JlinkSettings.ini -09-2513:42 Configuration sett... 1KB
B Desktop | || JLinkSettings.JLinkScript 15-10-01 9:47 JUINKSCRIPT File 4KB
& items

The JLinkSettings.ini is a settings file created by the J-Link DLL on debug session
start. If no script file is explicitly passed to the DLL, it will search in the directory of
the JLinkSettings.ini for a script file named like the settings file only with a different
file extension.

5.11.7.3 In IAR EWARM

IAR EWARM does not provide any native support for J-Link script files so usage of
them cannot be configured from within the GUI of the IDE itself. Anyhow, it is possi-
ble to use a J-Link script file by making use of the auto-search feature of the DLL:

Navigate to the folder where the EWARM project (*.ewp) is located

On the start of the first debug session EWARM will create a settings folder there
Navigate into this settings folder

There will be a *.jlink file in this folder for each debug configuration of the cur-
rent project (e.g. Debug + Release)

Copy the J-Link script file into this folder

Rename the J-Link script to *.JLinkScript where * is the same name as the *.jlink
file has. Example:

MyProject_Debug.jlink

=> Rename J-Link script file to MyProject_Debug.JLinkScript

On debug session start, the J-Link DLL will search for a *.JLinkScript file with the
same name as the J-Link settings file (*.jlink) and if present, the J-Link script file
will be used for this session. For more information about how EWARM names the

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



222 CHAPTER 5 Working with J-Link and J-Trace

J-Link settings file, please refer to The J-Link settings file on page 205.

5.11.7.4 In other debugger IDE environments

To execute a J-Link script file out of your debugger IDE, simply select the script file
to execute in the Settings tab of the J-Link control panel and click the save button
(after the debug session has been started). Usually a project file for J-Link is set by
the debugger, which allows the J-Link DLL to save the settings of the control panel in
this project file. After selecting the script file restart your debug session. From now
on, the script file will be executed when starting the debug session.

5.11.7.5 In GDB Server

In order to execute a script file when using J-Link GDB Server, simply start the GDB
Server, using the following command line paramter:

-scriptfile <file>

For more information about the -scriptfile command line parameter, please refer
to J-Link GDB Server on page 92.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



223

5.12 Command strings

The behavior of the J-Link can be customized via command strings passed to the
JLinkARM.d1l1l which controls J-Link. Applications such as the J-Link Commander, but
also the C-SPY debugger which is part of the IAR Embedded Workbench, allow pass-
ing one or more command strings. Command line strings can be used for passing
commands to J-Link (such as switching on target power supply), as well as customize
the behavior (by defining memory regions and other things) of J-Link. The use of
command strings enables options which can not be set with the configuration dialog
box provided by C-SPY.

5.12.1 List of available commands

The table below lists and describes the available command strings.

Command Description
AppendToLogFile ’Ir_E”nea.bIes/DlsabIes always appending new loginfo to log-
CORESIGHT_SetIndexAHBAP | Selects a specific AHB-AP to be used to connect to a
ToUse Cortex-M device.
CORESIGHT_SetIndexAPBAP | Selects a specific APB-AP to be used to connect to a
ToUse Cortex-A or Cortex-R device.
device Selects the target device.
DisableAutoUpdateFW Disables automatic firmware update.
DisableCortexMXxPSRAutoC | Disables auto-correction of XPSR T-bit for Cortex-M
orrectTBit devices.
DisableFlashBPs Disables the FlashBp feature.
DisableFlashDL Disables the J-Link FlashDL feature.
DisableInfoWinFlashBPs Disables info window for programming FlashBPs.
DisableInfoWinFlashDL Disables info window for FlashDL.

Disables output of additional information about mode

DisableMOEHandling of entry in case the target CPU is halted / entered

debug mode.

DisablePowerSupplyOnClo
se

EnableAutoUpdateFW Enables automatic firmware update.
EnableEraseAllFlashBank
s

Disables power supply on close.

Enables erase for all accessible flash banks.

EnableFlashBPs Enables the FlashBp feature.
EnableFlashDL Enables the J-Link FlashDL feature.
EnableInfoWinFlashBPs Enables info window for programming FlashBPs.
EnableInfoWinFlashDL Enables info window for FlashDL.

Enables output of additional information about mode
EnableMOEHandling of entry in case the target CPU is halted / entered

debug mode.

Enable detailed output during CPU-detection / connec-
tion process.

Invalidate flash ranges in flash cache, that are config-
ured to be excluded from flash cache.

EnableRemarks

ExcludeFlashCacheRange

Hide device selection Hide device selection dialog.

HSSLogFile Lo_gs all HSS-Data to file, regardless of the application
using HSS.

InvalidateCache Invalidates Cache.

InvalidateFW Invalidating current firmware.

map exclude Ignores all memory accesses to specified area.

Table 5.12: Available command strings

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



224

CHAPTER 5 Working with J-Link and J-Trace

Command Description
map indirectread Specifies an area which should be read indirect.
. Marks a specified memory region as an illegal memory
map illegal . . R
area. Memory accesses to this region are ignored.
map ram Specifies location of target RAM.
map region Specifies a memory region.
Restores the default mapping, which means all mem-
map reset

ory accesses are permitted.

ProjectFile

Specifies a file or directory which should be used by
the J-Link DLL to save the current configuration.

ReadIntoTraceCache

Reads the given memory area into the streaming trace
instruction cache.

ScriptFile

Set script file path.

SelectTraceSource

Selects which trace source should be used for tracing.

SetAllowFlashCache Enables/Disables flash cache usage.
SetAllowSimulation Enables/Disables instruction set simulation.
SetBatchMode Enables/Disables batch mode.

SetCFIFlash Specifies CFI flash area.

SetCheckModeAfterRead Enables/Disables CPSR check after read operations.
SetCompareMode Specifies the compare mode to be used.

SetCPUConnectIDCODE

Specifies an CPU IDCODE that is used to authenticate
the debug probe, when connecting to the CPU.

SetDbgPowerDownOnClose

Used to power-down the debug unit of the target CPU
when the debug session is closed.

SetETBIsPresent

Selects if the connected device has an ETB.

SetETMIsPresent

Selects if the connected device has an ETM.

SetFlashDLNoRMWThreshol
d

Specifies a threshold when writing to flash memory
does not cause a read-modify-write operation.

SetFlashDLThreshold

Set minimum amount of data to be downloaded.

SetIgnoreReadMemErrors

Specifies if read memory errors will be ignored.

SetIgnoreWriteMemErrors

Specifies if write memory errors will be ignored.

SetMonModeDebug

Enables/Disables monitor mode debugging.

TraceSampleAdjust

Allows to adjust the sampling timing on the specified
pins, inside the J-Trace firmware

SetResetPulselen

Defines the length of the RESET pulse in milliseconds.

SetResetType Selects the reset strategy.
SetRestartOnClose Specifies restart behavior on close.
SetRTTAdAr Set address of the RTT buffer.
SetRTTTelnetPort Set the port used for RTT telnet.

SetRTTSearchRanges

Set ranges to be searched for RTT buffer.

SetRXIDCode

Specifies an ID Code for Renesas RX devices to be
used by the J-Link DLL.

SetSkipProgOnCRCMatch

Specifies the CRC match / compare mode to be used.
Deprecated, use SetCompareMode instead.

SetSysPowerDownOnIdle

Used to power-down the target CPU, when there are
no transmissions between J-Link and target CPU, for a
specified timeframe.

SetVerifyDownload Specifies the verify option to be used.

SetWorkRAM Specifies RAM area to be used by the J-Link DLL.
ShowControlPanel Opens control panel.

SilentUpdateFW Update new firmware automatically.

SupplyPower Activates/Deactivates power supply over pin 19 of the

JTAG connector.

Table 5.12: Available command strings

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




225

Command Description
Activates/Deactivates power supply over pin 19 of the
SupplyPowerDefault JTAG connector permanently.
SuppressControlPanel Suppress pop up of the control panel.
SuppressInfoUpdateFW Suppress information regarding firmware updates.
SWOSetConversionMode Set SWO Conversion mode.

Table 5.12: Available command strings

5.12.1.1 AppendToLogFile

This command can be used to configure the AppendToLogFile feature. If enabled, new
log data will always be appended to an existing logfile. Otherwise, each time a new
connection will be opened, existing log data will be overwritten. By default new log
data will not be always appended to an existing lodfile.

Syntax

AppendToLogFile = 0 | 1

Example

AppendToLogFile 1 // Enables AppendToLogFile

5.12.1.2 CORESIGHT_SetindexAHBAPToUse

This command is used to select a specific AHB-AP to be used when connected to an
ARM Cortex-M device. Usually, it is not necessary to explicitly select an AHB-AP to be
used, as J-Link auto-detects the AP automatically. For multi-core systems with multi-
ple AHB-APs it might be necessary.

The index selected here is an absolute index. For example, if the connected target
provides the following AP layout:

e AP[0]: AHB-AP

e AP[1]: APB-AP

e AP[2]: AHB-AP

e AP[3]: JTAG-AP

In order to select the second AHB-AP to be used, use "2" as index.

Syntax
CORESIGHT_SetIndexAHBAPToUse = <Index>

Example

CORESIGHT_ SetIndexAHBAPToUse = 2

5.12.1.3 CORESIGHT_SetindexAPBAPToUse

This command is used to select a specific APB-AP to be used when connected to an
ARM Cortex-A or Cortex-R device. Usually, it is not necessary to explicitly select an
AHB-AP to be used, as J-Link auto-detects the AP automatically. For multi-core sys-
tems with multiple APB-APs it might be necessary.

The index selected here is an absolute index. For example, if the connected target
provides the following AP layout:

AP[O]: APB-AP
AP[1]: AHB-AP
AP[2]: APB-AP
AP[3]: JTAG-AP

In order to select the second APB-AP to be used, use "2" as index.

Syntax

CORESIGHT_SetIndexAPBAPToUse = <Index>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



226 CHAPTER 5 Working with J-Link and J-Trace

Example

CORESIGHT_SetIndexAPBAPToUse = 2

5.12.1.4 device

This command selects the target device.

Syntax

device = <DeviceID>

DeviceID has to be a valid device identifier. For a list of all available device identifi-
ers please refer to chapter Supported devices on page 250.

Example

device = AT91SAM7S256

5.12.1.5 DisableAutoUpdateFW

This command is used to disable the automatic firmware update if a new firmware is
available.

Syntax
DisableAutoUpdateFwW

5.12.1.6 DisableCortexMXPSRAutoCorrectTBit

Usually, the J-Link DLL auto-corrects the T-bit of the XPSR register to 1, for Cortex-M
devices. This is because having it set as 0 is an invalid state and would cause several
problems during debugging, especially on devices where the erased state of the flash
is 0x00 and therefore on empty devices the T-bit in the XPSR would be 0. Anyhow, if
for some reason explicit disable of this auto-correction is necessary, this can be
achieved via the following command string.

Syntax
DisableCortexMXPSRAutoCorrectTBit

5.12.1.7 DisableFlashBPs

This command disables the FlashBP feature.

Syntax

DisableFlashBPs

5.12.1.8 DisableFlashDL

This command disables the g-1.ink FlashDL feature.

Syntax
DisableFlashDL

5.12.1.9 DisableinfoWinFlashBPs

This command is used to disable the flash download window for the flash breakpoint
feature. Enabled by default.

Syntax

DisableInfowinFlashBPs

5.12.1.10 DisablelnfoWinFlashDL

This command is used to disable the flash download information window for the flash
download feature. Enabled by default.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



227

Syntax

DisableInfoWinFlashDL

5.12.1.11 DisableMOEHandling

The J-Link DLL outputs additional information about mode of entry (MOE) in case the
target CPU halted / entered debug mode. Disabled by default.

Syntax
DisableMOEHandling

5.12.1.12 DisablePowerSupplyOnClose

This command is used to ensure that the power supply for the target will be disabled
on close.

Syntax
DisablePowerSupplyOnClose

5.12.1.13 EnableAutoUpdateFW

This command is used to enable the automatic firmware update if a new firmware is
available.

Syntax
EnableAutoUpdateFW

5.12.1.14 EnableEraseAllFlashBanks

Used to enable erasing of other flash banks than the internal, like (Q)SPI flash or CFI
flash.

Syntax

EnableEraseAllFlashBanks

5.12.1.15 EnableFlashBPs

This command enables the FlashBpP feature.

Syntax
EnableFlashBPs

5.12.1.16 EnableFlashDL
This command enables the J-Link ARM FlashDL feature.

Syntax
EnableFlashDL

5.12.1.17 EnableinfoWinFlashBPs

This command is used to enable the flash download window for the flash breakpoint
feature. Enabled by default.

Syntax
EnableInfoWinFlashBPs

5.12.1.18 EnablelnfoWinFlashDL

This command is used to enable the flash download information window for the flash
download feature.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



228 CHAPTER 5 Working with J-Link and J-Trace

Syntax

EnableInfoWinFlashDL

5.12.1.19 EnableMOEHandling

The J-Link DLL outputs additional information about mode of entry (MOE) in case the
target CPU halted / entered debug mode. Disabled by default.

Additional information is output via log-callback set with
JLINK_OpenEx (JLINK_LOG* pfLog, JLINK_LOG* pfErrorOut)

Syntax
EnableMOEHandling

5.12.1.20 EnableRemarks

The J-link DLL provides more detailed output during CPU-detection / connection pro-
cess. Kind of “verbose” option. Disabled by default, therefor only an enable option.
Will be reset to “disabled” on each call to JLINK_Open() (reconnect to J-Link).

Syntax

EnableRemarks

5.12.1.21 ExcludeFlashCacheRange

This command is used to invalidate flash ranges in flash cache, that are configured to
be excluded from the cache. Per default, all areas that J-Link knows to be Flash
memory, are cached. This means that it is assumed that the contents of this area do
not change during program execution. If this assumption does not hold true, typically
because the target program modifies the flash content for data storage, then the
affected area should be excluded. This will slightly reduce the debugging speed.

Example

ExcludeFlashCacheRange 0x10000000-0x100FFFFF

5.12.1.22 GetCPUVars

5.12.1.23 Hide device selection

This command can be used to suppress the device selection dialog. If enabled, the
device selection dialog will not be shown in case an unknown device is selected.

Syntax

HideDeviceSelection = 0 | 1

Example

HideDeviceSelection 1 // Device selection will not show up

5.12.1.24 HSSLogFile

This command enables HSS-Logging. Separate to the application using HSS, all HSS
Data will be stored in the specified file.

Syntax
HSSLogFile = <Path>

Example

HSSLogFile = C:\Test.log

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



229

5.12.1.25 InvalidateCache

This command is used to invalidate cache.

Syntax

InvalidateCache

5.12.1.26 InvalidateFW

This command is used to invalidate the current firmware of the J-Link / J-Trace. Inval-
idating the firmware will force a firmware update. Can be used for downdating. For more
information please refer to J-Link / J-Trace firmware on page 446.

Syntax

InvalidateFw

5.12.1.27 map exclude

This command excludes a specified memory region from all memory accesses. All
subsequent memory accesses to this memory region are ignored.

Memory mapping

Some devices do not allow access of the entire 4GB memory area. Ideally, the entire
memory can be accessed; if a memory access fails, the CPU reports this by switching
to abort mode. The CPU memory interface allows halting the CPU via a WAIT signal.
On some devices, the WAIT signal stays active when accessing certain unused mem-
ory areas. This halts the CPU indefinitely (until RESET) and will therefore end the
debug session. This is exactly what happens when accessing critical memory areas.
Critical memory areas should not be present in a device; they are typically a hard-
ware design problem. Nevertheless, critical memory areas exist on some devices.

To avoid stalling the debug session, a critical memory area can be excluded from
access: J-Link will not try to read or write to critical memory areas and instead
ignore the access silently. Some debuggers (such as IAR C-SPY) can try to access
memory in such areas by dereferencing non-initialized pointers even if the debugged
program (the debuggee) is working perfectly. In situations like this, defining critical
memory areas is a good solution.

Syntax
map exclude <SAddr>-<EAddr>

Example

This is an example for the map exclude command in combination with an NXP
LPC2148 MCU.

Memory map

0x00000000-0x0007FFFF On-chip flash memory

0x00080000-0x3FFFFFFF Reserved

0x40000000-0x40007FFF On-chip SRAM

0x40008000-0x7FCFFFFF Reserved

0x7FD00000-0x7FDO1FFF On-chip USB DMA RAM

0x7FD02000-0x7FD02000 Reserved

Ox7FFFD000-0Ox7FFFFFFF Boot block (remapped from on-chip flash memory)
0x80000000-0xDFFFFFFF Reserved

0xEO000000-OXEFFFFFFF VPB peripherals

OxFO000000-0OxFFFFFFFF AHB peripherals

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



230

CHAPTER 5 Working with J-Link and J-Trace

The "problematic" memory areas are:

0x00080000-0x3FFFFFFF Reserved
0x40008000-0x7FCFFFFF Reserved
0x7FD02000-0x7FD02000 Reserved
0x80000000-0xDFFFFFFF Reserved

To exclude these areas from being accessed through J-Link the map exclude com-
mand should be used as follows:

map exclude 0x00080000-0x3FFFFFFF
map exclude 0x40008000-0x7FCFFFFF
map exclude 0x7FD02000-0x7FD02000
map exclude 0x80000000-0xDFFFFFFF

5.12.1.28 map illegal

This command marks a specified memory region as an illegal memory area. All sub-
sequent memory accesses to this memory region produces a warning message and
the memory access is ignored. This command can be used to mark more than one
memory region as an illegal area by subsequent calls.

Syntax
Map Illegal <SAddr>-<EAddr>

Example
Map Illegal O0xF0000000-O0xXFFDFFFFF

Additional information
e SAddr has to be a 256-byte aligned address.

The region size has to be a multiple of 256 bytes.

5.12.1.29 map indirectread

This command can be used to read a memory area indirectly. Indirect reading means
that a small code snippet is downloaded into RAM of the target device, which reads
and transfers the data of the specified memory area to the host. Before map indi-
rectread can be called a RAM area for the indirect read code snippet has to be
defined. Use therefor the map ram command and define a RAM area with a size of >=
256 byte.

Typical applications
Refer to chapter Fast GPIO bug on page 402 for an example.
Syntax

map indirectread <StartAddressOfArea>-<EndAddress>

Example
map indirectread 0x3fffc000-0x3fffcfff

Additional information
e StartAddressOfArea has to be a 256-byte aligned address.

The region size has to be a multiple of 256 bytes.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



231

5.12.1.30 map ram

This command should be used to define an area in RAM of the target device. The area
must be 256-byte aligned. The data which was located in the defined area will not be
corrupted. Data which resides in the defined RAM area is saved and will be restored if
necessary. This command has to be executed before map indirectread will be
called.

Typical applications
Refer to chapter Fast GPIO bug on page 402 for an example.
Syntax

map ram <StartAddressOfArea>-<EndAddressOfArea>

Example
map ram 0x40000000-0x40003fff;

Additional information
e StartAddressOfArea has to be a 256-byte aligned address.

The region size has to be a multiple of 256 bytes.
5.12.1.31 map region

This command is used to specify memory areas with various region types.

Syntax

map region <StartAddressOfArea>-<EndAddressOfArea> <RegionType>

Region type Description

N Normal

C Cacheable

X Excluded

XI Excluded & Illegal

I Indirect access

A Alias (static, e.g. RAM/flash that is aliased multiple times in
one area. Does not change during the debug session.)

AD Alias (dynamic, e.g. memory areas where different memo-
ries can be mapped to.)

Example

map region 0x100000-0x1FFFFF C

5.12.1.32 map reset

This command restores the default memory mapping, which means all memory
accesses are permitted.

Typical applications

Used with other "map" commands to return to the default values. The map reset
command should be called before any other "map" command is called.

Syntax

map reset

Example

map reset

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



232 CHAPTER 5 Working with J-Link and J-Trace

5.12.1.33 ProjectFile

This command is used to specify a file used by the J-Link DLL to save the current
configuration.

Using this command is recommended if settings need to be saved. This is typically
the case if Flash breakpoints are enabled and used. It is recommended that an IDE
uses this command to allow the JLinkaRM.d1l1 to store its settings in the same direc-
tory as the project and settings file of the IDE. The recommended extension for
project files is *.jlink.

Assuming the Project is saved under c:\Work\Work and the project contains to tar-
gets name Debug and Release, the debug version could set the file name

C:\Work\Work\Debug.jlink.

The release version could use
C:\Work\Work\Release.jlink.

Note

Spaces in the filename are permitted.

Syntax

ProjectFile = <FullFileName>

Example

ProjectFile = C:\Work\Release.jlink

5.12.1.34 ReadIntoTraceCache

This command is used to read a given memory area into the trace instruction cache.
It is mainly used for cases where the download address of the application differs from
the execution address. As for trace analysis only cached memory contents are used
as memory accesses during trace (especially streaming trace) cause an overhead
that is too big, by default trace will only work if execution address is identical to the
download address. For other cases, this command can be used to read specific mem-
ory areas into the trace instruction cache.

Notes

1. This command causes an immediate read from the target, so it should only be called
at a point where memory contents at the given area are known to be valid

Syntax

ReadIntoTraceCache <Addr> <NumBytes>

Example
ReadIntoTraceCache 0x08000000 0x2000

5.12.1.35 ScriptFile

This command is used to set the path to a J-Link script file which shall be executed.
J-Link scriptfiles are mainly used to connect to targets which need a special connec-
tion sequence before communication with the core is possible.

Syntax

ScriptFile = <FullFileName>

Example

ScriptFile = C:\Work\Default.JLinkScript

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



233

5.12.1.36 SelectTraceSource
This command selects the trace source which shall be used for tracing.
Notes

1. This is only relevant when tracing on a target that supports trace via pins as well as
trace via on-chip trace buffer and a J-Trace (which supports both) is connected to the

PC.
Syntax
Select2TraceSource = <SourceNumber>
Trace source number Description
0 ETB
1 ETM
2 MTB
Example

SelectTraceSource = 0 // Select ETB

5.12.1.37 SetAllowFlashCache

This command is used to enable / disable caching of flash contents. Enabled by
default.

Syntax
SetAllowFlashCache = 0 | 1

Example

SetAllowFlashCache = 1 // Enables flash cache

5.12.1.38 SetAllowSimulation

This command can be used to enable or disable the instruction set simulation. By
default the instruction set simulation is enabled.

Syntax
SetAllowSimulation = 0 | 1

Example

SetAllowSimulation 1 // Enables instruction set simulation

5.12.1.39 SetBatchMode
This command is used to tell the J-Link DLL that it is used in batch-mode / automa-

tized mode, so some dialogs etc. will automatically close after a given timeout. Dis-
abled by default.

Syntax
SetBatchMode = 0 | 1

Example

SetBatchMode 1 // Enables batch mode

5.12.1.40 SetCFIFlash

This command can be used to set a memory area for CFI compliant flashes.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



234 CHAPTER 5 Working with J-Link and J-Trace

Syntax
SetCFIFlash <StartAddressOfArea>-<EndAddressOfArea>

Example

SetCFIFlash 0x10000000-0x100FFFFF

5.12.1.41 SetCheckModeAfterRead

This command is used to enable or disable the verification of the CPSR (current pro-
cessor status register) after each read operation. By default this check is enabled.
However this can cause problems with some CPUs (e.g. if invalid CPSR values are
returned). Please note that if this check is turned off (SetCheckModeAfterRead = 0),
the success of read operations cannot be verified anymore and possible data aborts
are not recognized.

Typical applications

This verification of the CPSR can cause problems with some CPUs (e.qg. if invalid CPSR
values are returned). Note that if this check is turned off (SetCheckModeAfterRead =
0), the success of read operations cannot be verified anymore and possible data
aborts are not recognized.

Syntax
SetCheckModeAfterRead = 0 | 1

Example

SetCheckModeAfterRead = 0

5.12.1.42 SetCompareMode

This command is used to configure the compare mode.

Syntax
SetCompareMode = <Mode>
<Mode> Description
0 Skip
1 Using fastest method (default)
2 Using CRC
3 Using readback
Example

SetCompareMode = 1 // Select using fastest method

5.12.1.43 SetCPUConnectIDCODE

Used to specify an IDCODE that is used by J-Link to authenticate itself when connect-
ing to a specific device. Some devices allow the user to lock out a debugger by
default, until a specific unlock code is provided that allows further debugging. This
function allows to automate this process, if J-Link is used in a production environ-
ment.

The IDCODE stream is expected as a hex-encoded byte stream. If the CPU e.g. works
on a word-basis for the IDCODE, this stream is interpreted as a little endian format-
ted stream where the J-Link library then loads the words from and passes them to
the device during connect.

Syntax
SetCPUConnectIDCODE = <IDCODE_Stream>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



235

Example

CPU has a 64-bit IDCODE (on word-basis) and expects 0x11223344 0x55667788 as
IDCODE.

SetCPUConnectIDCODE = 4433221188776655

5.12.1.44 SetDbgPowerDownOnClose

When using this command, the debug unit of the target CPU is powered-down when
the debug session is closed.

Note: This command works only for Cortex-M3 devices
Typical applications

This feature is useful to reduce the power consumption of the CPU when no debug
session is active.

Syntax
SetDbgPowerDownOnClose = <value>

Example

SetDbgPowerDownOnClose
SetDbgPowerDownOnClose

1 // Enables debug power-down on close.
0 // Disables debug power-down on close.

5.12.1.45 SetETBIsPresent

This command is used to select if the connected device has an ETB.

Syntax

SetETBIsPresent = 0 | 1

Example

SetETBIsPresent = 1 // ETB is available
SetETBIsPresent = 0 // ETB is not available

5.12.1.46 SetETMIsPresent

This command is used to select if the connected device has an ETM.

Syntax

SetETMIsPresent = 0 | 1

Example

SetETMIsPresent = 1 // ETM is available
SetETMIsPresent = 0 // ETM is not available

5.12.1.47 SetFlashDLNoRMWThreshold

This command sets the J-Link DLL internal threshold when a write to flash memory
does not cause a read-modify-write (RMW) operation. For example, when setting this
value to 0x800, all writes of amounts of data < 2 KB will cause the DLL to perform a
read-modify-write operation on incomplete sectors.

Default: Writing amounts of < 1 KB (0x400) to flash causes J-Link to perform a read-
modify-write on the flash.

Example 1 with default config:

Flash has 2 * 1 KB sectors

Debugger writes 512 bytes

J-Link will perform a read-modify-write on the first sector, preserving contents of 512
-1023 bytes. Second sector is left untouched.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



236 CHAPTER 5 Working with J-Link and J-Trace

Example 2 with default config:

Flash has 2 * 1 KB sectors

Debugger writes 1280 bytes

J-Link will erase + program 1 KB of first sector.

J-Link will erase + program 256 bytes of second sector. Previous 768 bytes from sec-
ond sector are lost.

The default makes sense for flash programming where old contents in remaining
space of affected sectors are usually not needed anymore. Writes of < 1 KB usually
mean that the user is performing flash manipulation from within a memory window in
a debugger to manipulate the application behavior during runtime (e.g. by writing
some constant data used by the application). In such cases, it is important to pre-
serve the remaining data in the sector to allow the application to further work cor-
rectly.

Syntax

SetFlashDLNoRMWThreshold = <value>

Example

SetFlashDLNoRMWThreshold = 0x100 // 256 Bytes

5.12.1.48 SetFlashDLThreshold

This command is used to set a minimum amount of data to be downloaded by the
flash download feature.

Syntax

SetFlashDLThreshold = <value>

Example
SetFlashDLThreshold = 0x100 // 256 Bytes

5.12.1.49 SetlgnoreReadMemErrors

This command can be used to ignore read memory errors. Disabled by default.

Syntax

SetIgnoreReadMemErrors = 0 | 1

Example

SetIgnoreReadMemErrors
SetIgnoreReadMemErrors

5.12.1.50 SetlgnoreWriteMemErrors

This command can be used to ignore read memory errors. Disabled by default.

1 // Read memory errors will be ignored
0 // Read memory errors will be reported

Syntax

SetIgnoreWriteMemErrors = 0 | 1

Example

SetIgnoreWriteMemErrors
SetIgnoreWriteMemErrors

1 // Write memory errors will be ignored
0 // Write memory errors will be reported

5.12.1.51 SetMonModeDebug

This command is used to enable / disable monitor mode debugging. Disabled by
default.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



237

Syntax

SetMonModeDebug = 0 | 1

Example

SetMonModeDebug = 1 // Monitor mode debugging is enabled
SetMonModeDebug = 0 // Monitor mode debugging is disabled

5.12.1.52 SetResetPulselen

This command defines the length of the RESET pulse in milliseconds. The default for
the RESET pulse length is 20 milliseconds.

Syntax

SetResetPulselen = <value>

Example

SetResetPulselen = 50

5.12.1.53 TraceSampleAdjust

Allows to adjust the sample point for the specified trace data signals inside the J-
Trace firmware. This can be useful to compensate certain delays on the target hard-
ware (e.g. caused by routing etc.).

Syntax

TraceSampleAdjust <PinName> = <Adjust_Ps>[ <PinName>=<Adjust_Ps> ...]

<PinName> Description
TD Adjust all trace data signals
TDO Adjust trace data 0
TD1 Adjust trace data 1
TD2 Adjust trace data 2
TD3 Adjust trace data 3
TD3..0 Adjust trace data 0-3
TD2..1 Adjust trace data 1-2
TDxX..y Adjust trace data x-y
<Adjust_Ps> Description
-5000 to 5000 Adjustment in [ps]
Example

TraceSampleAdjust TD = 1000

5.12.1.54 SetResetType

This command selects the reset strategy which shall be used by J-Link, to reset the
device. The value which is used for this command is analog to the reset type which
shall be selected. For a list of all reset types which are available, please refer to
Reset strategies on page 199. Please note that there different reset strategies for
ARM 7/9 and Cortex-M devices.

Syntax

SetResetType = <value>

Example

SetResetType = 0 // Selects reset strategy type 0: normal

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



238 CHAPTER 5 Working with J-Link and J-Trace

5.12.1.55 SetRestartOnClose

This command specifies whether the J-Link restarts target execution on close. The
default is to restart target execution. This can be disabled by using this command.

Syntax
SetRestartOnClose = 0 | 1

Example

SetRestartOnClose = 1

5.12.1.56 SetRTTAddr

In some cases J-Link cannot locate the RTT buffer in known RAM. This command is
used to set the exact address manually.

Syntax
SetRTTAddr <RangeStart>

Example

SetRTTAddr 0x20000000

5.12.1.57 SetRTTTelnetPort

This command alters the RTT telnet port. Default is 19021.

This command must be called before a connection to a J-Link is established.

In J-Link Commander, command strings ("exec <CommandString>") can only be exe-
cuted after a connection to J-Link is established, therefore this command string has

no effect in J-Link Commander. The -RTTTelnetPort command line parameter can be
used instead .

Syntax
SetRTTTelnetPort <value>

Example

SetRTTTelnetPort 9100

5.12.1.58 SetRTTSearchRanges

In some cases J-Link cannot locate the RTT buffer in known RAM. This command is
used to set (multiple) ranges to be searched for the RTT buffer.

Syntax
SetRTTSearchRanges <RangeAddr> <RangeSize> [, <RangeAddrl> <RangeSizel>, ..]

Example

SetRTTSearchRanges 0x10000000 0x1000, 0x20000000 0x1000,

5.12.1.59 SetRXIDCode

This command is used to set the ID Code for Renesas RX devices to be used by the J-
Link DLL.

Syntax
SetRXIDCode = <RXIDCode_String>

Example
Set 16 IDCode Bytes (32 Characters).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



239

SetRXIDCode = 112233445566778899AABBCCDDEEFF00

5.12.1.60 SetSkipProgOnCRCMatch

Note: Deprecated. Use setCompareMode instead.
This command is used to configure the CRC match / compare mode.
Syntax

SetSkipProgOnCRCMatch = <CompareMode>

Compare mode Description
0 Skip
1 Using fastest method (default)
2 Using CRC
3 Using readback
Example

SetSkipProgOnCRCMatch = 1 // Select using fastest method

5.12.1.61 SetSysPowerDownOnidle

When using this command, the target CPU is powered-down when no transmission
between J-Link and the target CPU was performed for a specific time. When the next
command is given, the CPU is powered-up.

Note: This command works only for Cortex-M3 devices.
Typical applications

This feature is useful to reduce the power consumption of the CPU.

Syntax

SetSysPowerDownOnIdle = <value>

Note: A 0 for <value> disables the power-down on idle functionality.
Example

SetSysPowerDownOnIdle = 10; // The target CPU is powered-down when there is no
// transmission between J-Link and target CPU for at least
10ms

5.12.1.62 SetVerifyDownload

This command is used to configure the verify mode.
Syntax

SetVerifyDownload = <VerifyMode>

Verify mode Description

Skip

Programmed sectors, fastest method (default)
Programmed sectors using CRC

Programmed sectors using readback

All sectors using fastest method

All sectors using CRC

All sectors using read back

Programmed sectors using checksum

All sectors using checksum

0NV~ WINHO

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



240 CHAPTER 5 Working with J-Link and J-Trace

Example

SetVerifyDownload = 1 // Select programmed sectors, fastest method

5.12.1.63 SetWorkRAM

This command can be used to configure the RAM area which will be used by J-Link.

Syntax

SetWorkRAM <StartAddressOfArea>-<EndAddressOfArea>

Example

SetWorkRAM 0x10000000-0x100FFFFF

5.12.1.64 ShowControlPanel

Executing this command opens the control panel.

Syntax

ShowControlPanel

5.12.1.65 SilentUpdateFW

After using this command, new firmware will be updated automatically without open-
ing a message box.

Syntax
SilentUpdateFW

5.12.1.66 SupplyPower

This command activates power supply over pin 19 of the JTAG connector. The KS
(Kickstart) versions of J-Link have the V5 supply over pin 19 activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG con-
nector.

Syntax
SupplyPower = 0 | 1

Example

SupplyPower = 1

5.12.1.67 SupplyPowerDefault

This command activates power supply over pin 19 of the JTAG connector perma-
nently. The KS (Kickstart) versions of J-Link have the V5 supply over pin 19 activated
by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG con-
nector.

Syntax
SupplyPowerDefault = 0 | 1

Example

SupplyPowerDefault = 1

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



241

5.12.1.68 SuppressControlPanel
Using this command ensures, that the control panel will not pop up automatically.
Syntax
SuppressControlPanel

5.12.1.69 SuppressinfoUpdateFW

After using this command information about available firmware updates will be sup-

pressed.

Note: We strongly recommend not to use this command, latest firmware ver-
sions should always be used!

Syntax

SuppressInfoUpdateFW

5.12.1.70 SWOSetConversionMode

This command is used to set the SWO conversion mode.

Syntax

SWOSetConversionMode = <ConversionMode>

Conversion mode Description
0 If only "\n' is received, make it "\r\n" to make the line end
Windows-compliant. (Default behavior)
1 Leave everything as it is, do not add any characters.
Example

SWOSetConversionMode = 0

5.12.2 Using command strings
5.12.2.1 J-Link Commander

The J-Link command strings can be tested with the J-Link Commander. Use the com-
mand exec supplemented by one of the command strings.

3 J-Link ARM V3.58c M=l &3

SEGGER J-Link Commander U3.58c <’'7’ for help>

Compiled Jan 12 2887 12:54:38

DLL version U3.58c. compiled Jan 12 2887 12:54:35

Firmware: J-Link compiled Febh B89 2887 19:59:46 ARM Rev.S
: U5.38

UTarget = 3.313V
JTAG speed: 38 kH=z
Found 1 JTAG device,. Total IRLen = 4:
Id of device #8: Bx4F1FAFAF
Found ARM with core Id Bx4F1FBFBF (ARM?7>
J-Link>exec map rese

t
J-Link>exec map exclude Bx18B88BABB-Bx3FFFFFFF
J-Link>_

Example

exec SupplyPower = 1
exec map reset
exec map exclude 0x10000000-0x3FFFFFFF

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



242 CHAPTER 5 Working with J-Link and J-Trace

5.12.2.2 SEGGER Ozone

J-Link command strings can be used inside SEGGER Ozone. They can be used in dif-
ferent ways:

e From inside a *.jdebug (script-like) Ozone project, by adding a Exec.Com-
mand ( "<Command>") ; call into one of the customizable Ozone actions. For more
information about them, please refer to the Ozone manual.

e By directly typing it into the console window: Exec.Command ("<Command>") ;

5.12.2.3 IAR Embedded Workbench

The J-Link command strings can be supplied using the C-SPY debugger of the IAR
Embedded Workbench. Open the Project options dialog box and select Debugger.

Options for node "Project™ [ %]
Category: Factory Settings |
General Options

C/C++ Compiler Setup | Downloadl Extra Dptionsl F'Iuginsl

Azzembler

Custom Build Diriver [+ Bun to

Build &ctions i -

J-LinkA)-T A

Linker I inl race J |ma|n
i Debugger

Simulator — Setup macro:

Angel Sy

4R FOM-maritar I~ Use macro file

J-Linkd)-Trace

LI FTDI I J

Macraigor — Device description file

RDI .

ThirdParty Driver [ Dvenide default

I$TDDLKIT_DIF|$\EDNFIG\i0Ipc23?8.ddf J
’TI Cancel |

On the Extra Options page, select Use command line options.
Enter --jlink_exec_command "<CommandLineOption>" in the textfield, as shown in

the screenshot below. If more than one command should be used separate the com-
mands with semicolon.

Options for node "Project™ [ %]

Category:

Factory Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Azzembler
Cusztomn Build
Ei:lLd:ctlons LCommand line options: [one per line)

-flink_exec_command "map ram 0x40000000-0=40003; map indire;l

Simulator

Angel

14R R OM-monitor

J-Linkd)-Trace

LI FTDI

M acraigor

RDI

Third-Party Driver

|

(] 3 | Cancel |

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



243

5.12.2.4 Keil MDK-ARM

Keil MDK-ARM does not provide any native support for executing command strings.
Anyhow it is possible to use a J-Link script file for that task. Learn how to set up a J-
Link script file in section Executing J-Link script files on page 220.

A command string can then be used by calling JLINK_ExecCommand();.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



244 CHAPTER 5 Working with J-Link and J-Trace

5.13 Switching off CPU clock during debug

We recommend not to switch off CPU clock during debug. However, if you do, you
should consider the following:

Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

With these cores, the TAP controller uses the clock signal provided by the emulator,
which means the TAP controller and ICE-Breaker continue to be accessible even if the
CPU has no clock.

Therefore, switching off CPU clock during debug is normally possible if the CPU clock
is periodically (typically using a regular timer interrupt) switched on every few ms for
at least a few us. In this case, the CPU will stop at the first instruction in the ISR
(typically at address 0x18).

Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

With these cores, the clock input of the TAP controller is connected to the output of a
three-stage synchronizer, which is fed by clock signal provided by the emulator,
which means that the TAP controller and ICE-Breaker are not accessible if the CPU
has no clock.

If the RTCK signal is provided, adaptive clocking function can be used to synchronize
the JTAG clock (provided by the emulator) to the processor clock. This way, the JTAG
clock is stopped if the CPU clock is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possi-
ble if the CPU clock is periodically (typically using a regular timer interrupt) switched
on every few ms for at least a few us. In this case, the CPU will stop at the first
instruction in the ISR (typically at address 0x18).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



245

5.14 Cache handling

Most target systems with external memory have at least one cache. Typically, ARM7
systems with external memory come with a unified cache, which is used for both
code and data. Most ARM9 systems with external memory come with separate caches
for the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware archi-
tecture.

5.14.1 Cache coherency

When debugging or otherwise working with a system with processor with cache, it is
important to maintain the cache(s) and main memory coherent. This is easy in sys-
tems with a unified cache and becomes increasingly difficult in systems with hard-
ware architecture. A write buffer and a D-Cache configured in write-back mode can
further complicate the problem.

ARM9 chips have no hardware to keep the caches coherent, so that this is the
responsibility of the software.

5.14.2 Cache clean area

J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike
other emulators, it does not have to download code to the target system. This makes
setting up J-Link / J-Trace easier. Therefore, a cache clean area is not required.

5.14.3 Cache handling of ARM7 cores

Because ARM7 cores have a unified cache, there is no need to handle the caches dur-
ing debug.

5.14.4 Cache handling of ARM9 cores

ARM9 cores with cache require J-Link / J-Trace to handle the caches during debug. If
the processor enters debug state with caches enabled, J-Link / J-Trace does the fol-
lowing:

When entering debug state

J-Link / J-Trace performs the following:

e It stores the current write behavior for the D-Cache.
e It selects write-through behavior for the D-Cache.

When leaving debug state

J-Link / J-Trace performs the following:

e It restores the stored write behavior for the D-Cache.
e It invalidates the D-Cache.

Note: The implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM9 cores.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



246

CHAPTER 5 Working with J-Link and J-Trace

5.15 Virtual COM Port (VCOM)
5.15.1 Configuring Virtual COM Port

In general, the VCOM feature can be disabled and enabled for debug probes which
comes with support for it via J-Link Commander and J-Link Configurator. Below, a
small description of how to use use them to configure the feature is given.

Note: VCOM can only be used when debugging via SWD target interface. Pin 5 =
J-Link-Tx (out), Pin 17 = J-Link-Rx (in).

Note: Currently, only J-Link models with hardware version 9 or newer comes
with VCOM capabilites.

5.15.1.1 Via J-Link Configurator

The J-Link software and documentation package comes with a free GUI-based utility
called J-Link Configurator which auto-detects all J-Links that are connected to the
host PC via USB & Ethernet. The J-Link Configurator allows the user to enable and
disable the VCOM. For more information about the J-Link Configurator, please refer to
J-Link Configurator on page 167.

Configure J-Link @

General
Froduct |SEGGER J-Link ARM V3.0
SN |53200006

Mickname |

USE Identification

Real 5N v Real SN 59200006
Wirtwal COM-Part

Mote: The new configuration
" Disable applies after power cycling
the debug probe.

ok | Cancel |

5.15.1.2 Via J-Link Commander

Simply start J-Link Commander, which is part of the J-Link software and documenta-
tion package and enter the vcom enable|disable command as in the screenshot
below. After changing the configuration a power on cycle of the debug probe is nec-
essary in order to use the new configuration. For feature information about how to
use the J-Link Commander, please refer to J-Link Commander (Command line tool)
on page 71.

5 CAWork\JLinkARM\ Output'\ReleaselLink.exe EI@

SEGGER J-Link Commander U4.81f (’7’ for help>
Compiled Mar 6 2814 11:82:49

DLL version U4.81f. compiled Mar 6 2814 11:82:41
Firmware: J-Link U? compiled Feb 12 2814 21:47:56
Hardware: U?.88

5/N: 59208886

Feature{(s>: GDB, RDI, FlashBP. FlashDL. JFlash
UTarget = B.888U

J-Link>vcom enable

The new configuration applies after power cycling the debug probe.
WJ-Link>_

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



247

Chapter 6

Flash download

This chapter describes how the flash download feature of the DLL can be used in dif-
ferent debugger environments.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



248 CHAPTER 6 Flash download

6.1 Introduction

The J-Link DLL comes with a lot of flash loaders that allow direct programming of
internal flash memory for popular microcontrollers. Moreover, the J-Link DLL also
allows programming of CFI-compliant external NOR flash memory. The flash down-
load feature of the J-Link DLL does not require an extra license and can be used free
of charge.

Why should | use the J-Link flash download feature?

Being able to download code directly into flash from the debugger or integrated IDE
significantly shortens the turn-around times when testing software. The flash down-
load feature of J-Link is very efficient and allows fast flash programming. For
example, if a debugger splits the download image into several pieces, the flash
download software will collect the individual parts and perform the actual flash pro-
gramming right before program execution. This avoids repeated flash programming. .
Moreover, the J-Link flash loaders make flash behave like RAM. This means that the
debugger only needs to select the correct device which enables the J-Link DLL to
automatically activate the correct flash loader if the debugger writes to a specific
memory address.

This also makes it very easy for debugger vendors to make use of the flash download
feature because almost no extra work is necessary on the debugger side since the
debugger does not have to differ between memory writes to RAM and memory writes
to flash.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



249

6.2 Licensing

No extra license required. The flash download feature can be used free of charge.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



250 CHAPTER 6 Flash download

6.3 Supported devices

J-Link supports download into the internal flash of a large number of microcontrol-
lers. You can always find the latest list of supported devices on our website:

http://www.segger.com/jlink_supported_devices.html

In general, J-Link can be used with any ARM7/9/11, Cortex-M0/M1/M3/M4 and Cor-
tex-A5/A8/R4 core even if it does not provide internal flash.

Furthermore, flash download is also available for all CFI-compliant external NOR-
flash devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



251

6.4 Setup for various debuggers (internal flash)

The J-Link flash download feature can be used by different debuggers, such as IAR
Embedded Workbench, Keil MDK, GDB based IDEs, ... For different debuggers there
are different steps required to enable J-Link flash download. In this section, the
setup for different debuggers is explained.

6.4.1 |IAR Embedded Workbench

Using the J-Link flash download feature in IAR EWARM is quite simple:

First, choose the right device in the project settings if not already done. The device
settings can be found at Project->Options->General Options->Target.

Options for node “at91sam7s-ek™ E
Category:

General Options

CiC++ Compiler

Assembler
Qukput Corwverker Target | Dutputl Library Eonfigurationl Library Options | MISRA-C
Customn Build .
) ) — Processor wariant
Build Actions
Linker & Core IAHM?TDMI v[
Debugger
Simulator % Device IAtmeI at91 zam7z256 Ek_l
Angel
GDE Server
IAB ROM-manitar — Endian mode ERL
J-Linkj1-Trace )
LMI FTOI & Litte [Mane |
Macraigor  Big
ROI & BEZZ
Third-Party Driver C BEE

Cancel |

To use the J-Link flash loaders, the IAR flash loader has to be disabled. To disable the
IAR flash loader, the checkbox Use flash loader(s) at Project->Options->Debug-
ger->Download has to be disabled, as shown below.

Options for node “at91sam7s-ek™ E
Category: Factory Settings |

General Options
CiC++ Compiler

Assembler

Qutput Corverter Setup  Download | Extra Options I Flugins I
Custom Buid [~ Attach to program

Build Actions

Linker v

Dhu'g ; ™ Suppress download
imulator

Angel ™ Use flash loader(z]

GDE Server

IAR ROM-monitor 0100000, [default). Edit |

J-Linkj1-Trace
LMI FTDT
Macraigor

ROI

Third-Party Driver

2

()3 I Cancel

6.4.2 Keil MDK

To use the J-Link flash download feature in Keil MDK, the following steps need to be
performed:

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



252

CHAPTER 6 Flash download

First, choose the device in the project settings if not already done. The device set-
tings can be found at Project->Options for Target->Device.

. Options for Target "MCBSTM32E Flash' ll

Device |Target I Output I Listing I User I CfC-I—I-I Asm I Linker I Debug I Ltilities I

Database: IGeneric: CPU Data Base j

Vendor: STMicroelectronics
Device: STM32F103ZE

Toolset: ARM

----- £3 STM32F103VF
----- £3 STM32F103VG
----- £3 5TM32F103ZC

1]
STM32F1032G
STM32F105R8
STM32F105RB
STM32F105RC
STM32F105Va
STM32F105VB
STM32F105VC
STM32F107RB
A STMAZF1NTRE

| |ARM 324t Cortex-M3 Microcortroller, 72MHz, 512kB Flash, 64kB SRAM, = |
Flexible Static Memory Controller for SRAM, PSRAM, NOR and NAMD Fask
PLL. Embedded Intemal RC 8MHz and 32kHz, Real-Time Clock,

Mested Intermupt Controller, Power Saving Modes, JTAG and SWD,

4 Synch. 16-bit Timers with Input Capture, Output Compare and PWM,

2 16-bit Advanced Timer, 2 16-bit Basic Timer, 2 16-bit Watchdog Timers,
SysTick Timer, 3 SPI/125, 2 12C, 5 USART, USE 2.0 Full Speed Interface,
CAN 2.0B Active, 3 12-bit 16-ch A/D Converter, 2 12-bit D/A Converter,

| |SDIO, Fast 1/ Ports

=1 L o

0K | Cancel |  Defauts | Help

To enable the J-Link flash loader J-Link / J-Trace at Project->Options for Tar-
get->Utilities has to be selected. It is important that "Update Target before Debug-
ging" is unchecked since otherwise uVision tries to use its own flashloader.

