

ARM® RealView Developer Suite
to

ARM IAR Embedded Workbench®
Migration Guide

Part no: EWM-RVARM-1b

 2

Introduction
This guide examines the differences between using the RealView ARM® development tools and the IAR Systems ARM
development tools. The issues related to assembler conversion range from basic topics such as command line options, system
segment/area names, listing/output options, code generation options, register naming differences, assembler operators, assembler
directives, pseudo-instructions, and other assembler differences, to advanced topics such as predefined symbols, conditional
assembly, macros, and modules. Linker related topics such as command line options and image memory mapping are also
documented.

The features, options, descriptions, and examples specified in the document are based on tools associated with ARM RealView
Developer Suite Version 2.2 and ARM IAR Embedded Workbench Version 4.20A.

Information about the RealView development tools was obtained from the RealView Compilation Tools Version 2.2 Assembler Guide
(ARM DUI 0204E) and the RealView Compilation Tools Version 2.2 Linker and Utilities Guide (ARM DUI 0206E). Information
about the IAR Systems development tools is based on the ARM IAR Assembler Reference Guide (AARM-6) and the IAR Linker and
Library Tools Reference Guide (XLINK-459I).

IAR Embedded Workbench IDE overview
The IAR Embedded Workbench IDE consists of tools such as a compiler, assembler, linker, library builder, librarian, editor, project
manager, command line interface, debugger, and simulator.

RealView Developer Suite includes a compilation tool set (RealView Compilation Tools (RVCT), which includes a compiler,
assembler, linker, librarian, editor, project manager and command line interface), debugger and an Instruction Set Simulator (ISS).

Equivalent tools from both development environments are listed in table 1 together with the command line commands for invoking
them:

Tools RealView Developer Suite IAR Embedded Workbench IDE
Compiler RVCT C/C++ compiler, armcc IAR C/C++ Compiler, iccarm
Assembler RVCT ARM assembler, armasm IAR ARM Assembler, aarm
Linker RVCT ARM linker, armlink IAR XLINK Linker, xlink
Library builder - IAR XAR Library Builder, xar
Librarian RVCT ARM librarian, armar IAR XLIB Librarian, xlib
Debugger RV Debugger IAR C-SPY® Debugger
Simulator RV ARMulator ISS IAR C-SPY® Simulator
 1. RealView Developer Suite and IAR Embedded Workbench IDE equivalents

The ARM IAR C/C++ Compiler features efficient code generation with debug information, C/C++ language support facilities and
type checking.

The ARM IAR Assembler features a built-in C preprocessor and supports conditional assembly.

The IAR XLINK Linker links object files produced by the compiler or assembler to produce machine code for the ARM core, while
the IAR XAR Library Builder and IAR XLIB Librarian allow manipulation of library object files.

The IAR C-SPY® Debugger is a high-level language debugger that is integrated into the IDE, so corrections are made directly in the
same source code window used to control the debugging.

TOOLS COMPARISON

The primary difference between the tool sets is the level of integration of the debugger with the rest of the IDE. In IAR Embedded
Workbench, the C-SPY Debugger is completely integrated with the IDE, whereas in RealView Developer Suite, the RV Debugger is
more standalone. However, essential project management options and tools, and make/build/debug menus are similar.

General debugger features like source and disassembly level debugging, source stepping, setting breakpoints, variable, register and
expression monitoring/watching, call stack information and facilities for third-party extensions (RTOS awareness, simulation
modules, emulator drivers, etc.) are available in both tool sets. Both debugger text editors provide typical utilities such as colored
keywords and search and replace.

For Microsoft® Windows®, a features-equivalent RealView Developer Suite editor is Metrowerks™ Codewarrior™. Project files
created with Codewarrior have the filename extension .mcp, compared to RealView Developer Suite project files that have the
extension .prj. Note that if you migrate from RealView Developer Suite to Codewarrior tools or vice versa, the project file will
need to be re-created and relevant source files re-added.

 3

Getting started
This section discusses how to get started with converting C and assembler projects from RealView Developer Suite to IAR
Embedded Workbench.

Filename extensions
In RealView Developer Suite, projects list all associated source files required by the target application. These project files have a
.prj filename extension. In IAR Embedded Workbench, workspaces are used for organizing multiple projects. This is useful when
you are simultaneously managing several related projects. Workspace files have the filename extension .eww, and project files have
the extension .ewp in IAR Embedded Workbench.

The filename extensions of C source and header files are .c and .h, respectively, in both RealView Developer Suite and IAR
Embedded Workbench, which includes standard library files and user-specific files.

The filename extension of assembler source files in RealView Developer Suite is .s. IAR Embedded Workbench uses .s79 by
default, but in addition accepts the .s extension.

The object files produced by the compiler or assembler have the filename extension .o (in RealView Developer Suite) or .r79 (in
IAR Embedded Workbench.

Converting assembler source files
The guidelines in the following sections describe how to accurately and systematically convert assembler source files from RealView
Developer Suite to IAR Embedded Workbench.

BASIC ASSEMBLER CONVERSION

For basic assembler conversion, use the following steps, shown with a simple example:

1) Redefine system segments and areas.
Before step 1:
 AREA test,CODE
 .
index RN 9
 LDR r0, [index,#4]
 .
 LDR r1,=&FF00
 .
 AREA hash,DATA
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value || 0xF9
 .
 END

After step 1:
 RSEG test:CODE:NOROOT(2)
 .
index RN 9
 LDR r0, [index,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value || 0xF9
 .
 END

 4

2) Remove use of the RealView Developer Suite RN directive. Rename registers (if required).