. Options for Target "MCBSTM32E Flash' ll

Device I Target I Qutput I Listing I User I CfC-I—I-I Asm I Linker I Debug tilities |

r—Corfigure Flash Menu Command

¢ |Use Target Driver for Flash Programming

ICortex-M/R J-LINK/J-Trace

Settings ™ Update Target before Debugging

Init File: I

" Use Bxtemal Tool for Flash Programming

Command:l

|

Arguments: I

I~ Rur Independent

QK I Cancel Defaults Help

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



253

Then J-Link has to be selected as debugger. To select J-Link as debugger simply
choose J-Link / J-Trace from the list box which can be found at Project-

>Options for Target->Debug.

x
Device I Target I Qutput I Listing I User I C..-"CHI Asm I Linker Debug | Litilties I
" Use Simulator Settings | ' Use: [Cotex-M/RJLINKA-Tace | Settings |
[~ Limit Speed to Real-Time
[V Load Application at Startup ¥ Run to main() [V Load Application at Startup ¥ Run to main()
Initialization File: Initialization File:
| Iz =] e |
Restore Debug Session Settings—————————————————— Restore Debug Session Settings——————————————————
[V Breakpaints [V Toolbox [V Breakpaints [V Toolbox
V¥ Watch Windows & Performance Analyzer [V Watch Windows
¥ Memory Display ¥ Memory Display
CPU DLL: Parameter: Driver DLL: Parameter:
ISARMCME.DLL | ISARMCME.DLL |
Dialog DLL: Parameter: Dialog DLL: Parameter:
IDARMSTM.DLL I-pSTM32F1D32E ITARMSTM.DLL I-pSTM32F1D32E
0K | Canced |  Defaus | Help

Now setup the Dpownload Options at Project->Options for Target->Debug ->
Settings. Check verify Code Download and Download to Flash as shown in the
screenshot below.

Cortex JLink/ITrace Target Driver Setup ﬂ

Debug |T|Ece I Flash Downloadl

—dJ-Link / J-Trace Adapter ————— ~JTAG Device Chain
SN:[173000305 ~] UsBfo =] IDCODE | Device Name |_IRlen MovE
Device: J-Link ARM-Pro TDO | 3 (x3BAD0477  ARM CoreSight JTAG-DP 4 g |
T X 06414041 Unknown JTAG device 5
HW : V3.00 di: I Vd4.35c oI |4 D Down
FW:  |J-Link ARM-Pro V3x compilec

Port: Max Clock: % sutomatic Detection |0 CODE: I
IJTAG j IZMHz j 1= fanual Configuration Device Mame I
Auto Clkc | Add | Delete | pdate | IE ler: I

— Debug
Connect & Reset Options Cache Options Download Options
Reset: | Momal j ¥ Cache Code [V Verify Code Download
¥ Reset after Connect V¥ Cache Memory
Interfface TCPAIP Misc
@ use  TCPAP e :
IP-Address Port (Auto: 0) Autodetect | ik ifo |
e 2.0 .0 .1 :[ 0
[EET Ping | Link Cmd |
State: ready
ok | [ cance | Help

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



254 CHAPTER 6 Flash download

6.4.3 Mentor Sourcery CodeBench

To use the J-Link flash download feature in Mentor Sourcery CodeBench, the follow-
ing steps need to be performed:

Current versions of Sourcery CodeBench do not pass the device name selected in
CodeBench to the J-Link DLL. Therefore a device override via J-Link settings file is
needed.

e Copy the J-Link settings file template from
SJLINK_INST_DIRS\Samples\JLink\SettingsFiles\Sample.jlinksettings
to the directory where the CodeBench project is located.

e Open the sample.jlinksettings in a text editor and scroll to the [FLASH] sec-
tion.

e Change the line
Device="UNSPECIFIED"
to the device name that shall be selected (keep the quotation marks). A list of
valid device names can be found here: http://www.segger.com/
jlink_supported_devices.html (List of known devices)

e Change the line

Override = 0
to
Override = 1

e Select the settings file to be used in Sourcery CodeBench:

Mame: | STM3ZF4071E_Test Debug

|=| Main |(><]= Arguments |E Environment [ﬁﬁ Debugger] EV Source| = gomm0n|

Debug interface IJ-Link j e |
Board |stm32f4discovery Change... |

({Matches project settings)

~Debugger Options
J-Link IStartuD | Memory Map | Advanced |

[V sSettings File I${w0rkspace_|oc:STM32F4D?IE_Test}'|,SampIe.innksettings j Browse |

I~ Semihasting IDFF j

Additional steps for enabling Flash Breakpoints feature

By default, Mentor Sourcery CodeBench does not allow the user to use the J-Link
unlimited number of breakpoints in flash feature, since it only allows hardware
breakpoints being set, by default. Enabling this feature requires an additional tweak
in the J-Link settings file:

e Make sure that all steps from Mentor Sourcery CodeBench on page 254, to
enable flash download, have been performed.

e Make sure that Sourcery CodeBench uses a J-Link DLL with version V4.85d or
later. If an earlier version is used, this tweak does not work.
To update the DLL used by CodeBench, copy the J-Link DLL from the J-Link
installation directory to:
C:\Tool\C\Mentor\CodeBench\bin\arm-none-eabi-jlinkarm.dll
Open the settings file in a text editor and scroll to the [BREAKPOINTS] section.
Add the line:
ForceImpTypeAny = 1

e Make sure that CodeBench uses the settings file.

6.4.4 J-Link GDB Server

The configuration for the J-Link GDB Server is done by the .gdbinit file. The follow-
ing command has to be added to the .gdbinit file to enable the J-Link flash down-
load feature:

monitor flash device <DeviceName>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



255

<DeviceName> is the name of the device for which download into internal flash mem-
ory shall be enabled. For a list of supported devices, please refer to Supported
devices on page 250. For more information about the GDB monitor commands please
refer to J-Link GDB Server on page 92.

6.4.5 J-Link Commander

J-Link Commander supports downloading bin files into internal flash memory of pop-
ular microcontrollers. In the following, it is explained which steps are necessary to
prepare J-Link Commander for download into internal flash memory.

6.4.5.1 Preparing J-Link Commander for flash download

To configure J-Link Commander for flash download simply select the connected
device by typing in the following command:

exec device = <DeviceName>

<DeviceName> is the name of the device for which download into internal flash mem-
ory shall be enabled. For a list of supported devices, please refer to Supported
devices on page 250. In order to start downloading the binary data file into flash,
please type in the following command:

loadfile <filename>, <addr>

<Filename> is the path of the binary data file which should be downloaded into the
flash.

The loadfile command supports .bin, .hex, .mot and .srec files
<Addr> is the start address, the data file should be written to.
=1olx

JTAG speed: 188 kH=
J-Link>speed 4088
JTAG speed: 48088 kH=z
J-Link>h
: (Ri5> = BB1BB7?A. CPSR = 28BBBB7F (System mode. THUMB FIQ dis.>
AARAAAAL . Ri AA2A2D6A,. R2 = AAARAAAL,. R3 = BA1A198F
AABAA1F4. RS AIRAAAAR,. R6 = BAA25992, R? = BB2@2CEA

: R8 -AAAARGBAA. R? -AR0ARAE0. R1i0-0AAB0AGA. Ril -0AAAAROA. R12 -A00BBA5F
R13=-88201FD8. R14-00182495
R8 -ARAROAAA. R? -AOAAAROA. R10-AABOAAAA. Ril -AAABOOAAA. R12 -DOAAEOO6
R13-88202AHA. R14-PAAAAAAE. SPSR-FABAAA36

: R13-A0AA00AA. R14-001087A0. SPSR-2000087F

: R13-AAAARGRAA, R14-AR0AAAARA. SPSR=FAARAAF?

: R13=A82@284@, R14-AR1886DD. SPSR=8AABAATF

: R13-AAAARAAA. R14-ARRAAAAR. SPSR=EAARRAT2
J-Link>exec device = AT?1SAM7S256
Info: Device “AT?1SAM78256" selected (256 KB flash. 64 KB RAM>.
J-Link>loadbin C:\Temp:test.bin.Bx1B800688
Loading binary file... LGENIempstest.binl
Writing hin data into target memory (@ BxB01006860 .

: J-Link: Flash download: Flash programming performed for 1 range <16384 byt

: J-Link: Flash download: Total time needed: B.844s (Prepare: B.116s. Compar|
: B.828s, Program: B.654s,. Uerify: B.815s. Restore: B.837s)>
J-Link>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



256 CHAPTER 6 Flash download

6.4.6 J-Link RDI

The configuration for J-Link RDI is done via the J-Link RDI configuration dialog.

3, SEGGER J-Link RDI V4.35¢ (beta) Configuration 2x

‘General | Int | JTAG Flash | Breakpoints | CPU | Log |

v Enable flash programming i

Allows programming the flazh. This is required to download a program into flash
memory or ko set zoftware breakpoints in flash [flazh breakpoints).

RAM |B4 KB & address 0x200000

Flash |258 KB (@ address 02100000
¥ Flash is mirored @ address 0x0

v Cache flash contents

Allows caching of flash contents. This avoids reading data twice and speeds up
the tranzfer between debugger and target.

v Werify flash contents

Allows verifying of flash contents. Thiz iz useful to check if the program was
downloaded to flash memary comectly.

v Allows flash download

Allows program download to flash. 'our debugger does not need to have a flash
lnader. This feature requires an additional license [FlashDL).

¥ Skip download on CRC match

oK | Cancel | oty |

For more information about the J-Link RDI configuration dialog please refer to
UM08004, J-Link RDI User Guide, chapter Configuration dialog.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



257

6.5 Setup for various debuggers (CFl flash)

The setup for download into CFI-compliant memory is different from the one for
internal flash. Initialization of the external memory interface the CFI flash is con-
nected to, is user's responsibility and is expected by the J-Link software to be done
prior to performing accesses to the specified CFI area. In this section, the setup for

different debuggers is explained.

IAR Embedded Workbench / Keil MDK

6.5.1

Using the J-Link flash download feature with IAR Embedded Workbench / Keil MDK is

quite simple:

First, start the debug session and open the J-Link Control Panel. In the tab "Settings"
you will find the location of the settings file.

L;:-.'h SEGGER J-Link ¥4.15r (beta} - Control panel

General  Settings | Breakpointsl Log I MNET I CPU Regs | Target Powerl Sty I Devicel Erm 4 I L4

Laog file
“E:\JLink.Iog

¥ Overide

_I Clear |

Seftings file
“E:\Program Filez\SEGGER I LinkARM_4150D efault. ini

| Save

| Dveride
]

Script file
“Not specified

i

M Flash download M Flash breakpoint
@ On | ¥ Skip download on CRE match 9 =
0 ip download on matcl . ) .
o ¥ ey download ((: g;; V' Show info window during
IEnabIed, download pending: 0 bytes IEnabIed

[ Ovenide device selection

[V Allow caching of flash contents [On)
¥ Allow imstruction s=t simulation

™| Oweride memany map

Modity breakpoints during execution

| allow

|Ready |JLINK_GetSpeed (Done)

|D.243 sec, in 36 calls 4

Close the debug session
ing lines to the file:

[CFI]

CFISize = <FlashSize>
CFIAddr = <FlashAddr>
[GENERAL]

WorkRAMSize = <RAMSize>
WorkRAMAddr = <RAMAddr>

and open the settings file with a text editor. Add the follow-

After this the file should look similar to the sample in the following screenshot.

& Default.ini - Motepad
File Edit Format Help

I[=] E3

[BREAKPOINTS]
showInfowin = 1
Enablerlashep = 2
EPCDUringExecution = 0
[CFI]
ICFISize
CETaddr
[cPu]
Cverridememmap = 0
allowsimulation = 1
ScriptFile=""

[FLASH]
skipProgoncRrCMatch = 1
wverifybownload = 1
allowCaching = 1
EnableFlashbL = 2
override = 0
Device="ADUCTO20x62"
[GEMERAL]
orkramsize

0x400000
Qw1 000000

Oxd4 000
0x2 0000

orkRaMaddr
[swo]
SwoLogFile=""

=

|

Save the settings file and restart the debug session.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



258

CHAPTER 6

6.5.2 J-Link GDB Server

The configuration for the J-Link GDB Server is done by the .gdbinit file. The follow-
ing commands have to be added to the .gdbinit file to enable the flash download
feature:

monitor WorkRAM = <SAddr>-<EAddr>
monitor flash CFI = <SAddr>-<EAddr>

Flash download

For more information about the GDB monitor commands please refer to J-Link GDB
Server on page 92.

6.5.3 J-Link commander

J-Link Commander supports downloading bin files into external CFI flash memory. In
the following, it is explained which steps are necessary to prepare J-Link Commander
for download into external CFI flash memory based on a sample sequence for a ST
STM32F103ZE device:

r

speed 1000

exec setcfiflash 0x64000000 - Ox64FFFFFF

exec setworkram 0x20000000 -

wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi
wi

0x40021014,
0x40021018,
0x40011400,
0x40011404,
0x40011800,
0x40011804,
0x40011C00,
0x40011C04,
0x40012000,
0x40012004,
0xA0000008,
0xA000000C,
0xAQ000010C,

speed 4000
mem 0x64000000,100
loadfile C:\STMB672_STM32F103ZE_TestBlinky.bin, 0x64000000
mem 0x64000000,100

J-Link / J-Trace (UM08001)

0x00000114
0x000001FD
0xB4BB44BB
0xBBBBBBBB
0xBBBBBBBB
0xBBBBBBBB
0x44BBBBBB
0xBBBB4444
0x44BBBBBB
0x444B4BB4
0x00001059
0x10000505
0x10000505

//
//
//
//
//
//
//
//
//
//
//
//
//

0x2000FFFF

RCC_AHBENR,

FSMC clock enable

GPIOD~G clock enable

GPIOD
GPIOD
GPIOE
GPIOE
GPIOF
GPIOF
GPIOG
GPIOG

low config,
high config,
low config,
high config,
low config,
high config,
low config,
high config,

NOE, NWE => Output, NWAIT => Input
Al6-A18
A19-A23
D5-D12
AQ-A5
A6-A9
Al10-Al15
NE2 => output

CS control
CS2 timing
CS2 timing

reg 2, 16-bit, write enable, NOR flash
reg (read access)

reg (write access)

Type:

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



259

6.6 Setup for various debuggers (SPIFI flash)

The J-Link DLL supports programming of SPIFI flash and the J-Link flash download
feature can be used therefor by different debuggers, such as IAR Embedded Work-
bench, Keil MDK, GDB based IDEs, ...

There is nothing special to be done by the user to also enable download into SPIFI
flash. The setup and behavior is the same as if download into internal flash. For more
information about how to setup different debuggers for downloading into SPIFI flash
memory, please refer to Setup for various debuggers (internal flash) on page 251.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



260 CHAPTER 6 Flash download

6.7 QSPI flash support

The J-Link DLL also supports programming of any (Q)SPI flash connected to a device
that is supported by the J-Link DLL, if the device allows memory-mapped access to
the flash. Most modern MCUs / CPUs provide a so called "QSPI area" in their mem-
ory-map which allows the CPU to read-access a (Q)SPI flash as regular memory
(RAM, internal flash etc.).

6.7.1 Setup the DLL for QSPI flash download

There is nothing special to be done by the user to also enable download into a QSPI
flash connected to a specific device. The setup and behavior is the same as if down-
load into internal flash, which mainly means the device has to be selected and noth-
ing else, would be performed. For more information about how to setup the J-Link
DLL for download into internal flash memory, please refer to Setup for various debug-
gers (internal flash) on page 251.

The sectorization, command set and other flash parameters are fully auto-detected
by the J-Link DLL, so no special user setup is required.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



261

6.8 Using the DLL flash loaders in custom applica-
tions

The J-Link DLL flash loaders make flash behave as RAM from a user perspective,
since flash programming is triggered by simply calling the J-Link API functions for
memory reading / writing. For more information about how to setup the J-Link API
for flash programming please refer to UM08002 J-Link SDK documentation (available
for SDK customers only).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



262 CHAPTER 6 Flash download

6.9 Debugging applications that change flash con-
tents at runtime

The J-Link DLL cashes flash contents in order to improve overall performance and
therefore provide the best debugging experience possible.

In case the debugged application does change the flash contents, it is necessary to
disable caching of the effected flash range. This can be done using the J-Link com-
mand string ExcludeFlashCacheRange.

The SEGGER Wiki provides an articel about this topic that provides further informa-
tion, for example how to use J-Link command strings with various IDEs.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



263

Chapter 7

Flash breakpoints

This chapter describes how the flash breakpoints feature of the DLL can be used in
different debugger environments.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



264 CHAPTER 7 Flash breakpoints

7.1 Introduction

The J-Link DLL supports a feature called flash breakpoints which allows the user to
set an unlimited number of breakpoints in flash memory rather than only being able
to use the hardware breakpoints of the device. Usually when using hardware break-
points only, a maximum of 2 (ARM 7/9/11) to 8 (Cortex-A/R) breakpoints can be set.
The flash memory can be the internal flash memory of a supported microcontroller or
external CFI-compliant flash memory. In the following sections the setup for different
debuggers for use of the flash breakpoints feature is explained.

How do breakpoints work?

There are basically 2 types of breakpoints in a computer system: Hardware break-
points and software breakpoints. Hardware breakpoints require a dedicated hardware
unit for every breakpoint. In other words, the hardware dictates how many hardware
breakpoints can be set simultaneously. ARM 7/9 cores have 2 breakpoint units (called
"watchpoint units" in ARM's documentation), allowing 2 hardware breakpoints to be
set. Hardware breakpoints do not require modification of the program code. Software
breakpoints are different: The debugger modifies the program and replaces the
breakpointed instruction with a special value. Additional software breakpoints do not
require additional hardware units in the processor, since simply more instructions are
replaced. This is a standard procedure that most debuggers are capable of, however,
this usually requires the program to be located in RAM.

What is special about software breakpoints in flash?

Flash breakpoints allows setting an unlimited number of breakpoints even if the user
application is not located in RAM. On modern microcontrollers this is the standard
scenario because on most microcontrollers the internal RAM is not big enough to hold
the complete application. When replacing instructions in flash memory this requires
re-programming of the flash which takes much more time than simply replacing a
instruction when debugging in RAM. The J-Link flash breakpoints feature is highly
optimized for fast flash programming speed and in combination with the instruction
set simulation only re-programs flash that is absolutely necessary. This makes
debugging in flash using flash breakpoints almost as flawless as debugging in RAM.

What performance can | expect?

Flash algorithm, specially designed for this purpose, sets and clears flash breakpoints
extremely fast; on microcontrollers with fast flash the difference between software
breakpoints in RAM and flash is hardly noticeable.

How is this performance achieved?

We have put a lot of effort in making flash breakpoints really usable and convenient.
Flash sectors are programmed only when necessary; this is usually the moment exe-
cution of the target program is started. A lot of times, more than one breakpoint is
located in the same flash sector, which allows programming multiple breakpoints by
programming just a single sector. The contents of program memory are cached,
avoiding time consuming reading of the flash sectors. A smart combination of soft-
ware and hardware breakpoints allows us to use hardware breakpoints a lot of times,
especially when the debugger is source level-stepping, avoiding re-programming the
flash in these situations. A built-in instruction set simulator further reduces the num-
ber of flash operations which need to be performed. This minimizes delays for the
user, while maximizing the life time of the flash. All resources of the ARM microcon-
troller are available to the application program, no memory is lost for debugging.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



265

7.2 Licensing

In order to use the flash breakpoints feature a separate license is necessary for each
J-Link. For some devices J-Link comes with a device-based license and some J-Link
models also come with a full license for flash breakpoints but the normal J-Link
comes without any licenses. For more information about licensing itself and which
devices have a device-based license, please refer to Licensing on page 55.

7.2.1 Free for evaluation and non-commercial use

In general, the unlimited flash breakpoints feature of the J-Link DLL can be used
free of charge for evaluation and non-commercial use.

If used in a commercial project, a license needs to be purchased when the evaluation
is complete. There is no time limit on the evaluation period. This feature allows set-
ting an unlimited number of breakpoints even if the application program is located in
flash memory, thereby utilizing the debugging environment to its fullest.

(0 J-Link \V4.50i Out of break

The debugger iz tiving ta zet a breakpoint in flazh memory at address 0x08000200.

The target CPU has run out of hardware breakpoints.

Ir order to set the requested breakpoint, & software breakpoint in flash memory can be set.

Unlimited breakpointz in flazh memory [Flazh Breakpointz] is an enhanced feature of J-Link which requires an additional license.

Some members of the J-Link family [such as the J-Link Pro and J-Link EDU] already come with a built-in license for unlimited break points in flazh memory.
In order to buy a license for unlimited breakpointz in flash memory for the connected emulator, pleaze get in touch with zales@zegger. com.
Foor mare information regarding this feature, please refer to hitp: /4w, segger. com/link_buy_flashbps. html.

However, using this feature without the additional license is possible and permitted if used for evaluation only.
Evaluate unlimited breakpoints in flash memary now ?

J-Link 5/M: 58004070

E breakpoints are currently set:

#1 Addr = 0208000200, Type = Any, Implementation = Hard
#2 &ddr = 0208000206, Type = Any, Implementation = Hard
#3 Addr = 0208000220, Type = Any, Implementation = Hard
#4 Addr = 0=0800023E, Type = Any, Implementation = Hard
#5 Addr = 0208000286, Type = Any, Implementation = Hard
#E Addr = 0208000266, Type = Any, Implementation = Hard

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



266 CHAPTER 7 Flash breakpoints

7.3 Supported devices

J-Link supports flash breakpoints for a large number of microcontrollers. You can
always find the latest list of supported devices on our website:

http://www.segger.com/jlink_supported_devices.html|

In general, J-Link can be used with any ARM7/9/11, Cortex-M0/M1/M3/M4 and Cor-
tex-A5/A8/R4 core even if it does not provide internal flash.

Furthermore, flash breakpoints are also available for all CFI compliant external NOR-
flash devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



267

7.4 Setup & compatibility with various debuggers
741 Setup

In compatible debuggers, flash breakpoints work if the J-Link flash loader works and
a license for flash breakpoints is present. No additional setup is required. The flash
breakpoint feature is available for internal flashes and for external flash (parallel
NOR CFI flash as well as QSPI flash). For more information about how to setup vari-
ous debuggers for flash download, please refer to Setup for various debuggers (inter-
nal flash) on page 251. Whether flash breakpoints are available can be verified using
the J-Link control panel:

L;:-.'h SEGGER J-Link ¥4.35g {beta) - Control panel

General  Settings | Breakpointsl Log I MNET I CPU Regs | Target Powerl Sty I HAW'Trac:eI A I L4
Laog file T Ovenide
“E:\JLink.Iog Clear |—‘
Seftings file | Gveride
“E:\Program Filez%SEGGER I LinkARM_\V435g4Default.ini —‘

Script file
“Not specified _I ‘

M Flash download M Flash breakpoints
& On Compare | Using fastest method j & Auto | License found
~ of \erif  On V' Show info window during
enfy | Programmed sectors, fastest methotj 0 progran

IEnabIed, download pending: 0 bytes IEnabIed

[ Ovenide device selection

¥ &llow caching of flash contents (On)
W Allow instruction set simulation
™| Overmide memany map IAHDW j

Modity breakpoints during execution

|Ready |JLINK_HasErr0r (Done) |1 110 sec, in 14 calls 4

7.4.2 Compatibility with various debuggers

Flash breakpoints can be used in all debugger which use the proper J-Link API to set
breakpoints. Compatible debuggers/ debug interfaces are:

IAR Embedded Workbench

Keil MDK

GDB-based debuggers

Freescale Codewarrior

Mentor Graphics Sourcery CodeBench
RDI-compliant debuggers

Incompatible debuggers / debug interfaces:
e Rowley Crossworks

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



268 CHAPTER 7 Flash breakpoints

7.5 Flash Breakpoints in QSPI flash

Many modern CPUs allow direct execution from QSPI flash in a so-called "QSPI area"
in their memory-map. This feature is called execute-in-place (XIP). On some cores
like Cortex-M where hardware breakpoints are only available in a certain address
range, sometimes J-Link flash breakpoints are the only possibility to set breakpoints
when debugging code running in QSPI flash.

751 Setup

The setup for the debugger is the same as for downloading into QSPI flash. For more
information please refer to QSPI flash support on page 260.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



269

7.6 FAQ

Q: Why can flash breakpoints not be used with Rowley Crossworks?

A: Because Rowley Crossworks does not use the proper J-Link API to set breakpoints.
Instead of using the breakpoint-API, Crossworks programs the debug hardware
directly, leaving J-Link no choice to use its flash breakpoints.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



270 CHAPTER 7 Flash breakpoints

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



271

Chapter 8
Monitor Mode Debugging

This chapter describes how to use monitor mode debugging support with J-Link.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



272

8.1

CHAPTER 8 Monitor Mode Debugging

Introduction

In general, there are two standard debug modes available for CPUs:

1. Halt mode
2. Monitor mode

Halt mode is the default debug mode used by J-Link. In this mode the CPU is halted
and stops program execution when a breakpoint is hit or the debugger issues a halt
request. This means that no parts of the application continue running while the CPU
is halted (in debug mode) and peripheral interrupts can only become pending but not
taken as this would require execution of the debug interrupt handlers. In circum-
stances halt mode may cause problems during debugging specific systems:

1. Certain parts of the application need to keep running in order to make sure that com-
munication with external components does not break down. This is the case for Blue-
tooth applications where the Bluetooth link needs to be kept up while the CPU is in
debug mode, otherwise the communication would fail and a resume or single stepping
of the user application would not be possible

2. Some peripherals are also stopped when the CPU enters debug mode. For exam-
ple; Pulse-width modulation (PWM) units for motor control applications may be
halted while in an undefined / or even dangerous state, resulting in unwanted
side-effects on the external hardware connected to these units.

This is where monitor mode debugging becomes effective. In monitor debug mode
the CPU is not halted but takes a specific debug exception and jumps into a defined
exception handler that executes (usually in a loop) a debug monitor software that
performs communication with J-Link (in order to read/write CPU registers and so on).
The main effect is the same as for halting mode: the user application is interrupted
at a specific point but in contrast to halting mode, the fact that the CPU executes a
handler also allows it to perform some specific operations on debug entry / exit or
even periodically during debug mode with almost no delay. This enables the handling
of such complex debug cases as those explained above.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



273

8.2 Enable Monitor Debugging

As explained before, by default J-Link uses halt mode debugging. In order to enable
monitor mode debugging, the J-Link software needs to be explicitly told to use moni-
tor mode debugging. This is done slightly differently from IDE to IDE. In general, the
IDE does not notice any difference between halting and monitor debug mode. If J-
Link is unable to locate a valid monitor in the target memory, it will default back to
halt mode debugging in order to still allow debugging in general.

In the following, some examples on how to enable monitor mode debugging for dif-
ferent IDEs are given:

8.2.1 GDB based debug solutions

For GDB based debug solutions there is a .gdbinit file which contains commands that
can be executed by GDB / GDBServer. In this .gdbinit file the following line needs to
be added to enable monitor mode debugging (Second command only needed in case
of monitor interrupt forwarding, see Forwarding of Monitor Interrupts on page 279):

monitor exec SetMonModeDebug = 1
monitor exec SetMonModeVTableAddr = <Addr>

8.2.2 |AR EWARM

In IAR EWARM there are so-called macro files available to customize certain opera-
tions. In this file, the following function with the following line needs to be present
(Second line only needed in case of monitor interrupt forwarding, see Forwarding of
Monitor Interrupts on page 279):

/*********************************************************************

*

* execUserSetup ()

*

* Function description

* Called once after the target application is downloaded.

* Implement this macro to set up the memory map, breakpoints,
* interrupts, register macro files, etc.

*/

execUserSetup () {

__message "Macro-execUserSetup(): Enabling monitor mode";
__jlinkExecCommand (" SetMonModeDebug = 1");
__jlinkExecCommand ("SetMonModeVTableAddr = <Addr>");

}

The macro file also needs to be selected to be used in the project:

Options for node "Button_LED_GPIO" @
el Factory Settings
General Options
Static Analysis
Runtime Checking

CJC++ Compiler Setup | Download I Images I Extra Options I Multicore I Flugins |
Assembler
Qutput Converter Driver Bunto
Custom Bild J-Link/J-Trace A _MainLoop
Build Actions
Linker Setup macros
Use macro file(s)
Simulato A )
muiator SPROJ_DIRS\Src'\EnableMonMode mac [
Angel
CMSIS DAP |
GDE Server U
IAR ROM-manitor Device description file
I-jet/ITAGjet i
Iink/1-Trace [F] Overide defautt
TI Stellaris STOOLKIT_DIRS\CONFIG \debugger'\Analog Devices ioCM40:
Macraigor
PE micro
RDI
STALINK
Third-Party Driver
TLXDS (] 3 ] I Cancel

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



274

CHAPTER 8 Monitor Mode Debugging

8.2.3 Keil MDK-ARM (uVision)

In Keil MDK-ARM there is no built-in option to pass execs or similar to the J-Link DLL,
therefore monitor mode has to be enabled on a per-project basis via the J-Link set-
tings file that is created on start of the first dbeug session with a specific project. for
more information where to find the J-Link settings file for a Keil MDK-ARM project,
please refer to The J-Link settings file on page 205.

To enable monitor mode debugging, the following lines have to be added to the set-
tings file (opened in a text editor), in the [cpPU] section (Second line only needed in
case of monitor interrupt forwarding, see Forwarding of Monitor Interrupts on
page 279):

[CPU]
MonModeDebug=1
MonModeVTableAddr=<Addr>

8.2.4 J-Link Commander

In J-Link Commander, the appropriate command to enable monitor mode can be exe-
cuted directly (Second command only needed in case of monitor interrupt forward-
ing, see Forwarding of Monitor Interrupts on page 279):

J-Link>exec SetMonModeDebug = 1
J-Link>exec SetMonModeVTableAddr = <Addr>

8.2.5 Generic way of enabling

There is always the possibility to perform the monitor mode enable command manu-
ally via the J-Link control panel. This works independently from the IDE. For more
information about the J-Link control panel, please refer to J-Link control panel on
page 193 (Second command only needed in case of monitor interrupt forwarding, see
Forwarding of Monitor Interrupts on page 279):

exec SetMonModeDebug=1
exec SetMonModeVTableAddr=<Addr>

[l )-Link V5.01h (beta) - Control panel =] @ |

General | Settings | Breakpaints | RTT | Log CPU Regs | Target Pawer | SwA | Raw Trace

| Start minimized
| Always on top

Process  C:AToohCAARMARM_W740245commontbinkl arl dePm.exe
DLL C:ATooMCuARYWARM_W7402%armsbin' LinkaR.di
JLink SEGGER J-Link 4R 9.2, SN=59200000
Device ChM4A0E_384 2048 [compatible tc Little endian 3,33
Target interface JTAG  4000kHz - Actual 4000 kHz

Host interface USE [Port 0]

| License | | About

exec SetbonModeDebug =1

Ready JUME_ReadMemU32 (Done) 1.295 sec. in 419 calls

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



275

8.3 Availability and limitations of monitor mode

Many CPUs only support one of these debug modes, halt mode or monitor mode. In
the following it is explained for which CPU cores monitor mode is available and any
limitations, if any.

8.3.1 Cortex-M3

See Cortex-M4 on page 275.

8.3.2 Cortex-M4

For Cortex-M4, monitor mode debugging is supported. The monitor code provided by
SEGGER can easily be linked into the user application.

Considerations & Limitations

e The user-specific monitor functions must not block the generic monitor for more
than 100ms.

e Manipulation of the stackpointer register (SP) from within the IDE is not possible
as the stackpointer is necessary for resuming the user application on Go().

e The unlimited number of flash breakpoints feature cannot be used in monitor
mode. This restriction may be removed in a future version.

e It is not possible to debug the monitor itself, when using monitor mode.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



276 CHAPTER 8 Monitor Mode Debugging

8.4 Monitor code

A CPU core-specific monitor code is necessary to perform monitor mode debugging
with J-Link. This monitor performs the communication with J-Link while the CPU is in
debug mode (meaning in the monitor exception). The monitor code needs to be com-
piled and linked as a normal part of the application. Monitors for different cores are
available from SEGGER upon request at support_jlink@segger.com.

In general, the monitor code consists of three files:

e JLINK_MONITOR.c: Contains user-specific functions that are called on debug
mode entry, exit and periodically while the CPU is in debug mode. Functions can
be filled with user-specific code. None of the functions must block the generic
monitor for more than 100ms.

e JLINK_MONITOR.h: Header file to populate JLINK_MONITOR_ functions.

e JLINK_MONITOR_ISR.s: Generic monitor assembler file. (Should not be modified
by the user)Do NOT touch.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



277

8.5 Debugging interrupts

In general it is possible to debug interrupts when using monitor mode debugging but
there are some things that need to be taken care of when debugging interrtups in
monitor mode:

e Only interrupts with a lower priority than the debug/monitor interrupt can be
debugged / stepped.

e Setting breakpoints in interrupt service routines (ISRs) with higher priority than
the debug/monitor interrupt will result in malfunction because the CPU cannot
take the debug interrupt when hitting the breakpoint.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



278 CHAPTER 8 Monitor Mode Debugging

8.6 Having servicing interrupts in debug mode

Under some circumstances it may be useful or even necessary to have some servic-
ing interrupts still firing while the CPU is "halted" for the debugger (meaning it has
taken the debug interrupt and is executing the monitor code). This can be for keep-
ing motor controls active or a Bluetooth link etc. In general it is possible to have such
interrupts by just assigning a higher priority to them than the debug interrupt has.
Please keep in mind that there are some limitations for such interrupts:

e They cannot be debugged
e No breakpoints must be set in any code used by these interrupts

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



279

8.7 Forwarding of Monitor Interrupts

In some applications, there might be an additional software layer that takes all inter-
rupts in the first place and forwards them to the user application by explicitly calling
the ISRs from the user application vector table. For such cases, it is impossible for J-
Link to automatically check for the existence of a monitor mode handler as the han-
dler is usually linked in the user application and not in the additional software layer,
so the DLL will automatically switch back to halt mode debugging. In order to enable
monitor mode debugging for such cases, the base address of the vector table of the
user application that includes the actual monitor handler, needs to be manually spec-
ified. For more information about how to do this for various IDEs, please refer to
Enable Monitor Debugging on page 273.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



280 CHAPTER 8 Monitor Mode Debugging

8.8 Target application performs reset (Cortex-M)

For Cortex-M based target CPUs if the target application contains some code that
issues a reset (e.g. a watchdog reset), some special care needs to be taken regard-
ing breakpoints. In general, a target reset will leave the debug logic of the CPU
untouched meaning that breakpoints etc. are left intact, however monitior mode gets
disabled (bits in DEMCR get cleared). J-Link automatically restores the monitor bits
within a few microsenconds, after they have been detected as being cleared without
explicitly being cleared by J-Link.

However, there is a small window in which it can happen that a breakpoint is hit
before J-Link has restored the monitor bits. If this happens, instead of entering
debug mode, a HardFault is triggered. To avoid hanging of the application, a special
version of the HardFault_Handler is needed which detects if the reason for the Hard-
Fault was a breakpoint and if so, just ignores it and resumes execution of the target
application. A sample for such a HardFault handler can be downloaded from the SEG-
GER website: https://www.segger.com/downloads/appnotes "Generic SEGGER Hard-
Fault handler".

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



281

Chapter 9

Low Power Debugging

This chapter describes how to debug low power modes on a supported target CPU.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



282

9.1

CHAPTER 9 Low Power Debugging

Introduction

As power consumption is an important factor for embedded systems, CPUs provide
different kinds of low power modes to reduce power consumption of the target sys-
tem. The useful this is for the application, the problematic it is during debug. In gen-
eral, how far debugging target applications that make use of low power modes is
possible, heavily depends on the device being used as several behavior is implemen-
tation defined and differs from device to device. The following cases are the most
common ones:

1. The device provides specific special function registers for debugging to keep
some clocks running necessary for debugging, while the device is in a low power
mode.

2. The device wakes up automatically, as soon as there is a request by the debug
probe on the debug interface

3. The device powers off the debug interface partially, allowing the debug probe to
read-access certain parts but does not allow to control the CPU.

4. The device powers off the debug interface completely and the debug probe loses
the connection to the device (temporarily)

While cases 1-3 are the most convenient ones from the debug perspective because
the low power mode is transparent to the end user, they do not provide a real-world
scenario because certain things cannot be really tested if certain clocks are still
active which would not be in the release configuration with no debug probe attached.
In addition to that, the power consumption is significantly higher than in the release
config which may cause problems on some hardware designs which are specifically
designed for very low power consumption.

The last case (debug probes temporarily loses connection) usually causes the end of
a debug session because the debugger would get errors on accesses like "check if
CPU is halted/hit a BP". To avoid this, there is a special setting for J-Link that can be
activated, to handle such cases in a better way, which is explained in the following.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



283

9.2 Activating low power mode handling for J-Link

While usually the J-Link DLL handles communication losses as errors, there is a pos-
sibility to enable low power mode handling in the J-Link DLL, which puts the DLL into
a less restrictive mode (low-power handling mode) when it comes to such loss-cases.
The low-power handling mode is disabled by default to allow the DLL to react on tar-
get communication breakdowns but this behavior is not desired when debugging
cases where the target is unresponsive temporarily. How the low-power mode han-
dling mode is enabled, depends on the debug environment. In the following, the
most common scenarios are described:

9.2.1 SEGGER Embedded Studio

Low-power handling mode has to be activated in the J-Link settings file. Open the J-
Link settings file in a text editor and add the following line in the [CPU] section:

LowPowerHandlingMode = 1

For more information about how to locate the settings file, please refer to The J-Link
settings file on page 205.

9.2.2 Keil MDK-ARM

Low-power handling mode has to be activated in the J-Link settings file. Open the J-
Link settings file in a text editor and add the following line in the [CPU] section:

LowPowerHandlingMode = 1

For more information about how to locate the settings file, please refer to The J-Link
settings file on page 205.

9.2.3 |AR EWARM

Low-power handling mode has to be activated in the J-Link settings file. Open the J-
Link settings file in a text editor and add the following line in the [CPU] section:

LowPowerHandlingMode = 1

For more information about how to locate the settings file, please refer to The J-Link
settings file on page 205.

9.2.4 Mentor Sourcery CodeBench for ARM

Low-power handling mode has to be activated in the J-Link settings file. Open the J-
Link settings file in a text editor and add the following line in the [CPU] section:

LowPowerHandlingMode = 1

For more information about how to locate the settings file, please refer to The J-Link
settings file on page 205.

9.2.5 GDB + GDBServer based setups (Eclipse etc.)

As no settings file is created for such setups, the low-power handling mode has to be
activated from the gdbinit / .gdbinit file by adding the following command:

monitor exec LowPowerHandlingMode = 1

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



284

9.3

CHAPTER 9 Low Power Debugging

Restrictions

As the connection to the target is temporary lost while it is in low power mode, some
restrictions during debug apply:

Make sure that the IDE does not perform periodic accesses to memory while the
target is in a low power mode. E.g.: Disable periodic refresh of memory windows,
close live watch windows etc.

Avoid issuing manual halt requests to the target while it is in a low power mode.
Do not try to set breakpoints while the target already is in a low power mode. If
a breakpoint in a wake-up routine shall be hit as soon as the target wakes up
from low power mode, set this breakpoint before the target enters low power
mode.

Single stepping instructions that enter a low power mode (e.g. WFI/WFE on Cor-
tex-M) is not possible/supported.

Debugging low power modes that require a reset to wake-up can only be
debugged on targets where the debug interface is not reset by such a reset. Oth-
erwise breakpoints and other settings are lost which may result in unpredictable
behavior.

J-Link does it's best to handle cases where one or more of the above restrictions is
not considered but depending on how the IDE reacts to specific operations to fail,
error messages may appear or the debug session will be terminated by the IDE.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



285

Chapter 10
Open Flashloader

This chapter describes how to add support for new devices to the J-Link DLL and soft-
ware that uses the J-Link DLL using the Open Flashloader concept.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



286 CHAPTER 10 Open Flashloader

10.1 Introduction

As the number of devices being available is steadily growing and sometimes in an
early stage of the MCU development only a few samples/boards are available that
may not be provided to third parties (e.g. SEGGER) to add support for a new device.
Also the existence of the device may have confidential status, so it might not be
mentioned as being supported in public releases yet. Therefore it might be desirable
to be able to add support for new devices on your own, without depending on SEG-
GER and a new release of the J-Link software package being available.

The J-Link DLL allows customers to add support for new devices on their own. It is
also possible to edit/extend existing devices of the device database by for example
adding new flash banks (e.g. to add support for internal EEPROM programming or
SPIFI programming etc.). This chapter explains how new devices can be added to the
DLL and how existing ones can be edited/extended.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



287

10.2 General procedure

By default, the J-Link DLL comes with a build-in device database that defines which
device names are known and therefore officially supported by the J-Link DLL and
software that uses the J-Link DLL. This list can also be viewed on our website:

http://www.segger.com/jlink_supported_devices.html

It is possible to add new devices to the currently used DLL by specifying them in an
XML file, named JLinkDevices.xml. It is also possible to edit/extend an device from
the built-in device database via this XML file. The DLL is looking for this file in the
same directory where the J-Link settings file is located. The location of the settings
file depends on the IDE / software being used. For more information about where the
settings file is located for various IDEs and software that use the J-Link DLL, please
refer to The J-Link settings file on page 205.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



288 CHAPTER 10 Open Flashloader

10.3 Adding a new device

In order to add support for a new device to the J-Link DLL, the following needs to be
added to the gLinkDevices.xml:

<Database>
<Device>
<ChipInfo Vendor="..."
Name="..."
WorkRAMAdAdr="..."
WorkRAMSize="..."
Core="..." />
<FlashBankInfo Name="..."
BaseAddr="..."
MaxSize="..."
Loader="..."
LoaderType="..." />
</Device>
</Database>

When adding a new device, the following attributes for the <chipInfo> tag are man-

datory:

e Vendor
° Name
e Core

In case a <FlashBankInfo> tag is also added, the following attributes in addition to
the ones mentioned before, become mandatory:

Chipinfo-Tag

e WorkRAMAddr
e WorkRAMSize
e FlashBankInfo

FlashBankinfo-Tag

Name
BaseAddr
MaxSize
Loader
LoaderType

For more information about the tags and their attributes, please refer to XML Tags
and Attributes on page 290.

In order to add more than one device to the device database, just repeat the
<Device> ... </Device> tag structure from above for each device.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



289

10.4 Editing/Extending an Existing Device

In order to edit/extend a device that is already in the built-in device database of the
J-Link DLL, the following needs to be added to the JLinkDevices.xml:

<Database>
<Device>
<ChipInfo Vendor="..."
Name="..." />
<FlashBankInfo Name="..."
BaseAddr="..."
MaxSize="..."
Loader="..."
LoaderType="..." />
</Device>
</Database>

The attribute Name of the tag <ChipInfo> must specify exactly the same name as the
device in the built-in device database specifies. In case the value of the attribute
BaseAddr specifies an address of an existing flash bank for the existing device, in the
built-in device database, the flash bank from the built-in database is replaced by the
one from the XML file.

When adding new flash banks or if the device in the built-in database does not spec-
ify any flash banks so far, the same attribute requirements as for adding a new
device, apply. For more information, please refer to Adding a new device on
page 288.

In order to add more than one flash bank, just repeat the <FlashBankInfo ... />>
tag structure from above, inside the same <Device> tag.

For more information about the tags and their attributes, please refer to XML Tags
and Attributes on page 290.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



290 CHAPTER 10 Open Flashloader

10.5 XML Tags and Attributes

In the following, the valid XML tags and their possible attributes are explained.

General rules

e Attributes may only occur inside an opening tag
e Attribute values must be enclosed by quotation marks

10.5.1 <Database>

Description

Opens the XML file top-level tag. Only present once per XML file.
Valid attributes

This tag has no attributes

Notes

e Must only occur once per XML file
e Must be closed via </Dbatabase>

10.5.2 <Device>

Description

Opens the description for a new device.
Valid attributes

This tag has no attributes.

Notes

e Must be closed via </Device>.
e May occur multiple times in an XML file

10.5.3 <Chipinfo>

Description

Specifies basic information about the device to be added, like the core it incorporates
etc.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Valid attributes

201

Parameter Meaning
String that specifies the name of the vendor of the device. This
Vendor attribute is mandatory.
E.g. Vendor="ST".
Name Name of the device. This attribute is mandatory.
E.g. Name="STM32F407IE"
Hexadecimal value that specifies the address of a RAM area that
can be used by J-Link during flash programming etc. Should not
WorkRAMAdAL be used by any DMAs on the device. Cannot exist without also
specifying WworkRAMSize. If no flash banks are added for the new
device, this attribute is optional.
E.g. WorkRAMAddr="0x20000000"
Hexadecimal value that specifies the size of the RAM area that
can be used by J-Link during flash programming etc. Cannot exist
WorkRAMSize without also specifying workraMaddr. If no flash banks are added
for the new device, this attribute is optional.
E.g. WorkRAMSize="0x10000"
Specifies the core that the device incorporates. If a new device is
added, this attribute is mandatory.
Core E.g. Core="JLINK_CORE_CORTEX_MO0"
For a list of valid attribute values, please refer to Attrbiute values
- Core on page 291.
String that specifies the path to a J-Link script file if required for
the device. Path can be relative or absolute. If path is relative, it
JLinkScriptFile |is relative to the location of the JLinkDevices.xml file.
This attribute is mandatory.
E.g. JLinkScriptFile="ST/Example.jlinkscript"

Table 10.1: <ChipInfo> attribute list

Notes

e No separate closing tag. Directly closed after attributes have been specified:

<ChipInfo

/>

e Must not occur outside a <bevice> tag.

10.5.3.1 Attrbiute values - Core

The following values are valid for the core attribute:

J-Link / J-Trace (UM08001)

JLINK_CORE_CORTEX_M1
JLINK_CORE_CORTEX_M3
JLINK_CORE_CORTEX_M3_R1PO
JLINK_CORE_CORTEX_M3_R1P1
JLINK_CORE_CORTEX_M3_R2P0
JLINK_CORE_CORTEX_M3_R2P1
JLINK_CORE_CORTEX_MO
JLINK_CORE_CORTEX_M_V8BASEL
JLINK_CORE_ARM7
JLINK_CORE_ARM7TDMI
JLINK_CORE_ARM7TDMI_R3
JLINK_CORE_ARM7TDMI_R4
JLINK_CORE_ARM7TDMI_S
JLINK_CORE_ARM7TDMI_S_R3
JLINK_CORE_ARM7TDMI_S_R4
JLINK_CORE_CORTEX_AS8
JLINK_CORE_CORTEX_A7
JLINK_CORE_CORTEX_A9
JLINK_CORE_CORTEX_A12
JLINK_CORE_CORTEX_A15

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




292

JLINK_CORE_CORTEX_A17
JLINK_CORE_ARM9
JLINK_CORE_ARMO9TDMI_S
JLINK_CORE_ARM920T
JLINK_CORE_ARM922T
JLINK_CORE_ARM926EJ_S
JLINK_CORE_ARMY946E_S
JLINK_CORE_ARM966E_S
JLINK_CORE_ARM968E_S
JLINK_CORE_ARM11
JLINK_CORE_ARM1136
JLINK_CORE_ARM1136]
JLINK_CORE_ARM1136]_S
JLINK_CORE_ARM1136JF
JLINK_CORE_ARM1136JF_S
JLINK_CORE_ARM1156
JLINK_CORE_ARM1176
JLINK_CORE_ARM1176]
JLINK_CORE_ARM1176]_S
JLINK_CORE_ARM11763JF
JLINK_CORE_ARM1176JF_S
JLINK_CORE_CORTEX_R4
JLINK_CORE_CORTEX_R5
JLINK_CORE_RX
JLINK_CORE_RX62N
JLINK_CORE_RX62T
JLINK_CORE_RX63N
JLINK_CORE_RX630
JLINK_CORE_RX63T
JLINK_CORE_RX621
JLINK_CORE_RX62G
JLINK_CORE_RX631
JLINK_CORE_RX65N
JLINK_CORE_RX21A
JLINK_CORE_RX220
JLINK_CORE_RX230
JLINK_CORE_RX231
JLINK_CORE_RX23T
JLINK_CORE_RX24T
JLINK_CORE_RX110
JLINK_CORE_RX113
JLINK_CORE_RX130
JLINK_CORE_RX71M
JLINK_CORE_CORTEX_M4
JLINK_CORE_CORTEX_M7

CHAPTER 10 Open Flashloader

JLINK_CORE_CORTEX_M_V8MAINL

JLINK_CORE_CORTEX_A5S
JLINK_CORE_POWER_PC

JLINK_CORE_POWER_PC_N1
JLINK_CORE_POWER_PC_N2

JLINK_CORE_MIPS
JLINK_CORE_MIPS_M4K

JLINK_CORE_MIPS_MICROAPTIV

JLINK_CORE_EFM8_UNSPEC

JLINK_CORE_CIP51

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



293

10.5.4 <FlashBankinfo>

Description

Specifies a flash bank for the device. This allows to use the J-Link flash download
functionality with IDEs, debuggers and other software that uses the J-Link DLL (e.g.
J-Link Commander) for this device. The flash bank can then be programmed via the
normal flash download functionality of the J-Link DLL. For more information about
flash download, please refer to Flash download on page 247. For possible limitations
etc. regarding newly added flash banks, please refer to Add. Info / Considerations /
Limitations on page 296.

Valid attributes

Parameter Meaning

String that specifies the name of the flash bank. Only used for visu-
alisation. Can be freely chosen.

This attribute is mandatory.

E.g. Name="SPIFI flash"

Hexadecimal value that specifies the start address of the flash bank.
The J-Link DLL uses this attribute together with Maxsize to deter-
mine which memory write accesses performed by the debugger,
BaseAddr shall be redirected to the flash loader instead of being written
directly to the target as normal memory access.

This attribute is mandatory.

E.g. BaseAddr="0x08000000"

Hexadecimal value that specifies the max. size of the flash bank in
bytes. For many flash loader types the real bank size may depend
on the actual flash being connected (e.g. SPIFI flash where the
loader can handle different SPIFI flashes so size may differ from
hardware to hardware). Also, for some flash loaders the sectoriza-
tion is extracted from the flash loader at runtime. The real size of
MaxSize the flash bank may be smaller than MaxSize but must never be big
ger. The J-Link DLL uses this attribute together with Baseaddr to
determine which memory write accesses performed by the debug-
ger, shall be redirected to the flash loader instead of being written
directly to the target as normal memory access.

This attribute is mandatory.

E.g. MaxSize="0x80000"

String that specifies path to the ELF file that holds the flash loader.
Path can be relative or absolute. If path is relative, it is relative to
the location of the JLinkDevices.xml file.

Loader This attribute is mandatory.

E.g. Loader="ST/MyFlashLoader.elf"

For CMSIS flash loaders the file extension is usually FLM, however
any extension is accepted by the J-Link DLL.

Specifies the type of the loader specified by Loader.

This attribute is mandatory.

LoaderType E.g. LoaderType="FLASH_ALGO_TYPE_OPEN"

For a list of valid attribute values, please refer to Attribute values -
LoaderType on page 293.

Table 10.2: <FlashBankInfo> attribute list

Name

Notes
e No separate closing tag. Directly closed after attributes have been specified:
<FlashBankInfo ... />

e Must not occur outside a <Device> tag

10.5.4.1 Attribute values - LoaderType

The following values are valid for the LoaderType attribute:

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



294 CHAPTER 10 Open Flashloader

e FLASH_ALGO_TYPE_OPEN
Describes that the used algorithm is an Open Flashloader algorithm. CMSIS
based algorithms are also supported via the Open Flashloader concept. For addi-
tional information, see Add. Info / Considerations / Limitations on page 296.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



10.6 Example

XML file

The following shows an example of a complete XML device

<Database>
<Device>

<ChipInfo Vendor="Vendor0"
Name="Device0"
WorkRAMAddr="0x20000000"
WorkRAMSize="0x4000"
Core="JLINK_CORE_CORTEX_MO" />

<FlashBankInfo

<FlashBankInfo

</Device>
<Device>

Name="Int. Flash"

BaseAddr="0x0"

MaxSize="0x10000"
Loader="Vendor(0/Loader(0.FLM"
LoaderType="FLASH_ALGO_TYPE_OPEN" />
Name="SPIFI Flash"
BaseAddr="0x30000000"
MaxSize="0x100000"
Loader="Vendor0/Loaderl.FLM"
LoaderType="FLASH_ALGO_TYPE_OPEN" />

<ChipInfo Vendor="Vendorl"
Name="Devicel"
WorkRAMAddr="0x20000000"
WorkRAMSize="0x4000"
JLinkScriptFile="Vendorl/Devicel.jlinkscript"
Core="JLINK_CORE_CORTEX_MO" />

<FlashBankInfo

</Device>
<Device>

Name="Int. Flash"
BaseAddr="0x70000000"
MaxSize="0x10000"
Loader="Vendorl/Loader(O.FLM"
LoaderType="FLASH_ALGO_TYPE_OPEN" />

<ChipInfo Vendor="ST"
Name="STM32F746NGH6" />

<FlashBankInfo

</Device>
</Database>

J-Link / J-Trace (UM08001)

Name="SPIFI Flash"
BaseAddr="0x30000000"
MaxSize="0x80000"
Loader="ST/STM32F7xx_SPIFI.FLM"
LoaderType="FLASH_ALGO_TYPE_OPEN" />

description

file.

295

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



296 CHAPTER 10 Open Flashloader

10.7 Add. Info / Considerations / Limitations

Note: SEGGER does not give any guarantee for correct functionality nor provide
any support for customized devices / flash banks. Using J-Link support for custom-
ized devices that have been added via a XML device description file is done at user’s
own risk.

In the following, some considerations / limitations when adding support for a new
device or editing/extending an existing device, are given:

10.7.1 CMSIS Flash Algorithms Compatibility

CMSIS flash algorithms are also supported by the Open Flashloader concept. There-
fore, an existing *.FLM file can be simply referenced in a J-Link XML device descrip-
tion file. The LoaderType attribute needs to be set to FLASH_ALGO_TYPE_OPEN.

10.7.2 Customized Flash Banks

Currently, customized flash banks (added via XML device description file) cannot be
used in Flasher stand-alone mode. This limitation will be lifted in a future version of
the J-Link software.

10.7.3 Supported Cores

Currently, the Open Flashloader supports the following cores:

e Cortex-M
e Cortex-A
e Cortex-R

10.7.4 Information for Silicon Vendors

SEGGER offers the opportunity to hand in custom created flash algorithms which will
then be included in the official J-Link Software and Documentation Package hence
distributed to any J-Link customer who is using the latest software package.

The following files need to be provided to SEGGER:

e JLinkDevices.xml - including the device entry / entries
Flash loader file - referenced in the JLinkDevices.xml (source code is optional)
Readme.txt which may includes additional information or at least a contact e-
mail address which can be used by customers in case support is needed.

10.7.5 Template Projects and How To’s

SEGGER provides template projects for Cortex-M as well as Cortex-A/R based on the
SEGGER Embedded Studio IDE plus an detailed step-by-step instruction and further
information are provided on a separate SEGGER wiki page:

https://wiki.segger.com/Adding _Support for New_ Devices

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG


https://wiki.segger.com/Adding_Support_for_New_Devices asd
https://wiki.segger.com/Adding_Support_for_New_Devices

297

Chapter 11
J-Flash SPI

This chapter describes J-Flash SPI and J-Flash SPI CL, which are seperate software
(executables) which allow direct programming of SPI flashes, without any additional
hardware. Both, J-Flash SPI and J-Flash SPI CL are part of the J-Link software and
documentation package which is available free of charge.

This chapter assumes that you already possess working knowledge of the J-Link
device.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



298 CHAPTER 11 J-Flash SPI

11.1 Introduction

The following chapter introduces J-Flash SPI, highlights some of its features, and lists
its requirements on host and target systems.

11.1.1 What is J-Flash SPI?

J-Flash SPI is a stand-alone flash programming software for PCs running Microsoft
Windows, which allows direct programming of SPI flashes, without any additional
hardware. The following Microsoft Windows versions are supported:

Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64
Microsoft Windows 7
Microsoft Windows 7 x64
Windows 8

Windows 8 x64

Windows 10

Windows 10 x64

J-Flash SPI has an intuitive user interface and makes programming flash devices con-
venient. J-Flash SPI requires a J-Link or Flasher to interface to the hardware. It is
able to program all kinds of SPI flashes, even if the CPU they are connected to, is not
supported by J-Link / Flasher because J-Flash SPI communicates directly with the SPI
flash bypassing all other components of the hardware.

11.1.2 J-Flash SPI CL (Windows, Linux, Mac)

J-Flash SPI CL is a commandline-only version of the J-Flash SPI programming tool.
The command line version is included in the J-Link Software and Documentation
Package for Windows, Linux and Mac (cross-platform). Except from the missing GUI,
J-Flash SPI CL is identical to the normal version.

The commands, used to configure / control J-Flash SPI CL, are exactly the same as
for the command line interface of the J-Flash SPI GUI version. For further informa-
tion, please refer to Command Line Interface on page 311.

11.1.3 Features

e Directly communicates with the SPI flash via SPI protocol, no MCU in between
needed.

e Programming of all kinds of SPI flashes is supported.

Can also program SPI flashes that are connected to CPUs that are not supported

by J-Link.

Supports any kind of custom command sequences (e.g. write protection register)

Verbose logging of all communication.

.hex, .mot, .srec, and .bin support.

Intuitive user interface.

11.1.4 Requirements

11.1.4.1 Host

J-Flash SPI requires a PC running one of the supported operating system (see above)
with a free USB port dedicated to a J-Link. A network connection is required only if
you want to use J-Flash SPI together with J-Link Remote Server.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



299

11.1.4.2 Target
The flash device must be an SPI flash that supports standard SPI protocols.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



300 CHAPTER 11 J-Flash SPI
11.2 Licensing

The following chapter provides an overview of J-Flash SPI related licensing options.

11.2.1 Introduction

A J-Link PLUS, ULTRA+, PRO or Flasher ARM/PRO is required to use J-Flash SPI. No
additional license is required / available.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



301

11.3 Getting Started

This chapter presents an introduction to J-Flash SPI. It provides an overview of the
included sample projects and describes the menu structure of J-Flash SPI in detail.

11.3.1 Setup

For J-Link setup procedure required in order to work with J-Flash SPI, please refer to
chapter Setup on page 157

11.3.1.1 What is included?

The following table shows the contents of all subdirectories of the J-Link software and
documentation pack with regard to J-Flash SPI:

Directory Contents

Contains the J-Flash SPI executable.

.\Doc Contains the J-Flash SPI documentation.

.\Samples\JFlash-
SPI\ProjectFiles

Table 11.1: J-Flash SPI directory structure

11.3.2 Using J-Flash SPI for the first time

Start J-Flash SPI from the Windows Start menu. The main window will appear, which
contains a log window at the bottom and the Project window of a default project on
the left. The application log will initially display:

e The version and time of compilation for the application.
e The version and time of compilation for the J-Link DLL.
e The location of the default project.

Contains sample projects for J-Flash SPI.

The Project window contains an overview of the current project settings (initially, a
default project is opened).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



302 CHAPTER 11

[ SEGGER J-Flash SP1V4.99a (beta) - [C:\Program Files (x86)\SEGGER\JLink_V499a\Default jflash *]
File Edit View Target Options Window Help

El Project - Default [ = |[ = |[ 22 |

Mame | Walue
Connection USE [Device 0]
Interface speed 4000 kHz
Flash memory Auto detection
4 m ] »
El oG
Application log started

- J-Aash 5P V4.95a (J-Fash compiled Apr 25 2015 16:20:39)

- JLink ARM.dll V4.93a (DLL compiled Apr 25 2015 16:20:17)

Creating new project file [C:\Program Files (86)\SEGGER"JLink_V4539a"\Default flash] ...
- New project created successfully

4

J-Flash SPI

|Ready

11.3.3 Menu structure

The main window of J-Flash SPI contains seven drop-down menus (File, Edit, View,
Target, Options, Window, Help). Any option within these drop-down menus that is
followed by a three period ellipsis (...), is an option that requires more information

before proceeding.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



File menu elements

303

Command

Description

Open data file...

Opens a data file that may be used to flash the target
device. The data file must be an Intel HEX file, a Motorola
S file, or a Binary file (.hex, .mot, .srec, Or .bin).

Merge data file

Merges two data files (.hex, .mot, .srec, or .bin). All
gaps will be filled with FF. Find below a short example of
merging two data files named, File0.bin and Filel.bin into
File3.bin.

FileO0.bin --> Addr 0x0200 - Ox02FF
Filel.bin --> Addr 0x1000 - Ox13FF

Merge File0.bin & Filel.bin

0x0200 - 0x02FF Data of File0.bin

0x0300 - OXOFFF gap (will be filled with OxFF if image is
saved as *.bin file)

0x1000 - 0x13FF Data of Filel.bin

Can be saved in new data file (File3.bin).

Save data file

Saves the data file that currently has focus.

Save data file as...

Saves the data file that currently has focus using the
name and location given.

New Project

Creates a new project using the default settings.

Open Project...

Opens a project file. Note that only one project file may
be open at a time. Opening a project will close any other
project currently open.

Save Project

Saves a project file.

Save Project as...

Saves a project file using the name and location given.

Close Project

Closes a project file.

Recent Files >

Contains a list of the most recently open data files.

Recent Projects >

Contains a list of the most recently open project files.

Exit

Exits the application.

Table 11.2: File menu elements

Edit menu elements

Command

Description

Relocate...

Relocates the start of the data file to the supplied hex
offset from the current start location.

Delete range...

Deletes a range of values from the data file, starting and
ending at given addresses. The End address must be
greater than the Start address otherwise nothing will be
done.

Eliminate blank
areas...

Eliminates blank regions within the data file.

Table 11.3: Edit menu elements

View menu elements

Command Description
Opens and/or brings the log window to the active win-
Log dow.
Project Opens and/or brings the project window to the active

window.

Table 11.4: View menu elements

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



304

Target menu elements

CHAPTER 11 J-Flash SPI

Command Description
Creates a connection through the J-Link using the config-
Connect uration options set in the Project settings... of the

Options drop-down menu.

Disconnect

Disconnects a current connection that has been made
through the J-Link.

Test >

Two test functions are implemented: "Generates test
data" generates data which can be used to test if the
flash can be programmed correctly. The size of the gen-
erated data file can be defined.

"Tests up/download speed" writes data of an specified
size to a defined address, reads the written data back
and measures the up- and download speed.

Erase sectors

Erases all selected flash sectors.

Erase chip

Erases the entire chip.

Program

Programs the chip using the currently active data file.

Program & Verify

Programs the chip using the currently active data file and
then verifies that it was written successfully.

Auto

The Auto command performs a sequence of steps. It con-
nects to the device, erases sectors and programs the chip
using the currently active data file before the written
data is finally verified. The range of sectors to be erased
can be configured through the Flash tab of the Project
settings dialog and through the Global settings dialog.

Verify

Verifies the data found on the chip with the data file.

Read back >

Reads back the data found on the chip and creates a new
data file to store this information. There are three ways

in which the data can be read back. The Selected sectors
identified on the Flash tab of the Project Settings... found
in the Options drop-down menu may be read back. The

Entire chip may be read back. A specified Range... may

be read back.

Table 11.5: Target menu elements

Options menu elements

Command

Description

Project settings...

Location of the project settings that are displayed in the
snapshot view found in the Project window of the J-Flash
SPI application. Furthermore various settings needed to
locate the J-Link and pass specified commands needed
for chip initialization.

Global settings...

Settings that influence the general operation of J-Flash
SPI.

Table 11.6: Options menu elements

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




305

Window menu elements

Command Description

Arranges all open windows, one above the other, with the
active window at the top.

Tiles the windows horizontally with the active window at
the top.

Tiles the windows vertically with the active window at the

left.
Table 11.7: Window menu elements

Cascade

Tile Horizontal

Tile Vertical

Help menu elements

Command Description
J-Link User’s Guide Shows the J-Link User’s Guide in a PDF viewer such as
Adobe Reader.
About... J-Flash SPI and company information.

Table 11.8: Help menu elements

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



306 CHAPTER 11 J-Flash SPI

11.4 Settings

The following chapter provides an overview of the program settings. Both general
and per project settings are considered.

11.4.1 Project Settings

Project settings are available from the Options menu in the main window or by using
the ALT-F7 keyboard shortcut.

11.4.1.1 General Settings

This dialog is used to choose the connection to J-Link. The J-Link can either be
connected over USB or via TCP/IP to the host system. Refer to the J-Link manual for
more information regarding the operation of J-Link and J-Link TCP/IP Server.

Project settings @

l Interface ] Flash ] Production |

J-Flash 5Pl is a software for J-Link.

Thiz software iz capable of programming 5P flash
memaries.

Connection to J-Link.

t+ USE Device 0 -
" USBSM |0
" ICPAP

oK | Cancel

11.4.1.1.1 USB

If this option is checked, J-Flash SPI will connect to J-Link over the USB port. You
may change the device number if you want to connect more than one J-Link to your
PC. The default device number is 0. For more information about how to use multiple

J-Links on one PC, please see also the chapter "Working with J-Link" of the J-Link
User’s Guide.

11.4.1.1.2 TCP/IP
If this option is selected, J-Flash SPI will connect to J-Link via J-Link TCP/IP Server.

You have to specify the hostname of the remote system running the J-Link TCP/IP
Server.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



307

11.4.1.2 Setup

This dialog is used to configure the SPI interface settings like SPI communication
speed and allows to add Init steps and Exit steps which can be used to execute cus-
tom command sequences.

Project settings @
'General Setup | Flash ] Production |

Interface speed

¥ | kHz
|Init steps j
# | Action | Waluel | Waluel Comment
Add Inzert Delete | Edit | Up | Down |
oK | Cancel | |

11.4.1.2.1 Interface Speed

Specifies the SPI communication speed J-Link uses to communicate with the SPI
flash.

11.4.1.2.2 Init and EXxit steps

Can be uesed to add custom command sequences like for example write protection
register. For further information regarding this, please refer to Custom Command
Sequences on page 316.

11.4.1.3 Flash Settings

This dialog is used to select and configure the parameters of the SPI flash that J-
Flash SPI will connect to. Examples for flash parameters are: Sector size (Smallest
erasable unit), page size (smallest programmable unit), Flash ID, etc. There is also

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



308

CHAPTER 11

J-Flash SPI

the option to try to auto-detect the connected flash device. The latter option will
prompt J-Flash SPI to try to identify the flash by its Flash ID, looking up in an

internal list of known flash devices.

Project settings @
" Generl ] Setup  Flash | Production |
o h
General Settings
Flash [D |0=00 |0=00 |0=00 Detect SPI flash
MumPages [000 PageSize  |0x01
MuméddiBytes |3 SectorSize  |0x01
Control Instructions
WwiiteEnable | 0=06 ReadStatus  |0x05 ReadlD |0x9F
wiiteDizable |0x04 WwiiteStatus | 0x01
™ Dedicated 4-byte addr. mode Statuzs Register
~ .
000 Heady.Blt Bit PDS.W
W * Buzy Bit
Programming |nstructions
ErazeSector |0:D8 WwitePage |0x02
ErazeBulk  |0xC7 ReadData |0x03
oK | cancel | apoy
Project settings @
.Genemll Interfac:e] Flash  Production |
Actionz performed by “Auta™
[v Compare
v Erase Sectors if not blank -
[ Program
v erify
QK | Cancel Apply

Enable target power

Enables 5V target power supply via pin 19 of the emulator. Can be used for targets
which can be powered through the emulator for production. Delay before start
defines the delay (in ms) after enabling the target power supply and before starting

to communicate with the target.
Actions performed by "Auto”

The checked options will be perforemed when auto programming a target (Target ->

Auto, shortcut: F7) .

The default behaviour is Compare, Erase sectors if not blank,

Program and Verify. Find below a table which describes the commands:

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



309

Command Description

Performs a compare of the current flash content and the
data to be programmed. Sectors which do already match
will be skipped by Erase / Program operation. Note: If
Erase is enabled and Erase type is "Chip", the compare
will be skipped as after mass erase, the entire device is
empty and needs to be re-programmed.

Performs an erase depending on the settings, selected in

the drop down box:

e Sectors: Erases all sectors which are effected by
the image to be programmed.

Erase e Sectors if not blank: Erases all sectors which
are both, effected by the image to be pro-
grammed and not already blank.

e Chip: Erase the entire chip independent of the

Compare

content.
Program Programs the data file.
Verify Verifies the programmed data by reading them back.

Table 11.9: Actions performed by "Auto"

11.4.2 Global Settings

Global settings are available from the Options menu in the main window.

Global settings @

Operation

Auto mode affects

[ Disconnect after each operation
v Automatically unlock sectors if necessary
[v Perform blank check before program

" Skip blank areas on read

Logging
General log level |Level 2 hd

[~ Enable J-Link logfile
|E:\Program Filez [«B6]%SEGGERILink_%/49 J

[~ Enable JFlash logfile
|E:\Program Filez [«B6]%SEGGERILink_%/49 J

Projects

[~ Save Project file on close

ok | Cancel

11.4.2.1 Operation
You may define the behavior of some operations such as "Auto" or "Program & Ver-
ify".

11.4.2.1.1 Disconnect after each operation

If this option is checked, connection to the target will be closed at the end of each
operation.

11.4.2.1.2 Automatically unlock sectors

If this option is checked, all sectors affected by an erase or program operation will be
automatically unlocked if necessary.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



310 CHAPTER 11 J-Flash SPI

11.4.2.1.3 Perform blank check

If this option is checked, a blank check is performed before any program operation to
examine if the affected flash sectors are completely empty. The user will be asked to
erase the affected sectors if they are not empty.

11.4.2.1.4 Skip blank areas on read

If this option is checked, a blank check is performed before any read back operation
to examine which flash areas need to be read back from target. This improves perfor-
mance of read back operations since it minimizes the amount of data to be trans-
ferred via JTAG and USB.

11.4.2.2 Logging

You may set some logging options to customize the log output of J-Flash SPI.

11.4.2.2.1 General log level

This specifies the log level of J-Flash SPI. Increasing log levels result in more infor-
mation logged in the log window.

11.4.2.2.2 Enable J-Link logfile

If this option is checked, you can specify a file name for the J-Link logfile. The J-Link
logfile differs from the log window output of J-Flash SPI. It does not log J-Flash SPI
operations performed. Instead of that, it logs the J-Link ARM DLL API functions called
from within J-Flash SPI.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



311

11.5 Command Line Interface

This chapter describes the J-Flash SPI command line interface. The command line
allows using J-Flash SPI in batch processing mode and other advanced uses.

11.5.1 Overview

In addition to its traditional Windows graphical user interface (GUI), J-Flash SPI sup-
ports a command line mode as well. This makes it possible to use J-Flash SPI for
batch processing purposes. All important options accessible from the menus are
available in command line mode as well. If you provide command line options, J-
Flash SPI will still start its GUI, but processing will start immediately.

The screenshot below shows the command line help dialog, which is displayed if you
start J-Flash SPI in a console window with JFlashSPI.exe -help Or JFlashSPI.exe

-2
Commandline @
.'6] Valid command line options:
~ -openpr Opens an existing project
Syntax:  -openprj<FILENAME>
-saveprjas Saves current project in a different file
Syntax:  -saveprjas<FILENAME=
-saveprj Saves current project
Syntax:  -saveprj
-open Opens a data file
Syntax:  -open<FILEMAME=[,<SADDR>]
-saveas Saves current data file in a different file
Syntax:
-saveas<FILENAME=[,<SADDR>, <EADDR=>]
-save Saves current data file
Syntax: -save[<SADDR> <EADDR>]
-merge Merges a given data file with the one currently

opened in J-Flash
Syntax:  -merge<FILENAME= or
-merge<FILENAME=> bin, < ADDR>

-relocate Relocates data by given offset
Syntax:  -relocate< OFFSET>
-delrange Deletes data range
Syntax: -delrange<SADDR=,<EADDR>
-eliminate Eliminates blank areas in data file
-connect Connects to target
-disconnect Disconnects from target
-erasesectors Erases selected sectors
-erasechip Erases entire flash chip
-programverify Programs and verifies target
-program Programs target
-auto Erases, programs and verifies target
-verify Verifies target program
-readchip Reads the entire flash chip
-readrange Reads specified range of target memory
Syntax: -readrange<SADDR=,<EADDR=
-exit Terminates application automatically
-help Displays this box
-7 Displays this box
-jflashlog Set a temporary J-Flash log file
Syntax:  -jflashlog<FILENAME=>
-jlinklog Set a temporary J-Link log file
Syntax:  -jlinklog<FILENAME=
-ush Overrides connection settings to USB 5/N
Syntax:  -ush<SMN=
-ip Overrides connection settings to IP

Syntax:  -ip-<cccoaccccse or -ip<HostName>

11.5.2 Command line options

This section lists and describes all available command line options. Some options
accept additional parameters which are enclosed in angle brackets, e.g. <FILE-
NAME>. If these parameters are optional they are enclosed in square brackets too,
e.g. [<SADDR>]. Neither the angel nor the square brackets must be typed on the
command line, they are used here only to denote (optional) parameters. Also, note
that a parameter must follow immediately after the option,

€.g. JFlashSPI.exe -openprjC:\Projects\Default.jflash.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



312

CHAPTER 11

J-Flash SPI

The command line options are evaluated in the order they are passed to J-Flash, so
please ensure that a project and data file has already been opened when evaluating a
command line option which requires this.

It is recommended to always use -open<FILENAME>[,<SADDR>] to make sure the

right data file is opened.

All command line options return 0 if the processing was successful. A return value
unequal 0 means that an error occured.

Option Description
-? Displays help dialog.
-auto Erases, program and verify target.
-connect Connects to target.

-delrange<SADDR>,<EADDR>

Deletes data in the given range.

-disconnect

Disconnects from target.

-merge<FILENAME>.bin,<ADDR>

-eliminate Eliminates blank areas in data file.

-erasechip Erases the entire flash chip.

-erasesectors Erases all sectors.

-exit Exits application.

-help Displays help dialog.
Merges a given file with the one currently
opened.

-merge<FILENAME> Note that when passing a .bin file via this com-

mand, also the start-address where it shall be
merged the file currently openend in J-Flash
SPI must be given, too, since .bin files do not
contain any address information.

-open<FILENAME>[,<SADDR>]

Open a data file. Please note that the
<SADDR> parameter applies only if the data
file is a *.bin file.

Open an existing project file. This will also

-openprj<FILENAME > automatically open the data file that has been
recently used with this project.

-program Program target.

-programverify Program and verify target.

-readchip Read entire flash chip.

-readrange<SADDR>,<EADDR>

Read specified range of target memory.

-save[<SADDR>,<EADDR>]

Save the current data file. Please note that the
parameters <SADDR>,<EADDR> apply only if
the data file is a *.bin file or *.c file.

-saveas<FILE-
NAME>[,<SADDR>,<EADDR>]

Save the current data file into the specified
file. Please note that the parameters
<SADDR>, <EADDR> apply only if the data file
is a *.bin file or *.c file.

-saveprj Save the current project.
-saveprjas<FILENAME> Save the current project in the specified file.
-verify Verify target memory.

-usb<SN> Overrides connection settings to USB.
-ip<XXX.XXX.XXX.XXX> . . .

_ip<HostName> Overrides connection settings to IP.

Table 11.10: J-Flash SPI command line options

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




313

11.5.3 Batch processing

J-Flash SPI can be used for batch processing purposes. All important options are
available in command line mode as well. When providing command line options, the
application does not wait for manual user input. All command line operations will be
performed in exactly the order they are passed. So, for example issuing a program
command before a project has been opened will cause the program command to fail.

The example batchfile below will cause J-Flash SPI to perform the following opera-
tions:

1. Open project C:\Projects\Default.jflash

2. Open bin file C:\Data\data.bin and set start address to 0x100000

3. Perform "Auto" operation in J-Flash (by default this performs erase, program,
verify)

4. Close J-Flash SPI

The return value will be checked and in case of an error message will be displayed.
Adapt the example according to the requirements of your project.

@ECHO OFF

ECHO Open a project and data file, start auto processing and exit

JFlashSPI.exe -openprjC:\Projects\Default.jflash -openC:\Data\data.bin, 0x100000 -
auto -exit

IF ERRORLEVEL 1 goto ERROR

goto END
:ERROR
ECHO J-Flash SPI: Error!

pause

: END
Starting J-Flash minimized

Adapt this example call to start J-Flash SPI minimized:

start /min /wait "J-Flash" "JFlashSPI.exe" -openprjC:\Projects\Default.jflash
\
-openC:\Data\data.bin, 0x100000 -auto -exit

Note that every call of JgFlashsPI.exe has to be completed with the -exit option,
otherwise the execution of the batch file stops and the following commands will not
be processed.

11.5.4 Programming multiple targets in parallel
In order to program multiple targets in parallel using J-Flash SPI, the following is
needed:

e Multiple J-Flash SPI projects, each configured to connect to a specific J-Link /
Flasher (emulator to connect to is selected by serial humber).

The easiest way is to setup the appropriate project once and then make multiple cop-
ies of this project. Now modify the Connection to J-Link setting in each project, in
order to let J-Flash SPI connect to the different programmers as shown in the screen-
shot below:

Find below a small sample which shows how to program multiple targets in parallel:

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



314 CHAPTER 11 J-Flash SP

Project settings @

General ]Interfac:e] Flash ] Production |

J-Flash 5Pl is a software for J-Link.

Thiz software iz capable of programming 5P flash
memaries.

Connection to J-Link.

" USE Device 0
| ¢ USESH [123456733 |

© ICRAP |

QK | Cancel Apply

@ECHO OFF

ECHO Open first project which is configured to connect to the first J-Link. Open data
file, start auto processing and exit

open JFlashSPI.exe -openprjC:\Projects\Project0l.jflash -openC:\Data\data.bin,
0x100000 -auto -exit

IF ERRORLEVEL 1 goto ERROR

ECHO Open second project which is configured to connect to the second J-Link. Open
data file, start auto processing and exit

open JFlashSPI.exe -openprjC:\Projects\Project02.jflash -openC:\Data\data.bin,
0x100000 -auto -exit

IF ERRORLEVEL 1 goto ERROR

ECHO Open third project which is configured to connect to the third J-Link. Open data
file, start auto processing and exit

open JFlashSPI.exe -openprjC:\Projects\Project03.jflash -openC:\Data\data.bin,
0x100000 -auto -exit

IF ERRORLEVEL 1 goto ERROR

goto END

:ERROR

ECHO J-Flash SPI: Error!
pause

: END

Note that every call of JFlashspPI.exe has to completed with the -exit option, oth-
erwise stops the execution of the batch file and the following commands will not be
processed.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



315

11.6 Create a new J-Flash SPI project

This chapter contains information about the required steps for the setup of a new J-
Flash SPI project.

11.6.1 Creating a new J-Flash SPI project

Creating a new project for J-Flash is pretty simple. In the following, all necessary
steps to create a project file are explained.

1. Select File -> New Project to create a new project with default settings.
2. Open the Project Settings context menu. Select Options -> Project Settings
to open the Project settings dialog and select the type of connection to J-Link.

[ =5

Project settings

l Interface ] Flash ] Production |

J-Flash 5Pl is a software for J-Link.

Thiz software iz capable of programming 5P flash
memaries.

Connection to J-Link.

t+ USE Device 0 -
" USBSM |0

" ICPAP

o]

Define the SPI communication speed. The default settings work without any

problem for most targets, but to achieve the last quantum of performance, man-
ual tuning may be necessary.

Cancel | |

Project settings @
'General Setup | Flash ]Pmdudion |
Interface speed
4000 | kHz
|Initsteps j
# | Action | Waluel | Waluel Comment
Add Inzert Delete | Edit | Up | Dgwn|
oK | Cancel | |
4. Open the Flash and either select Automatically detect SPI flash or manually
enter the flash parameters.
5. Save the project (File -> Save Project) and test it.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



316 CHAPTER 11 J-Flash SPI

11.7 Custom Command Sequences

J-Flash SPI supports sending custom command sequences, which may be different
for different SPI flashes (e.g. program OTP, program security register, etc...), via the
SPI interface. Due to the generic syntax, this feature can be used to implement any
kind of required command sequence. The sequence is stored in the J-Flash SPI
project file (*.jflash) and therefore it can be included in automated production envi-
ronments without any problems and be used with the command line version of J-
Flash SPI as well.

The custom command sequence can be configured in the setup tab of the J-Flash
project settings as part of the Init / Exit Steps which allow to enter custom
sequences using a pre-defined list of operations. The following list shows all valid
commands which can be used:

Command ValueO Value1i Description
Delay Delay in ms -- Waits a given time
Activate CS -- -- Sets the CS signal low
Deactivate CS | -- -- Sets the CS signal high
ByteStream Send a number of bytes via the SPI
Write data NumByte(s) separated by interface to the SPI. (e.g.:
commas (hex) |9F13,CA)
NumByte(s) Reads the specified number of bytes
Var Read Data| OffInVarBuffer max. 16 bytes via the SPI interface into the
) VarBuffer which is 16 bytes in size.
. Writes the specified number of
\éaartaerte OffInVarBuffer QZTBIéet()?ces bytes via the SPI interface from the
) VarBuffer (filled via Var Read).
Logical AND combination of the
Var AND Bytelndex Value (hex) internal var buffer at the specified
index with a given value.
Logical OR combination of the inter-
Var OR ByteIndex Value (hex) nal var buffer at the specified index
with a given value.
Logical XOR combination of the
Var XOR ByteIndex Value (hex) internal var buffer at the specified
index with a given value.

Table 11.11: J-Flash SPI Custom Command Sequence commands

11.7.1 Init/ Exit steps

The init sequence will be performed as part of the connect sequence, for example to
disable security, while the exit sequence will be executed after programming, for
example to enable the security in order to secure the SPI flash.

11.7.2 Example

The example below demonstrates how to use the custom command sequence feature
to implement a read-modify-write security register on the Winbond W25Q128FVSIG
SPI flash using the init steps. To make sure that the output of the example is exactly
the same, the sample erases the security register to have defined values.

Step #0 to Step#2: Set Write Enable

Step #3 to Step#6: Erase security register to have a defined values (0OxFF)

Step #7 to Step#11: Read 16 byte security register into Var buffer

Step #12 to Step#19: Modify the data in the Var buffer

Step #20 to Step#22: Set Write Enable

Step #23 to Step#27: Program security register with values from Var buffer

Step #28 to Step#32: Read back security register to verify successful programming

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



317

# Action ValueO Value1i Comment

0 Activate CS -- -- Activate CS

1 Write Data 1 06 Send command: Write Enable

2 Deactivate CS | -- -- Deactivate CS

3 Activate CS -- -- Activate CS

4 Write Data 4 44,00,10,00 t?eernf command: Erase Security Regis-

5 Deactivate CS | -- -- Deactivate CS

6 | Delay 200 ms | -- Wait until security register 1 has been
erased

7 Activate CS -- -- Activate CS

8 Write Data 4 48,00,10,00 Send Read Security Register: 1b com-
mand + 3b addr

9 Write Data 1 FF Send 8 dummy clocks
Read actual security register data (16

10 | Var Read Data | 0 16 byte) Into Varbuffer[0] (

11 |Deactivate CS | -- -- Deactivate CS

12 | Var AND 0 0x00 Set byte 0 to 0x00 using Var AND

13 | Var OR 0 Ox12 Set byte 0 to 0x12 using Var OR

14 |Var AND 6 0x00 Set byte 6 to 0x00 using Var AND

15 | Vvar OR 6 Ox12 Set byte 6 to O0xAB using Var OR

16 |Var AND 12 0x00 Set byte 12 to 0x00 using Var AND

17 |Var OR 12 0x12 Set byte 12 to OxCC using Var OR

18 |Var AND 15 0x00 Set byte 15 to 0x00 using Var AND

19 |Vvar OR 15 Ox12 Set byte 15 to 0x4E using Var OR

20 |Activate CS -- -- Activate CS

21 | Write Data 1 06 Send command: Write Enable

22 | Deactivate CS | -- -- Deactivate CS

23 |Activate CS -- -- Activate CS

24 | Write Data 4 42,00,10,00 f{ggfstceormlma”d: Program Security

25 |Var Write Data |0 16 Send data: Program secreg 1_1

26 | Deactivate CS | -- -- Deactivate CS

27 | Delay 200 ms | -- Wait until security register 1 has been
erased

28 |Activate CS -- -- Activate CS

29 | Write Data 4 48,00,10,00 Send Read Security Register: 1b com-
mand + 3b addr

30 | Write Data 1 FF Send 8 dummy clocks
Read actual security register data (16

31 | Var Read Data | 0 16 byte) into Varbuffeylf[O]g (

32 | Deactivate CS | -- -- Deactivate CS

Table 11.12: J-Flash SPI Custom Command Sequence example

11.7.3 J-Flash SPI Command Line Version

As the Init / Exit Steps are stored in the J-Flash project file, which is evaluated in the
command line version of J-Flash SPI too, the custom command sequence feature can
be used under Linux / MAC, as well. The project can be either created using the GUI
version of J-Flash SPI or by editing the *.jflash project, manually. The exepected for-
mat of the custom command sequences in the J-Flash project file is described below.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




318

CHAPTER 11

11.7.3.1 J-Flash project layout

Basically, the custom sequence is separated into different steps where each step con-
tains the fields as in the table below. Some commands require to pass parameter to

it. They are stored in ValueO and Valuel as described in the table below.

J-Flash SPI

Step

Description

ExitStepX_Action = "$Actions"

Any action as described in the table below.

ExitStepX_Comment = "$Comments$"

User can specify any comment here. This field
is optional and not taken into account.

ExitStepX_ValueO

"svalue0s"

Value depends on the action. See table below.

ExitStepX_Valuel = "$valuel$"

Value depends on the action. See table below.

The number of exit steps needs to be specified right behind the ExitStep sequence
with the line "NumExitSteps = <NumExitSteps>" (see example below).

Actions Parameter Description
Activate CS none Set CS signal low
Deactive CS none Set CS signal high
ValueO=NumBytes Send a number of bytes via the SPI inter-
_ Value1[x]=ByteStream face to the SPI. Please note_,_that_the num-
Write data ber of bytes has to be specified right
max. NumBytes is 16 behind Valuel in square brackets (e.g.:
ExitStep4_Valuel[3] = 0x44,0x00,0x10)
Delay ValueO=Delay in ms Waits a given time

Below is a small example excerpt from a J-Flash project, which shows a example
sequence to erase sector 0 of the SPI flash using the 0xD8 command. Further exam-
ples can be found in the installation directory of the J-Link software and documenta-

tion package.

[CPU]
//

// Set write enable

//

ExitStepO_Action =
ExitStep0_Value0
ExitStep0_Valuel
ExitStepl_Action =

"Activate CS"
0x00000000
0x00000000
"Write data"

ExitStepl_Comment = "Set write enable"

ExitStepl_ValueO =
ExitStepl_Valuell[1l]
ExitStep2_ Action =

1
= 0x06
"Deactivate CS"

ExitStep2_Comment = "Deactivate CS"

ExitStep2_Valuel =

ExitStep2_Valuel =
//
// Erase sector 0
//

ExitStep3_Action =

0x00000000
0x00000000

"Activate CS"

ExitStep3_Comment = "Activate CS"

ExitStep3_Valuel =
ExitStep3_Valuel
ExitStep4_Action =

0x00000000
0x00000000
"Write data"

ExitStep4_Comment = "Set write enable"

ExitStep4_Valuel =
ExitStepd4_Valuel[4]
ExitStep5_Action =

4

= 0xD8,0x00,0x00,0x00

"Deactivate CS"

ExitStep5_Comment = "Deactivate CS"

ExitStep5_Value(O =
ExitStep5_Valuel =
//

J-Link / J-Trace (UM08001)

0x00000000
0x00000000

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



319

// Wait until sector has been erased

//
ExitStep6_Action = "Delay"
ExitStep6_Comment = "Wait until sector has been erased"

ExitStep6_ValueO = 0x00000080
ExitStep6_Valuel = 0x00000000
NumExitSteps = 7

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



320 CHAPTER 11 J-Flash SPI

11.8 Device specifics

This chapter gives some additional information about specific devices.

11.8.1 SPI flashes with multiple erase commands

Some SPI flashes support multiple erase commands that allow to erase different
units on the flash. For example some flashes provide a sector erase (erase 4 KB
units) and a block erase (erase 16 KB or 64 KB units) command. In general, it is up
to the user which command to use, as the EraseSector command can be overridden
by the user. When manually changing the SectorErase command in the Options ->
Project settings... -> Flash tab, make sure that the sectorsize parameter
matches the command being used.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



321

11.9 Target systems
11.9.1 Which flash devices can be programmed?

In general, all kinds of SPI flash can be programmed. Since all flash parameters are
configurable, also flashes with non-standard command sets can be programmed.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



322 CHAPTER 11 J-Flash SPI

11.10 Performance

The following chapter lists programming performance for various SPI flash devices.

11.10.1 Performance values

In direct programming mode (J-Link directly connects to the pins of the SPI flash),
the programming speed is mainly limited by the SPI communication speed, the USB
speed of J-Link (if a Full-Speed or Hi-Speed based J-Link is used) and the maximum
programming speed of the flash itself.

For most SPI flash devices, in direct programming mode speeds of >= 50 KB/s can
be achieved.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



323

11.11 Background information

This chapter provides some background information about specific parts of the J-
Flash SPI software.

11.11.1 SPI interface connection

For direct SPI flash programming, J-Link needs to be wired to the SPI flash in a spe-
cific way. For more information about the pinout for the J-Link SPI target interface,
please refer to UM08001, J-Link J-Trace User Guide. The minimum pins that need to
be connected, are: VTref, GND, SPI-CLK, MOSI, MISO. If other components on the
target hardware need to be kept in reset while programming the SPI flash (e.g. a
CPU etc.), nRESET also needs to be connected.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



324 CHAPTER 11 J-Flash SPI

11.12 Support

The following chapter provides advises on troubleshooting for possible typical
problems and information about how to contact our support.

11.12.1 Troubleshooting

11.12.1.1Typical problems
Target system has no power

Meaning:

J-Link could not measure the target (flash) reference voltage on pin 1 of its connec-
tor.

Remedy:

The target interface of J-Link works with level shifters to be as flexible as possible.
Therefore, the reference I/0 voltage the flash is working with also needs to be con-
nected to pin 1 of the J-Link connector.

Programming / Erasing failed

Meaning:

The SPI communication speed may be too high for the given signal quality.
Remedy:

Try again with a slower speed. If it still fails, check the quality of the SPI signals.
Failed to verify Flash ID

Meaning:

J-Link could not verify the ID of the connected flash.

Remedy:

Check the Flash ID entered in the flash parameters dialog, for correctness.

11.12.2 Contacting support

If you experience a J-Flash SPI related problem and advice given in the sections
above does not help you to solve it, you may contact our support. In this case, please
provide us with the following information:

e A detailed description of the problem.

e The relevant log file and project file. In order to generate an expressive log file,
set the log level to "All messages" (see section Global Settings on page 309 for
information about changing the log level in J-Flash SPI).

The relevant data file as a .hex or .mot file (if possible).
The processor and flash types used.

Once we received this information we will try our best to solve the problem for you.
Our contact address is as follows:

SEGGER Microcontroller GmbH & Co. KG

In den Weiden 11
D-40721 Hilden

Germany

Tel.+49 2103-2878-0

Fax.+49 2103-2878-28

Email: support@segger.com
Internet: http://www.segger.com

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



325

Chapter 12
RDI

RDI (Remote Debug Interface) is a standard defined by ARM, trying to standardize a
debugger / debug probe interface. It is defined only for cores that have the same
CPU register set as ARM7 CPUs. This chapter describes how to use the RDI DLL which
comes with the J-Link software and documentation package. The J-Link RDI DLL
allows the user to use J-Link with any RDI-compliant debugger and IDE.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



326 CHAPTER 12 RDI

12.1 Introduction

Remote Debug Interface (RDI) is an Application Programming Interface (API) that
defines a standard set of data structures and functions that abstract hardware for
debugging purposes. J-Link RDI mainly consists of a DLL designed for ARM cores to
be used with any RDI compliant debugger. The J-Link DLL feature flash download and
flash breakpoints can also be used with J-Link RDI.

RDI compliant
Debugger

J-Link RDI DLL

12.1.1 Features

Can be used with every RDI compliant debugger.

Easy to use.

Flash download feature of J-Link DLL can be used.

Flash breakpoints feature of J-Link DLL can be used.
Instruction set simulation (improves debugging performance).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



327

12.2 Licensing

In order to use the J-Link RDI software a separate license is necessary for each J-
Link. For some devices J-Link comes with a device-based license and some J-Link
models also come with a full license for J-Link RDI. The normal J-Link however,
comes without any licenses. For more information about licensing itself and which
devices have a device-based license, please refer to Licensing on page 55.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



328 CHAPTER 12 RDI

12.3 Setup for various debuggers

The J-Link RDI software is an ARM Remote Debug Interface (RDI) for J-Link. It makes
it possible to use J-Link with any RDI compliant debugger. Basically, J-Link RDI con-
sists of a additional DLL (JLinkRDI.d11) which builds the interface between the RDI
API and the normal J-Link DLL. The JLinkRDI.d11 itself is part of the J-Link software
and documentation package.

12.3.1 IAR Embedded Workbench IDE

J-Link RDI can be used with IAR Embedded Workbench for ARM.

12.3.1.1 Supported software versions

J-Link RDI has been tested with IAR Embedded Workbench IDE version 4.40. There
should be no problems with other versions of IAR Embedded Workbench IDE. All
screenshots are taken from IAR Embedded Workbench version 4.40.

Note: Since IAR EWARM V5.30 J-Link is fully and natively supported by EWARM,
so RDI is no longer needed.

12.3.1.2 Configuring to use J-Link RDI

1. Start the IAR Embedded Workbench and open the tutor example project or the
desired project. This tutor project has been preconfigured to use the simulator driver.
In order to run the J-Link RDI, the driver needs to be changed.