Before step 2:
 RSEG test:CODE:NOROOT(2)
 .
index RN 9
 LDR r0, [index,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value || 0xF9
 .
 END

After step 2:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value || 0xF9
 .
 END

3) Modify unary and binary assembler operators, while noting operator precedence. The example shows the modification of the
bitwise OR operator from || (in RealView Developer Suite) to | (in IAR Embedded Workbench).

Before step 3:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value || 0xF9
 .
 END

After step 3:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value | 0xF9
 .
 END

 5

4) Modify assembler directives

Before step 4:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DCFD 12.3
 .
value EQU 8
 LDR r5,=value :OR: 0xF9
 .
 END

After step 4:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DF64 12.3
 .
value EQU 8
 LDR r5,=value :OR: 0xF9
 .
 END

5) Modify assembler symbols, numeric literals and numeric expressions (if required). Note that assembler pseudo-instructions and
labels do not need to be modified. The example below shows the modification of a numeric literal.

Before step 5:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=&FF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DF64 12.3
 .
value EQU 8
 LDR r5,=value :OR: 0xF9
 .
 END

After step 5:
 RSEG test:CODE:NOROOT(2)
 .
 LDR r0, [r9,#4]
 .
 LDR r1,=0xFF00
 .
 RSEG hash:DATA:NOROOT(2)
 .
 DF64 12.3
 .
value EQU 8
 LDR r5,=value :OR: 0xF9
 .
 END

 6

COMPLEX ASSEMBLER CONVERSION

For more complex assembler conversions, follow the steps outlined below. (Detailed descriptions and associated examples have been
provided in the section Advanced conversion on page 16.)

1) Modify predefined symbols.

2) Modify conditional assembly directives.

3) Convert macros.

4) Create modules (if required).

Makefiles
The following steps describe the method of converting makefiles from RealView Developer Suite to IAR Embedded Workbench. A
simple example of a makefile conversion is provided.

1) Change the assembler to use from armasm (RealView Developer Suite) to aarm (IAR Embedded Workbench)

Before step 1:
#Assembler to use
AS=armasm
#Options to pass to the assembler
AFLAGS=-g --bigend --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

After step 1:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-g --bigend --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

2) Modify command line options. The example shows how to change the -g option used for generating debug information in
RealView Developer Suite to the equivalent option in IAR Embedded Workbench, -r.

Before step 2:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-g --bigend --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

After step 2:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-r --bigend --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

 7

3) Modify code generation options. The example shows how to change the RealView Developer Suite option for generating big-
endian ordered code and data to the equivalent option in IAR Embedded Workbench.

Before step 3:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-r --bigend --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

After step 3:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-r --endian big --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

4) Modify listing/output options. The example shows how to change the RealView Developer Suite option for producing a listing
output file to the equivalent option in IAR Embedded Workbench.

Before step 4:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-r --endian big --list=test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

After step 4:
#Assembler to use
AS=aarm
#Options to pass to the assembler
AFLAGS=-r --endian big -l test

hello.o: hello.s
 $(AS) $(AFLAGS) hello.s

clean:
 rm -rf *.o

Linker Files
Converting linker files from RealView Developer Suite to IAR Embedded Workbench is similar to the conversion of makefiles.
Refer to the section Linker and other tools on page 19 for a detailed description of linker options and the memory mapping
mechanism.

Follow these steps:

1) Modify linker command line options.

2) Change the memory mapping method from using scatter loading (RealView Developer Suite) to segment control (IAR
Embedded Workbench).

 8

Migration reference
This section lists the differences in assembler, compiler, and linker options between ARM® RealView Developer Suite and ARM
IAR Embedded Workbench®.

Assembler conversion
In ARM RealView Developer Suite, the assembler is called armasm, while in ARM IAR Embedded Workbench, the assembler is
called aarm.

COMMON ASSEMBLER COMMAND LINE OPTIONS

The following table lists the commonly used command line options.

RealView IAR Description
--apcs [qualifiers] No equivalent Specifies which Procedure Call Standard for the ARM Architecture (AAPCS) that is

being used
--bigend or --bi -e Generates code in big-endian byte order
--bigend or --bi,
--littleend or --li

--
endian{little|l|big|b} Specifies the byte order of the generated code and data

--cpu name --cpu name Specifies the target CPU or core
-i dir [,dir]... -Iprefix Adds directories to the include file search path
-g -r[en] Instructs the assembler to generate debug information; -re includes the full

source file into the object file and -rn generates an object file without source
information

--list [filename] -l filename Instructs the assembler to generate a listing
-m No equivalent Instructs the assembler to write source file dependency lists to stdout
-o filename -o filename Sets the output object filename
--via file -f extend.xcl Instructs the assembler to open and read command line arguments from a file
--xref or -x -x{DI2} Instructs the assembler to list cross-reference information; In ARM IAR

Embedded Workbench, -xD includes #define references, -xI includes
internal symbols and -x2 includes dual line spacing

 2. Common command line options in RealView Developer Suite and ARM IAR Embedded Workbench

DEFINING SYSTEM SEGMENTS/AREAS

System segments and areas are defined with the AREA directive in RealView Developer Suite. In ARM IAR Embedded Workbench,
the equivalent directive is called RSEG.

In ARM IAR Embedded Workbench, ORG is used to set the program location counter of the current segment to the value of an
expression. There is no support for ORG in RealView Developer Suite. Instead, RealView Developer Suite uses either the armlink
option --first or scatter loading.

The example below compares the methods of defining system segments/areas in RealView Developer Suite and ARM IAR
Embedded Workbench.

RealView IAR Description
AREA test,CODE RSEG test:CODE:NOROOT(2) ;Assembles a new code section called test
. .
MOV R0,#10 MOV R0, #10 ;Set up a parameter
LDR R3,=0x1234 LDR R3,=0x1234 ;Load 0x1234 into register R3
. .
. .
END END ;End of source file
 3. Defining system segments/areas in RealView Developer Suite and ARM IAR Embedded Workbench

LISTING/OUTPUT OPTIONS

In both RealView Developer Suite and ARM IAR Embedded Workbench, the -o command line option sets the filename to be used
for the output object file. If no filename argument (or extension) is defined, the assembler creates an object filename of the form
inputfilename.o (in RealView Developer Suite) or inputfilename.r79 (in ARM IAR Embedded Workbench).

In order to instruct the assembler to generate a detailed list file of the assembler code it produced, the --list option in RealView
Developer Suite or the -l option in ARM IAR Embedded Workbench can be used. By default, the assembler does not generate a list
file.

The behavior of --list (in RealView Developer Suite) and -l (in IAR) can be controlled with the cross-reference option. In
RealView Developer Suite, the --xref (or -x) command line option instructs the assembler to list cross-reference information
about where symbols were defined and where they were used, both inside and outside macros. In comparison, the -x option in IAR
Embedded Workbench makes the assembler include a cross-reference table at the end of the list file. Additionally, IAR Embedded

 9

Workbench provides the following parameters: -xD for inclusion of #define symbols, -xI for inclusion of internal symbols and -
x2 for inclusion of dual line spacing.

CODE GENERATION OPTIONS

In RealView Developer Suite, the --apcs command line option can be used to specify the attributes of code sections. There is no
equivalent command line option in IAR Embedded Workbench. Valid qualifiers for --apcs are provided in the table below.

[qualifier] Description
/none Input file does not use AAPCS
/interwork or /inter Code in the input file is suitable for ARM/Thumb interworking
/nointerwork or /nointer Code in the input file is not suitable for ARM/Thumb interworking
/ropi or /pic Content of the input file is read-only position-independent
/noropi or /nopic Content of the input file is not read-only position-independent (default)
/rwpi or /pid Content of the input file is read-write position-independent
/norwpi or /nopid Content of the input file is not read-write position-independent (default)
/swstackcheck or /swst Code in the input file performs software stack-limit checking
/noswstackcheck or /noswst Code in the input file does not perform software stack-limit checking (default)

/swstna Code in the input file is compatible with code that performs and does not perform software stack-limit
checking

 4. Qualifiers for the --apcs command line option in RealView Developer Suite

The --bigend (or --bi) and --littleend (or --li) options in RealView Developer Suite specify the byte order of the
generated code or data, while the equivalent option in IAR Embedded Workbench is --endian{little|l|big|b}. Furthermore,
the -e option in IAR Embedded Workbench can also be used to generate code in big-endian byte order. The default byte order in
both ARM RealView Developer Suite and ARM IAR Embedded Workbench is little-endian.

The --cpu command line option is used in both RealView Developer Suite and IAR Embedded Workbench to specify the target
core and obtain the correct instruction set. The default CPU name is ARM7TDMI in both RealView Developer Suite and IAR
Embedded Workbench.

REGISTER NAMING DIFFERENCES

The following table lists the register naming differences between RealView Developer Suite and IAR Embedded Workbench. Note
that the assembler option -j (for allowing alternative register names, mnemonics, and operands) is needed to allow the use of the
register names A1–A4, V1–V8, SB, SL, FP, and IP in IAR Embedded Workbench.

RealView IAR Description
r0, R0, and a1 R0 and A1 Argument, result or scratch register
r1, R1, and a2 R1 and A2 Argument, result or scratch register
r2, R2, and a3 R2 and A3 Argument, result or scratch register
r3, R3, and a4 R3 and A4 Argument, result or scratch register
r4, R4, and v1 R4 and V1 Variable register
r5, R5, and v2 R5 and V2 Variable register
r6, R6, and v3 R6 and V3 Variable register
r7, R7, and v4 R7 and V4 Variable register
r8, R8, and v5 R8 and V5 Variable register
r9, R9, and v6 R9 and V6 Variable register
r10, R10, and v7 R10 and V7 Variable register
r11, R11, and v8 R11 Variable register

r12 and R12 R12 General purpose register

sb and SB SB Static base, r9

sl and SL SL Stack limit, r10

fp and FP FP Frame pointer, r11

ip and IP IP Intra-procedure-call scratch register, r12

sp and SP R13 (SP) Stack pointer, r13
lr and LR R14 (LR) Link register, r14
pc and PC R15 (PC) Program Counter, r15
cpsr and CPSR CPSR Current program status register

spsr and SPSR SPSR Saved progress status register

 5. Register naming differences in RealView Developer Suite and IAR Embedded Workbench

 10

ASSEMBLER OPERATORS

RealView Developer Suite and IAR Embedded Workbench possess many operators in common, and shift and mask operators can be
used to implement many of the missing operators.

Operator precedence

The assemblers in RealView Developer Suite and IAR Embedded Workbench use extensive sets of operators. Operators with the
highest precedence are evaluated first, followed by the operators with the second highest precedence and so forth until the lowest
precedence operators are evaluated. If an expression contains operators of equal precedence, the operators are evaluated from left to
right. In RealView Developer Suite and IAR Embedded Workbench both, the parentheses (and) can be used for grouping operators
and operands and to denote precedence.

The table below shows the order of precedence (from top to bottom) of operators in both development environments.