/E' IAR Embedded Workbench IDE M= 3
File Edit View | Project BDI Tools Window Help
R[S EN S E e E T SRR 250
Add Group... _—
Import File List...
Edit Configurations. .. [F I -
Files
Remayve st, enable the clock of the PIO

PHC_EnablePeriphClock ( ATS1C_BASE_PMC, 1 << ATSIC_ID PIOL ) ;

I—E 23 Apnlic Create Mew Project... ; r :
PP b2, we configure the PIO Lines corresponding to LEDD to LEDM

m inte Add Existing Project...

| bhe outp . No nesed to set these pins to be driven by the PIO becguse it i
| [ inte Options... I_PID_Cngut,put,( AT91C_BASE_PIOA, LED_MASK )
| |?.ﬂ dr the LED's. On the EBSS we must apply a "1" to Lwrn off LEDs
| [ Cstart)  Souree Code Control » |P10_setOutpuc( AT91C_BASE_PINA, LED MASK ) :
L@ 3 Outpu Make F7 it timer interrupt
Comple STRE+F7  [RiR)7
Riehuid A P forsver
Clean 1SS Orce g Shot on eackh led
i ’ { i=0 ; i < NB_LEE ; i++ ) {
Bl i 91F_PI0_ClearOutput{ ATS1C BASE PIOA, led mask[i]):
Stop Buid it():
91F_PI0_SetOutput{ AT91C_EASE PIOA, led mask[i] ):
Debug STRG+D it():
Il iate & Hestart [Metugmer
A Once a Skot on edch led
for { i = (NE_LEE - 1j ; i »=0 ; i—— ) {
ATO1F PI0_ClearOutput| AT91C_EASE_PI0A, led mask[i]):
wait():
ATO1F PI0_SetOutput| AT91C_EASE_PI0A, led mask[i]):
wait():
i
i —
} -
S| lfol 8 < | i
Log |-:
T |
Edit options for the selected item [ MM [

2. Choose Project | Options and select the Debugger category. Change the

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



Driver option to RDI.

Options for node “Basic” E

329

Category:

General Options
C/C++ Compiler
Azzembler
Cusztomn Build
Build &ctions
Linker

Simulator

Angel

14R R OM-monitor

J-Link

M acraigor

RDI

Third-Party Driver

Getup |D0wnload| Extra Dptionsl F'Iuginsl

Diriver ¥ Bunto

Factory Settings |

|RoI =l [main

— Setup macro

[ Use macro file

— Device description file

|$TDDLKIT_DIF|$\EDNFIG\ioatS1 zamn7+64. ddf

()3 I Cancel |

3. Go to the RDI page of the Debugger options, select the manufacturer driver
(JLinkRDI.d11) and click OK.

Category: Factory Settings |
General Options
C/C++ Compiler G
Aszzembler X
Custom Build Manufacturer RDI driver
Build Actions IE:\segger\J LinkRDI%JLinkR D1 dIl
Linker ~MNote
[ebugger
Simulator I Bllow hardwiare reset Usze the RDI menu to specify
Anael additional driver gettings. [Thiz
n9e . menu iz available after the RDI
145 ROM-moritor [~ ETM trace driver has been located)
J-Link
M acraigor — Catch exceptions———————
[ Beet [ Daa I EO
Third-Party Driver [~ Undsf I Prefetch
Cswl I IRE
™ Log RDI communication

[sTOOLKIT_DIR$ cspycommlog

|

()3 I Cancel |

4. Now an extra menu, RDI, has been added to the menu bar.
Choose RDI | Configure to configure the J-Link. For more information about the
generic setup of J-Link RDI, please refer to Configuration on page 344.

2 1aR Embedded Workbench IDE
File Edit View Project | RDI Tools ‘Window Help

DEE& &

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



330

CHAPTER 12

12.3.1.3 Debugging on Cortex-M3 devices

The RDI protocol has only been specified by ARM for ARM 7/9 cores. For Cortex-M
there is no official extension of the RDI protocol regarding the register assignement,
that has been approved by ARM. Since IAR EWARM version 5.11 it is possible to use
J-Link RDI for Cortex-M devices because SEGGER and IAR have come to an agree-
ment regarding the RDI register assignment for Cortex-M. The following table lists
the register assignment for RDI and Cortex-M:

RDI

R:er?t;g(er Assigned register
0 RO
1 R1
2 R2
3 R3
4 R4
5 R5
6 R6
7 R7
8 R8
9 RS
10 R10
11 R11
12 R12
13 MSP / PSP (depending on mode)
14 R14 (LR)
16 R15 (PC)
17 XPSR
18 APSR
19 IPSR
20 EPSR
21 IAPSR
22 EAPSR
23 IEPSR
24 PRIMASK
25 FAULTMASK
26 BASEPRI
27 BASEPRI_MAX
28 CFBP (CONTROL/FAULT/BASEPRI/PRIMASK)

Table 12.1: Cortex-M register mapping for IAR + J-Link RDI

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG




12.3.2 ARM AXD (ARM Developer Suite, ADS)

12.3.2.1 Software version

331

The JLinkRDI.d1l1l has been tested with ARM’s AXD version 1.2.0 and 1.2.1.
There should be no problems with other versions of ARM’s AXD. All screenshots are

taken from ARM’s AXD version 1.2.0.

12.3.2.2 Configuring to use J-Link RDI

1. Start the ARM debugger and select Options | Configure Target.... This opens the

Choose Target dialog box:

Choosze Target EHE |

— Target Ervironments

| ROI | File
1.51 CAToaolCh . ARWT.ODLL
151 CATaoolCh . Sarmulate, dil

| "erzion |
1.0.019
1.4.0.89

T arget
AR TRA
- ARMLIL

IJze the ARM Debugger with the ‘ARMulator Instruction Set Simulator. Thiz allows you to
execute AR programs without phpzical ARM hardware, by zimulating the ARk
instructions in sofbware.

Add
Bemove
Fename

Save bz

EEliE

Configure

k. I Cancel | Help
2. Press the Add Button to add the JLinkRDI.d11.
Open
Lok jn: | ‘3 JLinkFDI ~| « & ck E-
JLinkssr.di
JLinkR O dll
File name: — [ILinkRDLdI | Open |
Files of tpe: IDLLg [=.dll) j Cancel |
o

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



332

3.

Chooze Target

CHAPTER 12 RDI

Now J-Link RDI is available in the Target Environments list.

— Target Environments

ARMUL
i J-Link

Segger JLink ARM JTAG

T arget | RO | File | W erzion |
ARM TPA 151 CAToolCh MRVT.DLL 1.0.019
151 1.4.089

C:AToalCh. Sarmulate. dll
JLir

. Bemove
LinkRDdl
Fename

Save Az

Configure

L g

Cancel Help

o]

Select J-Link and press OK to connect to the target via J-Link. For more informa-

tion about the generic setup of J-Link RDI, please refer to Configuration on
page 344. After downloading an image to the target board, the debugger window

looks as follows:

3 AXD - [ARM_1 - C:\work\emb0Semb0S_ARM_RY¥DS521\startsCPU_S TR71X\SAMPLE \Main_LED.c]

@Elle Search  Processor Views System Views Execute Options  Window Help

=lalx|

eifElie| 3| &8 5| | Gin | Bl

O E=EEREE R R = R
- =

ARM_1 - Registers
22 vwoid Taskliwoid] {
Register |Value |; 25 while (1) {
EbCurrent [ 24 LED_ToggleLEDL():
r0 020001560 25 05 _Delay (200);
r1 20001568 26 +
rz 000000150 g; '
T3 0x00001EBA -
rd 020000630 30 *
5 0x00001E70 i * nain
] 000000000 3z *
7 000000000 33 /
] 000000000 34
rg 000000000 M 35 int main(void) {
36 0% _IncDI(); /% Initially disable interrupts ¥/
rlo 000002750 37 USilnltKéxJ:n(]; i 1n1t1all§e 0g Y w
rll 000000000 38 0% InitHu(): /% initialize Hardware for 03 %/
rlz 0xx00000451 39 LED_Initi): /* initialize LED ports *f
3 k] 020001540 40 /% ¥ou need to create at least one task here ! w
-rld 0x00001EAS 4l 05_CREATETASK (¢TCED, "HP Task”, Task0, 100, Stack0):
pe 0x00000450 4z 05_CREATETASK(sTCEL, "LF Task”, Taskl, 50, stackl);
-cps nzcwgTFT_SVE 43 05_Starti): /% Gtart multitasking *
SPST nzcwgift_User i: y return 0;
ETzer /Systen o) 46 =
FI0 [ =l | »
Target Image IFi\es | Class | Breakpoints ARM_T - Memory  Start address|0:0 jl
5w CMemphembls_Star_STRTTARC | [ fStat= ‘ FEIDEE St | S‘“” Tt - He - No prefs | Tab2 - Hes - Mo prefis | Tab3 - Hex - No prefx | Tabd -4 | »
o ARMLY - Address | 0| a | 8 | c | f’
0x00000000 ESSFFO18  ESSFFOLS  ES9FFOLE  ESSFFOLS
0x00000010 ESSFFOLE  ELAO0OO0  ES9FFOL4  ESOFFOL4
0x00000020 00002444 0000003C 00000040 00000044
0x00000030 00000048  0000ZEZFO  0000004C  EAFFFFFE
0x00000040 EAFFFFFE  EAFFFFFE  EAFFFFFE  EAFFFFFE
I 3] | 1N ] | lonnnnnncn manannnn mannmes  messensa  zeararnn T

For Help, press F1

<Mo Posy |J-Link |8RM_1 |Stat_STRP1xaxf 2

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



333

12.3.3 ARM RVDS (RealView developer suite)

12.3.3.1 Software version

J-Link RDI has been tested with ARM RVDS version 2.1 and 3.0. There should be no
problems with earlier versions of RVDS (up to version v3.0.1). All screenshots are
taken from ARM’s RVDS version 2.1.

Note: RVDS version 3.1 does not longer support RDI protocol to communicate
with the debugger.

12.3.3.2 Configuring to use J-Link RDI
1. Start the Real View debugger:

<& RVDEBUG<Start_STR71x>

- File Edit Find “iew Project Tool: Debug Help

DeEH s anpoTHl T VX el EE s EEEE

File: [$MNO_SOURCE Find:l =l Line:l | [ ~

Not connected - no PC or scope ;I

Click to Comnect to a Target <No Register Contexts

4 | >|- Sre 4 rtosinit_str7x.cHf vedors.s+/ >|v| Mﬂ ﬂ

= Hame |Ualue ;I
=

||« [ I» [ cal stack Statics J 4 | | _ =l

=

—: Hone |

]| 4 | ¥ s Cmd g SO £ Build £ FileFind £ SrccCirl £*Log ﬂ ﬂ

Far mare information, select Help fram Menu Ln1, Cal1 LI i

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



334

CHAPTER 12 RDI

2. Select File | Connection | Connect to Target.

RYDEBUG<Start_STR71x>

Bl Fi= Edit Find View Poject Tools Debug Help

JE Hew

-

i e S R E

j Line:|_|@ -

) Open... Chil+0
E [lmse (BTt
Wotl  Elaze Logs/daurmals..

Cl:
b Eave [R5
Saye s,

Saye/tlose Muliple..

‘Workspace

Connection

Connect to Target... Alt+0

<No Register Contexts

Thread ¥ Wiseanmest ([Mefining Made]..
j} i o eR ]
Load Image. . tee e IRennee . o
Frelnad | 0T b CHisFE LConnection Properties. .. Al+Shift+0
Fielmad|mage to Tjarget il -
ﬂ_ Bfresty Bl Simchreniezation Cantrel.. v | vI 4 | 3 |\ Core ﬂ ﬂ
= Set Pt Entrr Bt EilrEhiftEs Attachiwindevite a Conrection = ;I
= [ e (ot -
Fiecent Files 3 Ly
. Fecent ‘Workspaces 3
:"_' Fecent mages 3
-.I_ [lase Winday -
= Exit _I
=
cmd {5t JBuid £ FileFind £ Srectrl flog i 2|

Select target(z] to connect ta

ntceln [ NOM[

3. In the Connection Control dialog use the right mouse click on the first item and
select Add/Remove/Edit Devices.

|095criptiun

APM Ltd. BDI targets |

AFMulato)  Collapse Al
Expand Yehicles

EHa Server Connection Properties. .

M ARM-RRN-FF =gl b Board File, .

t simulator
erface [(parallel port)
ol [(serial port)

2ct

% ARM-VIA-LP
FMOT_WIGGLER

=H® ARM-ARM-DIR

TS VPBOZEET-5 UL

% ARM-ARM-NT

TRealView ICE

ARM WVehicle
Macraigor Wiggler

AFM Ltd. Direct Conhection
Versatile Platform for ABRMOZEEJ-3 [(U3E port)

FealVWiewICE

AFM JTAG debug interface [(TCPAIP)

onnect [ARM+0ak)

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



335

4. Now select Add DLL to add the gLinkRDI.d11. Select the installation path of the

software, for example:
C:\Program Files\SEGGER\JLinkARM_V350g\JLinkRDI.dll

RDI Target List ]|

Ilze the check boxes to add or remove RDI targets from the connection manager:
Mame | "Yerzion I Dezcription |
g:? Femote_a w12 Angel debug protocal [zerial part]
ﬁ:_)_ uilti-ICE v 25 AR JTAG debug interface [parallel port)
/1] &R Mulatar w14 ARM instuction set simulatar
Add DLL... Rezet st [EartEue. . Eemeve [plicate.. |

5. After adding the DLL, an additional Dialog opens and asks for description: (These
values are voluntary, if you do not want change them, just click OK) Use the fol-
lowing values and click on OK, Short Name: JLinkrRDI Description: J7-Link

RDI Interface.
Create Hew RDI Target |

Enter a name and a description for the new enty in the
connection list;

Short Mame [exarmple - "Dual FTOMIM:
I.JLinkFl ol

Dezcription [example - "Multi-lCE with bao AR ")
IJ-Link ARM RO Interface

k. I Canicel

6. Back in the RDI Target List Dialog, select JLink-RDI and click Configure. For
more information about the generic setup of J-Link RDI, please refer to Configu-
ration on page 344.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



336 CHAPTER 12 RDI

RDI Target List |

IJze the check boxes to add or remowe RDI targets from the connection manager:

M ame | " ersion | Dezcription |

R ILinkR DI J-Link ARk BDI Interface

47 Remate_a ]2 fngel debug protocol [zeral port)

@ b ulki-ICE v 256 ARK JTAG debug interface [parallel port)

1M 2R Mulator v1.4 ARM instruction set gimulator

Add DLL. .. Reset lizt Configure. .. Remove | Duplicate. .. |

7. Click the OK button in the configuration dialog. Now close the RDI Target List
dialog. Make sure your target hardware is already connected to J-Link.

8. In the Connection control dialog, expand the JLink ARM RDI Interface and
select the ARM_0 Processor. Close the Connection Control Window.

& Connection Control [Administrathrydebug. brd]

Help
Hame | bescription
=g ARM-4-FR AFM Ltd. RDI targets
S ARMulator AFM instruction set simulator

Sz JLinkRDI. d11 J-Link ARM RDI Interface
| ARM #120.. APM on localhost |

[FHin Server Connection Eroker
+ X2 localhost Jimulator Broker

[ ARM-VIA-LP Motorola/Macraigor Wiggler emulator
FESMO0T WIGGLER Macraigor Wiggler

[=HiE ARM-ARM-DIR ARM Ltd. Direct Connection

@‘FPBQEEEJ—S_U... Versatile Platform for ARMIZGET-5 [(USE port)

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



337

9. Now the RealView Debugger is connected to J-Link.

RYDEBUG<Start_STR71x> = @ARM_
-Eile Edit Find “iew Project Tools Debug Help

DS ' BE ABTPARE 0 I EEH BB [TSE B S &| e [Fow

File: [$MNO_SOURCE Find:l =l Line:l | [ ~

No source for context: _ENTRY ‘<entry point>

Click to Load 'C:htemp'emb(05 Start STR7L:\FAM, Start STR71x.axf' =] 00000000 Rl 00000
RZ goooooon R3 oo0oor
R4 goooooon RS oo0oor
13 goooooon R7 oo0oor
RS goooooon RS oo0oor
E10 00000000 E11 00000
ElZ 00000000 SP oooooc
LR goooooon rC oooooc
CP3E 000000D3
wzrwl ®#Tal TRo L TF | Manw

4 | >|- Sro {rtosint_str71 o+ vectars s+ ﬂ >|v| A+ [y Core ﬂ_ILI

= Hame Hame | Ualue = <Noiddr> ;I

I I -

<Nokddr»
<Nokddr»
<Nokddr»
<Nokddr»
<Nokddr»
<Nokddr»

L

> connect,route 2

=
=

~|¥ commect 10
Advanced info searched in: Local Advanced info J
=

Using Advanced info based on 'Default' or 'all’

Warning: Vector catching specification is not supported by target.
Warning: No stack/heap or top of memory defined - using defaults.
Comnected Target is: ARM

Vehicle: ARM MultiP, BDI w¥l.51 wia DLL

Mode: Little Endian

]
Currently opened file Ln1, Cal1 MUK v

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



338 CHAPTER 12 RDI

10. A project or an image is needed for debugging. After downloading, J-Link is used
to debug the target.

RYDEBUG([Start_5TR71x) = @ARM_0:ARM-A-RR

[ Fille Edit Find “iew Project Took Debug Help
DeE| 2R Earadd ol +ILEEEE8E |DEE| S & st [Hopped
File: [main_led ¢ Fint | o S =
while (1} 1§ -
LED_ToggleLEDL(]; R0 o0nocssn Rl 0000csss =
05_Delay (200): RZ ooooolso R3 000o01Fan
™~ ' R4 0000B&3C RS 000o01Fsn
o 13 goooooon R7 goooooon
: RS goooooon RS goooooon
. M El0  0000zZ590 E11 00000000
L, nain ElZ 00000515 SP 0000csan
. LR 00001Fss rC ooooos14
w / CPSE 000000F3
. WzZC¥| FIo| IRQ| STATE| MODE
* 0000 0I5 DIS Thumb SVC
08_IncDI(); /% Initially disable interrupts =/ HUsR
05_InitKerni(): /% initialize 0% i E IR
05_InitHWi): /% initialize Hardware for 03 w7 HFIQ
LED_Init(): A% initialize LED ports L [# 3w
/% ¥ou need to create at least one task here ! w4 [HAET
05_CREATETASK (sTCEO, "HP Task”, Task0, 100, Stackd): HmD
05_CREATETASK(sTCEL, "LP Task”, Taskl, G50, Stackl):
0 tare (. % Crorr muleditaoledme +4
4 | 3 I\ D=m ,(Src: },main_led.c: ){rtosin'rt_strﬁx.c Kvedors.s / ﬂ jll APy Core ﬂ jll
=i Type |Ua1ue = 00000000 0xESSFFOLE OxESSFFOL1S OxESS9FFO18 OXESSFFOLS ;I
| ® #W Instr | \MATH LEDA#35:0 = | 00000010 OXES9FFOLE | 0xEL1A00000| OxESSFFO14| OXES9FFO14
o - 00000020| 0x00002554 0x0000003C 0x00000040 0x00000044 ey
| 00000030)| 000000048 0x000023D0 0x0000004C OxEAFFFFFE
=\| 00000040 | 0xEAFFFFFE 0<EAFFFFFE O<EAFFFFFE OxEAFFFFFE
2| 00000050 | 0xEADOO000 OxEAOOQ7EE OxEZ5FC02ZE OxES9COCO0 LI
Bl pi \MAIN LEDV#35:0 =]
|7 oo
Stopped at 0x00000514 due to SW Instruction Breakpoint
Stopped at 0x00000514: MAIN LED%main Line 35 J
omd {stao fBuid /Fiefind /srecr flog i 2=l
Far mare infarmation, select Help fram Menu Ln 35, Col 9 Wl_ i

12.3.4 GHS MULTI

12.3.4.1 Software version

J-Link RDI has been tested with GHS MULTI version 4.07. There should be no prob-
lems with other versions of GHS MULTI. All screenshots are taken from GHS MULTI
version 4.07.

12.3.4.2 Configuring to use J-Link RDI

1. Start Green Hills Software MULTI integrated development environment. Click Con-
nect | Connection Organizer to open the Connection Organizer.

[= | - -
File | Method = Target

Opet
[Earitest b lanaet j
Canmest and ebug Npen Executatle,
Eanmest and Mebug,..
[Canmest and Elash..

Eddif...
[Sapy..
=
[elete

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



339

2. Click Method | New in the Connection Organizer dialog.

File | Method = Target
Opet
[Earitest b lanaet I e

Canmest and ebug Npen Executatle,
Eanmest and Mebug,..
[Canmest and Elash..

Eddif...
[Sapy..
=
[elete

3. The Create a new Connection Method will be opened. Enter a name for your
configuration in the Name field and select Custom in the Type list. Confirm your
choice with the Create... button.

Create New Connection Method
Mame: IJ-LinkI

Type: I Custom j

Cancel |

4. The Connection Editor dialog will be opened. Enter rdiserv in the Server field
and enter the following values in the Arguments field:
-config -dll <FullPathToJLinkDLLs>
Note that JLinkRDI.dl1l and JLinkARM.d11l must be stored in the same directory.
If the standard J-Link installation path or another path that includes spaces has
been used, enclose the path in quotation marks.
Example:
-config -dl1l "C:\Program Files\SEGGER\JLinkARM V350g\JLinkRDI.d11l"
Refer to GHS manual "MULTI: Configuring Connections for ARM Targets", chapter
"ARM Remote Debug Interface (rdiserv) Connections" for a complete list of pos-
sible arguments.

M ame: IJ-Link
Type: I Custarn
I™ Log Connection to file: I s
MULTI Target Setup Script: I ﬁ
Connect for: ¢+ Download (Download and debug application)
= Attach [Debug application already on target)
" Board Setup [Debug board initialization sequence)
Server I rdisery
Arguments: I -config -dil "C:WProgram Files\SE GGE R LinkaRM_v350g4Link RD1dI'
|
Connect | ’TI Cancel | Revert | Apply |

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



340 CHAPTER 12

5. Confirm the choices by clicking the Apply button after the Connect button.

Mame: I I-Link,

Type: I Custarn

I™ Log Connection to file: I

W

MULTI Target Setup Script: I

Connect for: ¢+ Download (Download and debug application)
= Attach [Debug application already on target)
" Board Setup [Debug board initialization sequence)

Server I rdisery

Arguments: I -config -dll "C:%Pragram Files\SEGGERJLinkARM_V350g\ LinkRD1.dlI"

I mode=download rdizery -config -dll “C:4\Program Files\SEGGERLinkARM_350g% LinkRD1.dlI"

RDI

Connect |

()8 I Eancell

Hevertl Apply |

6. The J-Link RDI Configuration dialog will open. For more information about the
generic setup of J-Link RDI, please refer to Configuration on page 344.

7. Click the OK button to connect to the target. Build the project and start the
debugger. Note that at least one action (for example step or run) has to be per-
formed in order to initiate the download of the application.

E& C:\Work\Basic._ghs - MULTI Debugger

File Debug “iew Browse Target Toolz Config ‘Windows Help
YHFp e NEREERQARQALIL AR
46 I Al
47 void wait [ woid )
438 1 {//* Begin
49 2 unsigned int waiting time ;
. Ox20027c  wait: hsoo PUZH {LE}
- Ox20027e wait+0xi: his4 3UE 3P, 3P, 16
50 3 change speed () :
- Ox200280 wait4+0xd: f7fEE££d4 EL Oxffffffasd (change speed (OxZ00ZZc))
S1 4 mp for(waiting time = 0; waiting time < Led3peed; waiting time++) ;
- Ox2002584 wait4+0xS: 2000 Mo RO <waiting time>, O J
- Ox200286 wait4+0xa: =000 E Ox0{wait+0xe [(OxZ00Z3a))
MDXZDDZSS wait+0xoc: 3001 ADD RO <waiting time>, 1
s Ox200Z8a wait+Oxe: 4922  LDR Ri, [PC, 136] (sLedSpeed (Ox200314))
s 0Ox20028c  wait+0x10: G50 LDE B3, [R1,0]
- Ox200258e wait+0x1Z: 4295 CHMP RO <waiting timex, R3
- O0x200290 wait+0x14: difa ECC OxffEffEFS (wait+0xe (0x2002585) )
52 5 +/4® End
- O0x200292 wait+0xl6: hioo4 ADD 3P, 3P, 16
. O0x200294 wait+0x1S: heois FOF {R3}
- O0x200296 wait+Oxla: 4718 BX R3
53 =
i | o
[Mied =] Fie: [mainc =l Pree: [wait B <=
Finished executing setup script. ;I
Downloading program text and data. Please Wait...
Download complete.
running 'C:h%WorkhBasic.ghs'
MULTI> | _I
-
4] | »
Crnd | Trg"l 140 |5 || STOPPED INSIDE

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



12.3.5 KEIL MDK (uVision IDE)

12.3.5.1 Software version

341

J-Link has been tested with KEIL MDK 3.34. There should be no problems with other
versions of KEIL pVision. All screenshots are taken from MDK 3.34.

12.3.5.2 Configuring to use J-Link RDI
Start KEIL uVision and open the project.

E Blinky - pVision3 - [C:\Keil 3030\ARM\RY30\B oards\Keil\MCB 2300\Blinky\Abstract.txt]

Eile Edit “fiew Project Debug Flash Peripheral: Tools SYCS ‘Window Help

& B @ D S 4 %% %
24 4[LPC2378 Flash EEEE

Zal# |« = 2 | & Q |[EE O e

using Keil 'MCEZ300°
interrupt functionality.

[ Source Code Example functionality:
-7 Documentation - Clock Settings:

— XETAL = 12 MH=
- PLL = 2883 MH=
- processor clock = 57.6 MH=
- U3E clock = 45 MHz
— peripheral clock = 14.4 MH=

— UART1 settings
(baudrate = 9600, 8 data bits,

potentiometer position

Simulator:
MCEZ2300 Flash:

K I

The Blinky project is a simple program for the LPC2Z378
Evaluation Board and demonstrating

1 stop bits, no parity)

— TimerD timer is actiwvating clock 1s every 1 second,
starting LD conversion (every 1 ms) and displaying
hargraph on 8 LEDs, it works in interrupt mode

— AD conversion is done in interrupt mode

— AD walue is sent ewvery 1 second on ULRT1

- text is displayed to textual LCD

— bargraph is displawyed to textual LCD, according to

— 8 LED= state represent the potentiometer position

The Blinky program is available in different targets:
configured for software Simulator
runs from Internal Flash located on chip
fused for production or target debugoging)

[*]

EIEINEEES LPC2300s B Bk |E) LCD_dbie |B)

IRG.c

Abstract. bt

) E LR, Build Find in Files | EN

Command

| Cutput thindow

*|uoad "C:\\Keil303o\\ARM\\RV3O0\\Boards\\Kell\\MCB2300\\Blinky\\Flash\\Blinky .AXF"

o

i)

eady

|ROI Irterface Driver [

&

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



342

CHAPTER 12 RDI

Select Project | Options for Target '<NameOfTarget>’ to open the project options
dialog and select the Debug tab.

Options for Target 'LPC2378 Flash' [ %]

Devicel Targetl Dutputl Listingl Uszer I EI.-"EI++| Aam I
' Use Simulator Seftings |

Linker Debug | Utiiies |

& Use: |RDI Interface Driver

j Settings |

™ Limit Speed to Real-Time

¥ Load &pplication at Startup ™ Run to main()
Initialization File:

| [ Tese. |

Restore Debug Session Settings
V' Breakpoints V' Toolbox
V' ‘watchpoints & P4
V' temary Display

LILINE Cortes
¥ Load MM
~|Luminary
Initializatid

Fiestore Debug Session Settings

V' Breakpoints V' Toolbox

IV ‘Watchpoints
V' temary Display

ULIME ARM Debugger

CPU DLL: Parameter:

Driver DLL: Parameter:

ISAHM.DLL I-cLPE21 [il]

Dialog DLL: Farameter:

ISAHM.DLL |

Dialog DLL: Farameter:

IDAHMP.DLL I-pLPE23?8

ITAHMP.DLL I-pLPE23?8

()8 I Cancel | Defaults |

Help |

Choose RDI Interface Driver from the list as shown above and click the Settings
button. Select the location of JLinkRDI.d1l1l in Browse for RDI Driver DLL field.
and click the Configure RDI Driver button.

RDI Interface Driver Setup [ %]

— Browse for RDI Drriver DLL

IE:\F‘rogram FileshSEGGERM LinkARM_V353a% LinkRD1LdIl

—

— Browse for ToolConf File

—

—Debug

[™ Cache Code

Configure BDI Driver

" Cache Options

" Cache Memory

ok |

Cancel |

The J-Link RDI Configuration dialog will be opened.For more information about the
generic setup of J-Link RDI, please refer to Configuration on page 344.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



343

After finishing configuration, the project can be built (Project | Build Target) and
the debugger can be started (Debug | Start/Stop debug session).

Eﬂlinky - t¥ision3 - [Disassembly] M= B
@Eile Edit “fiew Project Debug Flash Penpherals Tools SYC5 ‘Window Help _I_I- 5 5'
QEEH@ | RR( DT E eI |« = S ([QEE] o e m
gslmeomnpd oo |([@RprsEenng »
[Praject Warkspace - x| 332: Uectors LDR PC, Reset_Addr |
g [ alue [<] |l>ox00000000 ES9FFA1S  LDR PC,[PC,#0xB618]
333: LDR PC, Undef_Addr
= Coent . _
Hen F— Dx00D0ODDS ES9FFO18  LDR PC.[PC,#DX0018]
IeDD000000 334: LDR PC, SWI_Addr
. 9xA0BAARAS ES9FFA18  LDR PC,[PC,#0x0018]
000000000 335: LDR PC, PADE_Addr
0+00000000 Bx0088008C ESOFFE18 LDR PC,[PC,H#0x0818]
(100000000 236: LDR PC, DAbt_Addr
000000000 PxBPOAAO16 ES9FFA18 LDR PC,[PC,H#08:00818]
000000000 337: HOP ; Reseruved Uector
0+00000000 338: ; LDR PC, IRQ_Addr
0+00000000 0x0080AA14 B92B6ESM STHLTDB  RO!,{R4,R6,R9-R11,R13-R14}
0+00000000 339: LDR PC, [PC, #-8x01208] ; Vector from UicVectAddr
1x00000000 9x0080AB18 ES1FF128 LDR PC,[PC,#-0x0128]
0x00000000 340: LDR PG, FIQ_aAddr
000000000 3u1:
1%00000000 342: Reset_Addr DCD Reset_Handler
343: Undef_Addr DED Undef_Handler
0+00000000 | ! -
u:uuuouuuo 344: SWI_Addr peD SWI_Handler
& PR P 345: PAb_Addr pCD PAbE_Handler
- . 346: DAbt_Addr peD pAbt_Handler
SPSh 000000010 347: DCD a ; Reserved Address
B User/Spstem 348: IRQ_Addr DED IRQ_Handler
g"”FaS”nte"UDt 349: FIQ_Addr peD FIQ_Handler =
= Inlerrupt_ = - I I 5
Br. E.|@c. |*r. | Tre. | tPeams |B) Bikee |[B] LCD_sbie |B)  RAc  |[E) Abstactit @) Disassembly
*lLoad "C:\\Keil3030\\ARM\\RV30\\Boards\\Kell\\MCBE2 30l [ *| addess [tartcoo0 H
0x3FFFCO00: 00000000 00000000
0x3FFFCO08: 00000000 0OQO00O0OD
0xX3FFFCO010: 600000DF 00000000
0x3FFFC018: 00000000 0OQO0Q00O0O0
0x3FFFC020: 600000DF 00000000
- . 0x3FFFC028: 00000000 00000000
‘§E 2 0x3FFFCO030: 00000000 0OOQO0Q000OD
5 |ASSIGN BreakDisable BreakEnable Break¥ill 'zi z[0x3FFFC038: 600000DF 00000000
= £ llo DT A ~
3 || ] | 2 Memnrv #1 4 Memory #2 A Memory #3 J, Memar
For Help, press F1 |RON Interface Driver |11 0.00000000 sec | i

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



344 CHAPTER 12 RDI

12.4 Configuration

This section describes the generic setup of J-Link RDI (same for all debuggers) using
the J-Link RDI configuration dialog.

12.4.1 Configuration file JLinkRDL.ini

All settings are stored in the file JLinkRDI.ini. This file is located in the same direc-
tory as JLinkRDI.d11.

12.4.2 Using different configurations

It can be desirable to use different configurations for different targets. If this is the
case, a new folder needs to be created and the JLinkARM.dll as well as the
JLinkRDI.d1l1l needs to be copied into it.

Project A needs to be configured to use JgLinkRDI.d11l A in the first folder, project B
needs to be configured to use the DLL in the second folder. Both projects will use
separate configuration files, stored in the same directory as the DLLs they are using.

If the debugger allows using a project-relative path (such as IAR EWARM: Use for
example $PROJ_DIRS\RDI\), it can make sense to create the directory for the DLLs
and configuration file in a subdirectory of the project.

12.4.3 Using mutliple J-Links simulatenously

Same procedure as using different configurations. Each debugger session will use
their own instance of the gLinkRDI.d11.

12.4.4 Configuration dialog

The configuration dialog consists of several tabs making the configuration of J-Link
RDI very easy.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



345

12.4.4.1 General tab

J-Link RDI Configuration K E |

General | Init | JTAG | Flash | Breakpaints| CPU | Log |

J-Link-RO iz an RO compliant software far J-Link
ARk, It requirez a license [RD1), which can be
obtained from SEGGER [wiwny, zeqger. com).

Thiz zoftware iz alzo capable of programming the
flazh memony of several AR microz, which can be
uzed to download your program to flash [Requires
the add. licenze "FlazhDL"] and to zet an unlimited
number of software breakpoints in flazh [Requires
the add. licenze "FlazhBP").

Connection toJ-Link

(ol IDeviceD VI

- ICPAP |

About

_thor |
J License |

RBezet Config |

(] I Cancel | Apply |

[Laeatiomn of camfig ke

Connection to J-Link

This setting allows the user to configure how the DLL should connect to the J-Link.
Some J-Link models also come with an Ethernet interface which allows to use an
emulator remotely via TCP/IP connection.

License (J-Link RDI License managment)

1. The License button opens the J-Link RDI License management dialog. J-Link
RDI requires a valid license.

J-Link RDI License management
Feature | Serial number | Expiration |
Add license | | Dizplay gerial number |

2. Click the Add license button and enter your license. Confirm your input by click-

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



346 CHAPTER 12 RDI

ing the OK button.

Fleaze enter your licenze(z]!

License

(] 3 I Cancel |

3. The J-Link RDI license is now added.

J-Link RDI License management [ %]
Feature | Serial number | E xpiration |
RDI 1 never expires

Add license | Weletelizense Dizplay gerial number | QK I

12.4.4.2 Init tab

J-Link RDI Configuration EHE

General Init |JTAG I Flash I Breakpointsl CPU I Log I

QK I Cancel Apply

Macro file

A macro file can be specified to load custom settings to configure J-Link RDI with
advanced commands for special chips or operations. For example, a macro file can be
used to initialize a target to use the PLL before the target application is downloaded,
in order to speed up the download.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



J-Link / J-Trace (UM08001)

Comands in the macro file

347

Command Description

SetJTAGSpeed (x) ; Sets the JTAG speed, x = speed in kHz (0=Auto)

Waits a given time,

Delay(x); x = delay in milliseconds
Reset (x) ; Resets the_ targ_eF,

x = delay in milliseconds
Go(); Starts the ARM core
Halt () ; Halts the ARM core

Read8 (Addr) ;
Readlé6 (Addr) ;
Read32 (Addr) ;

Reads a 8/16/32 bit value,
Addr = address to read (as hex value)

Verify8 (Addr, Data); Verifies a 8/16/32 bit value,

Verifyl6 (Addr, Data); Addr = address to verify (as hex value)
Verify32 (Addr, Data); Data = data to verify (as hex value)
Write8 (Addr, Data); Writes a 8/16/32 bit value,

Writel6 (Addr, Data); Addr = address to write (as hex value)
Write32 (Addr, Data) ; Data = data to write (as hex value)

WriteVerify8(Addr, Data); |Writes and verifies a 8/16/32 bit value,
WriteVerifyl6 (Addr, Data);|Addr = address to write (as hex value)
WriteVerify32 (Addr, Data);|Data = data to write (as hex value)

WriteRegister (Reg, Data); |Writes a register

WriteJTAG_IR (Cmd) ; Writes the JTAG instruction register

WriteJTAG_DR (nBits, Data) ;| Writes the JTAG data register

Table 12.2: Macro file commands

Example of macro file

/*********************************************************************
*

* Macro file for J-LINK RDI

*

LR R I I S I S I I I S S I I S I S I R R I I S R S I I S R I I S I

* File: LPC2294.setup

* Purpose: Setup for Philips LPC2294 chip

BRI R R R I S R R I R R I I S I I 2 I I 2 I I I R I I R I R R I I R R I I R I 2 b S I 2 h E I 2 b I 2 bk S 3
*/

SetJTAGSpeed (1000) ;

Reset (0) ;

Write32 (0xE01FC040, 0x00000001); // Map User Flash into Vector area at
Write32 (OxXFFE00000, O0x20003CE3); // Setup CSO

Write32 (0xE002C014, OxOE6001E4); // Setup PINSEL2 Register
SetJTAGSpeed (2000) ;

(0-31)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



348 CHAPTER 12 RDI
J-Link RDI Configuration EHE
Generall It JTAG |Flash I Breakpointsl CPU I Log I
—JTAG speed
= Auto selection
= Adaptive clocking
@[30 ¥ | kHz
1 JTAG scan chain with multiple device
Bosition ID 'l F=R IU
iz clmsestta bl St el Fllens afidevices clasen b Tl
Bl af B | ehips e 4
entd TEE carfig |
QK I Cancel | Apply |

JTAG speed

This allows the selection of the JTAG speed. There are basically three types of speed
settings (which are explained below):

e Fixed JTAG speed
e Automatic JTAG speed
e Adaptive clocking

For more information about the different speed settings supported by J-Link, please
refer to JTAG Speed on page 184.

JTAG scan chain with multiple devices

The JTAG scan chain allows to specify the instruction register organization of the tar-
get system. This may be needed if there are more devices located on the target sys-
tem than the ARM chip you want to access or if more than one target system is
connected to one J-Link at once.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



349

12.4.4.4 Flash tab

J-Link RDI Configuration K E |

Generall [l IJT.-’-‘-.G Flazh |Breakpu:uints| CPU I Log I

—Iv Enable fazh programming

Allows programming the flash. This i required to download a program into flazh
memony of o zet zoftware breakpointz in flazh [flazh breakpointz].

Device |Atmel AT3154M7564 =] Clockspeed [ 48000000 Ha

RaM I'I 6 KB & address 02200000

Flazh |E4 KB (@ address 0100000
[ Flash iz mirored @ address 0=

—Iv LCache flash contents

Allows caching of flazh contentz. This avoids reading data twice and zpeeds up
the transfer between debugger and target.

—v Allow flash download

Allows program download to flazh. vour debugger does not need to have a flazh
loader. Thiz feature requires an additional licenze [FlashDL].

¥ Show info window during download

(] I Cancel Apply

Enable flash programming

This checkbox enables flash programming. Flash programming is needed to use
either flash download or flash breakpoints.

If flash programming is enabled you must select the correct flash memory and flash
base address. Furthermore it is necessary for some chips to enter the correct CPU
clock frequence.

Cache flash contents

If enabled, the flash content is cached by the J-Link RDI software to avoid reading
data twice and to speed up the transfer between debugger and target.

Allow flash download

This allows the J-Link RDI software to download program into flash. A small piece of
code will be downloaded and executed in the target RAM which then programs the
flash memory. This provides flash loading abilities even for debuggers without a
build-in flash loader.

An info window can be shown during download displaying the current operation.
Depending on your JTAG speed you may see the info window only very short.

J-Link flash programming

Finizhed Hazh programming.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



350 CHAPTER 12 RDI

12.4.4.5 Breakpoints tab

J-Link RDI Configuration K E |

Gereral | Init | JTAG | Flash  Breakpaints | CPU | Log |

—v Use software breakpaoints

Software breakpointz [az oppozed to hardware breakpoints] are breakpoints which
modify program memony. Thiz allows zetting an unlimited number of breakpoints if the
program ig located in Bébkd.

—Iv Use flazh breakpaints

Allows getting an unlimited number of breakpointz if the program i located in
Rakd or flagh, which iz extremely valuable when debugging a program located
ifi flagh.

Thiz feature iz available anly if flazh programming iz enabled!

¥ Show info window during progrann

(] I Cancel Apply

Use software breakpoints

This allows to set an unlimited number of breakpoints if the program is located in
RAM by setting and resetting breakpoints according to program code.

Use flash breakpoints

This allows to set an unlimited number of breakpoints if the program is located either
in RAM or in flash by setting and resetting breakpoints according to program code.

An info window can be displayed while flash breakpoints are used showing the cur-
rent operation. Depending on your JTAG speed the info window may hardly to be
seen.

Pragramming sechar 0 [123 Bytes 383 addr 000000000]

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



351

12.4.4.6 CPU tab

J-Link RDI Configuration K E |

Generall [l IJT.-’-‘-.G I Flazh I Breakpoints CPU |L|:|g I

—Iv o instruction set simulationd

Allows the emulatar to zsimulate individual instructionz when single stepping instructions.
Thiz doez not normally have any dizadvantages and makes debugaging much faster,
ezpecially when uging flagh breakpoints.

— Rezet strategy

J-Link zupports different reset strategies. This iz neceszary because there iz no single
way of regetting and halting an AR K core befare it startz to execute instructions.

Hardware, halt after rezet [niormal] j Delay after rezet I 0 ms

The hardware RESET pin iz uged to reset the CPL. After rezet releaze, J-Link
continuouzly ties to halt the CPU. Thizs typically halks the CPU shartly after reset
releaze; the CPU can in most systems execute zome instructions befare it iz halked.
The nurmber of inztructions executed dependz primarily of the JTAG speed: the
higher the JTAG zpeed, the faster the CPU can be halted. Some CPUz can actually
be halted before executing any instruction, because the start of the CPU iz delayed
after rezet releasze.

If & pause haz been zpecified, J-Link waitz for the zpecified time before tying to halt
the CPU. Thiz can be uzeful if a bootloader which regides in flagh or ROM needs to
be started after rezet.

(] I Cancel Apply

Instruction set simulation

This enables instruction set simulation which speeds up single stepping instructions
especially when using flash breakpoints.

Reset strategy
This defines the way J-Link RDI should handle resets called by software.

J-Link supports different reset strategies. This is necessary because there is no single
way of resetting and halting an ARM core before it starts to execute instructions.

For more information about the different reset strategies which are supported by J-
Link and why different reset strategies are necessary, please refer to Reset strategies
on page 199.

12.4.4.7 Log tab

A log file can be generated for the J-Link DLL and for the J-Link RDI DLL. This log
files may be useful for debugging and evaluating. They may help you to solve a prob-
lem yourself, but is also needed by customer support help you.

Default path of the J-Link log file: ¢c:\JLinkARM. log
Default path of the J-Link RDI log file: ¢:\JLinkRDI.log

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



352 CHAPTER 12 RD

Example of logfile content:

060:028 (0000) Logging started @ 2005-10-28 07:36

060:028 (0000) DLL Compiled: Oct 4 2005 09:14:54

060:031 (0026) ARM_SetMaxSpeed - Testing speed 3FO0FOFOF 3FO0FOFOF 3FOFOFOF 3FOFOFOF
3FOFOFOF 3FOFOFOF 3FOFOFOF 3FOFOFOF 3FOFOFOF 3FOFOFOF 3FOFOFOF 3FOFOFOFAuto JTAG
speed: 4000 kHz

060:059 (0000) ARM_SetEndian (ARM_ENDIAN_LITTLE)

060:060 (0000) ARM_SetEndian (ARM_ENDIAN_ LITTLE)

060:060 (0000) ARM ResetPullsRESET (ON)

060:060 (0116) ARM Reset(): SpeedIsFixed == -> JTAGSpeed = 30kHz >48> >2EF>
060:176 (0000) ARM WriteIceReg(0x02,00000000)

060:177 (0016) ARM_WriteMem (FFFFFC20,0004) -- Data: 01 06 00 00 - Writing 0x4 bytes
@ OxFFFFFC20 >1D7>

060:194 (0014) ARM_WriteMem (FFFFFC2C,0004) -- Data: 05 1C 19 00 - Writing 0x4 bytes
@ OxFFFFFC2C >195>

060:208 (0015) ARM WriteMem (FFFFFC30,0004) -- Data: 07 00 00 00 - Writing 0x4 bytes

@ OXFFFFFC30 >195>
060:223 (0002) ARM ReadMem (00000000,0004)JTAG speed: 4000 kHz -- Data: O0C 00 00 EA

060:225 (0001) ARM WriteMem(00000000,0004) -- Data: OD 00 00 EA - Writing 0x4 bytes
@ 0x00000000 >195>

060:226 (0001) ARM_ReadMem (00000000,0004) -- Data: O0C 00 00 EA

060:227 (0001) ARM_WriteMem (FFFFFF00,0004) -- Data: 01 00 00 00 - Writing 0x4 bytes

@ OxFFFFFFO0O >195>

060:228 (0001) ARM_ReadMem (FFFFF240,0004) -- Data: 40 05 09 27

060:229 (0001) ARM_ReadMem (FFFFF244,0004) -- Data: 00 00 00 00

060:230 (0001) ARM_ReadMem (FFFFFF6C,0004) -- Data: 10 01 00 00
(

060:232 (0000) ARM WriteMem
@ OxXFFFFF124 >195>

FFFFF124,0004) -- Data: FF FF FF FF - Writing Ox4 bytes

060:232 (0001) ARM ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:233 (0001) ARM ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:234 (0001) ARM _ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:236 (0000) ARM ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:237 (0000) ARM_ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:238 (0001) ARM ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:239 (0001) ARM ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:240 (0001) ARM ReadMem (FFFFF130,0004) -- Data: 00 00 00 00

060:241 (0001) ARM WriteMem (FFFFFD44,0004) -- Data: 00 80 00 00 - Writing Ox4 bytes
@ OxXFFFFFD44 >195>

060:277 (0000) ARM WriteMem(00000000,0178) -- Data: OF 00 00 EA FE FF FF EA ...
060:277 (0000) ARM WriteMem(000003C4,0020) -- Data: 01 00 00 00 02 00 00 0O ... -
Writing 0x178 bytes @ 0x00000000

060:277 (0000) ARM WriteMem(000001CC,00F4) -- Data: 30 B5 15 48 01 68 82 68 ... -
Writing 0x20 bytes @ 0x000003C4

060:277 (0000) ARM WriteMem(000002C0,0002) -- Data: 00 47

060:278 (0000) ARM WriteMem(000002C4,0068) -- Data: FO B5 00 27 24 4C 34 4D ... -
Writing O0xF6 bytes @ 0x000001CC

060:278 (0000) ARM WriteMem(0000032C,0002) -- Data: 00 47

060:278 (0000) ARM WriteMem(00000330,0074) -- Data: 30 B5 00 24 A0 00 08 49 ... -
Writing O0x6A bytes @ 0x000002C4

060:278 (0000) ARM WriteMem(000003B0,0014) -- Data: 00 00 00 00 0A 00 00 0O ... -
Writing 0x74 bytes @ 0x00000330

060:278 (0000) ARM WriteMem(00000324,000C) -- Data: 14 00 00 00 E4 03 00 00 ... -
Writing 0x14 bytes @ 0x000003BO

060:278 (0000) ARM WriteMem(00000178,0054) -- Data: 12 4A 13 48 70 B4 81 BO ... -

Writing 0xC bytes @ 0x000003A4

060:278 (0000) ARM_SetEndian (ARM_ENDIAN_LITTLE)

060:278 (0000) ARM SetEndian (ARM_ENDIAN_LITTLE)

060:278 (0000) ARM_ResetPullsRESET (OFF)

060:278 (0009) ARM Reset(): - Writing 0x54 bytes @ 0x00000178 >3E68>
060:287 (0001) ARM Halt(): **** Warning: Chip has already been halted.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



353

12.5 Semihosting

Semihosting can be used with J-Link RDI. For more information how to enable semi-
hosting in J-Link RDI, please refer to Enabling Semihosting in J-Link RDI + AXD on
page 464.