RealView IAR
Unary operators Unary operators
Multiplicative arithmetic operators Multiplicative arithmetic operators
String manipulation operators Addition and subtraction operators
Shift operators Shift operators
Addition, subtraction and logical operators Logical AND operators
Relational operators Logical OR operators
Boolean operators Relational operators
 6. Operator precedence in RealView Developer Suite and IAR Embedded Workbench

Unary operators

The following table shows the equivalent assembler unary operators in RealView Developer Suite and IAR Embedded Workbench.
Note that IAR Embedded Workbench does not have any unary operators that return strings, only numeric or logical values.

RealView IAR Description
Returns strings
:CHR: No equivalent ASCII character return
:LOWERCASE: No equivalent Converts all uppercase characters to lowercase
:REVERSE_CC: No equivalent Inverse of condition code

:STR: No equivalent
Numeric expression: Returns 8-digit hex string
Logical expression: Returns “T” or “F”

:UPPERCASE: No equivalent Converts all lowercase characters to uppercase
Returns numeric or logical values
+ + Unary plus
- - Unary minus
:LNOT: ! or :LNOT: Logical complement
:NOT: ~ or :NOT: Bitwise complement
No equivalent LOW Low byte
No equivalent HIGH High byte
No equivalent BYTE1 First byte
No equivalent BYTE2 Second byte
No equivalent BYTE3 Third byte
No equivalent BYTE4 Fourth byte
No equivalent LWRD Low word
No equivalent HWRD High word
No equivalent DATE Current time/date
No equivalent SFB Segment begin
No equivalent SFE Segment end
No equivalent SIZEOF Segment size

? No equivalent
Number of bytes of executable code generated by line defining a symbol,
for example ?A

:BASE: No equivalent Number of register component
:CC_ENCODING: No equivalent Numeric value of condition code
:DEF: No equivalent If defined, TRUE, else FALSE
:INDEX: No equivalent Offset from base register
:LEN: No equivalent Length of string
:RCONST: No equivalent Number of register, 0–15 (i.e. r0–r15)
:SB_OFFSET_19_12: (:SHR:) :AND: 0xFF Bits [19:12]
:SB_OFFSET_11_0: :AND: 0xFFF Least significant 12 bytes
 7. Unary operators in RealView Developer Suite and IAR Embedded Workbench

 11

Binary operators

The following table shows the equivalent assembler binary operators in RealView Developer Suite and IAR Embedded Workbench.

RealView IAR Description
Multiplicative Arithmetic Operators
* * Multiplication
/ / Division
% or :MOD: % or :MOD: Modulo
String Manipulation Operators
:CC: No equivalent Concatenate
:LEFT: No equivalent Left-most characters
:RIGHT: No equivalent Right-most characters
Shift Operators

:ROL: No equivalent
Logical rotation left. In IAR Embedded Workbench, there is no direct
equivalent, but can be achieved with the following (x :SHL: 1) :OR:
(x :SHR (32-1))

:ROR: No equivalent
Logical rotation right. In IAR Embedded Workbench, there is no direct
equivalent, but can be achieved with the following (x :SHR: 1) :OR:
(x :SHL (32-1))

<< or :SHL: << or :SHL: Logical shift left
>> or :SHR: >> or :SHR: Logical shift right
Addition, Subtraction, Logical and Boolean Operators
+ + Addition
- - Subtraction
:LAND: && or :LAND: Logical AND
&& or :AND: & or :AND: Bitwise AND
:LOR: || or :LOR: Logical OR
|| or :OR: | or :OR: Bitwise OR
:LEOR: XOR or :LEOR: Logical exclusive OR
^ or :EOR: ^ or :EOR: Bitwise exclusive OR
Relational or Comparison Operators
= or == = or == Equal
/=, <> or != <> or != Not equal
> > Greater than
< < Less than
>= >= Greater than or equal
<= <= Less than or equal
No equivalent UGT Unsigned greater than
No equivalent ULT Unsigned less than
 8. Binary operators in RealView Developer Suite and IAR Embedded Workbench

ASSEMBLER DIRECTIVES

The following table shows the equivalent common assembler directives in RealView Developer Suite and IAR Embedded
Workbench.

RealView IAR Description

ALIGN ALIGNROM
Aligns the current location to a specified boundary by padding with
zeroes. Note that in IAR Embedded Workbench, there is also a directive
called ALIGNRAM that aligns the location counter by incrementing it.

AREA RSEG Instructs assembler to assemble a new code or data section

CODE16 CODE16 Instructs assembler to interpret subsequent instructions as 16-bit Thumb
instructions

CODE32 or ARM CODE32 Instructs assembler to interpret subsequent instructions as 32-bit ARM
instructions

DATA DATA
Defines an area of data within a code segment. Note that in RealView
Developer Suite, this directive is no longer needed and is ignored by the
assembler.

DCB or = DCB or DC8 Allocates one or more bytes of memory and defines initial runtime
contents of the memory

DCD or & DCD or DC32 Allocates one or more words of memory, aligned on 4-byte boundaries
and defines initial runtime contents of the memory

DCFD DF64 Allocates memory for word-aligned double-precision floating-point
numbers and defines initial runtime contents of the register

DCW DCW or DC16 Allocates one or more half words of memory, aligned on 2-byte
boundaries and defines the initial runtime contents of the memory

END END Informs the assembler that the end of a source file has been reached

ENTRY END expression

Declares an entry point to a program. In IAR Embedded Workbench,
expression provides the entry point address. An entry point to a
program can also be defined with the linker command line option -s in
IAR Embedded Workbench

EQU or * EQU or = Gives a symbolic name to a numeric constant, a register-relative value or
a program-relative value

 12

RealView IAR Description

EXPORT or GLOBAL EXPORT or PUBLIC
Declares a symbol that can be used by the linker to resolve symbol
references in separate object and library files. Note that in IAR Embedded
Workbench, #include may also be used.