12.5.1 Unexpected / unhandled SWis

When an unhandled SWI is detected by J-Link RDI, the message box below is shown.
J-Link RDI Warning =]

& Software interrupt [5W1] Ox0 occured in AR mode @ address Ox002002C4.

Thiz 5%/ iz not uzed for zemihosting, but cauzes the CPU core o be halted.
Do you want the core to be automatically restarked when this happens ?

MNOTE:

Clicking on 'ves' will prevent thiz meszage from popping up, but the core will still be halted every
tirne. |F pour application requires semihozsting az well az having its own 5% handler, pou should et
the zemihozting wector to an addrezz in vour S'W handler. This addrezs must poink to an instruction
that iz only executed if your S| handler has identified a call to a semihosting Swil. All registers
izt already have been restored to whatewver values they had on entry o pour 5481 handler.

For more information on semibozsting and 5wz, please refer to the ARM ADS debug target guide.

Mo Cancel

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



354 CHAPTER 12 RDI

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



355

Chapter 13
RTT

SEGGER'’s Real Time Terminal (RTT) is a technology for interactive user I/O in embed-
ded applications. It combines the advantages of SWO and semihosting at very high
performance.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



356 CHAPTER 13 RTT

13.1 Introduction

With RTT it is possible to output information from the target microcontroller as well
as sending input to the application at a very high speed without affecting the target's
real time behavior.

SEGGER RTT can be used with any J-Link model and any supported target processor
which allows background memory access, which are Cortex-M and RX targets.

RTT supports multiple channels in both directions, up to the host and down to the
target, which can be used for different purposes and provide the most possible free-
dom to the user.

The default implementation uses one channel per direction, which are meant for
printable terminal input and output. With the J-Link RTT Viewer this channel can be
used for multiple "virtual" terminals, allowing to print to multiple windows (e.g. one
for standard output, one for error output, one for debugging output) with just one
target buffer. An additional up (to host) channel can for example be used to send
profiling or event tracing data.

"Hello World™
From CPU to tarminal in 0UBAps with RTT

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



357

13.2 How RTT works

13.2.1 Target implementation

Real Time Terminal uses a SEGGER RTT Control Block structure in the target's mem-
ory to manage data reads and writes.

The control block contains an ID to make it findable in memory by a connected J-Link
and a ring buffer structure for each available channel, describing the channel buffer
and its state.

The maximum number of available channels can be configured at compile time and
each buffer can be configured and added by the application at run time. Up and down
buffers can be handled separately.

Each channel can be configured to be blocking or non-blocking. In blocking mode the
application will wait when the buffer is full, until all memory could be written, result-
ing in a blocked application state but preventing data from getting lost. In non-block-
ing mode only data which fits into the buffer, or none at all, will be written and the
rest will be discarded. This allows running in real-time, even when no debugger is
connected. The developer does not have to create a special debug version and the
code can stay in place in a release application.

13.2.2 Locating the Control Block

When RTT is active on the host computer, either by using RTT directly via an applica-
tion like RTT Viewer or by connecting via Telnet to an application which is using J-
Link, like a debugger, J-Link automatically searches for the SEGGER RTT Control
Block in the target's known RAM regions. The RAM regions or the specific address of
the Control Block can also be set via the host applications to speed up detection or if
the block cannot be found automatically.

13.2.2.1 Manual specification of the Control Block location

While auto-detection of the RTT control block location works fine for most targets, it
is always possible to manually specify either the exact location of the control block or
to specify a certain address range J-Link shall search for a control block for in. This is
done via the following command strings:

e SetRTTAddr on page 238
e SetRTTSearchRanges on page 238

For more information about how to use J-Link command strings in various environ-
ments, please refer to Using command strings on page 241

13.2.3 Internal structures

There may be any number of "Up Buffer Descriptors" (Target -> Host), as well as any
number of "Down Buffer Descriptors" (Host -> Target). Each buffer size can be con-
figured individually.

The gray areas in the buffers are the areas that contain valid data.

For Up buffers, the Write Pointer is written by the target, the Read Pointer is written
by the debug probe (J-Link, Host).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



358 CHAPTER 13 RTT

When Read and Write Pointers point to the same element, the buffer is empty. This
assures there is never a race condition. The image shows the simplified structure in
the target.

SEGGER RTT
Control Block Buffers

ID
X . 1
Wite Pointer *LH‘_H‘_"“#-
Read Pointer
Up Buffer
Desaiptors
i}
Wiite Pointer i
Read Pointer 4
Down Buffer
Desaiptors
i}

13.2.4 Requirements

SEGGER RTT does not need any additional pin or hardware, despite a J-Link con-
nected via the standard debug port to the target. It does not require any configura-
tion of the target or in the debugging environment and can even be used with varying
target speeds.

RTT can be used in parallel to a running debug session, without intrusion, as well as
without any IDE or debugger at all.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



359
13.2.5 Performance

The performance of SEGGER RTT is significantly higher than any other technology
used to output data to a host PC. An average line of text can be output in one micro-
second or less. Basically only the time to do a single memcopy().

Time to output 82 characters

RTT I1
SWO 120
Semihasting [] 10700 1

80 100 120 140 10000 12000

[
[}
[
I
=2
[ 11
[}
[

13.2.6 Memory footprint

The RTT implementation code uses ~500 Bytes of ROM and 24 Bytes ID + 24 Bytes
per channel for the control block in RAM. Each channel requires some memory for the

buffer. The recommended sizes are 1 kByte for up channels and 16 to 32 Bytes for
down channels depending on the load of in- / output.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



360 CHAPTER 13 RTT

13.3 RTT Communication

Communication with the RTT implementation on the target can be done with different
applications. The functionality can even be integrated into custom applications using
the J-Link SDK.

Using RTT in the target application is made easy. The implementation code is freely
available for download and can be integrated into any existing application. To com-
municate via RTT any J-Link can be used.

The simple way to communicate via the Terminal (Channel 0) is to create a connec-
tion to localhost:19021 with a Telnet client or similar, when a connection to J-Link
(e.g. via a debug session) is active.

The J-Link Software Package comes with some more advanced applications, which
demonstrates RTT functionality for different purposes.

13.3.1 RTT Viewer

The J-Link RTT Viewer is described in J-Link RTT Viewer.

13.3.2 RTT Client

J-Link RTT Client acts as a Telnet client, but automatically tries to reconnect to a J-
Link connection when a debug session is closed.

The J-Link RTT Client is part of the J-Link Software and Documentation Pack for Win-
dows, Linux and OS X and can be used for simple RTT use cases.

13.3.3 RTT Logger

With J-Link RTT Logger, data from Up-Channel 1 can be read and logged to a file. This
channel can for example be used to send performance analysis data to the host.

J-Link RTT Logger opens a dedicated connection to J-Link and can be used stand-
alone, without running a debugger.

The application is part of the J-Link Software and Documentation Pack for Windows,
Linux and OS X.

The source of J-Link RTT Logger can be used as a starting point to integrate RTT in
other PC applications, like debuggers, and is part of the J-Link SDK.

13.3.4 RTT in other host applications

RTT can also be integrated in any other PC application like a debugger or a data visu-
alizer in either of two ways.

1. The application can establish a socket connection to the RTT Telnet Server which
is opened on localhost:19021 when a J-Link connection is active.

2. The application creates its own connection to J-Link and uses the J-Link RTT API
which is part of the J-Link SDK to directly configure and use RTT.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



361

13.4 Implementation
The SEGGER RTT implementation code is written in ANSI C and can be integrated into
any embedded application by simply adding the available sources.

RTT can be used via a simple and easy to use API. It is even possible to override the
standard printf() functions to be used with RTT. Using RTT reduces the time taken for
output to a minimum and allows printing debug information to the host computer
while the application is performing time critical real time tasks.

The implementation code also includes a simple version of printf() which can be used
to write formatted strings via RTT. It is smaller than most standard library printf()
implementations and does not require heap and only a configureable ammount of
stack.

The SEGGER RTT implementation is fully configureable at compile time with pre-pro-
cessor defines. The number of channels, the size of the default channels can be set.
Reading and writing can be made task-safe with definable Lock() and Unlock() rou-
tines.

13.4.1 API functions

The following API functions are available in the RTT Implementation. To use them
SEGGER_RTT.h has to be included in the calling sources.

13.4.1.1 SEGGER_RTT_ConfigDownBuffer()
Description

Configure or add a down buffer by specifying its name, size and flags.

Prototype

int SEGGER_RTT ConfigDownBuffer (unsigned BufferIndex, const char* sName,
char* pBuffer, int BufferSize, int Flags);

Parameters

Parameter Meaning

Index of the buffer to configure. Must be lower than
SEGGER_RTT_MAX_NUM_DOWN_CHANNELS.

Pointer to a 0-terminated string to be displayed as the name of the

BufferIndex

sName

channel.
pBuffer Pointer to a buffer used by the channel.
BufferSize Size of the buffer in Bytes.
Flags Flags of the channel (blocking or non-blocking).

Table 13.1: SEGGER_RTT_ConfigDownBuffer() parameter list

Return value

>=0 O.K.

<0 Error.

Example

//

// Configure down channel 1
//

SEGGER_RTT_ ConfigDownChannel (1, "DataIn", &abDataIn[0], sizeof (abbDataln),
SEGGER_RTT_MODE_NO_BLOCK_SKIP) ;

Additional information

Once a channel is configured only the flags of the channel should be changed.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



362 CHAPTER 13 RTT

13.4.1.2 SEGGER_RTT_ConfigUpBuffer()
Description

Configure or add an up buffer by specifying its name, size and flags.

Prototype

int SEGGER_RTT ConfigUpBuffer (unsigned BufferIndex, const char* sName,
char* pBuffer, int BufferSize, int Flags);

Parameters
Parameter Meaning

BufferIndex Index of the buffer to configure. Must be lower than
SEGGER_RTT_MAX_NUM_UP_CHANNELS.
Pointer to a 0-terminated string to be displayed as the name of the

sName channel.

pBuffer Pointer to a buffer used by the channel.

BufferSize Size of the buffer in Bytes.

Flags Flags of the channel (blocking or non-blocking).

Table 13.2: SEGGER_RTT_ConfigUpBuffer() parameter list

Return value

>=0 O.K.

<0 Error.

Example

//

// Configure up channel 1 to work in blocking mode
//

SEGGER_RTT_ConfigUpChannel (1, "DataOut", &abDataOut[0], sizeof (abDataOut),
SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL) ;

Additional information

Once a channel is configured only the flags of the channel should be changed.

13.4.1.3 SEGGER_RTT_GetKey()

Description

Reads one character from SEGGER RTT buffer 0. Host has previously stored data
there.

Prototype
int SEGGER_RTT GetKey (void) ;

Return value

<0 No character available (empty buffer).
>= (0 Character which has been read (0 - 255).

Example

int c;
c = SEGGER_RTT_GetKey () ;
if (c == 'q’") {

exit () ;

}

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



363

13.4.1.4 SEGGER_RTT_HasKey()
Description
Checks if at least one character for reading is available in SEGGER RTT buffer. 0
Prototype

int SEGGER_RTT_HasKey (void);

Return value

0 No characters are available to be read.

1 At least one character is available in the buffer.
Example

if (SEGGER_RTT_HasKey ()) {

int ¢ = SEGGER_RTT GetKey () ;
}

13.4.1.5 SEGGER_RTT_Init()
Description
Initializes the RTT Control Block.
Prototype

void SEGGER_RTT Init (void);

Additional information
Should be used in RAM targets, at start of the application.

13.4.1.6 SEGGER_RTT_printf()
Description

Send a formatted string to the host.

Prototype
int SEGGER_RTT_printf (unsigned BufferIndex, const char * sFormat, ...)
Parameters
Parameter Meaning
BufferIndex |Index of the up channel to sent the string to.
sFormat Pointer to format string, followed by arguments for conversion.

Table 13.3: SEGGER_RTT_printf() parameter list
Return value

>= 0 Number of bytes which have been sent.
<0 Error.

Example

SEGGER_RTT_printf (0, "SEGGER RTT Sample. Uptime: %.10dms.", /*OS_Time*/ 890912);
// Formatted output on channel 0: SEGGER RTT Sample. Uptime: 890912ms.

Additional information

(1) Conversion specifications have following syntax:
. %[ flags][FieldWidth][.Precision]ConversionSpecifier

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



364 CHAPTER 13 RTT

(2) Supported flags:

e -: Left justify within the field width
e +: Always print sign extension for signed conversions
e 0: Pad with 0 instead of spaces. Ignored when using '-'-flag or precision

(3) Supported conversion specifiers:

c: Print the argument as one char

d: Print the argument as a signed integer

u: Print the argument as an unsigned integer

x: Print the argument as an hexadecimal integer
s: Print the string pointed to by the argument
p
p

: Print the argument as an 8-digit hexadecimal integer. (Argument shall be a
ointer to void.)

13.4.1.7 SEGGER_RTT_Read()
Description

Read characters from any RTT down channel which have been previously stored by
the host.

Prototype

int SEGGER_RTT_Read (unsigned BufferIndex, char* pBuffer, unsigned
BufferSize) ;

Parameters

Parameter Meaning

BufferIndex |Index of the down channel to read from.
pBuffer Pointer to a character buffer to store the read characters.

BufferSize Number of bytes available in the buffer.
Table 13.4: SEGGER_RTT_Read() parameter list

Return value

>= 0 Number of bytes that have been read.

Example

char acIn[4];
int NumBytes = sizeof (acIn);
NumBytes = SEGGER_RTT_ Read (0, &acIn[0], NumBytes);
if (NumBytes) {
AnalyzeInput (acIn) ;
}

13.4.1.8 SEGGER_RTT_SetTerminal()

Description
Set the "virtual" terminal to send following data on channel 0.

Prototype

void SEGGER_RTT_SetTerminal (char TerminalId) ;

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



365

Parameters

Parameter Meaning

TerminalId Id of the virtual terminal (0-9).
Table 13.5: SEGGER_RTT_SetTerminal() parameter list

Example

//
// Send a string to terminal 1 which is used as error out.

//

SEGGER_RTT_SetTerminal (1l); // Select terminal 1
SEGGER_RTT WriteString (0, "ERROR: Buffer overflow");
SEGGER_RTT_SetTerminal (0); // Reset to standard terminal

Additional information

All following data which is sent via channel 0 will be printed on the set terminal until
the next change.

13.4.1.9 SEGGER_RTT_TerminalOut()

Description

Send one string to a specific "virtual" terminal.

Prototype
int SEGGER_RTT TerminalOut (char TerminalID, const char* s);
Parameters

Parameter Meaning
TerminalId Id of the virtual terminal (0-9).
S Pointer to 0-terminated string to be sent.

Table 13.6: SEGGER_RTT_TerminalOut() parameter list

Return value
>= 0 Number of bytes sent to the terminal.

Example

//
// Sent a string to terminal 1 without changing the standard terminal.

//
SEGGER_RTT TerminalOut(l, "ERROR: Buffer overflow.");

Additional information
SEGGER_RTT_TerminalOut does not affect following data which is sent via channel 0.

13.4.1.10SEGGER_RTT_Write()

Description
Send data to the host on an RTT channel.

Prototype

int SEGGER_RTT_Write (unsigned BufferIndex, const char* pBuffer, unsigned
NumBytes) ;

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



366

CHAPTER 13 RTT
Parameters
Parameter Meaning
BufferIndex |Index of the up channel to send data to.
pBuffer Pointer to data to be sent.
NumBytes Number of bytes to send.

Table 13.7: SEGGER_RTT_Write() parameter list

Return value
>= 0 Number of bytes which have been

Additional information

sent.

With SEGGER_RTT_Write() all kinds of data, not only printable one can be sent.

13.4.1.11SEGGER_RTT_WaitKey()

Description

Waits until at least one character is avaible
is available, it is read and returned.
Prototype

int SEGGER_RTT_WaitKey (void) ;

Return value

>= 0 Character which has been read (0

Example

int ¢ = 0;
do {

¢ = SEGGER_RTT WaitKey () ;
} while (¢ !'= ’'c¢’);

13.4.1.12SEGGER_RTT_WriteString()

in SEGGER RTT buffer 0. Once a character

- 255).

Description
Write a O-terminated string to an up channel via RTT.
Prototype
int SEGGER_RTT _WriteSting (unsigned BufferIndex, const char* s);
Parameters
Parameter Meaning
BufferIndex |Index of the up channel to send string to.
s Pointer to O-terminated string to be sent.

Table 13.8: SEGGER_RTT_WriteString() parameter

Return value
>= 0 Number of bytes which have been

Example

SEGGER_RTT_WriteString (0,

J-Link / J-Trace (UM08001)

list

sent.

"Hello World from your target.\n");

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



367

13.4.2 Configuration defines

13.4.2.1 RTT configuration
SEGGER_RTT_MAX_NUM_DOWN_BUFFERS

Maximum number of down (to target) channels.
SEGGER_RTT_MAX_NUM_UP_BUFFERS

Maximum number of up (to host) channels.

BUFFER_SIZE_DOWN

Size of the buffer for default down channel 0.

BUFFER_SIZE_UP

Size of the buffer for default up channel 0.

SEGGER_RTT_PRINT_BUFFER_SIZE

Size of the buffer for SEGGER_RTT_printf to bulk-send chars.
SEGGER_RTT_LOCK()

Locking routine to prevent interrupts and task switches from within an RTT operation.
SEGGER_RTT_UNLOCK()

Unlocking routine to allow interrupts and task switches after an RTT operation.
SEGGER_RTT_IN_RAM

Indicate the whole application is in RAM to prevent falsly identifying the RTT Control

Block in the init segment by defining as 1.

13.4.2.2 Channel buffer configuration
SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL
A call to a writing function will block, if the up buffer is full.
SEGGER_RTT_NO_BLOCK_SKIP

If the up buffer has not enough space to hold all of the incoming data, nothing is
written to the buffer.

SEGGER_RTT_NO_BLOCK_TRIM

If the up buffer has not enough space to hold all of the incoming data, the available
space is filled up with the incoming data while discarding any excess data.

Note:
SEGGER_RTT_TerminalOut ensures that implicit terminal switching commands are
always sent out, even while using the non-blocking modes.

13.4.2.3 Color control sequences
RTT_CTRL_RESET

Reset the text color and background color.
RTT_CTRL_TEXT_*

Set the text color to one of the following colors.

BLACK
RED
GREEN
YELLOW

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



368

BLUE

MAGENTA

CYAN

WHITE (light grey)
BRIGHT_BLACK (dark grey)
BRIGHT_RED
BRIGHT_GREEN
BRIGHT_YELLOW
BRIGHT_BLUE
BRIGHT_MAGENTA
BRIGHT_CYAN
BRIGHT_WHITE

RTT_CTRL_BG_*

CHAPTER 13 RTT

Set the background color to one of the following colors.

BLACK

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

WHITE (light grey)
BRIGHT_BLACK (dark grey)
BRIGHT_RED
BRIGHT_GREEN
BRIGHT_YELLOW
BRIGHT_BLUE
BRIGHT_MAGENTA
BRIGHT_CYAN
BRIGHT_WHITE

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



369

13.5 ARM Cortex - Background memory access

On ARM Cortex targets, background memory access necessary for RTT is performed
via a so-called AHB-AP which is similar to a DMA but exclusively accessible by the
debug probe. While on Cortex-M targets there is always an AHB-AP present, on Cor-
tex-A and Cortex-R targets this is an optional component. CortexA/R targets may
implement multiple APs (some even not an AHB-AP at all), so in order to use RTT on
Cortex-A/R targets, the index of the AP which is the AHB-AP that shall be used for
RTT background memory access, needs to be manually specified. This is done via the
following J-Link Command string: CORESIGHT_SetIndexAHBAPToUse on page 225.
For more information about how to use J-Link command strings in various environ-
ments, please refer to Using command strings on page 241.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



370 CHAPTER 13 RTT

13.6 Example code

/*********************************************************************

* SEGGER MICROCONTROLLER GmbH & Co KG *
* Solutions for real time microcontroller applications *
R I S S R I R S R I S R I I R I I R R S R I I R S I I R I R S R
* *
* (c) 2014 SEGGER Microcontroller GmbH & Co KG *
* *
* WWWw . Segger . com Support: support@segger.com *
* *
R R I R S S R I R S S I I I S R I R R R I R R S I I I S I R I R I O S R

File : RTT.cC
Purpose : Simple implementation for output via RTT.
It can be used with any IDE.
———————— END-OF-HEADER === === == mmm o m o e e

#include "SEGGER_RTT.h"

static void _Delay(int period) {
int i = 100000*period;
do { ; } while (i--);

}

int main(void) {
int Cnt = 0;

SEGGER_RTT_WriteString (0, "Hello World from SEGGER!\n");
do {
SEGGER_RTT_printf ("%$sCounter: %s%d\n",
RTT_CTRL_TEXT_BRIGHT_WHITE,
RTT_CTRL_TEXT BRIGHT_ GREEN,
Cnt) ;
if (Cnt > 100) {
SEGGER_RTT_ TerminalOut (1, RTT _CTRL_TEXT BRIGHT RED"Counter overflow!");
Cnt = 0;

}
_Delay (100) ;
Cnt++;
} while (1);
return O;

}

/*************************** End of flle ****************************/

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



371

13.7 FAQ

Q:

A:

>0

>0

How does J-Link find the RTT buffer?

There are two ways: If the debugger (IDE) knows the address of the SEGGER RTT
Control Block, it can pass it to J-Link. This is for example done by J-Link Debugger.
If another application that is not SEGGER RTT aware is used, then J-Link searches
for the ID in the known target RAM during execution of the application in the back-
ground. This process normally takes just fractions of a second and does not delay
program execution.

I am debugging a RAM-only application. J-Link finds an RTT buffer, but I get no
output. What can I do?

In case the init section of an application is stored in RAM, J-Link migh falsely iden-
tify the block in the init section instead of the actual one in the data section.

To prevent this, set the define SEGGER_RTT_IN_RAM to 1. Now J-Link will find the
correct RTT buffer, but only after calling the first SEGGER_RTT function in the
application. A call to SEGGER_RTT_Init() at the beginning of the application is rec-
ommended.

Can this also be used on targets that do not have the SWO pin?

Yes, the debug interface is used. This can be JTAG or SWD (2pins only!) on most
Cortex-M devices, or even the FINE interface on some Renesas devices, just like
the Infineon SPD interface (single pin!).

Can this also be used on Cortex-M0 and M0+?
Yes.

Some terminal output (printf) Solutions "crash" program execution when executed
outside of the debug environment, because they use a Software breakpoint that
triggers a hardfault without debugger or halt because SWO is not initialized. That
makes it impossible to run a Debug-build in stand-alone mode.

What about SEGGER-RTT?

SEGGER-RTT uses non-blocking mode per default, which means it does not halt
program execution if no debugger is present and J-Link is not even connected. The
application program will continue to work.

I do not see any output, although the use of RTT in my application is correct. What
can I do?

In some cases J-Link cannot locate the RTT buffer in the known RAM region.

In this case the possible region or the exact address can be set manually via a J-
Link exec command:

Set ranges to be searched for RTT buffer: SetRTTSearchRanges <RangeStart
[Hex]> <RangeSize >[, <RangelStart [Hex]> <RangelSize>, ...] (e.g. "SetRTT-
SearchRanges 0x10000000 0x1000, 0x2000000 0x1000")

Set address of the RTT buffer: SetRTTAddr <RTTBufferAddress [Hex]> (e.g. "Set-
RTTAddr 0x20000000")

Set address of the RTT buffer via J-Link Control Panel -> RTTerminal

Note: J-Link exec commands can be executed in most applications, for example
in J-Link Commander via "exec <Command>", in J-Link GDB Server via "monitor
exec <Command>" or in IAR EW via "__jlinkExecCommand("<Command>");" from a
macro file.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



372 CHAPTER 13 RTT

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



373

Chapter 14

Trace

This chapter provides information about tracing in general as well as information
about how to use SEGGER J-Trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



374 CHAPTER 14 Trace

14.1 Introduction

With increasing complexity of embedded systems, demands to debug probes and util-
ities (IDE, ...) increase too. With tracing, it is possible to get an even better idea
about what is happening / has happened on the target system, in case of tracking
down a specific error. A special trace component in the target CPU (e.g. ETM on ARM
targets) registers instruction fetches done by the CPU as well as some additional
actions like execution/skipping of conditional instructions, target addresses of
branch/jump instructions etc. and provides these events to the trace probe. Instruc-
tion trace allows reproducing what instructions have been executed by the CPU in
which order, which conditional instructions have been executed/skipped etc., allowing
to reconstruct a full execution flow of the CPU.

Note: To use any of the trace features mentioned in this chapter, the CPU needs
to implement this specific trace hardware unit. For more information about which tar-
gets support tracing, please refer to Target devices with trace support on page 380.

14.1.1 What is backtrace?

Makes use of the information got from instruction trace and reconstructs the instruc-
tion flow from a specific point (e.g. when a breakpoint is hit) backwards as far as
possible with the amount of sampled trace data.

Example scenario: A breakpoint is set on a specific error case in the source that the
application occasionally hits. When the breakpoint is hit, the debugger can recreate
the instruction flow, based on the trace data provided by J-Trace, of the last xx
instructions that have been executed before the breakpoint was hit. This for example
allows tracking down very complex problems like interrupts related ones, that are
hard to find with traditional debugging methods (stepping, printf debugging, ...) as
they change the real-time behavior of the application and therefore might make the
problem to disappear.

14.1.2 What is streaming trace?

There are two common approaches how a trace probe collects trace data:

1. Traditional trace: Collect trace data while the CPU is running and store them in
a buffer on the trace robe. If the buffer is full, writes continues at the start of the
buffer, overwriting the oldest trace data in it. The debugger on the PC side can
request trace data from the probe only when the target CPU is halted. This allows
doing backtrace as described in What is backtrace? on page 374.

2. Streaming trace: Trace data is collected while the CPU is running but streamed
to the PC in real-time, while the target CPU continues to execute code. This
increases the trace buffer (and therefore the amount of trace data that can be
stored) to an theorectially unlimited size (on modern systems multiple Ter-
abytes). Streaming trace allows to implement more complex trace features like
code coverage and code profiling as these require a complete instruction flow,
not only the last xx executed instructions, to provide real valuable data.

14.1.3 What is code coverage?

Code coverage metrics are a way to describe the "quality" of code, as "code that is
not tested does not work". A code coverage analyzer measures the execution of code
and shows how much of a source line, block, function or file has been executed. With
this information it is possible to detect code which has not been covered by tests or
may even be unreachable. This enables a fast and efficient way to improve the code
or to create a suitable test suite for uncovered blocks.

Note: This feature also requires a J-Trace that supports streaming trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



375

14.1.4 What is code profiling?

Code profiling is a form of measuring the execution time and the execution count of
functions, blocks or instructions. It can be used as a metric for the complexity of a
system and can highlight where computing time is spent. This provides a great
insight into the running system and is essential when identifying code that is exe-
cuted frequently, potentially placing a high load onto a system. The code profiling
information can help to easier optimize a system, as it accurately shows which blocks
take the most time and are worth optimizing.

Note: This feature also requires a J-Trace that supports streaming trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



376 CHAPTER 14 Trace

14.2 Tracing via trace pins

This is the most common tracing method, as it also allows to use streaming trace.
The target outputs trace data + a trace clock on specific pins. These pins are sampled
by J-Trace and trace data is collected. As trace data is output with a relatively high
frequency (easily >= 100 MHz on modern embedded systems) a high end hardware
is necessary on the trace probe (J-Trace) to be able to sample and digest the trace
data sent by the target CPU. Our J-Trace models support up to 4-bit trace which can
be manually set by the user by overwriting the global variable
JLINK_TRACE_Portwidth which is set to 4 by default. Please refer to Global DLL vari-
ables on page 214.

14.2.1 Cortex-M specifics

The trace clock output by the CPU is usually 1/2 of the speed of the CPU clock, but
trace data is output double data rate, meaning on each edge of the trace clock. There
are usually 4 trace data pins on which data is output, resulting in 1 byte trace data
being output per trace clock (2 * 4 bits).

14.2.2 Trace signal timing

There are certain signal timings that must be met, such as rise/fall timings for clock
and data, as well as setup and hold timings for the trace data. These timings are
specified by the vendor that designs the trace hardware unit (e.g. ARM that provides
the ETM as a trace component for their cores). For more information about what tim-
ings need to be met for a specific J-Trace model, please refer to J-Link / J-Trace mod-
els on page 30.

14.2.3 Adjusting trace signal timing on J-Trace

Some target CPUs do not meet the trace timing requirements when it comes to the
trace data setup times (some output the trace data at the same time they output a
trace clock edge, resulting on effectively no setup time). Another case where timing
requirements may not be met is for example when having one trace data line on a
hardware that is longer than the other ones (necessary due to routing requirements
on the PCB). For such cases, higher end J-Trace models, like J-Trace PRO, allow to
adjust the timing of the trace signals, inside the J-Trace firmware. For example, in
case the target CPU does not provide a (sufficient) trace data setup time, the data
sample timing can be adjusted inside J-Trace. This causes the data edges to be rec-
ognized by J-Trace delayed, virtually creating a setup time for the trace data.

The trace signals can be adjusted via the TraceSampleadjust command string. For
more information about the syntax this command string, please refer to Command
strings on page 223. For more information about how to use command strings in dif-
ferent environments, please refer to Using command strings on page 241.

The following graphic illustrates how a adjustment of the trace data signal affects the
sampling of the trace data inside the J-Trace firmware.

e TCLK = trace clock output by target
e TDx = Trace data 0-3 output by target

e TDx + Aty = Trace data seen by J-Trace firmware

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



377

As can be seen in the following drawings, by moving the sampling point of the TDx
signal, a setup time for the trace data is generated (Aty). This can be used to enable
tracing on targets that do not provide a setup time for the trace data.

TCLK | | |
TDx / \ / \

Drawing a) shows the correct behaviour of a target and b) shows a target that does
not apply setup times. Therefore in b) the undelayed signal TDx would be sampled as
a logical 0 at the rising edge of TCLK which would give the J-Trace wrong tracing
information. In the case where the sample point of TDx is moved to the left (nega-
tive) by Aty at each rising TCLK edge a logical 1 is sampled which in this case means

that the J-Trace now recieves the correct trace information.

TCLK || § |

Aty & Aty &>
TDX + Aty Ve e

b)

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



378 CHAPTER 14 Trace

14.2.4 J-Trace models with support for streaming trace

For an overview which J-Trace models support streaming trace, please refer to
https://wiki.segger.com/Software_and_Hardware_Features_Overview.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



379

14.3 Tracing with on-chip trace buffer

Some target CPUs provide trace functionality also provide an on-chip trace buffer
that is used to store the trace data output by the trace hardware unit on the device.
This allows to also do trace on such targets with a regular J-Link, as the on-chip trace
buffer can be read out via the regular debug interface J-Link uses to communicate
with the target CPU. Downside of this implementation is that it needs RAM on the tar-
get CPU that can be used as a trace buffer. This trace buffer is very limited (usually
between 1 and 4 KB) and reduces the RAM that can be used by the target application,
while tracing is done.

Note: Streaming trace is not possible with this trace implementation

14.3.1 CPUs that provide tracing via pins and on-chip buffer

Some CPUs provide a choice to either use the on-chip trace buffer for tracing (e.g.
when the trace pins are needed as GPIOs etc. or are not available on all packages of
the device).

e For J-Link: The on-chip trace buffer is automatically used, as this is the only
method J-Link supports.

e For J-Trace: By default, tracing via trace pins is used. If, for some reason, the
on-chip trace buffer shall be used instead, the J-Link software needs to be made
aware of this. The trace source can be selected via the SelectTraceSource com-
mand string. For more information about the syntax this command string, please
refer to Command strings on page 223. For more information about how to use
command strings in different environments, please refer to Using command
strings on page 241.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



380 CHAPTER 14 Trace

14.4 Target devices with trace support

For an overview for which target devices trace is supported (either via pins or via on-
chip trace buffer), please refer to https://www.segger.com/
jlink_supported_devices.html#Devicelist.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



381

14.5 Streaming trace

With introducing streaming trace, some additional concepts needed to be introduced
in order to make real time analysis of the trace data possible. In the following, some
considerations and specifics, that need to be kept in mind when using streaming
trace, are explained.

14.5.1 Download and execution address differ

Analysis of trace data requires that J-Trace needs know which instruction is present
at what address on the target device. As reading from the target memory everytime
is not feasible during live analysis (would lead to a too big performance drop), a copy
of the application contents is cached in the J-Link software at the time, the applica-
tion download is performed. This implies that streaming trace is only possible with
prior download of the application in the same debug session. This also implies that
the execution address needs to be the same as the download address.

In case both addresses differ from each other, the J-Link software needs to be told
that the unknown addresses hold the same data as the cached ones. This is done via
the ReadIntoTraceCache command string. For more information about the syntax
this command string, please refer to Command strings on page 223. For more infor-
mation about how to use command strings in different environments, please refer to
Using command strings on page 241.

14.5.2 Do streaming trace without prior download

Same specifics as for "load and execution address differ" applies. Please refer to
Download and execution address differ on page 381.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



382 CHAPTER 14 Trace

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



383

Chapter 15

Device specifics

This chapter describes for which devices some special handling is necessary to use
them with J-Link.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



384

15.1 Analog Devices

J-Link has been tested with the following MCUs from Analog Devices:

AD7160
ADuC7020x62
ADuC7021x32
ADuC7021x62
ADuC7022x32
ADuC7022x62
ADuC7024x62
ADuC7025x32
ADuC7025x62
ADuC7026x62
ADuC7027x62
ADuC7028x62
ADuC7030
ADuC7031
ADuC7032
ADuC7033
ADuC7034
ADuC7036
ADuC7038
ADuC7039
ADuC7060
ADuC7061
ADuC7062
ADuC7128
ADuC7129
ADuC7229x126
ADuUCRFO02
ADuUCRF101

15.1.1 ADuC7xxx

15.1.1.1 Software reset

CHAPTER 15

Device specifics

A special reset strategy has been implemented for Analog Devices ADuC7xxx MCUs.
This special reset strategy is a software reset. "Software reset" means basically
RESET pin is used to perform the reset, the reset is initiated by writing special func-

tion registers via software.

The software reset for Analog Devices ADuC7xxxx executes the following sequence:

The CPU is halted

A software reset sequence is downloaded to RAM.
A breakpoint at address 0 is set
The software reset sequence is executed.

It is recommended to use this reset strategy. This sequence performs a reset of CPU
and peripherals and halts the CPU before executing instructions of the user program.
It is the recommended reset sequence for Analog Devices ADuC7xxx MCUs and works

with these devices only.

This information is applicable to the following devices:

Analog ADuC7020x62
Analog ADuC7021x32
Analog ADuC7021x62
Analog ADuC7022x32
Analog ADuC7022x62
Analog ADuC7024x62
Analog ADuC7025x32
Analog ADuC7025x62

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



385

Analog ADuC7026x62
Analog ADuC7027x62
Analog ADuC7030
Analog ADuC7031
Analog ADuC7032
Analog ADuC7033
Analog ADuC7128
Analog ADuC7129
Analog ADuC7229x126

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



386

15.2 ATMEL

CHAPTER 15 Device specifics

J-Link has been tested with the following ATMEL devices:

AT91SAM3A2C
AT91SAM3A4C
AT91SAM3A8C
AT91SAM3N1A
AT91SAM3N1B
AT91SAM3N1C
AT91SAM3N2A
AT91SAM3N2B
AT91SAM3N2C
AT91SAM3N4A
AT91SAM3N4B
AT91SAM3N4C
AT91SAM3S1A
AT91SAM3S1B
AT91SAM3S1C
AT91SAM3S2A
AT91SAM3S2B
AT91SAM3S2C
AT91SAM3S4A
AT91SAM3S4B
AT91SAM3S54C
AT91SAM3U1C
AT91SAM3U2C
AT91SAM3U4C
AT91SAM3UL1LE
AT91SAM3U2E
AT91SAM3U4E
AT91SAM3X2C
AT91SAM3X2E
AT91SAM3X2G
AT91SAM3X2H
AT91SAM3X4C
AT91SAM3X4E
AT91SAM3X4G
AT91SAM3X4H
AT91SAM3X8C
AT91SAM3X8E
AT91SAM3X8G
AT91SAM3X8H
AT91SAM7A3
AT91SAM7L64
AT91SAM7L128
AT91SAM7S16
AT91SAM7S161
AT91SAM7S32
AT91SAM7S321
AT91SAM7S64
AT91SAM7S128
AT91SAM7S256
AT91SAM7S512
AT91SAM7SE32
AT91SAM7SE256
AT91SAM7SES512
AT91SAM7X128
AT91SAM7X256
AT91SAM7X512
AT91SAM7XC128
AT91SAM7XC256

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



387

e AT91SAM7XC512
AT91SAMOXE128
e AT91SAM9XE256

15.2.1 AT91SAM7
15.2.1.1 Reset strategy

The reset pin of the device is per default disabled. This means that the reset strate-
gies which rely on the reset pin (low pulse on reset) do not work per default. For this
reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the
peripherals by writing to the RSTC_CR register. Resetting the peripherals puts all
peripherals in the defined reset state. This includes memory mapping register, which
means that after reset flash is mapped to address 0. It is also possible to achieve the
same effect by writing 0x4 to the RSTC_CR register located at address 0xfffffd00.

This information is applicable to the following devices:

AT91SAM7S (all devices)
AT91SAM7SE (all devices)
AT91SAM7X (all devices)
AT91SAM7XC (all devices)
AT91SAM7A (all devices)

15.2.1.2 Memory mapping

Either flash or RAM can be mapped to address 0. After reset flash is mapped to
address 0. In order to majlink_supported_devices.html RAM to address 0, a 1 can be
written to the RSTC_CR register. Unfortunately, this remap register is a toggle regis-
ter, which switches between RAM and flash every time bit zero is written.

In order to achieve a defined mapping, there are two options:

1. Use the software reset described above.
2. Test if RAM is located at 0 using multiple read/write operations and testing the
results.

Clearly 1. is the easiest solution and is recommended.

This information is applicable to the following devices:

AT91SAM7S (all devices)
AT91SAM7SE (all devices)
AT91SAM7X (all devices)
AT91SAM7XC (all devices)
AT91SAM7A (all devices)

15.2.1.3 Recommended init sequence

In order to work with an ATMEL AT91SAM7 device, it has to be initialized. The follow-
ing paragraph describes the steps of an init sequence. An example for different soft-
ware tools, such as J-Link GDB Server, IAR Workbench and RDI, is given.

Set JTAG speed to 30kHz.
Reset target.

Perform peripheral reset.
Disable watchdog.
Initialize PLL.

Use full JTAG speed.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



388

J-Link / J-Trace (UM08001)

CHAPTER 15 Device specifics

Samples
GDB Sample

# connect to the J-Link gdb server
target remote localhost:2331

monitor flash device = AT91SAM7S256
monitor flash download = 1

monitor flash breakpoints = 1

# Set JTAG speed to 30 kHz

monitor endian little

monitor speed 30

# Reset the target

monitor reset 8

monitor sleep 10

# Perform peripheral reset

monitor long OxFFFFFDOO = 0xA5000004
monitor sleep 10

# Disable watchdog

monitor long OxFFFFFD44 = 0x00008000
monitor sleep 10

# Initialize PLL

monitor long OxFFFFFC20 = 0x00000601
monitor sleep 10

monitor long OxXFFFFFC2C = 0x00480a0e
monitor sleep 10

monitor long OxFFFFFC30 = 0x00000007
monitor sleep 10

monitor long OxFFFFFF60 = 0x00480100
monitor sleep 100

monitor speed 12000

break main

load
continue
IAR Sample
/*******************************************************************
*
* _Init()
*/
_Init() {
__emulatorSpeed(30000) ; // Set JTAG speed to 30 kHz
__writeMemory32 (0xA5000004, 0XxFFFFFDOO, "Memory") ; // Perform peripheral reset
_ _sleep(20000);
__writeMemory32 (0x00008000, 0OXFFFFFD44, "Memory") ; // Disable Watchdog
_ _sleep(20000);
_ _writeMemory32 (0x00000601, 0OXFFFFFC20, "Memory") ; // PLL
_ _sleep(20000);
_ _writeMemory32 (0x10191c05, 0OXFFFFFC2C, "Memory") ; // PLL
_ _sleep(20000);
__writeMemory32 (0x00000007, 0OXFFFFFC30, "Memory") ; // PLL
_ _sleep(20000);
__writeMemory32 (0x002£0100, OXFFFFFF60, "Memory") ; // Set 1 wait state for
_ _sleep(20000); // flash (2 cycles)
__emulatorSpeed (12000000) ; // Use full JTAG speed
}

/*******************************************************************
*

* execUserReset ()

*/

execUserReset () {
__message "execUserReset()";
_Init();

}

/*******************************************************************
*

* execUserPreload()

*/

execUserPreload () {
__message "execUserPreload()";
_Init();

}

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



RDI Sample

SetJTAGSpeed (30) ;
Reset (0, 0);
Write32 (OXFFFFFD00O, O0xA5000004) ;

Write32 (0xFFFFFD44, 0x00008000) ;
Write32 (0xFFFFFC20, 0x00000601);
Delay (200) ;
Write32 (0xFFFFFC2C, 0x00191C05) ;
Delay (200) ;

Write32 (0xXFFFFFC30, 0x00000007);
Write32 (0xFFFFFF60, 0x00320300) ;
SetJTAGSpeed (12000) ;

15.2.2 AT91SAM9
15.2.2.1 JTAG settings

We recommend using adaptive clocking.

//
//
//
//
//

//
//

389

Set JTAG speed to 30 kHz
Perform peripheral reset
Disable watchdog

Set PLL

Set PLL and divider

Select master clock and processor clock
Set flash wait states

This information is applicable to the following devices:

AT91RM9200

AT91SAM9260
AT91SAM9261
AT91SAM9262
AT91SAM9263

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



390 CHAPTER 15 Device specifics

15.3 DSPGroup

J-Link has been tested with the following DSPGroup devices:
e DA56KLF

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



391

15.4 Ember

For more information, please refer to Silicon Labs on page 407.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



392 CHAPTER 15 Device specifics

15.5 Energy Micro

For more information, please refer to Silicon Labs on page 407.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



15.6 Freescale

J-Link has been tested with the following Freescale devices:

15.6.1 Kinetis family
15.6.1.1 Unlocking

MAC7101
MAC7106
MAC7111
MAC7112
MAC7116
MAC7121
MAC7122
MAC7126
MAC7131
MAC7136
MAC7141
MAC7142
MK10DN512
MK10DX128
MK10DX256
MK20DN512
MK20DX128
MK20DX256
MK30DN512
MK30DX128
MK30DX256
MK40N512
MK40X128
MK40X256
MK50DN512
MK50DX256
MK50DN512
MK50DX256
MK51DX256
MK51DN512
MK51DX256
MK51DN512
MK51DN256
MK51DN512
MK52DN512
MK53DN512
MK53DX256
MK60N256
MK60N512
MK60X256

393

If your device has been locked by setting the MCU security status to "secure", and
mass erase via debug interface is not disabled, J-Link is able to unlock your Kinetis
K40/K60 device. The device can be unlocked by using the "unlock" command in J-
Link Commander.

For more information regarding the MCU security status of the Kinetis devices, please

refer to the user manual of your device.

15.6.1.2 Tracing

The first silicon of the Kinetis devices did not match the data setup and hold times
which are necessary for ETM-Trace. On these devices, a low drive strength should be

configured for the trace clock pin in order to match the timing requirements.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



394

CHAPTER 15 Device specifics

On later silicons, this has been corrected. This bug applies to all devices with mask
OM33Z from the 100MHz series.

The J-Link software and documentation package comes with a sample project for the
Kinetis K40 and K60 devices which is pre-configured for the TWR-40 and TWR-60 eval
boards and ETM / ETB Trace. This sample project can be found at \sam-
ples\JLink\Projects.

15.6.1.3 Data flash support

Some devices of the Kinetis family have an additional area called FlexNVM, which can
be configured as data flash. The size of the FlexNVM to be used as data flash is con-
figurable and needs to be configured first, before this area can be used as data flash.

The sample below shows how to configure the FlexNVM area to be used as data flash
out of the target application.

For J-Flash there are also projects that are preconfigured to setup the data flash size
of a Kinetis device. The projects can be found at $JLINK_INST_DIRS$\Sam-
ples\JFlash\ProjectFiles. One of these sample projects is the
MK40DX256xxx10_ConfigureDataFlash.jflash.

For more information about how configuration of the data flash works, please refer to
the appropriate user manual of the device.

Configure FlexNVM area as data flash

The follwing sample configures the data flash size of Kinetis device. It is created for a
MK40DX256xxx10 device. The sequence is almost the same for all Kinetis devices
only the lines which configure size of the data flash may be modified. In this sample
the data flash is set to max size. EEPROM size is set to 0 bytes.