INCLUDE or GET INCLUDE or $ Includes a file within the file being assembled

INCBIN No equivalent

Includes a binary file as it is (without being assembled) within the file being
assembled. There is no direct equivalent in IAR Embedded Workbench,
but can be defined with the linker command line option --
image_input

IMPORT IMPORT or EXTERN Provides the assembler with a name that is not defined in the current
assembly

LTORG LTORG Instructs the assembler to assemble the current literal pool immediately
following the directive

RN No equivalent Defines a register name for a specified register

SPACE or % No equivalent

Reserves a zeroed block of memory. There is no direct equivalent in IAR
Embedded Workbench, but a workaround to this would be to use the
REPT directive to zero a block of memory. Alternatively, the DS8,
DS16, DS24, or DS32 directives may be used, but the memory is not
filled with zeroes. If these directives are used, the default ROM/Flash
content will be preserved.

 9. Assembler directives in RealView Developer Suite and IAR Embedded Workbench

The example below compares the use of directives in RealView Developer Suite and IAR Embedded Workbench.

RealView IAR Description/Comments
 INCLUDE “header.inc” INCLUDE “header.inc” ;Include a header file
data INCBIN “data.dat” . ;Include a binary file.
 . .
 AREA fred,CODE RSEG fred:CODE:NOROOT(2) ;Assembles a new code section

called fred
 ENTRY . ;Entry point to the program.
 CODE32 CODE32 ;Following instructions are 32-

bit ARM instructions
 BX func BX func ;Branch and change to Thumb

state
 . .
 . .
 CODE16 CODE16 ;Following instructions are 16-

bit Thumb instructions
 BX thumb BX thumb ;Branch and change back to ARM

state
 . .
 . .
 AREA john,DATA RSEG john:DATA:NOROOT(2) ;Assembles a new data section

called john
 . .
 ALIGN 16 ALIGNROM 4 ;Aligns current location to 16-

byte boundaries
table DCB “test” table DC8 'test' ;Defines a string
 DCD 1,5,10 DC32 1,5,10 ;Defines 3 words containing

decimal values 1, 5 and 10
 DCFD 1.2E-8 DF64 1.2E-8 ;Defines a floating point

number 1.2 x 10
-8

 DCW -255 DC16 -225 ;Defines a halfword with a
value of -255

test EQU 5 test EQU 5 ;Assign test a value of 5
 . .
tab RN 4 . ;Defines tab for register 4

ADR tab,table ADR r4,table ;Load address of table into

register 4
 ADRL tab,table ADRL r4,table ;Load address of table into

register 4
 LDR r0,=table LDR r0,=table ;Load address of table into

register 0
 LTORG LTORG ;Assemble current literal pool
 SPACE 50 DC8 0x32 ;Reserves 50 bytes of memory
 EXPORT table EXPORT table ;Export the label table
 . .
 END END ;End of source file
 10. Use of directives in RealView Developer Suite and IAR Embedded Workbench

 13

CONVERTING PSEUDO-INSTRUCTIONS

The following table compares the available pseudo-instructions on RealView Developer Suite and equivalent instructions on IAR
Embedded Workbench.

RealView IAR Mode Description
ADR ADR ARM, Thumb Load a program-relative or register-relative address into a register (short range)
ADRL ADRL ARM Load a program-relative or register-relative address into a register (wide range)
LDR LDR ARM, Thumb Load a register with a 32-bit constant value or an address
NOP NOP ARM, Thumb Generate the preferred ARM no-operation code

MOV MOV Thumb
Move the value of a low register to another low register (R0–R7). This translates to
the instruction: ADD Rn,Rn,0

No equivalent BLF ARM, Thumb Calls functions that may be far away or in ARM/Thumb mode
 11. Pseudo-instructions in RealView Developer Suite and IAR Embedded Workbench

ASSEMBLER DIFFERENCES

This section highlights other differences between and the RealView ARM Assembler, armasm and the ARM IAR Embedded
Workbench Assembler, aarm.

Label differences

In both RealView Developer Suite and IAR Embedded Workbench, symbols representing addresses or memory locations of
instructions or data are referred to as labels. Labels can be program-relative, register-relative, or absolute. There are no label
differences between RealView Developer Suite and IAR Embedded Workbench.

Symbol naming rules

In RealView Developer Suite and IAR Embedded Workbench, user-defined symbols can use a to z (lowercase letters), A to Z
(uppercase letters), 0 to 9 (numeric characters) or _ (underscore). Numeric characters cannot be used for the first character of
symbol names, although in IAR Embedded Workbench the ? (question mark) may be used to begin a symbol name and the $ (dollar)
may also be included in a symbol name. User-defined symbols in IAR Embedded Workbench can be up to 255 characters long.

Symbol names are case-sensitive, all character names in the symbol are significant and the symbol name must be unique. For built-in
symbols such as instructions, registers, operators, and directives, case is insignificant.

Symbols are allowed to contain any printable characters if they are delimited with the | (single bar) in RealView Developer Suite or
the ` (backquote) in IAR Embedded Workbench. Note that the single bars or backquotes do not form part of the symbol.

The examples below define the symbol #funny-label@:

RealView: |#funny-label@|
IAR: `#funny-label@`

Numeric literals

Numeric literals in RealView Developer Suite and IAR Embedded Workbench can be of the binary, octal, decimal, hexadecimal,
character or floating-point type. The table below shows the examples of the forms taken by numeric literals in RealView Developer
Suite and IAR Embedded Workbench.