#define FSTAT (*(volatile unsigned char*) (0x40020000 + 0x00))
#define FCCOBO (*(volatile unsigned char*) (0x40020000 + 0x07))
#define FCCOB1l (*(volatile unsigned char*) (0x40020000 + 0x06))
#define FCCOB2 (*(volatile unsigned char*) (0x40020000 + 0x05))
#define FCCOB3 (*(volatile unsigned char*) (0x40020000 + 0x04))
#define FCCOB4 (*(volatile unsigned char*) (0x40020000 + 0x0B))
#define FCCOB5 (*(volatile unsigned char*) (0x40020000 + 0x0A))
#define FCCOB6 (*(volatile unsigned char*) (0x40020000 + 0x09))
#define FCCOB7 (*(volatile unsigned char*) (0x40020000 + 0x08))
#define FCCOBS (*(volatile unsigned char*) (0x40020000 + OxOF))
void ConfigureDataFlash (void) ;
PR S SR S S SRR E R R RS RS EES R SRR SRR SR SRR SRR R R R R EE R R R R R R R
*
* ConfigureDataFlash
*

Notes
* Needs to be located in RAM since it performs flash operations
* which make instruction fetching from flash temporarily not possible.
*/
void ConfigureDataFlash(void) {

unsigned char v;

//

// Read out current configuration first

//

FSTAT = 0x70; // Clear error flags in status register

FCCOBO = 0x03; // Read resource

FCCOB1 = 0x80; // Read from data flash IFR area with offset 0xFC (0x8000FC)

FCCOB2 = 0x00;

FCCOB3 = 0xXFC;

FCCOB8 = 0x00; // Select IFR area to be read

FSTAT = 0x80; // Start command execution

while ((FSTAT & 0x80) == 0); // Wait until flash controller has finished

//

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



395

// Check current data flash & EEPROM config

//

v = FCCOB6; // IFR offset OxFD

if (v != OxFF) { // EEPROM data set size already configured?
return;

}

v = FCCOB7; // IFR offset 0OxFC

if (v != OxXFF) { // FlexNVM partition code already configured?
return;

}

//

// Configure EEPROM size and data flash size
// via the program partition command

//

FCCOBO = 0x80; // Program partition

FCCOB4 = 0x3F; // EEPROM data size code: 0 KB EEPROM

FCCOB5 = 0x00; // FlexNVM partition code: 256 KB data flash
FSTAT = 0x80; // Start command execution

while ( (FSTAT & 0x80) == 0); // Wait until flash controller has finished

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



396 CHAPTER 15 Device specifics

15.7 Fujitsu

J-Link has been tested with the following Fujitsu devices:

MB9AF102N
MB9AF102R
MBOAF104N
MB9AF104R
MB9BF104N
MB9BF104R
MB9BF105N
MB9BF105R
MBO9BF106N
MB9BF106R
MB9BF304N
MB9BF304R
MB9BF305N
MB9BF305R
MB9BF306N
MB9BF306R
MB9BF404N
MB9BF404R
MB9BF405N
MB9BF405R
MB9BF406N
MB9BF406R
MB9BF504N
MB9BF504R
MB9BF505N
MB9BF505R
MB9BF506N
MB9BF506R

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



397

15.8 Itron

J-Link has been tested with the following Itron devices:
e TRIFECTA

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



398

15.9

Infineon

CHAPTER 15 Device specifics

J-Link has been tested with the following Infineon devices:

UMF1110

UMF1120

UMF5110

UMF5120
XMC1100-TO16F00xx
XMC1100-TO38F00xx
XMC1100-TO38FO0xxx
XMC1201-TO28FO0xxx
XMC1201-TO38F0Oxxx
XMC1202-T016X00xx
XMC1202-T028X00xx
XMC1202-T038X00xx
XMC1203-T016X0xxx
XMC1301-TO16F00xx
XMC1302-T038X0xxx
XMC4100-128
XMC4104-128
XMC4104-64
XMC4200-256
XMC4400-256
XMC4400-512
XMC4402-256
XMC4500-1024
XMC4500-768
XMC4502

XMC4504

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



399

15.10 Luminary Micro

J-Link has been tested with the following Luminary Micro devices:

LM3S101
LM3S5102
LM3S301
LM3S310
LM3S315
LM3S316
LM3S317
LM35328
LM3S601
LM3S610
LM3S611
LM3S612
LM3S613
LM3S615
LM3S617
LM3S618
LM35628
LM3S801
LM3S811
LM3S812
LM3S815
LM3S817
LM3S818
LM35828
LM3S2110
LM352139
LM352410
LM3S52412
LM352432
LM3S2533
LM352620
LM352637
LM3S2651
LM3S2730
LM352739
LM352939
LM352948
LM352950
LM352965
LM3S6100
LM3S6110
LM356420
LM35S6422
LM35S6432
LM3S6610
LM3S6633
LM3S6637
LM3S6730
LM35S6938
LM3S6952
LM3S6965

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



400 CHAPTER 15 Device specifics

15.10.1 Unlocking LM3Sxxx devices

If your device has been "locked" accidentially (e.g. by bad application code in flash
which mis-configures the PLL) and J-Link can not identify it anymore, there is a spe-
cial unlock sequence which erases the flash memory of the device, even if it cannot
be identified. This unlock sequence can be sent to the target, by using the "unlock"
command in J-Link Commander.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



401

15.11 NXP

J-Link has been tested with the following NXP devices:

LPC1111
LPC1113
LPC1311
LPC1313
LPC1342
LPC1343
LPC1751
LPC1751
LPC1752
LPC1754
LPC1756
LPC1758
LPC1764
LPC1765
LPC1766
LPC1768
LPC2101
LPC2102
LPC2103
LPC2104
LPC2105
LPC2106
LPC2109
LPC2114
LPC2119
LPC2124
LPC2129
LPC2131
LPC2132
LPC2134
LPC2136
LPC2138
LPC2141
LPC2142
LPC2144
LPC2146
LPC2148
LPC2194
LPC2212
LPC2214
LPC2292
LPC2294
LPC2364
LPC2366
LPC2368
LPC2378
LPC2468
LPC2478
LPC2880
LPC2888
LPC2917
LPC2919
LPC2927
LPC2929
PCF87750
SJA2010
SJA2510

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



402 CHAPTER 15 Device specifics

15.11.1 LPC ARM7-based devices
15.11.1.1Fast GPIO bug

The values of the fast GPIO registers cannot be read directly via JTAG from a debug-
ger. The direct access to the registers corrupts the returned values. This means that
the values in the fast GPIO registers normally cannot be checked or changed by a
debugger.

Solution / Workaround

J-Link supports command strings which can be used to read a memory area indi-
rectly. Indirect reading means that a small code snippet will be written into RAM of
the target device, which reads and transfers the data of the specified memory area to
the debugger. Indirect reading solves the fast GPIO problem, because only direct reg-
ister access corrupts the register contents.

Define a 256 byte aligned area in RAM of the LPC target device with the J-Link com-
mand map ram and define afterwards the memory area which should be read indirect
with the command map indirectread to use the indirectly reading feature of J-Link.
Note that the data in the defined RAM area is saved and will be restored after using
the RAM area.

This information is applicable to the following devices:

LPC2101

LPC2102

LPC2103

LPC213x/01

LPC214x (all devices)
LPC23xx (all devices)
LPC24xx (all devices)

Example

J-Link commands line options can be used for example with the C-SPY debugger of
the IAR Embedded Workbench. Open the Project options dialog and select Debug-
ger. Select Use command line options in the Extra Options tap and enter in the
textfield --jlink_exec_command "map ram 0x40000000-0x40003fff; map indirec-
tread Ox3fffc000-0x3fffcfff; map exclude Ox3fffd000-0x3fffffff;" as shown
in the screenshot below.

Options for node "Project™ [ %]
Category: Factory Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Azzembler
Cusztomn Build
Build &ctions

Linker
Debugger ~jlink_exec_command “map ram 0x40000000-0<400036; map indire;l

LCommand line options: [one per line)

Simulator

Angel

14R R OM-monitor
J-Linkd)-Trace
LI FTDI

M acraigor

RDI

Third-Party Driver

|

(] 3 | Cancel |

With these additional commands the values of the fast GPIO registers in the C-SPY
debugger are correct and can be used for debugging. For more information about J-
Link command line options refer to subchapter Command strings on page 223.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



403

15.11.1.2RDI

J-Link comes with a device-based RDI license for NXP LPC21xx-LPC24xx devices. This
means the J-Link RDI software can be used with LPC21xx-LPC24xx devices free of
charge. For more information about device-based licenses, please refer to License
types on page 57.

15.11.2 Reset (Cortex-M3 based devices)

For Cortex-M3 based NXP LPC devices the reset itself does not differ from the one for
other Cortex-M3 based devices: After the device has been reset, the core is halted
before any instruction is performed. For the Cortex-M3 based LPC devices this means
the CPU is halted before the bootloader which is mapped at address 0 after reset.

The user should write the memmap register after reset, to ensure that user flash is
mapped at address 0. Moreover, the user have to correct the Stack pointer (R13) and
the PC (R15) manually, after reset in order to debug the application.

15.11.3 LPC288x flash programming

In order to use the LPC288x devices in combination with the J-Link flash download
feature, the application you are trying to debug, should be linked to the original flash
@ addr 0x10400000. Otherwise it is user’s responsibility to ensure that flash is re-
mapped to 0x0 in order to debug the application from addr 0x0.

15.11.4 LPC43xx:

All devices of the LPC43xx are dual core devices (One Cortex-M4 core and one Cor-
tex-MO core). For these devices, a J-Link script file is needed (exact file depends on if
the Cortex-M4 or the Cortex-MO shall be debugged) in order to guarantee proper
functionality.

Script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 220.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



404 CHAPTER 15 Device specifics

15.12 OKI

J-Link has been tested with the following OKI devices:

ML67Q4002
ML67Q4003
ML67Q4050
ML67Q4051
ML67Q4060
ML67Q4061

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



405

15.13 Renesas

J-Link has been tested with the following Renesas devices:

R5F56104
R5F56106
R5F56107
R5F56108
R5F56216
R5F56217
R5F56218
R5F562N7
R5F562N8
R5F562T6
R5F562T7
R5F562TA

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



406 CHAPTER 15 Device specifics

15.14 Samsung

J-Link has been tested with the following Samsung devices:
e S3FN60D

15.14.1 S3FN60D

On the S3FN60D the watchdog may be running after reset (depends on the content
of the smart option bytes at addr. 0xC0). The watchdog keeps counting even if the
CPU is in debug mode (e.g. halted). So, please do not use the watchdog when debug-
ging to avoid unexpected behavior of the target application. A special reset strategy
has been implemented for this device which disables the watchdog right after a reset
has been performed. We recommend to use this reset strategy when debugging a
Samsung S3FN60D device.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



15.15 Silicon Labs

407

J-Link has been tested with the following Silicon Labs devices:

15.15.1 EFM32 series devices

EFM32G200F16
EFM32G200F32
EFM32G200F64
EFM32G210F128
EFM32G230F32
EFM32G230F64
EFM32G230F128
EFM32G280F32
EFM32G280F64
EFM32G280F128
EFM32G290F32
EFM32G290F64
EFM32G290F128
EFM32G840F32
EFM32G840F64
EFM32G840F128
EFM32G880F32
EFM32G880F64
EFM32G880F128
EFM32G890F32
EFM32G890F64
EFM32G890F128
EFM32TG108F4
EFM32TG108F8
EFM32TG108F16
EFM32TG108F32
EFM32TG110F4
EFM32TG110F8
EFM32TG110F16
EFM32TG110F32
EFM32TG210F8
EFM32TG210F16
EFM32TG210F32
EFM32TG230F8
EFM32TG230F16
EFM32TG230F32
EFM32TG840F8
EFM32TG840F16
EFM32TG840F32
EM351

EM357

15.15.1.1SWO

Usually, the SWO output frequency of a device is directly dependent on the CPU
speed. The SWO speed is calculated as: <CPUFreg> / n. On the EFM32 series this is
not the case:
The SWO related units (ITM, TPIU, ...) are chip-internally wired to a fixed 14 MHz
clock (AUXHFRCO).
This will cause the auto-detection of J-Link to not work by default for these devices,
if the CPU is running at a different speed than AUXHFRCO. All utilities that use SWO
speed auto-detection, like the J-Link SWOViewer, need to be told that the CPU is run-
ning at 14 MHz, to make SWO speed auto-detection work, no matter what speed the

CPU is really running at.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



408

CHAPTER 15

15.16 ST Microelectronics

J-Link has been tested with the following ST Microelectronics devices:

STR710FZ1
STR710FZ2
STR711FRO
STR711FR1
STR711FR2
STR712FRO
STR712FR1
STR712FR2
STR715FRO
STR730FZ1
STR730FZ2
STR731FVO0
STR731FV1
STR731FV2
STR735FZ1
STR735FZ2
STR736FVO0
STR736FV1
STR736FV2
STR750FVO0
STR750FV1
STR750FV2
STR751FRO
STR751FR1
STR751FR2
STR752FRO
STR752FR1
STR752FR2
STR755FR0O
STR755FR1
STR755FR2
STR755FVO0
STR755FV1
STR755FV2
STR911FM32
STR911FM44
STR911FW32
STR911FW44
STR912FM32
STR912FM44
STR912FW32
STR912FW44
STM32F101Cé6
STM32F101C8
STM32F101R6
STM32F101R8
STM32F101RB
STM32F101V8
STM32F101VB
STM32F103C6
STM32F103C8
STM32F103R6
STM32F103R8
STM32F103RB
STM32F103V8
STM32F103VB

J-Link / J-Trace (UM08001)

Device specifics

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



409

15.16.1 STR91x
15.16.1.1JTAG settings

These device are ARM966E-S based. We recommend to use adaptive clocking for
these devices.

15.16.1.2Unlocking

The devices have 3 TAP controllers built-in. When starting J-Link.exe, it reports 3
JTAG devices. A special tool, J-Link STR9 Commander (JLinkSTR91x.exe) is available
to directly access the flash controller of the device. This tool can be used to erase the
flash of the controller even if a program is in flash which causes the ARM core to
stall. For more information about the J-Link STR9 Commander, please refer to J-Link
STR91x Commander (Command line tool) on page 151.

When starting the STR91x commander, a command sequence will be performed
which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the
GPIOs in output. The IOs are maintained in this state until a next JTAG instruction is
sent." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in
the STR91x Commander.

15.16.1.3Switching the boot bank

The bootbank of the STR91x devices can be switched by using the J-Link STR9 Com-
mander which is part of the J-Link software and documentation package. For more
information about the J-Link STR9 Commander, please refer to J-Link STR91x Com-
mander (Command line tool) on page 151.

15.16.2 STM32F10xxx

These devices are Cortex-M3 based.
All devices of this family are supported by J-Link.

15.16.2.1ETM init

The following sequence can be used to prepare STM32F10xxx devices for 4-bit ETM

tracing:

int v;

//

// DBGMCU_CR, enable trace I/O and configure pins for 4-bit trace.

//

v = *((volatile int *) (0xE0042004)) ;

v &= ~(7 << 5); // Preserve all bits except the trace pin configuration
v |= (7 << 5); // Enable trace I/0 and configure pins for 4-bit trace
*((volatile int *) (0xE0042004)) = v;

15.16.2.2 Option byte programming

J-Flash supports programming of the option bytes for STM32 devices. In order to
program the option bytes simply choose the appropriate Device, which allows option
byte programming, in the CPU settings tab (e.g. sSTM32F103ZE (allow opt.
bytes)). J-Flash will allow programming a virtual 16-byte sector at address

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



410

CHAPTER 15 Device specifics

0x06000000 which represents the 8 option bytes and their complements. You do not
have to care about the option bytes’ complements since they are computated auto-

matically. The following table describes the structure of the option bytes sector:

Address [31:24] [23:16] [15:8] [7:0]
0x06000000 complement Option byte 1 complement Option byte 0
0x06000004 complement Option byte 3 complement Option byte 2
0x06000008 complement Option byte 5 complement Option byte 4
0x0600000C complement Option byte 7 complement Option byte 6

Table 15.1: Option bytes sector description

Note:

Note:
originally

located at

address Ox1FFFF800. The

Ox1FFFF800 is done automatically by J-Flash.

Example

To program the option bytes 2 and 3 with the values 0xAA and 0xBB, but leave the
device unprotected your option byte sector (at addr 0x06000000) should look like as

Writing a value of OxFF inside option byte 0 will read-protect the STM32.
In order to keep the device unprotected you have to write the key value 0xA5 into
option byte 0.

The address 0x06000000 is a virtual address only. The option bytes are
remap from 0x06000000 to

follows:

Address [31:24] [23:16] [15:8] [7:0]
0x06000000 0x00 OxFF Ox5A 0OxA5
0x06000004 0x44 0xBB 0x55 OxAA
0x06000008 0x00 OxFF 0x00 OxFF
0x0600000C 0x00 OxFF 0x00 OxFF

Table 15.2: Option bytes programming example

For a detailed description of each option byte, please refer to ST programming man-
ual PM0042, section "Option byte description”.

15.16.2.3Securing/unsecuring the device

The user area internal flash of the STM32 devices can be protected (secured) against
read by untrusted code. The J-Flash software allows securing a STM32F10x device.
For more information about J-Flash, please refer to UM08003, J-Flash User Guide. In
order to unsecure a read-protected STM32F10x device, SEGGER offers two software
components:

e J-Flash
e J-Link STM32 Commander (command line utility)

For more information about J-Flash, please refer to UM08003, J-Flash User Guide. For
more information about the J-Link STM32 Commander, please refer to J-Link STM32
Unlock (Command line tool) on page 152.

Note: Unsecuring a secured device will cause a mass-erase of the internal flash

memory.

15.16.2.4Hardware watchdog

J-Link / J-Trace (UM08001)

The hardware watchdog of a STM32F10x device can be enabled by programming the
option bytes. If the hardware watchdog is enabled the device is reset periodically if
the watchdog timer is not refreshed and reaches 0. If the hardware watchdog is
enabled by an application which is located in flash and which does not refresh the
watchdog timer, the device can not be debugged anymore.

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



411

Disabling the hardware watchdog

In order to disable the hardware watchdog the option bytes have to be re-pro-
grammed. SEGGER offers a free command line tool which reprograms the option
bytes in order to disable the hardware watchdog. For more information about the
STM32 commander, please refer to J-Link STM32 Unlock (Command line tool) on
page 152.

15.16.2.5Debugging with software watchdog enabled

If the device shall be debugged with one of the software watchdogs (independed
watchdog / window watchdog) enabled, there is an additional init step necessary to
make the watchdog counter stop when the CPU is halted by the debugger. This is
configured in the DBGMCU_CR register. The following sequence can be used to enable
debugging with software watchdogs enabled:

//
// Configure both watchdog timers to be halted if the CPU is halted by the debugger
//
*((volatile int *) (0xE0042004)) |: (1 << 8) | (1 << 9);
15.16.3 STM32F2xxx

These devices are Cortex-M3 based.
All devices of this family are supported by J-Link.

15.16.3.1ETM init

The following sequence can be used to prepare STM32F2xxx devices for 4-bit ETM

tracing:

int v;

//

// Enable GPIOE clock

//

*((volatile int *) (0x40023830)) = 0x00000010;
//

// Assign trace pins to alternate function in order
// to make them usable as trace pins

// PE2: Trace clock

// PE3: TRACE_DO

// PE4: TRACE_DI1

// PE5: TRACE_D2

// PE6: TRACE_D3

//

*((volatile int *) (0x40021000)) = 0x00002AA0;

//

// DBGMCU_CR, enable trace I/0 and configure pins for 4-bit trace.

//

v = *((volatile int *) (0xE0042004)) ;

v &= ~(7 << 5); // Preserve all bits except the trace pin configuration
v |: (7 << 5); // Enable trace I/O and configure pins for 4-bit trace
*((volatile int *) (0xE0042004)) = v;

15.16.3.2Debugging with software watchdog enabled

If the device shall be debugged with one of the software watchdogs (independed
watchdog / window watchdog) enabled, there is an additional init step necessary to
make the watchdog counter stop when the CPU is halted by the debugger. This is
configured in the DBGMCU_APB1_FZ register. The following sequence can be used to
enable debugging with software watchdogs enabled:

//

// Configure both watchdog timers to be halted if the CPU is halted by the debugger
//

*((volatile int *) (0xE0042008)) |= (1 << 11) | (1 << 12);

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



412

CHAPTER 15 Device specifics

15.16.4 STM32F4xxx

These devices are Cortex-M4 based.
All devices of this family are supported by J-Link.

15.16.4.1ETM init

The following sequence can be used to prepare STM32F4xxx devices for 4-bit ETM

tracing:

int v;

//

// Enable GPIOE clock

//

*((volatile int *) (0x40023830)) = 0x00000010;

//

// Assign trace pins to alternate function in order

// to make them usable as trace pins

// PE2: Trace clock

// PE3: TRACE_DO

// PE4: TRACE_D1

// PE5: TRACE_D2

// PE6: TRACE_D3

//

*((volatile int *) (0x40021000)) = 0x00002AA0;

//

// DBGMCU_CR, enable trace I/0 and configure pins for 4-bit trace.
//

v = *((volatile int *) (0xE0042004));

v &= ~(7 << 5); // Preserve all bits except the trace pin configuration
v |: (7 << 5); // Enable trace I/0 and configure pins for 4-bit trace
*((volatile int *) (0xE0042004)) = v;

15.16.4.2Debugging with software watchdog enabled

If the device shall be debugged with one of the software watchdogs (independed
watchdog / window watchdog) enabled, there is an additional init step necessary to
make the watchdog counter stop when the CPU is halted by the debugger. This is
configured in the DBGMCU_APB1_FZ register. The following sequence can be used to
enable debugging with software watchdogs enabled:

//

// Configure both watchdog timers to be halted if the CPU is halted by the debugger
//

* ((volatile int *) (0xE0042008)) |= (1 << 11) | (1 << 12);

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



15.17 Texas Instruments

J-Link has been tested with the following Texas Instruments devices:

AM3352
AM3354
AM3356
AM3357
AM3358
AM3359
OMAP3530
OMAP3550
OMAP4430
OMAP-L138
TMS470M
TMS470R1A64
TMS470R1A128
TMS470R1A256
TMS470R1A288
TMS470R1A384
TMS470R1B512
TMS470R1B768
TMS470R1B1M
TMS470R1VF288
TMS470R1VF688
TMS470R1VF689

15.17.1 AM335x

413

The AM335x series devices need some special handling which requires the correct
device is selected in the J-Link DLL. When used out of a debugger, this is usually
done automatically (see Software reset on page 384). For J-Link Commander & J-
Link GDBServer this needs to be done manually.

15.17.1.1Selecting the device in the IDE

When using J-Link in an IDE, there is usually a way to directly select the device in the
IDE, since it usually also needs this information for peripheral register view etc. The
selected device is then usually automatically passed to the J-Link DLL.

The screenshot below is an example for a device selection inside emIDE (http://

www.emide.org).

Project/targets options = @
| Project settings I Build targets | Build scripts I Motes I C/C++ parser options | Debugger |
JLink GDBServer
Select target: 1
[Debug | Target Device: AM3359 | Litte Endian - bevice list
Rel
clease Target Connection: [SWD v] l4000 v] kHz
IF Address: localhost 2331
Override register definition file: D
Debugger
[T start the application Run to main{)
GDEB commands after connection:
monitor reset
load
4 }
oK | I Cancel

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



414 CHAPTER 15 Device specifics

15.17.1.2Selecting the device when using GDBServer

When using the J-Link GDBServer, the device needs to be known before GDB con-
nects to the GDBServer since GDBServer connects to the device as soon as it is
started. So selecting the device via monitor command is too late. In order to select
the device before GDBServer connects to it, simply start it with the following com-
mand line:

-device <DeviceName>
Example: JLinkGDBServer -device AM3359

15.17.1.3Selecting the device when using J-Link Commander
For J-Link Commander, type:
device <DeviceName>
Then J-Link Commander will perform a reconnect with the device name selected
before.

15.17.1.4Known values for <DeviceName>
For a list of all supported devices, please refer to http://www.segger.com/
jlink_supported_devices.html

15.17.1.5Required J-Link hardware version

The special handling for the AM335x cannot be supported by some older hardware
versions of J-Link, so the device cannot be used with these versions.

The following hardware versions come with AM335x support:

J-Link V8 or later

J-Link PRO V3 or later
J-Link ULTRA V4 or later
Flasher ARM V4 or later

15.17.2 AM35xx / AM37xx

Script is not needed. Refer to AM335x special handling. Same needs to be done for
AM35xx / AM37xxX.

15.17.3 OMAP4430

Script is not needed. Refer to AM335x special handling. Same needs to be done for
AM35xx / AM37xx.

15.17.4 OMAP-L138

Needs a J-Link script file to guarantee proper functionality.

J-Link script file can be found at $ULINK_INST_DIR$\Samples\JLink\Scripts.

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 220.

15.17.5 TMS470M

Needs a J-Link script file to guarantee proper functionality.
J-Link script file can be found at $JLINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 220.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



415

15.17.6 OMAP3530

Needs a J-Link script file to guarantee proper functionality.
J-Link script file can be found at $ULINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 220.

15.17.7 OMAP3550

Needs a J-Link script file to guarantee proper functionality.
J-Link script file can be found at $ULINK_INST_DIR$\Samples\JLink\Scripts

For more information about how to use J-Link script files, please refer to Executing J-
Link script files on page 220.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



416

15.18 Toshiba

J-Link has been tested with the following Toshiba devices:

TMPM321F10FG
TMPM322F10FG
TMPM323F10FG
TMPM324F10FG
TMPM330FDFG
TMPM330FWFG
TMPM330FYFG
TMPM332FWUG
TMPM333FDFG
TMPM333FWFG
TMPM333FYFG
TMPM341FDXBG
TMPM341FYXBG
TMPM360F20FG
TMPM361F10FG
TMPM362F10FG
TMPM363F10FG
TMPM364F10FG
TMPM366FDFG
TMPM366FWFG
TMPM366FYFG
TMPM370FYDFG
TMPM370FYFG
TMPM372FWUG
TMPM373FWDUG
TMPM374FWUG
TMPM380FWDFG
TMPM380FWFG
TMPM380FYDFG
TMPM380FYFG
TMPM382FSFG
TMPM382FWFG
TMPM395FWXBG

CHAPTER 15 Device specifics

Currently, there are no specifics for these devices.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



417

Chapter 16

Target interfaces and adapters

This chapter gives an overview about J-Link / J-Trace specific hardware details, such
as the pinouts and available adapters.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



418

CHAPTER 16 Target interfaces and adapters

16.1 20-pin J-Link connector
16.1.1 Pinout for JTAG

J-Link and J-Trace have a JTAG connector compati-
ble to ARM’s Multi-ICE. The JTAG connector is a 20
way Insulation Displacement Connector (IDC) keyed
box header (2.54mm male) that mates with IDC
sockets mounted on a ribbon cable.

*On later J-Link products like the J-link ULTRA,
these pins are reserved for firmware extension pur-
poses. They can be left open or connected to GND in
normal debug environment. They are not essential

VTref 1 e ® 2 NC

nTRST 3 e ® 4 [GND
TDI 5 e ® 6 [GND
TMS 7 ® ® 8 [GND
TCK 9 e ® 10/ GND
RTCK |:11 ° ® 12({GND
TDO 13 ® ® 14/ GND*
RESET 15 ® ® 16({GND*
DBGRQ 17 ® ® 18({GND*
5V-Supply |19 @ ® 20 GND*

for JTAG/SWD in general.
The following table lists the J-Link / J-Trace JTAG pinout.

PIN

SIGNAL

TYPE

Description

VTref

Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference for
the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board
and must not have a series resistor.

Not con-
nected

NC

This pin is not connected in J-Link.

NnTRST

Output

JTAG Reset. Output from J-Link to the Reset signal of the
target JTAG port. Typically connected to nTRST of the target
CPU. This pin is normally pulled HIGH on the target to avoid
unintentional resets when there is no connection.

TDI

Output

JTAG data input of target CPU. It is recommended that this
pin is pulled to a defined state on the target board. Typically
connected to TDI of the target CPU.

TMS

Output

JTAG mode set input of target CPU. This pin should be
pulled up on the target. Typically connected to TMS of the
target CPU.

TCK

Output

JTAG clock signal to target CPU. It is recommended that this
pin is pulled to a defined state of the target board. Typically
connected to TCK of the target CPU.

11

RTCK

Input

Return test clock signal from the target. Some targets must
synchronize the JTAG inputs to internal clocks. To assist in
meeting this requirement, you can use a returned, and
retimed, TCK to dynamically control the TCK rate. J-Link
supports adaptive clocking, which waits for TCK changes to
be echoed correctly before making further changes. Con-
nect to RTCK if available, otherwise to GND.

13

TDO

Input

JTAG data output from target CPU. Typically connected to
TDO of the target CPU.

Table 16.1: J-Link / J-Trace pinout

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



419

PIN | SIGNAL | TYPE Description
Target CPU reset signal. Typically connected to the RESET
15 |nRESET |I/O pin of the target CPU, which is typically called "nRST",
"nRESET" or "RESET". This signal is an active low signal.
This pin is not connected in J-Link. It is reserved for com-
patibility with other equipment to be used as a debug
17 |DBGRQ NC request signal to the target system. Typically connected to
DBGRQ if available, otherwise left open.
This pin can be used to supply power to the target hard-
5V-Sup- ware. Older J-Links may not be able to supply power on this
19 | Output| pin. For more information about how to enable/disable the
Pty power supply, please refer to Target power supply on
page 420.

Table 16.1: J-Link / J-Trace pinout

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They
should also be connected to GND in the target system.

16.1.1.1 Target board design

We strongly advise following the recommendations given by the chip manufacturer.
These recommendations are normally in line with the recommendations given in the
table Pinout for JTAG on page 418. In case of doubt you should follow the recommen-
dations given by the semiconductor manufacturer.

You may take any female header following the specifications of DIN 41651.
For example:

Harting

Molex
Tyco Electronics

J-Link / J-Trace (UM08001)

part-no. 09185206803
part-no. 90635-1202

part-no. 2-215882-0

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



420

CHAPTER 16 Target interfaces and adapters

Typical target connection for JTAG

JTAG connector

5V supply

VTref

nTRST
TDI

T™MS

J-Link TCK
RTCK

TDO

RESET

GND

Target board
19%* 19 Voltage
————————————— Regulator » VCC
PE L
\ 4
V
| 3* 3 nTRST cc
5 > TDI
7 z T™MS
9 2 TCK CPU
DU R = RTCK
L3 L3 TDO
15 15
20 20

* NTRST and RTCK may not be available on some CPUs.
** Optional to supply the target board from J-Link.

16.1.1.2 Pull-up/pull-down resistors

Unless otherwise specified by developer’s manual, pull-ups/pull-downs are recom-

mended to 100 kOhms.

16.1.1.3 Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply
voltage is 5V, max. current is 300mA. The output current is monitored and protected
against overload and short-circuit. Power can be controlled via the J-Link com-
mander. The following commands are available to control power:

Command

Explanation

power on

Switch target power on

power off

Switch target power off

power on perm

Set target power supply default to "on"

power off perm

Set target power supply default to "off"

Table 16.2: Command List

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



421

16.1.2 Pinout for SWD

The J-Link and J-Trace JTAG connector is also com- . .. Le e2|NC
patible to ARM’s Serial Wire Debug (SWD). Not used 3e e4 |GND
*Q . . . Not used 5e ® 6 |GND
n later J-Link products like the J-link ULTRA, SWDIO 2 e o5 |GND
these pins are reserved for firmware extension pur- gwecik 9e e10/GND
poses. They can be left open or connected to GND in nNot used [11 e e12|GND
normal debug environment. They are not essential swo 13 ® 14/ GND*
for JTAG/SWD in general. RESET 15 ® © 16 GND*
Not used 17 ® ® 18| GND*
The following table lists the J-Link / J-Trace SWD 5v-supply |19 ®¢ e 20| GND*
pinout.
PIN | SIGNAL | TYPE Description
This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference for
1 VTref Input |the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board
and must not have a series resistor.
2 Not con- NC This pin is not connected in J-Link.
nected
This pin is not used by J-Link. If the device may also be
3 Not Used | NC accessed via JTAG, this pin may be connected to nTRST,
otherwise leave open.
This pin is not used by J-Link. If the device may also be
5 Not used | NC accessed via JTAG, this pin may be connected to TDI, other-
wise leave open.
Single bi-directional data pin. A pull-up resistor is required.
/ SWDIO 170 ARM recommends 100 kOhms.
Clock signal to target CPU.
It is recommended that this pin is pulled to a defined state
K SWCLK Output on the target board. Typically connected to TCK of target
CPU.
This pin is not used by J-Link when operating in SWD mode.
11 | Not used | NC If the device may also be accessed via JTAG, this pin may
be connected to RTCK, otherwise leave open.
13 | SWO Input Serial Wire Ou_tpu_t trace port. (Optional, not required for
SWD communication.)
Target CPU reset signal. Typically connected to the RESET
15 |nRESET |I/O pin of the target CPU, which is typically called "nRST",
"NnRESET" or "RESET". This signal is an active low signal.
17 | Not used | NC This pin is not connected in J-Link.
This pin can be used to supply power to the target hard-
5V-Sup- ware. Older J-Links may not be able to supply power on this
19 | Output| pin. For more information about how to enable/disable the
Py power supply, please refer to Target power supply on
page 422.

Table 16.3: J-Link / J-Trace SWD pinout

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They
should also be connected to GND in the target system.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



422 CHAPTER 16 Target interfaces and adapters

16.1.2.1 Target board design

We strongly advise following the recommendations given by the chip manufacturer.
These recommendations are normally in line with the recommendations given in the
table Pinout for SWD on page 421. In case of doubt you should follow the recommen-
dations given by the semiconductor manufacturer.

Typical target connection for SWD

JTAG connector Target board
5V supply 12— 19 e > \VCC
VTref (et 1
z v
SWDIO |e% Zpl 11 swoio vee
I-Link SWCLK 2 2 SWCLK
- swo (€i-———————— 13 SWO cPu
RESET 12 15 nRST
GND
GND 20 20

* Optional to supply the target board from J-Link.

16.1.2.2 Pull-up/pull-down resistors

A pull-up resistor is required on SWDIO on the target board. ARM recommends 100
kOhms.

In case of doubt you should follow the recommendations given by the semiconductor
manufacturer.

16.1.2.3 Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply
voltage is 5V, max. current is 300mA. The output current is monitored and protected
against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are
available to control power:

Command Explanation
power on Switch target power on
power off Switch target power off
power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 16.4: Command List

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



423

16.1.3 Pinout for SWD + Virtual COM Port (VCOM)

The J-Link and J-Trace JTAG connector is also

compatible to ARM’s Serial Wire Debug (SWD). VTref le o2 /NC
Not used 3 e o4 GND
*On later J-Link products like the J-link ULTRA, 3-LinkTx |5e e6 |GND
these pins are reserved for firmware extension swbpio 7e 8 |GND
purposes. They can be left open or connected to swcLk [ 9 e e 10/GND
GND in normal debug environment. They are not Notused | 11 e e 12)GND
essential for JTAG/SWD in general. swo 13 ¢ © 14 GND*
RESET 15 e ® 16| GND*
The following table lists the J-Link / J-Trace SWD j-LinkRx [17 ® e 18 GND*
pinout. 5V-Supply (19 ® e 20| GND*
PIN | SIGNAL | TYPE Description
This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference for
1 VTref Input |the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board
and must not have a series resistor.
2 Not con- NC This pin is not connected in J-Link.
nected
This pin is not used by J-Link. If the device may also be
3 Not Used | NC accessed via JTAG, this pin may be connected to nTRST,
otherwise leave open.
This pin is used as VCOM Tx (out on J-Link side) in case
5 | J-Link Tx | Output VCOM functionality of J-Link is enabled. For further informa-
tion about VCOM, please refer to Virtual COM Port (VCOM)
on page 246.
Single bi-directional data pin. A pull-up resistor is required.
/ SWDIO 170 ARM recommends 100 kOhms.
Clock signal to target CPU.
It is recommended that this pin is pulled to a defined state
K SWCLK Output on the target board. Typically connected to TCK of target
CPU.
This pin is not used by J-Link when operating in SWD mode.
11 | Not used |NC If the device may also be accessed via JTAG, this pin may
be connected to RTCK, otherwise leave open.
13 | SWo Input Serial Wire Ou_tpu_t trace port. (Optional, not required for
SWD communication.)
Target CPU reset signal. Typically connected to the RESET
15 |nRESET |I/O pin of the target CPU, which is typically called "nRST",
"NnRESET" or "RESET". This signal is an active low signal.
This pin is used as VCOM Rx (in on J-Link side) in case
17 |J-Link Rx |input |VCOM functionality of J-Link is enabled. For further informa-
tion, please refer to Virtual COM Port (VCOM) on page 246.
This pin can be used to supply power to the target hard-
5V-Sup- ware. Older J-Links may not be able to supply power on this
19 | Output| pin. For more information about how to enable/disable the
Py power supply, please refer to Target power supply on
page 422.

Table 16.5: J-Link / J-Trace SWD pinout

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They
should also be connected to GND in the target system.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



424

CHAPTER 16 Target interfaces and adapters

16.1.4 Pinout for SPI

*On later J-Link products like the J-link ULTRA,

these pins are reserved for firmware extension pur-

in normal debug environment.

poses. They can be left open or connected to GND VTref le o2 /NC
NC 3 e ® 4 | GND
DI 5e ® 6 | GND
nCS 7@ ® 8 [GND
CLK 9 e ® 10| GND
NC |:11 e @ 12/GND
DO 13 ® ® 14| GND*
NnRESET 15 ® 16| GND*
NC 17 ® ® 18/ GND*
5V-Supply |19 ® 20 GND*

The following table lists the pinout for the SPI inter-

face on J-Link.

PIN | SIGNAL | TYPE Description
This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference for
1 VTref Input |the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board
and must not have a series resistor.
Not con- .
2 nected NC Leave open on target side
Not con- .
3 nected NC Leave open on target side
Data-input of target SPI. Output of J-Link, used to transmit
> DI Output data to the target SPI.
7 nCS Output| Chip-select of target SPI (active LOW).
9 |CLK Output| SPI clock signal.
11 Not con- NC Leave open on target side
nected
Data-out of target SPI. Input of J-Link, used to receive data
13 |DO Input from the target SPI.
Target CPU reset signal. Typically connected to the RESET
15 |nRESET |I/O pin of the target CPU, which is typically called "nRST",
"NnRESET" or "RESET". This signal is an active low signal.
17 Not con- NC Leave open on target side
nected
This pin can be used to supply power to the target hard-
5V-Sup- ware. Older J-Links may not be able to supply power on this
19 | P Output| pin. For more information about how to enable/disable the
Pty power supply, please refer to Target power supply on
page 420.

Table 16.6: J-Link / J-Trace pinout

Pins 4, 6, 8, 10, 12 are GND pins connected to GND in J-Link. They should also be
connected to GND in the target system.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



425

16.2 38-pin Mictor JTAG and Trace connector

J-Trace provides a JTAG+Trace connector. This connector is a 38-pin mictor plug. It
connects to the target via a 1-1 cable.

The connector on the target board should be "TYCO type 5767054-1" or a compatible
receptacle. J-Trace supports 4, 8, and 16-bit data port widths with the high density

target connector described below.

Target board trace connector

Pin 1
chamfer

J-Trace can capture the state of signhals PIPESTAT[2:0], TRACESYNC and
TRACEPKT[n:0] at each rising edge of each TRACECLK or on each alternate rising or

falling edge.

16.2.1 Connecting the target board

J-Trace connects to the target board via a 38-pin trace cable. This cable has a recep-
tacle on the one side, and a plug on the other side. Alternatively J-Trace can be con-

nected with a 20-pin JTAG cable.
Warning: Never connect trace cable and JTAG cable at the same time because
this may harm your J-Trace and/or your target.

J-Trace J-Trace |\ J-Trace /
JTAG JT-'I-\G JT;A >
Tr;ce JTAG Trace JTAG Trace JTAG

9|qed ovlir
a|ges agel |
9|qed ovlir

-
=
Y
(2}
o
0
Y
=
®

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



426

16.2.2 Pinout

CHAPTER 16 Target interfaces and adapters

The following table lists the JTAG+Trace connector pinout. It is compatible to the
"Trace Port Physical Interface" described in [ETM], 8.2.2 "Single target connector

pinout".
PIN SIGNAL Description
1 NC Not connected.
2 NC Not connected.
3 NC Not connected.
4 NC Not connected.
5 GND Signal ground.
6 | TRACECLK Clocks trace data on rising edge or both edges.
7 DBGRQ Debug request.
8 DBGACK Debug acknowledge from the test chip, high when in
debug state.
9 | RESET Open-collector output from the run control to the target
system reset.
10 | EXTTRIG Optional external trigger signal to the Embedded trace
Macrocell (ETM). Not used. Leave open on target system.
11 | TDO Test data output from target JTAG port.
Signal level reference. It is normally fed from Vdd of the
12 | VTRef . .
target board and must not have a series resistor.
13 |RTCK Return test clock from the target JTAG port.
14 | VSupply Supply voltage. It is normally f_ed fror_n Vdd of the target
board and must not have a series resistor.
15 | TCK Test clock to the run control unit from the JTAG port.
Trace signal. For more information, please refer to
16 |Trace signal 12 Assignment of trace information pins between ETM archi-
tecture versions on page 428.
17 | TMS Test mode select from run control to the JTAG port.
Trace signhal. For more information, please refer to
18 |Trace signal 11 Assignment of trace information pins between ETM archi-
tecture versions on page 428.
19 |TDI Test data input from run control to the JTAG port.
Trace signal. For more information, please refer to
20 | Trace signal 10 Assignment of trace information pins between ETM archi-
tecture versions on page 428.
21 | nTRST Active-low JTAG reset.

Table 16.7: JTAG+Trace connector pinout

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



427

PIN SIGNAL Description

22 | Trace signal 9

23 | Trace signal 20

24 | Trace signal 8

25 | Trace signal 19

26 | Trace signal 7

27 | Trace signal 18

28 |Trace signal 6

29 |Trace signal 17 Trace signals. For more information, please refer to
30 |Trace signal 5 Assignment of trace information pins between ETM archi-
31 |Trace signal 16 tecture versions on page 428.

32 |Trace signal 4

33 | Trace signal 15

34 | Trace signal 3

35 |Trace signal 14

36 |Trace signal 2

37 | Trace signal 13

38 |Trace signal 1

Table 16.7: JTAG+Trace connector pinout

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



428

CHAPTER 16

Target interfaces and adapters

16.2.3 Assignment of trace information pins between ETM
architecture versions

The following table show different names for the trace signals depending on the ETM

architecture version.

Trace signal ETMv1 ETMv2 ETMv3
Trace signal 1 PIPESTAT[O] PIPESTAT[O0] TRACEDATA[O0]
Trace signal 2 PIPESTAT[1] PIPESTAT[1] TRACECTL
Trace signal 3 PIPESTAT[2] PIPESTAT[2] Logic 1
Trace signal 4 TRACESYNC PIPESTAT([3] Logic O
Trace signal 5 TRACEPKTI[O0] TRACEPKTI[O0] Logic O
Trace signal 6 TRACEPKT[ 1] TRACEPKT[1] TRACEDATA[1]
Trace signhal 7 TRACEPKT[2] TRACEPKT[2] TRACEDATA[2]
Trace signhal 8 TRACEPKT[3] TRACEPKTI[3] TRACEDATA[3]
Trace signal 9 TRACEPKT([4] TRACEPKT[4] TRACEDATA[4]
Trace signal 10 TRACEPKTI[5] TRACEPKT[5] TRACEDATA[5]
Trace signal 11 TRACEPKTI[6] TRACEPKT[6] TRACEDATA[6]
Trace signal 12 TRACEPKTI[7] TRACEPKT[7] TRACEDATA[7]
Trace signal 13 TRACEPKTI[8] TRACEPKT[8] TRACEDATA[8]
Trace signal 14 TRACEPKTI[9] TRACEPKT[9] TRACEDATA[9]
Trace signal 15 TRACEPKT[10] TRACEPKT[10] TRACEDATA[10]
Trace sighal 16 TRACEPKT[11] TRACEPKT[11] TRACEDATA[11]
Trace signal 17 TRACEPKT[12] TRACEPKT[12] TRACEDATA[12]
Trace signal 18 TRACEPKT[13] TRACEPKT[13] TRACEDATA[13]
Trace signal 19 TRACEPKT[14] TRACEPKT[14] TRACEDATA[14]
Trace signal 20 TRACEPKT[15] TRACEPKT[15] TRACEDATA[15]

Table 16.8: Assignment of trace information pins between ETM architecture versions

16.2.4 Trace signals
Data transfer is synchronized by TRACECLK.

16.2.4.1 Signal levels

The maximum capacitance presented by J-Trace at the trace port connector, including
the connector and interfacing logic, is less than 6pF. The trace port lines have a
matched impedance of 50.

The J-Trace unit will operate with a target board that has a supply voltage range of
3.0V-3.6V.

16.2.4.2 Clock frequency

For capturing trace port signals synchronous to TRACECLK, J-Trace supports a
TRACECLK frequency of up to 200MHz. The following table shows the TRACECLK fre-
quencies and the setup and hold timing of the trace signals with respect to TRACE-

CLK.

Parameter Min. Max. Explanation
Tperiod 5ns 1000ns | Clock period
Fmax 1MHz 200MHz | Maximum trace frequency
Tch 2.5ns - High pulse width
Tcl 2.5ns - Low pulse width
Tsh 2.5ns - Data setup high

Table 16.9: Clock frequency

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



429

Parameter Min. Max. Explanation
Thh 1.5ns - Data hold high
Tsl 2.5ns - Data setup low
Thi 1.5ns - Data hold low

Table 16.9: Clock frequency

The diagram below shows the TRACECLK frequencies and the setup and hold timing
of the trace signals with respect to TRACECLK.

o
al

Tperiod

/

\ 4

Full /
TRACECLK | Tch Tal )
DATA X\ //
Tsh Thh Tsl |4« Thi
Half-rate / \
TRACECLK
Note: J-Trace supports half-rate clocking mode. Data is output on each edge of

the TRACECLK signal and TRACECLK (max) <= 100MHz. For half-rate clocking, the
setup and hold times at the JTAG+Trace connector must be observed.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



430

CHAPTER 16 Target interfaces and adapters

16.3 19-pin JTAG/SWD and Trace connector

J-Trace provides a JTAG/SWD+Trace connector. This

connector is a 19-pin connector. It connects to the

target via an 1-1 cable.

VTref 1 ee?2 | SWDIO/TMS
GND 3 @0 4 | SWCLK/TCK
GND 5ee6 |SWO/TDO

--- 7 ©8 |TDI

NC 9 e e 10| nRESET
5V-Supply[11 ® e 12| TRACECLK
5V-Supply |13 ® ® 14/ TRACEDATA[O]
GND 15 @ ® 16| TRACEDATA[1]
GND 17 @ ® 18/ TRACEDATA[2]
GND 19 @ ® 20| TRACEDATA[3]

The following table lists the J-Link / J-Trace SWD pinout.

PIN

SIGNAL

TYPE

Description

VTref

Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference
for the input comparators and to control the output logic
levels to the target. It is normally fed from Vdd of the
target board and must not have a series resistor.

SWDIO/
TMS

I/0/
output

SWDIO: (Single) bi-directional data pin.

JTAG mode set input of target CPU. This pin should be
pulled up on the target. Typically connected to TMS of the
target CPU.

SWCLK/TCK

Output

SWCLK: Clock signal to target CPU. It is recommended
that this pin is pulled to a defined state of the target
board. Typically connected to TCK of target CPU.

JTAG clock signal to target CPU.

SWO/TDO

Input

JTAG data output from target CPU. Typically connected to
TDO of the target CPU.

When using SWD, this pin is used as Serial Wire Output
trace port. (Optional, not required for SWD communica-
tion)

This pin (normally pin 7) is not existent on the 19-pin
JTAG/SWD and Trace connector.

TDI

Output

JTAG data input of target CPU. It is recommended that
this pin is pulled to a defined state on the target board.
Typically connected to TDI of the target CPU. For CPUs
which do not provide TDI (SWD-only devices), this pin is
not used. J-Link will ignore the signal on this pin when
using SWD.

NC

NC

Not connected inside J-Link. Leave open on target hard-
ware.

10

NRESET

I/0

Target CPU reset signal. Typically connected to the RESET
pin of the target CPU, which is typically called "nRST",
"NnRESET" or "RESET".

11

5V-Supply

Output

This pin can be used to supply power to the target hard-
ware. For more information about how to enable/disable
the power supply, please refer to Target power supply on
page 431.

12

TRACECLK

Input

Input trace clock. Trace clock = 1/2 CPU clock.

13

5V-Supply

Output

This pin can be used to supply power to the target hard-
ware. For more information about how to enable/disable
the power supply, please refer to Target power supply on
page 431.

14

TRACE-
DATA[0]

Input

Input Trace data pin 0.

Table 16.10: 19-pin JTAG/SWD and Trace pinout

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



431

PIN SIGNAL TYPE Description
16 Eiﬁgﬁ] Input | Input Trace data pin O.
18 Bi#gl[zz_] Input |Input Trace data pin 0.
20 Eiﬁgg] Input | Input Trace data pin O.

Table 16.10: 19-pin JTAG/SWD and Trace pinout

Pins 3, 5, 15, 17, 19 are GND pins connected to GND in J-Trace CM3. They should
also be connected to GND in the target system.

16.3.1 Target power supply

Pins 11 and 13 of the connector can be used to supply power to the target hardware.
Supply voltage is 5V, max. current is 300mA. The output current is monitored and
protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are

available to control power:

Command Explanation
power on Switch target power on
power off Switch target power off
power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 16.11: Command List

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



432

CHAPTER 16 Target interfaces and adapters

16.4 9-pin JTAG/SWD connector

Some target boards only provide a 9-pin JTAG/

SWD connector for Cortex-M. For these devices
SEGGER provides a 20-pin -> 9-pin Cortex-M

adapter.