Type RealView Examples IAR Examples
Binary No equivalent 0101b, b'0101'
Octal No equivalent 1234q, q'1234'
Decimal 1234, -1234 1234, -1234, d'1234'
Hexadecimal 0xFFFF, &FFFF 0xFFFF, 0FFFFh, h'FFFF'
ASCII character 'ABCD' 'ABCD'
Floating-point 12.3, 1.23E-24, -1.23e-24, 1.0E3 12.3, 1.23E-24, -1.23e-24, 1.0E3
 12. Numeric literals in RealView Developer Suite and IAR Embedded Workbench

Numeric expressions

In both RealView Developer Suite and IAR Embedded Workbench, numeric expressions consist of combinations of numeric
constants, numeric variables, ordinary numeric literals, binary operators, and parentheses. Numeric expressions evaluate to 32-bit
integers, which have an unsigned range from 0 to 232 - 1 and a signed range from -231 to 231 -1.

 14

SPECIFIC DIRECTIVES REFERENCE

This section describes some of the more complex assembler directives available in RealView Developer Suite and how to change
them to work with IAR Embedded Workbench .

AREA directive

In RealView Developer Suite, the AREA directive instructs the assembler to assemble a new code or data section. Sections are
independent, named, indivisible chunks of code or data that are manipulated by the linker.

In IAR Embedded Workbench, the equivalent directive is the RSEG directive. The RSEG directive is used to begin a program.

Syntax

RealView Developer Suite:
 AREA sectionname{,attr}{,attr}...

Where sectionname = the name to be given to the section

attr = one or more comma-delimited section attributes. Valid attributes include ALIGN=expression,
ASSOC=section, CODE, COMDEF, COMMON, DATA, NOALLOC, NOINIT, READONLY, READWRITE

IAR Embedded Workbench:
 RSEG segmentname [:type][flag][(align)]

where segmentname = the name assigned to the segment

 type = the memory type, typically CODE or DATA (and types supported by the IAR XLINK Linker)

flag = may either be NOROOT, REORDER, or SORT. NOROOT indicates that the segment part may be discarded by the linker
even if no symbols in this segment are referred to. All segment parts except startup code and interrupt vectors should set
this flag. The default mode is ROOT, which indicates that the segment part must not be discarded. REORDER allows the
linker to reorder segment parts. The default mode is NOREORDER, which indicates that the segment parts must remain in
order. SORT allows the linker to sort the segment parts in decreasing alignment order. The default mode is NOSORT which
indicates that the segment parts will not be sorted.

align = exponent of the value to which the address should be aligned, in the range of 0 to 30. For example, if align is 1,
this results in word alignment 2

Example

RealView Developer Suite:

The following example defines a read-only code section named Test.

 AREA Test,CODE,READONLY

IAR Embedded Workbench:

The following example defines a 32-bit code segment named Test.

 RSEG Test:CODE:NOROOT(2)

MAP directive

In RealView Developer Suite, the MAP directive sets the origin of a storage map to a specified address. This directive is used in
conjunction with the FIELD directive to describe a storage map.

In IAR Embedded Workbench, there is no equivalent directive.

Syntax

RealView Developer Suite:
 MAP expr{,base-register}

Where expr = numeric or program-relative expression

 base-register = specifies a register. If specified, the address where the storage map starts is the sum of expr and the
value of base-register at runtime

 15

IAR Embedded Workbench:

In IAR Embedded Workbench, there is no equivalent directive. See the FIELD directive below below for how to convert this
construct.

Example

RealView Developer Suite:

The following example shows that the storage maps starts at the address stored in register r9.

 MAP 0,r9

IAR Embedded Workbench:

In IAR Embedded Workbench, there is no equivalent example.

FIELD directive

In RealView Developer Suite, the FIELD directive describes space within a storage map that has been defined using the MAP
directive.

In IAR Embedded Workbench, there is no equivalent directive, although the EQU directive may be used to achieve the same purpose.

Syntax

RealView Developer Suite:
{label} FIELD expr

Where label = optional label. If specified, label is assigned the value of storage location counter

 expr = expression that evaluates to the number of bytes to increment the storage counter

IAR Embedded Workbench:
Label EQU expr

where label = symbol to be defined

 expr = value assigned to symbol

Example

RealView Developer Suite:

The following example shows how the MAP and FIELD directives are used to define register-relative labels:

 MAP 0,r9 ;Set storage location counter to address stored in r9
 FIELD 8 ;Increment storage location counter by 8 bytes
Code FIELD 4 ;Set Code to the address [r9 + 8] and increment storage
 ;location counter by 4 bytes
Size FIELD 4 ;Set Size to the address [r9 + 12] and increment storage
 ;location counter by 4 bytes
 .
 .
 MOV r9,...
 LDR r0,Code ;Equivalent to LDR r0,[r9,#8]

IAR Embedded Workbench:

The following example shows the equivalent instructions in IAR to define register-relative labels:

Code EQU 8 ;Set Code to the address [r9 + 8]
Size EQU 12 ;Set Size to the address [r9 + 12]
 .
 .
 MOV r9,...
 LDR r0,[r9,#Code]

 16

Advanced conversion

PREDEFINED SYMBOLS

The following table compares the predefined symbols available in RealView Developer Suite and IAR Embedded Workbench.

RealView IAR Description
{ARCHITECTURE} No equivalent Name of selected ARM architecture
{AREANAME} No equivalent Name of the current AREA
{ARMASM_VERSION} or
|ads$version| __VER__ Integer that increases with each version number

{CODESIZE} or {CONFIG} No equivalent Has the value 32 if assembler is assembling ARM code, or 16 if assembling
Thumb code

{COMMANDLINE} No equivalent Holds the contents of the command line
{CPU} No equivalent Name of selected CPU

{ENDIAN} __BIG_ENDIAN__ or
__LITTLE_ENDIAN__

In RealView Developer Suite, the value 'big' or 'little' is returned
depending on the assembler mode. In IAR Embedded Workbench, the
symbol expands to the number 1 when the code is compiled, thereby
identifying the byte order in use

{FPU} No equivalent Name of selected fpu
{INPUTFILE} __FILE__ String indicating the name of the current source file
{INTER} No equivalent Has the value True if /inter is set. The default is False
{LINENUM} __LINE__ Integer indicating line number in current source file
{NOSWST} No equivalent Has the value True if /swst is set. The default is False
{OPT} No equivalent Holds the value of the currently set listing option
{PC} or . . Address of current instruction

{PCSTOREOFFSET} No equivalent
Offset between the address of the STR pc, [...] or STM
Rb,{...,pc} instruction and the value of pc stored out

{ROPI} No equivalent Has the value True if /ropi is set. The default is False
{RWPI} No equivalent Has the value True if /rwpi is set. The default is False
{SWST} No equivalent Has the value True if /swst is set. The default is False
{VAR} or @ No equivalent Current value of storage area location counter
No equivalent __DATE__ String in dd/mm/yyyy format indicating the current date
No equivalent __IAR_SYSTEMS_ASM__ Hold the IAR Embedded Workbench assembler identifier

No equivalent __TID__ Target identity consisting of 2-bytes. High byte is target identity, 0x49 for
AARM), low byte is unused

No equivalent __TIME__ String in hh:mm:ss format indicating current time
 13. Predefined symbols in RealView Developer Suite and IAR Embedded Workbench

CONDITIONAL ASSEMBLY

The following table shows the equivalent conditional assembly directives in RealView Developer Suite and IAR Embedded
Workbench.

RealView IAR Description
IF or [IF Assemble a sequence of instructions if condition is true
ELSE or | ELSE Assemble a sequence of instructions if condition is false

ENDIF or] ENDIF Marks the end of a sequence of instructions that were conditionally
assembled

ELIF ELSEIF Creates a structure equivalent to ELSE IF, without the nesting or
repeating the condition

WHILE REPT Begins a sequence of instructions that are assembled repeatedly.
WEND ENDR Terminates a sequence of instructions that are assembled repeatedly

INCLUDE, GET or
#include INCLUDE, $ or #include

Includes a file within the file being assembled. In RealView Developer Suite,
#include may be used if the file is preprocessed with the C
preprocessor, before using armasm to assemble it.

SETA
SETA, ASSIGN, VAR or
#define

Sets the value of a local or global arithmetic variable

No equivalent #error Generates an error
No equivalent #message Generate message on standard output
[:DEF: symbol #ifdef Assemble a sequence of instructions if symbol is defined
[:NOT: :DEF: symbol #ifndef Assemble a sequence of instructions if symbol is undefined
No equivalent #undef Undefine a label
 14. Conditional assembly directives in RealView Developer Suite and IAR Embedded Workbench

 17

The example below compares the use of conditional assembly directives in RealView Developer Suite and IAR Embedded
Workbench. It defines two different options for a FFT routine (1,2) plus an option with no routine.

RealView IAR Description/Comments
 FFT_VARIANT SETA 1 #define FFT_VARIANT 1 ;Define a variable called FFT_VARIANT

that has a value of 1
 [DUMMY = 1 IF DUMMY == 1 ;Assemble sequence of instructions as

condition is true
fft fft
 MOV R0,#10 MOV R0,#10 ;Set up R0
 . .
 . .
 MOV PC,LR MOV PC,LR ;Return
 ELIF FFT_VARIANT = 2 ELSEIF FFT_VARIANT == 2 ;Assemble sequence of instructions if

condition is false
fft fft ;FFT type 1
 . .
 . .
 | ELSE ;Assemble sequence of instructions if

the next condition is true
fft fft ;FFT type 2
 MOV R0, #-1 MOV R0, #-1 ;Set up R0 (no fft available)
 MOV PC,LR MOV PC,LR ;Return
] ENDIF ;End of conditionally assembled

instructions
 15. Use of conditional assembly directives in RealView Developer Suite and IAR Embedded Workbench

MACROS

Macros are user-defined symbols that represent a block of one or more assembler source lines. The symbol can then be used instead
of repeating the whole block of code several times. The following table shows the equivalent macro processing directives in
RealView Developer Suite and IAR Embedded Workbench.

RealView IAR Description
MACRO MACRO Define the start of a macro
MEND ENDM Define the end of a macro
MEXIT EXITM Generate premature exit from a macro

LCLA, LCLL or LCLS LOCAL
Create symbols local to a macro. In RealView Developer Suite, LCLA declares an arithmetic
value (initialized to 0), LCLL declares a logical variable (initialized to {FALSE}) and LCLS
declares a string variable (initialized to a null string, “ ”)

 16. Macro processing directives in RealView Developer Suite and IAR Embedded Workbench

The example below compares the use of macro processing directives in RealView Developer Suite and IAR Embedded Workbench
for decrementing a variable .