VTref 1 ee2 | SWDIO / TMS
GND 3ee 4 | SWCLK / TCK
GND |: 5ee6 |SWO/TDO
- 7 e8 |TDI

NC 9 e @ 10| nRESET

The following table lists the output of the 9-pin Cortex-M connector.

PIN SIGNAL

TYPE

Description

1 | VTref

Input

This is the target reference voltage. It is used to check if
the target has power, to create the logic-level reference
for the input comparators and to control the output logic
levels to the target. It is normally fed from Vdd of the
target board and must not have a series resistor.

SWDIO/
TMS

I/0 /
output

SWDIO: (Single) bi-directional data pin.

JTAG mode set input of target CPU. This pin should be
pulled up on the target. Typically connected to TMS of the
target CPU.

4 | SWCLK/TCK

Output

SWCLK: Clock signal to target CPU. It is recommended
that this pin is pulled to a defined state of the target
board. Typically connected to TCK of target CPU.

JTAG clock signal to target CPU.

6 |SWO/TDO

Input

When using SWD, this pin is used as Serial Wire Output
trace port (optional, not required for SWD communica-
tion).

JTAG data output from target CPU. Typically connected to
TDO of the target CPU.

This pin (normally pin 7) is not existent on the 19-pin
JTAG/SWD and Trace connector.

8 TDI

Output

JTAG data input of target CPU.- It is recommended that
this pin is pulled to a defined state on the target board.
Typically connected to TDI of the target CPU. For CPUs
which do not provide TDI (SWD-only devices), this pin is
not used. J-Link will ignore the signal on this pin when
using SWD.

9 | NC (TRST)

NC

By default, TRST is not connected, but the Cortex-M
Adapter comes with a solder bridge (NR1) which allows
TRST to be connected to pin 9 of the Cortex-M adapter.

Table 16.12: 9-pin JTAG/SWD pinout

Pins 3 and 5 are GND pins connected to GND on the Cortex-M adapter. They should
also be connected to GND in the target system.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



433

16.5 Reference voltage (VTref)

VTref is the target reference voltage. It is used by the J-Link to check if the target
has power, to create the logic-level reference for the input comparators and to con-
trol the output logic levels to the target. It is normally fed from Vdd of the target
board and must not have a series resistor.

In cases where the VTref sighal should not be wired to save one more pin / place on
the target hardware interface connector (e.g. in production environments), SEGGER
offers a special adapter called J-Link Supply Adapter which can be used for such pur-
poses. Further information regarding this, can be found on the SEGGER website
(https://www.segger.com/jlink-adapters-supply.html)

To gurantee proper debug functionality, please make sure to connect at least on of
the GND pins to GND (Pin 4, 6, 8, 10, 12, 14*, 16*, 18*, 20%*).

Note: *On later J-Link products like the J-Link ULTRA+, these pins are reserved
for firmware extension purposes. They can be left open or connected to GND in nor-
mal debug environment. They are not essential for JTAG/SWD in general.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



434 CHAPTER 16 Target interfaces and adapters

16.6 Adapters

There are various adapters available for J-Link as for example the JTAG isolator, the
J-Link RX adapter or the J-Link Cortex-M adapter.

For more information about the different adapters, please refer to
http://www.segger.com/jlink-adapters.htm|.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



435

Chapter 17

Background information

This chapter provides background information about JTAG and ARM. The ARM7 and
ARM9 architecture is based on Reduced Instruction Set Computer (RISC) principles.
The instruction set and the related decode mechanism are greatly simplified com-
pared with microprogrammed Complex Instruction Set Computer (CISC).

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



436 CHAPTER 17 Background information

171 JTAG

JTAG is the acronym for Joint Test Action Group. In the scope of this document,
"the JTAG standard" means compliance with IEEE Standard 1149.1-2001.

17.1.1 Test access port (TAP)

JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can
provide access to many test support functions built into a component. It is composed
as a minimum of the three input connections (TDI, TCK, TMS) and one output con-
nection (TDO). An optional fourth input connection (nTRST) provides for asynchro-
nous initialization of the test logic.

PIN Type Explanation
TCK Input ;I'he_ test clock input (TCK) provides the clock for the test
ogic.
DI Input Serial test instructions and data are received by the test

logic at test data input (TDI).

™S Inout The signal received at test mode select (TMS) is
P decoded by the TAP controller to control test operations.

Test data output (TDO) is the serial output for test
DO Output instructions and data from the test logic.

ATRST Input The optional test reset (nTRST) input provides for asyn-
(optional) | chronous initialization of the TAP controller.

Table 17.1: Test access port

17.1.2 Data registers

JTAG requires at least two data registers to be present: the bypass and the bound-
ary-scan register. Other registers are allowed but are not obligatory.

Bypass data register
A single-bit register that passes information from TDI to TDO.
Boundary-scan data register

A test data register which allows the testing of board interconnections, access to
input and output of components when testing their system logic and so on.

17.1.3 Instruction register

The instruction register holds the current instruction and its content is used by the
TAP controller to decide which test to perform or which data register to access. It
consist of at least two shift-register cells.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



437

17.1.4 The TAP controller

The TAP controller is a synchronous finite state machine that responds to changes at
the TMS and TCK signals of the TAP and controls the sequence of operations of the
circuitry.

TAP controller state diagram

<< Reset <
tms=1

tms=0
Idle tms=1

tms=0 'y

I Capture-DR

Update-DR Update-IR

- D,

17.1.4.1 State descriptions
Reset

The test logic is disabled so that normal operation of the chip logic can continue
unhindered. No matter in which state the TAP controller currently is, it can change
into Reset state if TMS is high for at least 5 clock cycles. As long as TMS is high, the
TAP controller remains in Reset state.

Idle

Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this
state remains active as long as TMS is low.

DR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the selected
data registers is initiated.

IR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the instruction
register is initiated.

Capture-DR
Data may be loaded in parallel to the selected test data registers.
Shift-DR

The test data register connected between TDI and TDO shifts data one stage towards
the serial output with each clock.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



438

CHAPTER 17 Background information

Exit1-DR

Temporary controller state.

Pause-DR

The shifting of the test data register between TDI and TDO is temporarily halted.
Exit2-DR

Temporary controller state. Allows to either go back into Shift-DR state or go on to
Update-DR.

Update-DR

Data contained in the currently selected data register is loaded into a latched parallel
output (for registers that have such a latch). The parallel latch prevents changes at
the parallel output of these registers from occurring during the shifting process.

Capture-IR
Instructions may be loaded in parallel into the instruction register.
Shift-IR

The instruction register shifts the values in the instruction register towards TDO with
each clock.

Exit1-IR

Temporary controller state.

Pause-IR

Wait state that temporarily halts the instruction shifting.
Exit2-IR

Temporary controller state. Allows to either go back into Shift-IR state or go on to
Update-IR.

Update-IR

The values contained in the instruction register are loaded into a latched parallel out-
put from the shift-register path. Once latched, this new instruction becomes the cur-
rent one. The parallel latch prevents changes at the parallel output of the instruction
register from occurring during the shifting process.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



439

17.2 Embedded Trace Macrocell (ETM)

Embedded Trace Macrocell (ETM) provides comprehensive debug and trace facilities
for ARM processors. ETM allows to capture information on the processor's state with-
out affecting the processor's performance. The trace information is exported immedi-
ately after it has been captured, through a special trace port.

Microcontrollers that include an ETM allow detailed program execution to be recorded
and saved in real time. This information can be used to analyze program flow and
execution time, perform profiling and locate software bugs that are otherwise very
hard to locate. A typical situation in which code trace is extremely valuable, is to find
out how and why a "program crash" occurred in case of a runaway program count.

A debugger provides the user interface to J-Trace and the stored trace data. The
debugger enables all the ETM facilities and displays the trace information that has
been captured. J-Trace is seamlessly integrated into the IAR Embedded Workbench®
IDE. The advanced trace debugging features can be used with the IAR C-SPY debug-
ger.

17.2.1 Trigger condition

The ETM can be configured in software to store trace information only after a specific
sequence of conditions. When the trigger condition occurs the trace capture stops
after a programmable period.

17.2.2 Code tracing and data tracing

Code trace

Code tracing means that the processor outputs trace data which contain information
about the instructions that have been executed at last.

Data trace

Data tracing means that the processor outputs trace data about memory accesses
(read / write access to which address and which data has been read / stored). In
general, J-Trace supports data tracing, but it depends on the debugger if this option
is available or not. Note that when using data trace, the amount of trace data to be
captured rises enormously.

17.2.3 J-Trace integration example - IAR Embedded Work-
bench for ARM

In the following a sample integration of J-Trace and the trace functionality on the
debugger side is shown. The sample is based on IAR’s Embedded Workbench for ARM
integration of J-Trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



440

CHAPTER 17

Background information

17.2.3.1 Code coverage - Disassembly tracing

£ 1aR Embedded Workbench IDE

File Edit View Project Debug Disassembly I-link Tools ‘Window Help

Ded@ & s Ba]o | E AR

B @ |

5 & [ eb o

SI82 s B0 X

gled_llc | stm32F10x_nwvic.c

3 lhfclef DEBUG

g<>;
2 et
o 18
8 Init clock systen
’ TS
81 s, NUIC init
82 #ifndof EMB FLASH
] e Uector Table base logation at Bx28600008 =/
01 NUTC SetUactorTablotRDIC UoutTuh RAH. Budys
85 floloo /= UECI TNB FLASH "=

et the Vector Table hase location at Bx03008008 =~
05 MUTC SetUactarTanlocNDIC DoutTuh FLABH. Bp5s

08 ftond if

NUIC_PriorityGroupConf ig<NUIC_PriorityGroup_4);

#7 SysTick end of c
= SysTick_SetReload<908008);
#7 Enable SysTick interrupt
SysTick_ITConf ig<ENABLE);
SysTick CounterCnd<SysTick Counter_Enable’;

72 Buttons pore

init
# GPI0 enable clock and release Res

ount event each B.1s with input clock equal to 9MHz (HCLK/8. defaul

sow [ e <A

TF0rawTable_3:
BO1A

RS a0 o, P, soxes
0B00BFA2  BD70 Far TR4,R5 IRE, PC]
770rawTable_0: _
e mico eie P
Siobrar mmcn  Defe e oo
0id mainivoid
i
atn:
L
0BO0BFAS  B510 PUSH R4, LRY
DBODBFAA BOSE SUE SF, 5P, #0x20
0B00BFAC BL debug
%
»
1k H
DBODBFE4 F7FFFFEZ L Clk_Init
HWIC, SE[VECtDV‘TabWE(NVIC VectTah, FLASH o073
ShooEres ci0a b
0Z00BFBA FOSFEOQOO MOVS RD #0xE000000
0S00BFBE  FOOL1FCES N\IIC SE[VECtDV‘TabWE
NVIC_Priorit: rnuu(nnﬁquVIC Priorit: oL
0E00BFC2 F44F7U40 Mo o, 0
0B00BFCE  FODIFCH: ot PR ar tyGroupContig

L
SysTick SE(RE'\uadESDDDDD]

RCC RPBaPoniphRose Cond RCCJFHZFarlph GPIOA pe, 20x108
i RCC_APB2Pewiph GPI0G, DISABLED; ™
RCC_APB2PeriphClockCnd< RGC APBIForiph GPTOA SUSTICK TTCONTIOENARLEY
0800BFDD 2001 MO\/S RO, #0x:
i RCC_APB2Pewiph_GPI0G, ENABLE>; 0s00BFD2  FoOTFELA sl tirrcontis
1 SweTek Countertnarsys T ck counter Enabiz:
5 GPIO_InitStwucture.GPI0_Pin = Bi_MASK; séaueroe 1001 MovS RO, #0x1
26 GPIO_InitStructure .GPI0_Mode = GPI0_Mode_ INJLORTING, D e A B e spmpioick-Councercmd
7 GPIO_InitStmucture.GPI0 Speed = GPI0_Spesd_GoMHz e sy e
GPIO Init<(Ei_PORT, 8GPIO_InitStructure; - S— T DISAELEL:
gomnornE  Fase7on: v Ra, #ox104
GPIO_Init§tructure .GPIO_Pin = B2_MASK; DSQ0EFEZ  FIFFRASG RCE_APEIPeri phRes etcmd
GPIO InitStructure .GPIO Mode = GPIO_Mode_IN_FLOATING; ROC AP 62per phe 166KORG( _nec_ape2perTon.apina
GPIO InitStructure .GPI0 Speed = GPIO_Spesd_S@MHz ;
CPIO Init<B2 PORT, BGPTO.InitScructuress | RcC_pPEIPeriph GPIDG, ENABLE):
O800BFEE 3101 Wous R, #OX1
EXT_CRT_SECTIONC>; 0800BFEG  F44F7082 MOV Ra, #ox104
e 0S00BFEC F7FFFAZO BL RCC_APB2Periphdlockamd
GPIO_INnitStructure.GPIO_Pin = BI1_MASK
40 BT powt and ARG dnit, . 0800BFFQ F44F7080° MOV 7, #ox100
HoC APR2 e r iphRonet GmdCRCE APBZPeriph ADCI | RCC_APB2Periph_GPIOC. DISABLEY: B TR e = cra wbee )t LT s
(o f 2§ ROCAPEZPoribkClockGd (RCC_AP2Poriph-ADCL | RCCAPBZFor ioh-GPIOC. ENABLE : - Ionees
fol |«
x R
OXB]SYH =
Index [ Frame [ address [ opeode. Trace [ comment
002064 003282 Ox0E00DESE EOO4 B TENVIC _SetvectorTable 2
27NVIC_SetvectorTable_2:
003065 003283 Ox0B000EAA 4807 LDR. RO, [FC, #0x1Z]
003066 003384 0x080008AC 4285 cup RS, RO
003067 003385 OX0B00DGAE D304 BCC ?PNWIC_SetwectorTable_ 4
?PNVIC_SetvectorTable_4:
003068 003386 0X0800DGBA. 4804 RO, [PC, #0x10]
002063 003287 0x0E00DEEC 4028 ANDE RO, RO, RE
003070 003388 ox0800088E 4320 oRRS Ro, RO, R4
003071 003389 0x080008C0 4304 Lor R1, [PC, #0x10]
003072 Q02230 Ox0B000EC2 GEOR LDR. R1, [R1]
003073 003391 0X080008CA G088 STR RO, [R1, #0xE]
Q02074 003282 Ox0BD0DECE ED3IL1 FOF {RO,R4,RE,PC}
003075 003393 oxosa0BFC2 Faar oy R0, #0x300
00207& 0023234 Ox0BD0BFCE FoOl BL NWIC_PrioritydroupConfig
NYIC_PriorityGroupConfig:
003077 0033395 0X0B000E4C B510 PUSH {R4,LR}
003078 003396 oxos00084E 0004 waus R4, RO
003079 003397 ox08000850 Fsea cup R4, #0x700
003080 003398 0X0800DG54 Not executed
002081 002333 Ox0ED0DEEE FEE4 CMF R4, #0x€00
003082 003400 Ox0BO00G5A Not executed
003083 bo3401 oxoso0085C Fsea cup R4, #0x500
002084 003402 0x0E00DEE0 Not executed
oo308s 003403 ox08000862 Fsea cup R4, #0x400
003086 003404 OX0B00DG66 Not executed
002087 002408 Ox0E00DEEE FEE4 CMF R4, #0x300
003088 003406 0x0B00DGEC Not executed
27NVIC_Priori tyGroupcontig_o:
002083 Q02407 Ox0E00DEEE EOO4 B TFNVIC_PriorityGroupConfig 2
272NVIC_Priori tyGroupconfig_2:
002030 002408 Ox0B00DETA FEDF LDR. W RO, [FC, #0OxEE]
003091 D03409 0X08000E7E 6800 Lor RO, [RO]
003092 003410 0x08000880 4901 Lo R1, [PC, #Ox4]
0030532 002411 Ox0B00DEE2 4321 ORRS R1l, R1l, R4
003094 003412 0X08000684 60C1 STR R1, [RD, #0xC]
003038 0034132 Ox0E00DEEE ED10 FOF {Rd,PC}
RERETS REEYES BREEHOEECA qE5E i L= e
Kl |
ETM Trace [ETH Function Trace
Ready [ o |

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



441

17.2.3.2 Code coverage - Source code tracing

£ 1AR Embedded workbench IDE

File Edit View Project Debug Disassembly JLlink Tools Window Help

[_ O[]

[Dead@& iz o HZy %

X TN

e a2 2B 2 2 X

c | stm32F10x_nvic.c

Tdef DEBUG | Goto =] [Meman 2l El
;g ugdslj?g(); F70ranTabl e 0: =l
P 0800BFA4 DOCO BLE 0x8008F28
0800BFAG 0800 LsRs RO, RO, #0x0
@ 197 ENTRICRTZSECTIONCH 0id mainfvoid) |
98 // Init clock systen
99 ClnicOs in:
81 /s NUIC init TEett vs:
a2 ulf“def ENE_FLas 080DBFAS  B510 puSH R, LR
a3 e Uector Table base location at Bx20860000 =~ DE00EFAA  BOEE sue <p, 5P, #ox20
gghr{:;c fi“"gg%‘j;g%i;gﬂICJ“”“‘]J‘“" B8>3 0B00BFAC FODLFBAS  BL debug
et the Usctor Table base location at Bx@8BBOBEA =~ SEU0BEED “FUNZEE
B9 WTC SetbectortabloMUC DoceTah PLASH. Bubos SN
208 flendif GEvTErEd FrrRRRS: Clk_tnit
209 NUIC PriorityGroupConfigCNUIC PriorityGroup 435 | nvIC Sat\/actanah]a(N\lIc vectTab_FLABH, Gx013
0800BFE8 2100 AL, #0x0
1 77 8ysTick end of count event each B.1s with input clock equal to 9MHz (HCLK-8. defaul 0200BFEA  FOSFE0O0 MDVS RO, #0x<8000000
= 2 8ysTick_SetReload(9A08HA); 0S00BFEE  FOOLFCES NVIC_SetvectorTable
e S B E:éseia“;&;;S:S“ﬂéb”‘“w o
B o 12 k_Counter_Enable)s 0S00BFCS  FODLFCAL BL NvIC PP oM tysroupcontig
B e e i =
s enable clock and release i .
Hoc RPB2Pan hReseLtnde. ROC APBZPerinh_GPIOA BT E"“ﬁéis RO, #0
! RCC_APB2ZPeriph CPIOG, DISABLEY: 0S00BFDZ  FODLFBLA i rrconria
RCC_APB2PeriphClockCnd< RCC_APB2Periph GPIOA ST o rrCm ey TiCk_Counrer EnshIEL:
DE00BFDE 2001 MowE RO, #0x1
! RCC_APB2Periph_GPIOG, EMABLE 0800BFDE  FODIFAEE  BL SysT1 ck_Countercmd
& e ——— RTINS
5 GPIO_InitStructure.GPIO Pin = Bi MASK: EEPRIIpN SFING. DISARLELS
26 GPIO_InitStructure.GPI0_Mode = GPTO_Mode_| INJLDRTING. o Eros EaoPioss mow A s
7 GPIO_InitStructure.CPI0 Speed = GFI0_Speed SOl 0300BFEz  F7FFFAZQ Ré_APEZPeriphRes etomd
GPIO_Init<BL_PORT, &GPIO_InitStructure’; REC_APBZPeriphClockomd [ RCC_APB2PEFTph_GPIOA
GPIO_InitStructure.GPIO Pin = B2 MASK: | RCC_APEIFeriph GEIDG. ENABLEL:
GPIO InitStructuro GPIO Mode - GPTO Made_IN ELOATING: GE00BFEE 2101 WOVS AL, wOxi
GPI0_InitStructure.GPI0 Speed = GP10_Speed 5MHz: OS00BFES Fa4F7082 MOV RO, #0L04
GPIO_Init¢B2_PORT, &GPIO_] InltStructure) DE00BFEC FFFFFA BL RCC_APEZPeriphClockomd
GPIO_Initstructure.SPIO_Pin = B1 AABK;
EXT_CRT_SECTIONG ; OS00BFFO  F44F7080 WOV B, 7000
I 000BFF4  FE8ADOOOD STRH [sF]
/7 AN_TR port and ﬁDC lrll': GPIO_INitStructure. GPID_MﬂﬂE GPID M E IN_FLOATING:
2 Enable ADCL and GP 0300BFFA FegDOGDI STRE ror Tor #oxal
fiec APBEPer IniRonat ORACHCE APB2Periph ADCL § RCC_APB2Periph GPIOC. DISABLEY: SPInshtotraecars. G Spees = GEh_totts .
e RCC_APB2PerivhClockCnd(RCC_APB2Periph ADCL i RCC_APBZPeriph GPIOC. ENABLE)} | _|J SRS _,J
) —I
= X[a ¥ |
Index | Frame | Address [ opeode [Trace [ comment [
o0zIes 002686 OxDE00EE A4 BE10 RCC_GetFlagstatus (Ug)
ooz40z o02721 OXDS00BERE 2800 CIK_INItE) + 66
002407 002725 OXDSODBSA4  BS10 RCC_GetFlagstatus (us)
0Dzddz ooz7en Ox0200EEEE 2800 CTk_Init() + &8
002446 02764 OXDS00B5 Ad B510 RCC_GetF1agstatus (Us)
002481 002759  OXDSUDBEBE 2800 Clk Tnit() + 66
0DZd4EE 00203 OxDE00EE A4 BE10 RCC_GetFlagstatus (Ug)
oozs20 002838 OXDS00BERE 2800 CIK_INItE) + 66
002524 002842 OXDSODESA4  BSLO RCC_GetFlagstatus (us)
0DzZEES o0zET7 Ox0200EEEE 2800 CTk_Init() + &8
002562 o02881 OXDS00B5 Ad B510 RCC_GetF1agstatus (Us)
002558 002916 OXDSODBEBE 2800 Clk Tnit() + 66
0DzZEDZ o0z3z0 OxDE00EE A4 BE10 RCC_GetFlagstatus (Ug)
002637 002985 OXDS00BERE 2800 CIK_INItE) + 66
002641 002959  OXDSODESA4  BSLO RCC_GetFlagstatus (us)
00ZETE 002334 Ox0200EEEE 2800 CTk_Init() + &8
ooz680 a02998 OXDS00B5 Ad B510 RCC_GetF1agstatus (Us)
002715 003033 OXDSODBEBE 2800 Clk Tnit() + 66
00z71s 002027 OxDE00EE A4 BE10 RCC_GetFlagstatus (Ug)
002754 o03072 OXDS00BERE 2800 CIK_INItE) + 66
002758 003076 OXDSODESA4  BS1O RCC_GetFlagstatus (us)
ooz7az 003111 Ox0200EEEE 2800 CTk_Init() + &8
002797 a03115 OXDS00B5 Ad B510 RCC_GetF1agstatus (Us)
002632 003150 OXDSODBEBE 2800 Clk Tnit() + 66
oDzEe 002184 OxDE00EE A4 BE10 RCC_GetFlagstatus (Ug)
002871 003189 OXDS00BERE 2800 CIK_INItE) + 66
002675 003153 OX0S0DB3CE  BS10 Re_bsacbkconig(uaz)
oDzEs? 003201 OxDE00BECE FaddF CTk_Init() +
noz88s a03203 Ox0S00B3EC B510 RCC_ADCCLKCGH‘F'\;(MEZ]
002906 003224 OXDSODBEDD 2000 clC Inic) +
00z308 003226 OxDE00E27C BE10 RCC,PCLKZCDI"(WQ(HZZ)
002923 003241 OXDS00BEDE FaaF CIK_INIEC) +
002925 003243 OX0S00B334  BS10 RCC_| P:LKl(nnﬁg(u}zj
oDzs4z 03260 Ox0200EEDE 2000 CTk_Init() +
002944 o03262 OxDS00B2E4 B510 Rcc_HcLKcnnﬂg(usz)
002959 003277 OXDBODBEE4 2002 Clk Init() + 104
00zeel 03273 Ox0200070C BE10 FLASH SetLatency(u3z)
002988 003303 OXDE00BEEA 2000 CIk_InitE) + 110
002987 003305 008000746 BS10 FLASH_Hal fCycleAccesscmdu3z)
002008 oo33z7 OxDE00BEFO 2010 Clk_Init() + 116
003011 003329 Ox0200D77C B510 FLASH_Fre FetchBUTFercmd (u32)
003031 003349 OXDSODBEFE 2002 cli tnic) + 122
ooz022 003381 OxDE00B2AC BE10 RCC_SYSCLKConfiglu3z)
0030532 003371 OXDS00BEFC BOOL CIk_Init() + 128
003054 003372 OXDSODBFBE 2100 main() + 16
002087 003375 Ox020008EC BE2E NVIC_SetVectorTable(u?z, u3z)
TaI07E [EELE] Faar WETAT 2
003077 003355 0X0800084C _ B510 NVIC Priori cyGroupconfig(uiz)
00202e 003414 Ox0E00BFCA dETE main(l + 34

ETM Trace ETM Function Trace

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



442 CHAPTER 17 Background information

ZZ1AR Embedded Workbench IDE [_ o] x]
File Edit View Project Debug Disassembly J-link Tools ‘Window Help
[Ded@EfEa]o o] Y%=
BN
main.c | gled_ll.c Tx
74 HFSR - OxEFFEFFEF; :l Golo | |Memory A&
SCB->DFSR = OxFFFFFFFF} ext_eer =
> 08000842 4770 BX LR
DMA2_Channel1_IRQHandler: _
* Punction Name : NUIC PriorityGroupConfig o2 Channel 1 TraHandTer:
* Description : Configures the priority grouping: pre—emption priority L text_e7:
* and subpriority. J 05000844 4770 Bx R
* Input * = NUIC Prioritylroup: specifies the priority erouping hits
* length. This paranete be one of the Following values: 022 _Channel2_IRQHandler:
* = WOIC_PriorityGro o bits for pre-emption priority Piaz_channelz_tRQHandler:
* its for subpriorit -
* - NUIC Priority roup 11 1 bits for pre-emption priority Ristese 70 b "
* ts for subpriorit .
* ~ NUIC. PrioritnGroup 21 2 hits for pre-emption priority [ hanne ) - Ingandler:
* 2 hits for su Ltext_ss:
* - NuIc Priority bits for pre-emption priority 08000848 4770 Bx LR
* hits for su
* - NUlCJ’rlurlty hits for pre—emption priority 02 _Channe]4_5_TRQHand]er:
s © bits for subpriority a2 Channe 45 TRGandTers
* Qutput : Hone S "
et AL 0id NuTC PriorityGroupconfio(uzz MVIC PriorityGrouni
E2 goid NUIC PriorityGroupConfigQudz NUIC PriorityGroun) T —
+% Check the parameters [P o s aupcanti g:
g esem waranclS HUTC PRIONITY_GROUPCNUIC_PriorityGroup>s geoodsec  ss10 PusH frate)
ssoopss= 009
82 /% Set the PRIGROUPL1R:81 hits according to NUIC PriowityGroup value */ sszert pe us vic PRIORITY GRDUP[N\IIC SErioritysroun))
03 SCB-SRIRCR = AIRCR UECTXEY MASK 5 MO PrierituGroun: 0800085 rss
B4 beoobEss boo B Shiote Frioni tycroupcontig_o
a5 0E00DEEE FSE46FCO CMF R4, €00
& OGoonsc FepieFA0 b g i
87 % Function Name : NUIC_Init ;
88 Description Initislizes the NUIC peripheral sccording to the specified ENDED DS ren od A erinaraupcontia t
m» Input s e T icétiine: wointor to s MUIC InitTyeDef structure ioanaes EESi,FW E,EE ;:',‘VK*P”“'”‘y“””“"“"f‘g*”
that _contains the configuration information for the 0800086C 27TRVIC_Priori EyGroupcontia_t
o specified NUIC peripheral. - omeTc prior tyGroupconio_o:
13 * Qutput : None 0F00DEEE  E0O04 E TTNVIC_FriorityGroupconfig_z
14 % Return : Mone PNVIC, Fr"mr"\tyﬁr'nupcnhﬁg 1t
08000870 211 RL, #0x6
16 void NUIC_Init<NUIC_InitTypeDef* NUIC_InitStruct> Ginnar: Fabronsc LDR.w RO, [FC, #0x5C]
0800D876 F7FEFCAE  BL assert_Tailed
18  u32 tmppriority = BxB0, = Bx80. tnpnask = OxB@ ,_,W';c ‘;ﬁ?g';@ygg';gic‘;ﬁ(g““ﬁ’m L et e
%9 u32 tmppre tmpsub 0087A  F8 DR. RO, [PC, #0x58]
31 % Check the parameters %/ EEEEE?ZE ?ﬁ?? .LEB RO, [Rol L, J_I
(el [ | K I
<o v |
Index_ | Frame | Address [ opeade. [ Trace [ Comment I
002368 002686 0x0B00BS5 A4 B510 RCC_GETF1agsTtarus (us)
002403 002721  OxOBODBEBE 2800 Clk_Inite) + 66
002407 ooz7aE Ox0800BEAS EE10 RCC_GetFlagStatus (Lg)
002442 002760 0x0B00BEBE 2800 CIk_INit() + 66
002446 002764  Ox0B00BSA+  BS10 RCC_GetFlagstatus (us)
002481 0o0z7es 0x0800BEEE 2800 CTk_Init() + &6
002485 002803 0x0B00BS5 A4 B510 RCC_GETF1agstarus (us)
002520 002838 OxOBODBEBE 2800 Clk_Inite) + 66
0o0zEzd oozgd4z Ox0800BEAS EE10 RCC_GetFlagStatus (Lg)
002559 002877 0x0B00BEBE 2800 CIk_INit() + 66
002563 002861  Ox0B00BSA+  BS1D RCC_GetFlagstatus (us)
002538 002316 0x0800BEEE 2800 CTk_Init() + &6
002602 002320 0x0B00BS5 A4 B510 RCC_GETF1agstarus (us)
002637 002955 OxOBODBEBE 2800 Clk_Inite) + 66
002641 00z353 Ox0800BEAS EE10 RCC_GetFlagStatus (Lg)
002676 002394 0x0B00BEBE 2800 CIk_INit() + 66
002680 002998 0x0B00BSA+  BS10 RCC_GetFlagstatus (us)
0o0z71s 002037 0x0800BEEE 2800 CTk_Init() + &6
002713 003037 0x0B00BS5 A4 B510 RCC_GETF1agstarus (us)
002754 003072 OxOBODBEBE 2800 Clk_Inite) + 66
002788 00207é Ox0800BEAS EE10 RCC_GetFlagStatus (Lg)
002793 003111 0x0B00BEBE 2800 CIk_INit() + 66
002757 003115 0x0B00BSA+  BS10 RCC_GetFlagstatus (us)
002832 002150 0x0800BEEE 2800 CTk_Init() + &6
002836 003154 0x0B00BS5 A4 B510 RCC_GETF1agstarus (us)
002871 003169  OxOBODBEBE 2800 Clk_Inite) + 66
002878 007132 Ox0800E3CE EE10 RCC_USBCLRConTigluzz)
002883 003201 0x0B00BECE Fa4F Clk_Init() + 76
002885 003203 Ox0BODB3EC  BS10 RCC_ADCCLKCONTigCu32)
00230 oozzz4 Ox0&00BEDD 2000 CTk_Init() + &4
0023908 003226 0x0800B37C B510 RCC, PCLKZ(nnﬂg(uEZ)
002923 003241  OxOBODBEDE  F44F Clk_Inite) +
0023828 0o0%z4? Ox0800E234 EE10 RCC,PCLKICDHfID[UZZ]
002942 003260 0x0800BEDE 2000 Clk_Init() + 98
002944 003262 Ox0BODB2E+  BS1OD RCC_HCLKConTig(u32)
002383 002277 Ox0800BEE4 z00z CTk_Init() + 104
002961 003279 0x0800070C B510 FLASH_SetLarency(u32)
002985 003303 OxOBODBEEA 2000 Clk_Inite) + 110
002387 002308 0x0800074& EE10 FLASH. Han’Cyc]EA::esscmd[uZZ]
003009 003327 0x0800BEFO 2010 CIK_IMit() + 11
003011 003325  0x0800077C  BS1D FLASH Pr‘EfE((hBuffEr‘Cmd(uiz)
0030321 002343 Ox0800BEFE z00z CTk_Init() + 1lzz
003033 003351 0x0800B2AC B510 RCC_SYSCLECONTigu3z)
003053 003371  OxOBODBEFC  BOOL Clk_Inite) + 126
003054 002372 Ox0800BFES 2100 maini) + 1¢
003057 003375 0x0800D88C B538 NVIC_SetvectorTable(u3z, u3z)
003075 003393 OxOBODBFC2  FA44F main() + 26
GEETT GEEEEE GxTEfIEEE BELH REC B OF T BT oUpEaR T GTLEYY
003036 003414 0x0B00BFCA 4876 maing) + 34 —
ETM Trace| ETM Function Trace *
Ready [T [ =

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



443

17.3 Embedded Trace Buffer (ETB)

The ETB is a small, circular on-chip memory area where trace information is stored
during capture. It contains the data which is normally exported immediately after it
has been captured from the ETM. The buffer can be read out through the JTAG port of
the device once capture has been completed. No additional special trace port is
required, so that the ETB can be read via J-Link. The trace functionality via J-Link is
limited by the size of the ETB. While capturing runs, the trace information in the
buffer will be overwritten every time the buffer size has been reached.

[_1O] ]|
SEGGER J-Link Commander U3.72c '7’ for help>
Compiled Jul 4 2887 28:17:14
DLL version U3.72c,. compiled Jul 4 2887 28:17:89
i : J-Link compiled Jun 14 2887 14:36:33 ARM Rev.5
e: U5.38

: RDI. FlashBP. FlashDL. JFlash. GDB
19V

kH=
: CP15.8.8: Bx41869264: ARM. Architecure STEJ
= CP15.8.1: Bx1D192192: ICache: 32kB (4=256%32>, DCache: 32kB (4=256=32)>

Found 2 JTAG devices, Total IRLen = 8

Id of device #8: Bx1B?BAFAF

Id of device #1: Bx1798@FAF
Found ARM with core Id Bx1798BFBF (ARM?>

ETH U1.3: 8 pairs addr.comp,. 8 data comp, 16 MM decs,. 4 counters. sequencer

ETB U1.8: 2848x24 bit RAM
J-Link>eth
ETB iz present.
ID register (ETBIBxBB1> : 1B?BAFAF
RAM depth (ETBI[Bx61 1> : AAABAEOA
RAM width (ETBIBxB21> : 000606618
Status (ETBIBxB3 1> : 00066668
RAM data (ETB[BxB41> : BACEBB1B?
RAM read pointer <(ETEI[BxB51> : BBOABAOBA
RAM write pointer (ETEBI[BxB61> : BBABAOBA
Trigger counter (ETBL[BxB71> : BBABAOBA
Control (ETBL[BxB81> : BA0OBOOA
J-Link>

The result of the limited buffer size is that not more data can be traced than the
buffer can hold. Because of this limitation, an ETB is not a fully- alternative to the
direct access to an ETM via J-Trace.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



444 CHAPTER 17 Background information

17.4 Flash programming

J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities -
reading and writing RAM, CPU registers, starting and stopping the CPU, and setting
breakpoints. The standard DLL does not have API functions for flash programming.
However, the functionality offered can be used to program the flash. In that case, a
flashloader is required.

17.4.1 How does flash programming via J-Link / J-Trace work?

This requires extra code. This extra code typically downloads a program into the RAM
of the target system, which is able to erase and program the flash. This program is
called RAM code and "knows" how to program the flash; it contains an implementa-
tion of the flash programming algorithm for the particular flash. Different flash chips
have different programming algorithms; the programming algorithm also depends on
other things such as endianess of the target system and organization of the flash
memory (for example 1 * 8 bits, 1 * 16 bits, 2 * 16 bits or 32 bits). The RAM code
requires data to be programmed into the flash memory. There are 2 ways of supply-
ing this data: Data download to RAM or data download via DCC.

17.4.2 Data download to RAM

The data (or part of it) is downloaded to another part of the RAM of the target sys-
tem. The Instruction pointer (R15) of the CPU is then set to the start address of the
RAM code, the CPU is started, executing the RAM code. The RAM code, which con-
tains the programming algorithm for the flash chip, copies the data into the flash
chip. The CPU is stopped after this. This process may have to be repeated until the
entire data is programmed into the flash.

17.4.3 Data download via DCC

In this case, the RAM code is started as described above before downloading any
data. The RAM code then communicates with the host computer (via DCC, JTAG and
J-Link / J-Trace), transferring data to the target. The RAM code then programs the
data into flash and waits for new data from the host. The WriteMemory functions of J-
Link / J-Trace are used to transfer the RAM code only, but not to transfer the data.
The CPU is started and stopped only once. Using DCC for communication is typically
faster than using WriteMemory for RAM download because the overhead is lower.

17.4.4 Available options for flash programming

There are different solutions available to program internal or external flashes con-
nected to ARM cores using J-Link / J-Trace. The different solutions have different
fields of application, but of course also some overlap.

17.4.4.1 J-Flash - Complete flash programming solution

J-Flash is a stand-alone Windows application, which can read / write data files and
program the flash in almost any ARM system. J-Flash requires an extra license from
SEGGER.

17.4.4.2 RDI flash loader: Allows flash download from any RDI-compliant
tool chain

RDI (Remote debug interface) is a standard for "debug transfer agents" such as J-
Link. It allows using J-Link from any RDI compliant debugger. RDI by itself does not
include download to flash. To debug in flash, you need to somehow program your
application program (debuggee) into the flash. You can use J-Flash for this purpose,
use the flash loader supplied by the debugger company (if they supply a matching
flash loader) or use the flash loader integrated in the J-Link RDI software. The RDI
software as well as the RDI flash loader require licenses from SEGGER.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



445

17.4.4.3 Flash loader of compiler / debugger vendor such as IAR

A lot of debuggers (some of them integrated into an IDE) come with their own flash
loaders. The flash loaders can of course be used if they match your flash configura-
tion, which is something that needs to be checked with the vendor of the debugger.

17.4.4.4 Write your own flash loader

Implement your own flash loader using the functionality of the JLinkARM.dIl as
described above. This can be a time consuming process and requires in-depth knowl-
edge of the flash programming algorithm used as well as of the target system.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



446 CHAPTER 17 Background information

17.5 J-Link/ J-Trace firmware

The heart of J-Link / J-Trace is a microcontroller. The firmware is the software exe-
cuted by the microcontroller inside of the J-Link / J-Trace. The J-Link / J-Trace firm-
ware sometimes needs to be updated. This firmware update is performed
automatically as necessary by the JLinkARM.dII.

17.5.1 Firmware update

Every time you connect to J-Link / J-Trace, JLinkARM.dIl checks if its embedded firm-
ware is newer than the one used the J-Link / J-Trace. The DLL will then update the
firmware automatically. This process takes less than 3 seconds and does not require
a reboot.

It is recommended that you always use the latest version of JLinkARM.dII.

[l c:\Program Files (86)\SEGGER\Link_V498e\Link.exe =n| ol <
SEGGER J-Link Commander U4.98e (’'7’ for help> -
Compiled May 5 2815 11:81:31
Il i firmware: J-Link U9 compiled Apr 21 2615 18:16:48

L

laiting for new firmware to hoot

Mew firmware bhooted successfully

DLL version U4.98e. compiled May 5 2815 11:88:52
Firmware: J-Link U? compiled Apr 21 2615 18:18:48
Hardware :

FlashBP,. FlashDL. JFlash

In the screenshot:

e The red box identifies the new firmware.
e The green box identifies the old firmware which has been replaced.

17.5.2 Invalidating the firmware

Downdating J-Link / J-Trace is not performed automatically through an old
JLinkARM.dII. J-Link / J-Trace will continue using its current, newer firmware when
using older versions of the JLinkARM.dII.

Note: Downdating J-Link / J-Trace is not recommended, you do it at your own
risk!
Note: Note also the firmware embedded in older versions of JLinkARM.dIll might

not execute properly with newer hardware versions.

To downdate J-Link / J-Trace, you need to invalidate the current J-Link / J-Trace firm-
ware, using the command exec InvalidateFWw.

[l c:\Program Files (86)\SEGGER\Link_V498e\Link.exe == ]

SEGGER J-Link Commander U4.98e (’'7’ for help> -
Compiled May 5 2815 11:81:31
DLL version U4.98e. compiled May 5 2815 11:88:52
irmuware: J-Link U? compiled Apr 21 2815 18:16:44
Hardware: U?.26
5/N: 59208886
Feature{(s>: GDB, RDI, FlashBP. FlashDL. JFlash

UTarget = B.088U
J-Link>exec invalidatefw
Info: Updating firmware: J-Link U? compiled APR 21 2815 18:18:48
: Replacing firmware: J-Link U? compiled Apr 21 2815 18:168:48
: Waiting for new firmware to boot
: Mew firmware booted successfully
WJ-Link> A

In the screenshot, the red box contains information about the formerly used J-Link /
J-Trace firmware version.

Use an application (for example JLink.exe) which uses the desired version of
JLinkARM.dIl. This automatically replaces the invalidated firmware with its embedded
firmware.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



447

ﬂ C\Program Files (x86)\SEGGER\JLink_V498e\JLink.exe

SEGGER J-Link Commander U4.98e (’'7’ for help>
Comniled Mayv 5 2A15 11 :@A1:31

HWaiting for new Firmware to bhoot
i are booted successfully
on U4_98e, compiled May 5 2815 11:88:52

: J-Link U? compiled Apr 21 2815 18:18:48
. : U9.28
5/N: 59208886
Feature{(s>: GDB, RDI, FlashBP. FlashDL. JFlash
UTarget = B.888U
WJ-Link>_

pdating firmware: J- k U? compiled Apr 21 2815 18:168:48
Replqcinq firmuagg: J-Link U? compiled APR 21 2815 18:18:4@

In the screenshot:

e "Updating firmware" identifies the new firmware.
e "Replacing firmware" identifies the old firmware which has been replaced.

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



448 CHAPTER 17 Background information

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



449

Chapter 18

Designing the target board for
trace

This chapter describes the hardware requirements which have to be met by the tar-
get board.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



450 CHAPTER 18 Designing the target board for trace

18.1 Overview of high-speed board design

Failure to observe high-speed design rules when designing a target system contain-
ing an ARM Embedded Trace Macrocell (ETM) trace port can result in incorrect data
being captured by J-Trace.You must give serious consideration to high-speed signals
when desighing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall
times, even at relatively low frequencies.

Note: These principles apply to all of the trace port signals (TRACEPKT[0:15],
PIPESTAT[0:2], TRACESYNC), but special care must be taken with TRACECLK.

18.1.1 Avoiding stubs

Stubs are short pieces of track that tee off from the main track carrying the signal to,
for example, a test point or a connection to an intermediate device. Stubs cause
impedance discontinuities that affect signal quality and must be avoided.

Special care must therefore be taken when ETM signals are multiplexed with other
pin functions and where the PCB is designhed to support both functions with differing
tracking requirements.

18.1.2 Minimizing Signal Skew (Balancing PCB Track Lengths)

You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK,
PIPESTAT, TRACESYNC, and TRACEPKT from the ASIC to the mictor connector to be
within approximately 0.5 inches (12.5mm) of each other. Any greater differences
directly impact the setup and hold time requirements.

18.1.3 Minimizing Crosstalk

Normal high-speed design rules must be observed. For example, do not run dynamic
signals parallel to each other for any significant distance, keep them spaced well
apart, and use a ground plane and so forth. Particular attention must be paid to the
TRACECLK signal. If in any doubt, place grounds or static signals between the
TRACECLK and any other dynamic signals.

18.1.4 Using impedance matching and termination

Termination is almost certainly necessary, but there are some circumstances where it
is not required. The decision is related to track length between the ASIC and the
JTAG+Trace connector, see Terminating the trace signal on page 451 for further ref-
erence.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



451

18.2 Terminating the trace signal

To terminate the trace signal, you can choose between three termination options:

e Matched impedance.
e Series (source) termination.
e DC parallel termination.

Matched impedance

Where available, the best termination scheme is to have the ASIC manufacturer
match the output impedance of the driver to the impedance of the PCB track on your
board. This produces the best possible signal.

Series (source) termination

This method requires a resistor fitted in series with signal. The resistor value plus the
output impedance of the driver must be equal to the PCB track impedance.

DC parallel termination

This requires either a single resistor to ground, or a pull-up/pull-down combination of
resistors (Thevenin termination), fitted at the end of each signal and as close as pos-
sible to the JTAG+Trace connector. If a single resistor is used, its value must be set
equal to the PCB track impedance. If the pull-up/pull-down combination is used, their
resistance values must be selected so that their parallel combination equals the PCB
track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability
from the ASIC than series termination and so, in practice, DC parallel termination is
rarely used.

18.2.1 Rules for series terminators

Series (source) termination is the most commonly used method. The basic rules are:

1. The series resistor must be placed as close as possible to the ASIC pin (less than
0.5 inches).

2. The value of the resistor must equal the impedance of the track minus the output
impedance of the output driver. So for example, a 50 PCB track driven by an out-
put with a 17 impedance, requires a resistor value of 33.

3. A source terminated signal is only valid at the end of the signal path. At any point
between the source and the end of the track, the signal appears distorted
because of reflections. Any device connected between the source and the end of
the signal path therefore sees the distorted signal and might not operate cor-
rectly. Care must be taken not to connect devices in this way, unless the distor-
tion does not affect device operation.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



452 CHAPTER 18 Designing the target board for trace

18.3 Signal requirements

The table below lists the specifications that apply to the signals as seen at the
JTAG+Trace connector.

Signal Value
Fmax 200MHz
Ts setup time (min.) 2.0ns
Th hold time (min.) 1.0ns
TRACECLK high pulse width (min.) |1.5ns
TRACECLK high pulse width (min.) |1.5ns

Table 18.1: Signal requirements

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



453

Chapter 19

Semihosting

J-Link supports semihosting for ARM targets. This chapter explains what semihosting
is, what it can be used for and how to enable semihosting in different environments.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



454

19.1

CHAPTER 19 Semihosting

Introduction

Semihosting is a mechanism for ARM based target devices to provide a way to com-
municate/interact with a host system (the PC where the debugger is running on) to
allow different operations to be performed /automatized. Typical use-cases for semi-
hosting are:

Calls to printf() in the target to be forwarded to the host system and then output
in a console/terminal on the host

Calls to scanf() to retrieve user input entered in a console/terminal on the host
and then being received and evaluated by the target

Performing file I/O operations on the host system (reading / writing files)
Writing a flashloader that reads the bin file to be flashed from the host system
and performs the flashing operation chunk-wise

Most standard I/0 libraries for embedded applications come with semihosting imple-
mentations for printf() and scanf().

19.1.1 Advantages

Provides standardized commands for file I/O operations on the host, allowing rel-
atively complex operations with minimal logic in the target application

Does not need chip-specific hardware capabilities

Semihosting handling is natively supported by many debuggers/IDEs, for exam-
ple GDB.

19.1.2 Disadvantages

Target CPU is halted on each semihosting command, debugger evaluates the
semihosting command and restarts the CPU. This affects real-time behavior of
the system.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



455

19.2 Debugger support

If semihosting is supported or not depends on the actual debugger being used. Most
modern IDEs / Debuggers support semihosting. The following debuggers / IDEs are
known to support semihosting:

J-Link Debugger

J-Link GDBServer + GDB

SEGGER Embedded Studio

J-Link RDI (and therefor most RDI compliant debuggers)
IAR Embedded Workbench for ARM

Keil MDK-ARM

ARM AXD

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



456 CHAPTER 19 Semihosting

19.3 Implementation

In general, there are two ways of implement semihosting which are explained in the
following:

e SVC instruction (called SWI on legacy CPUs)
e Breakpoint instruction
e J-Link GDBServer optimized version

19.3.1 SVC instruction

Inside printf() calls etc. that shall perform semihosting, an SVC instruction is present
which causes the CPU to issue a software interrupt and jump to the SVC exception
handler. The debugger usually sets a breakpoint on the first instruction of the SVC
exception handler or sets a vector catch that has the same effect but does not waste
one hardware breakpoint. If vector catch is available depends on the CPU. Once the
CPU has been halted, the debugger can identify the cause of the SVC exception by
analyzing the SVC instruction that caused the exception. In the instruction there is a
SVC reason/number encoded. The number may differ if the CPU was in ARM or
Thumb mode when the SVC instruction was executed. The following SVC reasons are
revsered for semihosting:

e ARM mode: 0x123456
e Thumb mode: 0xAB

Once the debugger has performed the semihosting operation and evaluated the com-
mand, it will restart the target CPU right behind the SVC instruction that caused the
semihosting call. So it is debuggers responsibility to perform the exception return.

Disadvantages

If the SVC instruction is also used by the user application or a operating system on
the target, the CPU will be halted on every semihosting exception and be restarted
by the debugger. This affects real-time behavior of the target application.

19.3.2 Breakpoint instruction

A breakpoint instruction is compiled into the code that makes use of semihosting
(usually somewhere inside the printf() function in a library). The CPU halts as soon
as the breakpoint instruction is hit and allows the debugger to perform semihosting
operations. Once the CPU has been halted, the debugger is able to determine the halt
reason by analyzing the breakpoint instruction that caused the halt. In the break-
point instruction, a "halt reason" can be encoded. The halt reason may differ if the
breakpoint instruction is an ARM instruction or Thumb instruction. The following halt
reasons are reserved for semihosting:

e ARM mode: 0x123456
e Thumb mode: 0xAB

Disadvantages

Having a breakpoint instruction compiled in a library call will make it necessary to
have different compile options for debug and release configurations as the target
application will not run stand-alone, without debugger intervention.

19.3.3 J-Link GDBServer optimized version

When using J-Link GDBServer with a GDB-based environment, there is a third imple-
mentation for semihosting available which is a hybrid of the other implementations,
combining the advantages of both. With this implementation, an SVC instruction with
the usual SVC reason is used to issue a semihosting call but the debugger does not
set a breakpoint or vector catch on the start of the SVC exception handler. Instead,
the SVC exception handler provides some code that detects if the reason was a semi-
hosting call, if yes it immediately performs a return from exception on which the
debugger has set a hardware breakpoint. This allows the application to continue nor-

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



457

mally in case no debugger is connected and handling the semihosting call. It also
inhibits the CPU from being halted on each non-semihosting call, preserving the real-
time behavior of the target application.

Advantages

Application also runs stand-alone (no debugger connected).
Real-time behavior of the application is preserved.
Disadvantages

One hardware breakpoint is not available for debugging / stepping as it is perma-
nently used while semihosting is enabled.

Only works with J-Link GDBServer as other debuggers do not support this specialized
version.

19.3.3.1 SVC exception handler sample code

In the following, some sample code for the SVC handler, prepared to be used with J-
Link GDBServer optimized semihosting, is given:

SVC_Handler:

For semihosting RO and R1 contain the semihosting information and may not
be changed before semihosting is handled.

If R2 and R3 contain values for the SVC handler or need to be restored for
the calling function, save them on the stack.

#if SAVE_REGS_IN_SVC
PUSH ({R2,R3}

#endif
BIC R2, LR, #0xXxFFFFFFFE
CMP R2, #0x01 ; Check whether we come from Thumb or ARM mode
BNE CheckSemiARM

CheckSemiThumb:

#1f BIG_ENDIAN
LDRB R2, [LR, #-2]

#else
LDRB R2, [LR, #-1]
#endif
LDR R3, _DataTable2
CMP R2, R3 ; ARM semihosting call?
BNE DoSVC
B SemiBreak
CheckSemiARM:

LDR R2, [LR, #-4]
BIC R2, R2, #0xFF000000
LDR R3, _DataTablel
CMP R2, R3 ; Thumb semihosting call-?
BNE DoSVC
#i1f SAVE_REGS_IN_SVC

POP {R2,R3} ; Restore regs needed for semihosting
#endif
SemiBreak: ; Debugger will set a breakpoint here and perform exception return
NOP
MOVS RO, #+0 ; Make sure we have a valid return value in case
BX LR ; debugger is not connected

DoSVC:

7

; Customer specific SVC handler code

MOVS RO, #+0 ; Replace this code with your SVC Handler

BX LR
_DataTablel:

.word 0x00123456
_DataTable2:

.byte O0xAB

.byte 0x00

.byte 0x00

.byte 0x00

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



CHAPTER 19 Semihosting

19.4 Communication protocol

Semihosting defines a standardized set of semihosting commands that need to be
supported by a debugger, claiming that it supports semihosting. In the following, the
communication protocol for semihosting as well as the specified commands are
explained.

19.4.1 Register RO

Right before the operation that halts the CPU for semihosting, is performed, the tar-
get application needs to prepare CPU register RO and (depending on the command)
also some other CPU registers.

On halt, RO will hold the semihosting command, so the debugger can determine fur-
ther parameters and operation to be performed, from it.

19.4.2 Command SYS_OPEN (0x01)

Opens a file on the host system.

Register R1 holds a pointer to an address on the target, that specifies a 3-word (32-
bit each) buffer where additional information for the command can be found.

Word 0
Pointer to a null-terminated string that specifies the file to open.

Special: The string ":tt" specifies the console input/output (usually stdin / stdout).
Which one is selected depends on if the stream is opened for reading or writing.

Word 1

A number that specifies how the file is to be opened (reading/writing/appending
etc.). In the following, the corresponding ISO C fopen() modes for the numbers are
listed.

Word1 ISO C fopen() mode

rb
r+

r+b

wb

W+

w+b

O ONOTUW|h~hWNH|O

ab

=
o

a+
11 a+b

Table 19.1: ISO C fopen() modes

Word 2

Integer that specifies the length of the string (excluding the terminating null charac-
ter) pointed to by word 0.

Return value
Operation result is written to register RO by the debugger.

I=0 0.K., handle of the file (needed for sys_cLOSE etc.)
== -1 Error

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



459

19.4.3 Command SYS_CLOSE (0x02)

Closes a file on the host system.

Register R1 holds a pointer to an address on the target, that specifies a 1-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Handle of the file retrieved on sYs_OPEN

Return value

Operation result is written to register RO by the debugger.

== 0.K.
== -1 Error

19.4.4 Command SYS_WRITEC (0x03)

Writes a single character to the debug channel on the host system (stdout in most
cases).

Register R1 holds a pointer to an address on the target, that specifies a 1-word (32-
bit each) buffer where additional information for the command can be found.

Word 0
Pointer to the character to the written.
Return value

None

19.4.5 Command SYS_WRITEO (0x04)

Writes a null-terminated string (excluding the null character) to the debug channel
on the host system.

Register R1 holds a pointer to the string that shall be written.
Return value

None

19.4.6 Command SYS_WRITE (0x05)

Writes a given number of bytes to a file that has been previously opened via
SYS_OPEN. Exceptions: Handle 0-2 which specify stdin, stdout, stderr (in this order)
do not require to be opened with sys_opPeN before used. This command behaves com-
patible to the ANSI C function fwrite() meaning that writing is started at the last
position of the write pointer on the host.

Register R1 holds a pointer to an address on the target, that specifies a 3-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Handle of the file to be written.

Word 1

Pointer to the data on the target, to be written.
Word 2

Number of bytes to write

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



460

CHAPTER 19 Semihosting
Return value
Operation result is written to register RO by the debugger.

=0 O.K.
0 Number of bytes to write left (in case not all bytes could be written)

19.4.7 Command SYS_READ (0x06)

Reads a given number of bytes from a file that has been previously opened via
SYS_OPEN. Exceptions: Handle 0-2 which specify stdin, stdout, stderr (in this order)
do not require to be opened with sys_opEN before used. This command behaves com-
patible to the ANSI C function fread() meaning that reading is started at the last
position of the read pointer on the host.

Register R1 holds a pointer to an address on the target, that specifies a 3-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Handle of the file to be read.

Word 1

Pointer to a buffer on the target where data from file is written to.
Word 2

Number of bytes to read

Return value

Operation result is written to register RO by the debugger.

==0 O.K.
Number of bytes to read left (in case not all bytes could be read). If identi-
I=0 cal to the number of bytes to be read, read pointer was pointing to end-of-
file and no bytes have been read.

19.4.8 Command SYS_READC (0x07)

Reads a single character from the debug channel on the host (usually stdin).
Register R1 is set to 0.
Return value

Character that has been read is written to register RO.

19.4.9 Command SYS_ISTTY (0x09)

Checks if a given handle is an "interactive device" (stdin, stdout, ...).

Register R1 holds a pointer to an address on the target, that specifies a 1-word (32-
bit each) buffer where additional information for the command can be found.

Word 0
Handle of the file to be checked.
Return value

Operation result is written to register RO by the debugger.

== 1 0.K., given handle is an interactive device.
0 O.K., given handle is not an interactive device.

Else Error

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



461

19.4.10 Command SYS_SEEK (0x0A)

Moves the filepointer of a file previously opened via sYS_OPEN to a specific position in
the file. Behaves compliant to the ANSI C function fseek().

Register R1 holds a pointer to an address on the target, that specifies a 2-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Handle of the file.

Word 1

Position of the filepointer inside the file, to set to.

Return value

Operation result is written to register RO by the debugger.

=0 O.K.
=0 Error.

19.4.11 Command SYS_FLEN (0x0C)

Retrieves the size of a file, previously opened by sys_oOPEN, in bytes.

Register R1 holds a pointer to an address on the target, that specifies a 1-word (32-
bit each) buffer where additional information for the command can be found.

Word 0
Handle of the file.
Return value

Operation result is written to register RO by the debugger.

>= 0 File size in bytes
== -1 Error.

19.4.12 Command SYS_REMOVE (0x0E)

Deletes a file on the host system.

Register R1 holds a pointer to an address on the target, that specifies a 2-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Pointer to a null-terminated string that specifies the path + file to be deleted.
Word 1

Length of the string pointed to by word 0.

Return value

Operation result is written to register RO by the debugger.

=0 O.K.
=0 Error.

19.4.13 Command SYS_RENAME (0xO0F)

Renames a file on the host system.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



462

CHAPTER 19 Semihosting

Register R1 holds a pointer to an address on the target, that specifies a 4-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Pointer to a null-terminated string that specifies the old name of the file.
Word 1

Length of the string (without terminating null-character) pointed to by word 0.
Word 2

Pointer to a null-terminated string that specifies the new name of the file.
Word 3

Length of the string (without terminating null-character) pointed to by word 2.
Return value

Operation result is written to register RO by the debugger.

=0 O.K.
=0 Error.

19.4.14 Command SYS_GET_CMDLINE (0x15)

Gets the command line (argc, argv) from the process on the host system as a single
string. argv elements will be separated by spaces.

Register R1 holds a pointer to an address on the target, that specifies a 2-word (32-
bit each) buffer where additional information for the command can be found.

Word 0

Pointer to a buffer on the target system to store the command line to.
Word 1

Size of the buffer in bytes.

Return value

After the operation, word 1 will hold the length of the command line string.

Operation result is written to register RO by the debugger.

=0 O.K.
=0 Error.

19.4.15 Command SYS_EXIT (0x18)

Used to tell the debugger if an application exited/completed with success or error.
Usually, this also ends the debug session automatically.

Register R1 is one of the following values:

Exit code Meaning
0x20026 Application exited normally.
0x20023 Application exited with error.

Table 19.2: SYS_EXIT exit codes

Return value

None.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



463

19.5 Enabling semihosting in J-Link GDBServer

By default, semihosting is disabled in J-Link GDBServer. Depending on the mecha-
nism to be used, different setups are necessary

19.5.1 SVC variant

The following commands need to be added to the gdbinit file that is executed at the
start of a debug session:

monitor
monitor
monitor
monitor

semihosting enable

semihosting breakOnError

semihosting IOclient 3

semihosting setargs "<argv>" (in case SYS_GET_CMDLINE command is used)

For more detailed information about the monitor commands supported by J-Link
GDBServer, please refer to Supported remote (monitor) commands on page 98.

19.5.2 Breakpoint variant

The following commands need to be added to the gdbinit file that is executed at the
start of a debug session:

monitor

semihosting enable

19.5.3 J-Link GDBServer optimized variant

The following commands need to be added to the gdbinit file that is executed at the
start of a debug session:

monitor semihosting enable <AddrSemiBreak>

Please also make sure that an appropriate SVC exception handler is linked in the
application. For sample code, please refer to SVC exception handler sample code on
page 457.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



464 CHAPTER 19 Semihosting

19.6 Enabling Semihosting in J-Link RDI + AXD

This semihosting mechanism can be disabled or changed by the following debugger
internal variables:

$semihosting_enabled

Set this variable to 0 to disable semihosting. If you are debugging an application run-
ning from ROM, this allows you to use an additional watchpoint unit.

Set this variable to 1 to enable semihosting. This is the default.

Set this variable to 2 to enable Debug Communications Channel (DCC) semihosting.
The S bit in $vector_catch has no effect unless semihosting is disabled.

$semihosting_vector

This variable controls the location of the breakpoint set by J-Link RDI to detect a

semihosted SWI. It is set to the SWI entry in the exception vector table () by default.
19.6.0.1 Using SWis in your application

If your application requires semihosting as well as having its own SWI handler, set
$semihosting_vector to an address in your SWI handler. This address must point to
an instruction that is only executed if your SWI handler has identified a call to a
semihosting SWI. All registers must already have been restored to whatever values
they had on entry to your SWI handler.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



465

Chapter 20
Support and FAQs

This chapter contains troubleshooting tips as well as solutions for common problems
which might occur when using J-Link / J-Trace. There are several steps you can take
before contacting support. Performing these steps can solve many problems and
often eliminates the need for assistance. This chapter also contains a collection of
frequently asked questions (FAQs) with answers.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



466 CHAPTER 20

20.1 Measuring download speed

20.1.1 Test environment

Support and FAQs

JLink.exe has been used for measurement performance. The hardware consisted of:

PC with 2.6 GHz Pentium 4, running Win2K
USB 2.0 port

USB 2.0 hub

J-Link

Target with ARM7 running at 50MHz

Below is a screenshot of JLink.exe after the measurement has been performed.

" Program Files'\SEGGER" JLinkARM_¥386% JLink.exe

SEGGER J-Link Commande» U3.86 {"?' for help>
Compiled Jun 27 2868 17:-42:43
DLL version U3.86, compiled Jun 27 2008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 206A8 18:35:51
Hardware: U6.DA
B I
UTarget = 3_274U
JTAG speed: 5 kH=z
Info: TotallRLen = 4. IRPrint = @xB1
Found 1 JTAG device. Total IRLen = 4:
Id of device HH: HAx3FAFAFAF
Found ARM with core Id BxIFBFAFBF (ARM?>

J-Link>zpeed 12008

JTAG speed: 12000 kH=

J-Link>testuwspeed

Speed test: Weiting 8 » 128kb into memory @ address BxB0000BBE
128 kByte written in 185ms * (YH6.6 kh-zec)

J-Link>

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



467

20.2 Troubleshooting

20.2.1 General procedure

If you experience problems with J-Link / J-Trace, you should follow the steps below to
solve these problems:

Close all running applications on your host system.

Disconnect the J-Link / J-Trace device from USB.

Disable power supply on the target.

Re-connect J-Link / J-Trace with the host system (attach USB cable).

Enable power supply on the target.

Try your target application again. If the problem remains continue the following

procedure.

7. Close all running applications on your host system again.

8. Disconnect the J-Link / J-Trace device from USB.

9. Disable power supply on the target.

10. Re-connect J-Link / J-Trace with the host system (attach the USB cable).

11. Enable power supply on the target.

12. Start JLink.exe.

13. If JgLink.exe displays the J-Link / J-Trace serial number and the target proces-
sor’s core ID, the J-Link / J-Trace is working properly and cannot be the cause of
your problem.

14. If the problem persists and you own an original product (not an OEM version),

see section Contacting support on page 469.

oUuhAwNE

20.2.2 Typical problem scenarios
J-Link / J-Trace LED is off

Meaning:
The USB connection does not work.
Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and
reconnecting it. Make sure that the connectors are firmly attached. Check the cable
connections on your J-Link / J-Trace and the host computer. If this does not solve the
problem, check if your cable is defective. If the USB cable is ok, try a different host
computer.

J-Link / J-Trace LED is flashing at a high frequency
Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.
Most likely reasons:

a.) Another program is already using J-Link / J-Trace.
b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnect-
ing and reconnecting it.

b.) If the LED blinks permanently, check the correct installation of the J-Link USB
driver. Deinstall and reinstall the driver as shown in chapter Setup on page 157.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



468 CHAPTER 20 Support and FAQs

J-Link/J-Trace does not get any connection to the target
Most likely reasons:

a.) The JTAG cable is defective.
b.) The target hardware is defective.

Remedy:

Follow the steps described in General procedure on page 467.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



469

20.3 Contacting support

Before contacting support, make sure you tried to solve your problem by following
the steps outlined in section General procedure on page 467. You may also try your
J-Link / J-Trace with another PC and if possible with another target system to see if it
works there. If the device functions correctly, the USB setup on the original machine
or your target hardware is the source of the problem, not J-Link / J-Trace.

If you need to contact support, send the following information to
support@segger.com:

A detailed description of the problem.

J-Link/J-Trace serial number.

Output of JLink.exe if available.

Your findings of the signal analysis.

Information about your target hardware (processor, board, etc.).

J-Link / J-Trace is sold directly by SEGGER or as OEM-product by other vendors. We
can support only official SEGGER products.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



470

CHAPTER 20 Support and FAQs

20.4 Frequently Asked Questions

Q:

Q:

Q:

Q:

Q:

Supported CPUs

Which CPUs are supported?
J-Link / J-Trace should work with any ARM7/9 and Cortex-M3 core. For a list of
supported cores, see section Supported CPU cores on page 48.

Converting data files

I want to download my application into flash memory using J-Link Commander but
my application is a *.hex data file and J-Link Commander supports *.bin files only.
How do I download it?

Please use the J-Flash (which is part of the J-Link software and documentation
package) software to convert your *.hex/*.mot/... file to a *.bin file. For data file
conversion, no J-Flash license is necessary.

Using J-Link in my application

I want to write my own application and use J-Link / J-Trace. Is this possible?
Yes. We offer a dedicated Software Developer Kit (SDK). See section J-Link Soft-
ware Developer Kit (SDK) on page 155 for further information.

Using DCC with J-Link

Can I use J-Link / J-Trace to communicate with a running target via DCC?
Yes. The DLL includes functions to communicate via DCC on cores which support
DCC, such as ARM7/9/11, Cortex A/R series.

Read status of JTAG pins

Can J-Link / J-Trace read back the status of the JTAG pins?

Yes, the status of all pins can be read. This includes the outputs of J-Link / J-Trace
as well as the supply voltage, which can be useful to detect hardware problems on
the target system.

J-Link support of ETM

Does J-Link support the Embedded Trace Macrocell (ETM)?
No. ETM requires another connection to the ARM chip and a CPU with built-in ETM.
Most current ARM7 / ARM9 chips do not have ETM built-in.

J-Link support of ETB

Does J-Link support the Embedded Trace Buffer (ETB)?
Yes. J-Link supports ETB. Most current ARM7 / ARM9 chips do not have ETB built-
in.

Registers on ARM 7 / ARM 9 targets

I'm running J-Link.exe in parallel to my debugger, on an ARM 7 target. I can read
memory okay, but the processor registers are different. Is this normal?

If memory on an ARM 7/9 target is read or written the processor registers are
modified. When memory read or write operations are performed, J-Link preserves
the register values before they are modified. The register values shown in the
debugger’s register window are the preserved ones. If a second instance, in this
case J-Link.exe, reads the processor registers, it reads the values from the hard-
ware, which are the modified ones. This is why it shows different register values.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



471

Chapter 21

Glossary

This chapter describes important terms used throughout this manual.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



472

CHAPTER 21 Glossary

Adaptive clocking

A technique in which a clock signal is sent out by J-Link / J-Trace. J-Link / J-Trace
waits for the returned clock before generating the next clock pulse. The technique
allows the J-Link / J-Trace interface unit to adapt to differing signal drive capabilities
and differing cable lengths.

Application Program Interface

A specification of a set of procedures, functions, data structures, and constants that
are used to interface two or more software components together.

Big-endian

Memory organization where the least significant byte of a word is at a higher address
than the most significant byte. See Little-endian.

Cache cleaning
The process of writing dirty data in a cache to main memory.
Coprocessor

An additional processor that is used for certain operations, for example, for floating-
point math calculations, signal processing, or memory management.

Dirty data

When referring to a processor data cache, data that has been written to the cache
but has not been written to main memory is referred to as dirty data. Only write-back
caches can have dirty data because a write-through cache writes data to the cache
and to main memory simultaneously. See also cache cleaning.

Dynamic Linked Library (DLL)

A collection of programs, any of which can be called when needed by an executing
program. A small program that helps a larger program communicate with a device
such as a printer or keyboard is often packaged as a DLL.

Embedded Trace Macrocell (ETM)

ETM is additional hardware provided by debuggable ARM processors to aid debugging
with trace functionality.

Embedded Trace Buffer (ETB)

ETB is a small, circular on-chip memory area where trace information is stored during
capture.

EmbeddedICE
The additional hardware provided by debuggable ARM processors to aid debugging.
Halfword

A 16-bit unit of information. Contents are taken as being an unsigned integer
unless otherwise stated.

Host

A computer which provides data and other services to another computer. Especially, a
computer providing debugging services to a target being debugged.

ICache
Instruction cache.
ICE Extension Unit

A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



473

ID
Identifier.
IEEE 1149.1

The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as
JTAG.

Image
An executable file that has been loaded onto a processor for execution.
In-Circuit Emulator (ICE)

A device enabling access to and modification of the signals of a circuit while that cir-
cuit is operating.

Instruction Register

When referring to a TAP controller, a register that controls the operation of the TAP.
IR

See Instruction Register.

Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.
Little-endian

Memory organization where the least significant byte of a word is at a lower address
than the most significant byte. See also Big-endian.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the
value that was most recently written to that location. Obtaining memory coherency is
difficult when there are multiple possible physical locations that are involved, such as
a system that has main memory, a write buffer, and a cache.

Memory management unit (MMU)

Hardware that controls caches and access permissions to blocks of memory, and
translates virtual to physical addresses.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an
MPU does not translate virtual addresses to physical addresses.

Multi-ICE
Multi-processor EmbeddedICE interface. ARM registered trademark.
RESET

Abbreviation of System Reset. The electronic signal which causes the target system
other than the TAP controller to be reset. This signal is also known as "nSRST"
"nSYSRST", "nRST", or "nRESET" in some other manuals. See also nTRST.

nTRST

Abbreviation of TAP Reset. The electronic signal that causes the target system TAP
controller to be reset. This signal is known as nICERST in some other manuals. See
also nSRST.

Open collector

A signal that may be actively driven LOW by one or more drivers, and is otherwise
passively pulled HIGH. Also known as a "wired AND" signal.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



474

CHAPTER 21 Glossary

Processor Core

The part of a microprocessor that reads instructions from memory and executes
them, including the instruction fetch unit, arithmetic and logic unit, and the register
bank. It excludes optional coprocessors, caches, and the memory management unit.

Program Status Register (PSR)

Contains some information about the current program and some information about
the current processor state. Therefore often referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction to the Saved
PSR (SPSR). The SPSR holds the value the PSR had when the current function was
called, and which will be restored when control is returned.

Remapping

Changing the address of physical memory or devices after the application has started
executing. This is typically done to make RAM replace ROM once the initialization has
been done.

Remote Debug Interface (RDI)

RDI is an open ARM standard procedural interface between a debugger and the
debug agent. The widest possible adoption of this standard is encouraged.

RTCK

Returned TCK. The signal which enables Adaptive Clocking.
RTOS

Real Time Operating System.

Scan Chain

A group of one or more registers from one or more TAP controllers connected
between TDI and TDO, through which test data is shifted.

Semihosting

A mechanism whereby the target communicates I/0 requests made in the application
code to the host system, rather than attempting to support the I/0 itself.

SWiI

Software Interrupt. An instruction that causes the processor to call a programer-
specified subroutine. Used by ARM to handle semihosting.

TAP Controller

Logic on a device which allows access to some or all of that device for test purposes.
The circuit functionality is defined in IEEE1149.1.

Target

The actual processor (real silicon or simulated) on which the application program is
running.

TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and
TDO.

TDI

The electronic signal input to a TAP controller from the data source (upstream). Usu-
ally, this is seen when connecting the J-Link / J-Trace Interface Unit to the first TAP
controller.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



475

TDO

The electronic signal output from a TAP controller to the data sink (downstream).
Usually, this is seen connecting the last TAP controller to the J-Link / J-Trace Inter-
face Unit.

Test Access Port (TAP)

The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO,
and nTRST (optional).

Transistor-Transistor logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or
zero. LSI and VLSI logic often used TTL with HIGH logic level approaching +5V and
LOW approaching OV.

Watchpoint

A location within the image that will be monitored and that will cause execution to
stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless
otherwise stated.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



476 CHAPTER 21 Glossary

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



477

Chapter 22

Literature and references

This chapter lists documents, which we think may be useful to gain deeper under-
standing of technical details.

J-Link / J-Trace (UM08001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



478

CHAPTER 22

Literature and references

Reference Title Comments
This document defines the ETM
Embedded Trace Macrocell™ standard, including signal protocol
[ETM] Architecture Specification, and physical interface.
ARM IHI 0014] It is publicly available from ARM
(www.arm.com).
This document describes ARM’s
RealView® ICE and RealView |realview ice emulator and require-
[RVI] Trace User Guide, ARM DUI ments on the target side.
0155C It is publicly available from ARM
(www.arm.com).

Table 22.1: Literature and References

J-Link / J-Trace (UM08001)

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



479

IndeXx

A

Adaptive clocking ......ccciiiiiiiiiiiie 472
Application Program Interface .............. 472
B

Big-endian ..o 472
C

Cache cleaning ......ccoveeiiiiiiiiiiinanens 472
(6] o] o ol=T-1=To ] S 472
D

Dirty data .....coooiiiii 472
Dynamic Linked Library (DLL) .............. 472
E

Embedded Trace Buffer (ETB) ....... 443, 472
Embedded Trace Macrocell (ETM) ..439, 472
EmbeddedICE .......cooviiiiiiiiiiiiie s 472
G

General Query Packets .........cceviieennne. 110
H

Halfword ....ovieiii e 472
HOSE e 472
I

ICache . 472
ICE Extension Unit .......ccoovviiiniiiinnnns. 472
D e 473
IEEE 1149.1 .. rieenee e 473
Image .o 473
In-Circuit Emulator .......ccocviiiiiinnnen. 473
Instruction Register .........ccoviviiiiiiiinnns 473
IR 473
J

J-Flash ARM ... 133

J-Link / J-Trace (UM08001)

J-Link
Adapters ... 434
Developer Pack DLL .......ccoviiviininnnne, 155
Supported chips 248-249, 264-265, 272,
282, 286
J-Link Commander ........ccoevviiiviiieiinnnnns 71
J-Link GDB Server ....cccooeviiiiiiiiiiininnnnnn. 92
J-LINK RDI vt 150
J-Link STR9 Commander ............cevvvenns 151
J-Link TCP/IP Server .....cccvevvviieinnninnnns 128
J-Mem Memory Viewer .......ccocvviiivennnns 132
Joint Test Action Group (JTAG) ............. 473
JTAG i 436
TAP controller ....c.covvivviiiiiiiiiinene 437
JTAGLOAd v naens 149
L
Little-endian .......ccoovviiiiiiiiiiiii i 473
M
Memory COherency .......cccvvevviieiiinnnnnnn. 473
Memory management unit (MMU) ........ 473
Memory Protection Unit (MPU) ............. 473
Menu structure ... 302
MUItI-ICE o e e 473
N
NTRST e 418, 473
o
Open collector ....coovvviiiiiiiiiiiiiieins 473
P
Processor COre ..vvivviviirerinnrinnninennnnns 474
Program Status Register (PSR) ............ 474
R
RDI SUPPOIt i e e 150
Remapping ..cocvviiiiiiii i 474
Remote Debug Interface (RDI) ............. 474
RESET ittt e e e e neeas 473

© 2004-2017 SEGGER Microcontroller GmbH & Co. KG



480 Index

RTCK i e 474
RTOS i e 474
S
Scan Chain ..oiviiiiiiic 474
Semihosting ......coovviiiiii 474
Server command
CIrbp e 100
CPLS 100
DisableChecks .......ccooviiiiiiiniiniinnns 100
EnableChecks ......ccoviiiiiiiiiiiiiienns 101
flash breakpoints ...........ccoceiiiniinnt. 101
o 101
halt oo 102
jtagconf 102
MemUL6 ..o 103
MemMUS . 102
T 103
Fesel oo 104
SetBP i 104-106
SIEED i 107
SPEEA it 107
SEEP i 107
waithalt ... 109
1T o= 109
SetDbgPowerDownOnClose .......... 235, 238
SetSysPowerDownOnldle .................. 239
STRACE .iiiiiiiiiiiiii e ea s 111
SUPPOrt 465, 471
Supported flash devices 250-251, 257, 266
SW i 474
Syntax, conventions used ............ccoeeneee. 15
T
TabS oo 193
TAP Controller ....ccvviviiiiiiiiiiiiiiciee 474
Target .oovviii e 474
TCK it 418, 474
TCP/IP e 306
TDI i 418, 474
TDO i 418, 475
Test Access Port (TAP) ..ocvvviviiiiiiiinnnnnns 475
Transistor-transistor logic (TTL) ........... 475
U
USB it 306
W
Watchpoint ... 475
WOrd o e 475

J-Link / J-Trace (UMOQ8001) © 2004-2017 SEGGER Microcontroller GmbH & Co. KG



	About this document
	Table of Contents
	Introduction
	1.1 Requirements
	1.2 Supported OS
	1.3 J-Link / J-Trace models
	1.3.1 Model comparison
	1.3.2 J-Link BASE
	1.3.3 J-Link PLUS
	1.3.4 J-Link ULTRA+
	1.3.5 J-Link PRO
	1.3.6 J-Link Lite ARM
	1.3.7 J-Link Lite CortexM
	1.3.8 J-Trace ARM
	1.3.9 J-Trace for Cortex-M
	1.3.10 Flasher ARM

	1.4 Common features of the J-Link product family
	1.5 Supported CPU cores
	1.6 Built-in intelligence for supported CPU-cores
	1.6.1 Intelligence in the J-Link firmware
	1.6.2 Intelligence on the PC-side (DLL)
	1.6.3 Firmware intelligence per model

	1.7 Supported IDEs

	Licensing
	2.1 Components requiring a license
	2.2 License types
	2.2.1 Built-in license
	2.2.2 Key-based license

	2.3 Legal use of SEGGER J-Link software
	2.3.1 Use of the software with 3rd party tools

	2.4 Original SEGGER products
	2.4.1 J-Link BASE
	2.4.2 J-Link PLUS
	2.4.3 J-link ULTRA+
	2.4.4 J-Link PRO
	2.4.5 J-Trace for Cortex-M
	2.4.6 Flasher ARM
	2.4.7 Flasher RX
	2.4.8 Flasher PPC

	2.5 J-Link OEM versions
	2.5.1 Analog Devices: mIDASLink
	2.5.2 Atmel: SAM-ICE
	2.5.3 Digi: JTAG Link
	2.5.4 IAR: J-Link / J-Link KS
	2.5.5 IAR: J-Link Lite
	2.5.6 IAR: J-Trace
	2.5.7 NXP: J-Link Lite LPC Edition
	2.5.8 SEGGER: J-Link Lite ARM

	2.6 J-Link OBs
	2.7 Illegal Clones

	J-Link software and documentation package
	3.1 Software overview
	3.2 J-Link Commander (Command line tool)
	3.2.1 Commands
	3.2.2 Command line options
	3.2.3 Using command files

	3.3 J-Link GDB Server
	3.3.1 J-Link GDB Server CL (Windows, Linux, Mac)
	3.3.2 Debugging with J-Link GDB Server
	3.3.3 Supported remote (monitor) commands
	3.3.4 SEGGER-specific GDB protocol extensions
	3.3.5 Command line options
	3.3.6 Program termination
	3.3.7 Semihosting

	3.4 J-Link Remote Server
	3.4.1 List of available commands
	3.4.2 Tunneling mode

	3.5 J-Mem Memory Viewer
	3.6 J-Flash
	3.7 J-Link RTT Viewer
	3.7.1 RTT Viewer Startup
	3.7.2 Connection Settings
	3.7.3 The Terminal Tabs
	3.7.4 Sending Input
	3.7.5 Logging Terminal output
	3.7.6 Logging Data
	3.7.7 Command line options
	3.7.8 Menus and Shortcuts
	3.7.9 Using "virtual" Terminals in RTT
	3.7.10 Using Text Control Codes

	3.8 J-Link SWO Viewer
	3.8.1 Usage
	3.8.2 List of available command line options
	3.8.3 Configure SWO output after device reset
	3.8.4 Target example code for terminal output

	3.9 SWO Analyzer
	3.10 JTAGLoad (Command line tool)
	3.11 J-Link RDI (Remote Debug Interface)
	3.11.1 Flash download and flash breakpoints

	3.12 Processor specific tools
	3.12.1 J-Link STR91x Commander (Command line tool)
	3.12.2 J-Link STM32 Unlock (Command line tool)

	3.13 J-Link Software Developer Kit (SDK)

	Setup
	4.1 Installing the J-Link software and documentation pack
	4.1.1 Setup procedure

	4.2 Setting up the USB interface
	4.2.1 Verifying correct driver installation
	4.2.2 Uninstalling the J-Link USB driver

	4.3 Setting up the IP interface
	4.3.1 Configuring J-Link using J-Link Configurator
	4.3.2 Configuring J-Link using the webinterface

	4.4 FAQs
	4.5 J-Link Configurator
	4.5.1 Configure J-Links using the J-Link Configurator

	4.6 J-Link USB identification
	4.6.1 Connecting to different J-Links connected to the same host PC via USB

	4.7 Using the J-Link DLL
	4.7.1 What is the JLink DLL?
	4.7.2 Updating the DLL in third-party programs
	4.7.3 Determining the version of JLink DLL
	4.7.4 Determining which DLL is used by a program

	4.8 Getting started with J-Link and ARM DS-5
	4.8.1 Replacing the RDDI DLL manually
	4.8.2 Using J-Link in DS-5 Development Studio


	Working with J-Link and J-Trace
	5.1 Connecting the target system
	5.1.1 Power-on sequence
	5.1.2 Verifying target device connection
	5.1.3 Problems

	5.2 Indicators
	5.2.1 Main indicator
	5.2.2 Input indicator
	5.2.3 Output indicator

	5.3 JTAG interface
	5.3.1 Multiple devices in the scan chain
	5.3.2 Sample configuration dialog boxes
	5.3.3 Determining values for scan chain configuration
	5.3.4 JTAG Speed

	5.4 SWD interface
	5.4.1 SWD speed
	5.4.2 SWO

	5.5 Multi-core debugging
	5.5.1 How multi-core debugging works
	5.5.2 Using multi-core debugging in detail
	5.5.3 Things you should be aware of

	5.6 Connecting multiple J-Links / J-Traces to your PC
	5.6.1 How does it work?

	5.7 J-Link control panel
	5.7.1 Tabs

	5.8 Reset strategies
	5.8.1 Strategies for ARM 7/9 devices
	5.8.2 Strategies for Cortex-M devices

	5.9 Using DCC for memory access
	5.9.1 What is required?
	5.9.2 Target DCC handler
	5.9.3 Target DCC abort handler

	5.10 The J-Link settings file
	5.10.1 SEGGER Embedded Studio
	5.10.2 Keil MDK-ARM (uVision)
	5.10.3 IAR EWARM
	5.10.4 Mentor Sourcery CodeBench for ARM

	5.11 J-Link script files
	5.11.1 Actions that can be customized
	5.11.2 Script file API functions
	5.11.3 Global DLL variables
	5.11.4 Global DLL constants
	5.11.5 Script file language
	5.11.6 Script file writing example
	5.11.7 Executing J-Link script files

	5.12 Command strings
	5.12.1 List of available commands
	5.12.2 Using command strings

	5.13 Switching off CPU clock during debug
	5.14 Cache handling
	5.14.1 Cache coherency
	5.14.2 Cache clean area
	5.14.3 Cache handling of ARM7 cores
	5.14.4 Cache handling of ARM9 cores

	5.15 Virtual COM Port (VCOM)
	5.15.1 Configuring Virtual COM Port


	Flash download
	6.1 Introduction
	6.2 Licensing
	6.3 Supported devices
	6.4 Setup for various debuggers (internal flash)
	6.4.1 IAR Embedded Workbench
	6.4.2 Keil MDK
	6.4.3 Mentor Sourcery CodeBench
	6.4.4 J-Link GDB Server
	6.4.5 J-Link Commander
	6.4.6 J-Link RDI

	6.5 Setup for various debuggers (CFI flash)
	6.5.1 IAR Embedded Workbench / Keil MDK
	6.5.2 J-Link GDB Server
	6.5.3 J-Link commander

	6.6 Setup for various debuggers (SPIFI flash)
	6.7 QSPI flash support
	6.7.1 Setup the DLL for QSPI flash download

	6.8 Using the DLL flash loaders in custom applications
	6.9 Debugging applications that change flash contents at runtime

	Flash breakpoints
	7.1 Introduction
	7.2 Licensing
	7.2.1 Free for evaluation and non-commercial use

	7.3 Supported devices
	7.4 Setup & compatibility with various debuggers
	7.4.1 Setup
	7.4.2 Compatibility with various debuggers

	7.5 Flash Breakpoints in QSPI flash
	7.5.1 Setup

	7.6 FAQ

	Monitor Mode Debugging
	8.1 Introduction
	8.2 Enable Monitor Debugging
	8.2.1 GDB based debug solutions
	8.2.2 IAR EWARM
	8.2.3 Keil MDK-ARM (uVision)
	8.2.4 J-Link Commander
	8.2.5 Generic way of enabling

	8.3 Availability and limitations of monitor mode
	8.3.1 Cortex-M3
	8.3.2 Cortex-M4

	8.4 Monitor code
	8.5 Debugging interrupts
	8.6 Having servicing interrupts in debug mode
	8.7 Forwarding of Monitor Interrupts
	8.8 Target application performs reset (Cortex-M)

	Low Power Debugging
	9.1 Introduction
	9.2 Activating low power mode handling for J-Link
	9.2.1 SEGGER Embedded Studio
	9.2.2 Keil MDK-ARM
	9.2.3 IAR EWARM
	9.2.4 Mentor Sourcery CodeBench for ARM
	9.2.5 GDB + GDBServer based setups (Eclipse etc.)

	9.3 Restrictions

	Open Flashloader
	10.1 Introduction
	10.2 General procedure
	10.3 Adding a new device
	10.4 Editing/Extending an Existing Device
	10.5 XML Tags and Attributes
	10.5.1 <Database>
	10.5.2 <Device>
	10.5.3 <ChipInfo>
	10.5.4 <FlashBankInfo>

	10.6 Example XML file
	10.7 Add. Info / Considerations / Limitations
	10.7.1 CMSIS Flash Algorithms Compatibility
	10.7.2 Customized Flash Banks
	10.7.3 Supported Cores
	10.7.4 Information for Silicon Vendors
	10.7.5 Template Projects and How To’s


	J-Flash SPI
	11.1 Introduction
	11.1.1 What is J-Flash SPI?
	11.1.2 J-Flash SPI CL (Windows, Linux, Mac)
	11.1.3 Features
	11.1.4 Requirements

	11.2 Licensing
	11.2.1 Introduction

	11.3 Getting Started
	11.3.1 Setup
	11.3.2 Using J-Flash SPI for the first time
	11.3.3 Menu structure

	11.4 Settings
	11.4.1 Project Settings
	11.4.2 Global Settings

	11.5 Command Line Interface
	11.5.1 Overview
	11.5.2 Command line options
	11.5.3 Batch processing
	11.5.4 Programming multiple targets in parallel

	11.6 Create a new J-Flash SPI project
	11.6.1 Creating a new J-Flash SPI project

	11.7 Custom Command Sequences
	11.7.1 Init / Exit steps
	11.7.2 Example
	11.7.3 J-Flash SPI Command Line Version

	11.8 Device specifics
	11.8.1 SPI flashes with multiple erase commands

	11.9 Target systems
	11.9.1 Which flash devices can be programmed?

	11.10 Performance
	11.10.1 Performance values

	11.11 Background information
	11.11.1 SPI interface connection

	11.12 Support
	11.12.1 Troubleshooting
	11.12.2 Contacting support


	RDI
	12.1 Introduction
	12.1.1 Features

	12.2 Licensing
	12.3 Setup for various debuggers
	12.3.1 IAR Embedded Workbench IDE
	12.3.2 ARM AXD (ARM Developer Suite, ADS)
	12.3.3 ARM RVDS (RealView developer suite)
	12.3.4 GHS MULTI
	12.3.5 KEIL MDK (µVision IDE)

	12.4 Configuration
	12.4.1 Configuration file JLinkRDI.ini
	12.4.2 Using different configurations
	12.4.3 Using mutliple J-Links simulatenously
	12.4.4 Configuration dialog

	12.5 Semihosting
	12.5.1 Unexpected / unhandled SWIs


	RTT
	13.1 Introduction
	13.2 How RTT works
	13.2.1 Target implementation
	13.2.2 Locating the Control Block
	13.2.3 Internal structures
	13.2.4 Requirements
	13.2.5 Performance
	13.2.6 Memory footprint

	13.3 RTT Communication
	13.3.1 RTT Viewer
	13.3.2 RTT Client
	13.3.3 RTT Logger
	13.3.4 RTT in other host applications

	13.4 Implementation
	13.4.1 API functions
	13.4.2 Configuration defines

	13.5 ARM Cortex - Background memory access
	13.6 Example code
	13.7 FAQ

	Trace
	14.1 Introduction
	14.1.1 What is backtrace?
	14.1.2 What is streaming trace?
	14.1.3 What is code coverage?
	14.1.4 What is code profiling?

	14.2 Tracing via trace pins
	14.2.1 Cortex-M specifics
	14.2.2 Trace signal timing
	14.2.3 Adjusting trace signal timing on J-Trace
	14.2.4 J-Trace models with support for streaming trace

	14.3 Tracing with on-chip trace buffer
	14.3.1 CPUs that provide tracing via pins and on-chip buffer

	14.4 Target devices with trace support
	14.5 Streaming trace
	14.5.1 Download and execution address differ
	14.5.2 Do streaming trace without prior download


	Device specifics
	15.1 Analog Devices
	15.1.1 ADuC7xxx

	15.2 ATMEL
	15.2.1 AT91SAM7
	15.2.2 AT91SAM9

	15.3 DSPGroup
	15.4 Ember
	15.5 Energy Micro
	15.6 Freescale
	15.6.1 Kinetis family

	15.7 Fujitsu
	15.8 Itron
	15.9 Infineon
	15.10 Luminary Micro
	15.10.1 Unlocking LM3Sxxx devices

	15.11 NXP
	15.11.1 LPC ARM7-based devices
	15.11.2 Reset (Cortex-M3 based devices)
	15.11.3 LPC288x flash programming
	15.11.4 LPC43xx:

	15.12 OKI
	15.13 Renesas
	15.14 Samsung
	15.14.1 S3FN60D

	15.15 Silicon Labs
	15.15.1 EFM32 series devices

	15.16 ST Microelectronics
	15.16.1 STR91x
	15.16.2 STM32F10xxx
	15.16.3 STM32F2xxx
	15.16.4 STM32F4xxx

	15.17 Texas Instruments
	15.17.1 AM335x
	15.17.2 AM35xx / AM37xx
	15.17.3 OMAP4430
	15.17.4 OMAP-L138
	15.17.5 TMS470M
	15.17.6 OMAP3530
	15.17.7 OMAP3550

	15.18 Toshiba

	Target interfaces and adapters
	16.1 20-pin J-Link connector
	16.1.1 Pinout for JTAG
	16.1.2 Pinout for SWD
	16.1.3 Pinout for SWD + Virtual COM Port (VCOM)
	16.1.4 Pinout for SPI

	16.2 38-pin Mictor JTAG and Trace connector
	16.2.1 Connecting the target board
	16.2.2 Pinout
	16.2.3 Assignment of trace information pins between ETM architecture versions
	16.2.4 Trace signals

	16.3 19-pin JTAG/SWD and Trace connector
	16.3.1 Target power supply

	16.4 9-pin JTAG/SWD connector
	16.5 Reference voltage (VTref)
	16.6 Adapters

	Background information
	17.1 JTAG
	17.1.1 Test access port (TAP)
	17.1.2 Data registers
	17.1.3 Instruction register
	17.1.4 The TAP controller

	17.2 Embedded Trace Macrocell (ETM)
	17.2.1 Trigger condition
	17.2.2 Code tracing and data tracing
	17.2.3 J-Trace integration example - IAR Embedded Workbench for ARM

	17.3 Embedded Trace Buffer (ETB)
	17.4 Flash programming
	17.4.1 How does flash programming via J-Link / J-Trace work?
	17.4.2 Data download to RAM
	17.4.3 Data download via DCC
	17.4.4 Available options for flash programming

	17.5 J-Link / J-Trace firmware
	17.5.1 Firmware update
	17.5.2 Invalidating the firmware


	Designing the target board for trace
	18.1 Overview of high-speed board design
	18.1.1 Avoiding stubs
	18.1.2 Minimizing Signal Skew (Balancing PCB Track Lengths)
	18.1.3 Minimizing Crosstalk
	18.1.4 Using impedance matching and termination

	18.2 Terminating the trace signal
	18.2.1 Rules for series terminators

	18.3 Signal requirements

	Semihosting
	19.1 Introduction
	19.1.1 Advantages
	19.1.2 Disadvantages

	19.2 Debugger support
	19.3 Implementation
	19.3.1 SVC instruction
	19.3.2 Breakpoint instruction
	19.3.3 J-Link GDBServer optimized version

	19.4 Communication protocol
	19.4.1 Register R0
	19.4.2 Command SYS_OPEN (0x01)
	19.4.3 Command SYS_CLOSE (0x02)
	19.4.4 Command SYS_WRITEC (0x03)
	19.4.5 Command SYS_WRITE0 (0x04)
	19.4.6 Command SYS_WRITE (0x05)
	19.4.7 Command SYS_READ (0x06)
	19.4.8 Command SYS_READC (0x07)
	19.4.9 Command SYS_ISTTY (0x09)
	19.4.10 Command SYS_SEEK (0x0A)
	19.4.11 Command SYS_FLEN (0x0C)
	19.4.12 Command SYS_REMOVE (0x0E)
	19.4.13 Command SYS_RENAME (0x0F)
	19.4.14 Command SYS_GET_CMDLINE (0x15)
	19.4.15 Command SYS_EXIT (0x18)

	19.5 Enabling semihosting in J-Link GDBServer
	19.5.1 SVC variant
	19.5.2 Breakpoint variant
	19.5.3 J-Link GDBServer optimized variant

	19.6 Enabling Semihosting in J-Link RDI + AXD

	Support and FAQs
	20.1 Measuring download speed
	20.1.1 Test environment

	20.2 Troubleshooting
	20.2.1 General procedure
	20.2.2 Typical problem scenarios

	20.3 Contacting support
	20.4 Frequently Asked Questions

	Glossary
	Literature and references
	Index