RealView IAR Descriptions
 AREA count,CODE RSEG count:CODE:NOROOT(2);Assemble the source file count
 ENTRY .
 . .
 MACRO countdown MACRO start ;Start of macro called countdown
$label countdown $start . ;Parameter accepted by the macro
 LCLA value LOCAL value ;Create a local symbol
value SETA $start value SETA start ;Assign value the value of start
 WHILE value > 0 REPT value ;Start of repeated statements
 DCD value DC32 value ;Define a word called value
value SETA value - 1 value SETA value - 1 ;Decrement value by 1
 WEND ENDR ;End of repeated statements
 DCD value DC32 value ;Define a word called value
 MEND ENDM ;End of a macro
 . .
tab5 countdown 5 tab5 countdown 5 ;Begin countdown from 5
 . .
 END END ;End of source file
 17. Use of macro processing directives in RealView Developer Suite and IAR Embedded Workbench

The following list files show the value of value counting down from 5 to 1.

RealView Developer Suite listing

ARM Macro Assembler Page 1
 1 00000000 AREA test,CODE
 2 00000000 ENTRY
 3 00000000
 4 00000000 MACRO
 5 00000000 $label countdown $start
 6 00000000 LCLA value
 7 00000000

 18

 8 00000000 value SETA $start
 9 00000000
 10 00000000 WHILE value > 0
 11 00000000 DCD value
 12 00000000 value SETA value - 1
 13 00000000 WEND
 14 00000000 DCD value
 15 00000000 MEND
 16 00000000
 17 00000000 tab50 countdown 5
 6 00000000 LCLA value
 7 00000000
 8 00000000 00000005
 value SETA 5
 9 00000000
 10 00000000 WHILE value > 0
 11 00000000 00000005 DCD value
 12 00000004 00000004
 value SETA value - 1
 13 00000004 WEND
 10 00000004 WHILE value > 0
 11 00000004 00000004 DCD value
 12 00000008 00000003
 value SETA value - 1
 13 00000008 WEND
 10 00000008 WHILE value > 0
 11 00000008 00000003 DCD value
 12 0000000C 00000002
 value SETA value - 1
 13 0000000C WEND
 10 0000000C WHILE value > 0
 11 0000000C 00000002 DCD value
 12 00000010 00000001
 value SETA value - 1
 13 00000010 WEND
 10 00000010 WHILE value > 0
 11 00000010 00000001 DCD value
 12 00000014 00000000
 value SETA value - 1
 13 00000014 WEND
 10 00000014 WHILE value > 0
 14 00000014 00000000 DCD value
 18 00000018
 19 00000018 END

Command Line: --list=test count.s

IAR Embedded Workbench listing

IAR Systems ARM Assembler V4.20A/W32 dd/Mmm/yyyy hh:mm:ss #
Copyright 1999-2005 IAR Systems. All rights reserved. #

Source file = count.s #
List file = test.lst #
Object file = count.r79 #
Command line = -l test count.s #

 1 00000000 RSEG count:CODE:NOROOT(2)
 2 00000000
 2.1 00000000 ALIGNROM 2
 3 00000000
 17 00000000
 18 00000000 tab5 countdown 5
 18.1 00000000
 18.2 00000000 LOCAL value
 18.3 00000000
 18.4 00000005 value SETA 5
 18.5 00000000 REPT value
 18.6 00000000 DC32 value
 18.7 00000000 value SETA value - 1

 19

 18.8 00000000
 18.9 00000000 ENDR
 18 00000000 05000000 DC32 value
 18.1 00000004 value SETA value - 1
 18.2 00000004
 18 00000004 04000000 DC32 value
 18.1 00000003 value SETA value - 1
 18.2 00000008
 18 00000008 03000000 DC32 value
 18.1 00000002 value SETA value - 1
 18.2 0000000C
 18 0000000C 02000000 DC32 value
 18.1 00000001 value SETA value - 1
 18.2 00000010
 18 00000010 01000000 DC32 value
 18.1 00000000 value SETA value - 1
 18.2 00000014
 18 00000014 00000000 tab5 countdown 5
 18.1 00000018 0000A0E1 NOP
 18.2 0000001C ENDM
 19 0000001C
 20 0000001C END
##############################
CRC:4E7E #
Errors: 0 #
Warnings: 0 #
Bytes: 28 #
##############################

MODULES

In IAR Embedded Workbench, module directives are used to create libraries containing many small modules, where each module
represents a single routine. The number of source and object files can be reduced using module directives. There is no direct
equivalent in RealView Developer Suite, but a similar result can be achieved using the AREA directive.

RealView IAR Description
No equivalent MODULE or LIBRARY Defines the beginning of a library module.
No equivalent ENDMOD Defines the end of a library module

The Call Frame Information (CFI) directives are used to define backtrace information for the instructions in a program. The
backtrace information is used to keep track of the contents of resources in the assembler code. In the case of library functions and
assembler code, backtrace information has to be added in order to use the call frame stack in the debugger.

Linker and other tools
In ARM RealView Developer Suite, the linker is called armlink, while in the IAR Embedded Workbench IDE, the linker is called
the IAR XLINK Linker.

LINKER COMMAND LINE OPTIONS

The table below compares the basic linker command line options in RealView Developer Suite and IAR Embedded Workbench.

RealView IAR Description

--help or -h No equivalent
Prints summary of commonly used command line options. There is no
direct equivalent in IAR Embedded Workbench, but the task can be
performed by invoking xlink without arguments.

--vsn No equivalent
Displays armlink version information and license details. There is no
direct equivalent in IAR Embedded Workbench, but the task can be
performed by invoking xlink without arguments.

--ro-base or -ro address -Z type segment=start Sets load and execution addresses of the region containing the read-
only output section

--rw-base or -rw address -Z type segment=start Sets execution addresses of the region containing the read-write output
section

--first section-id
-Z segment=start-end or
-Z segment=start:+size

Places the selected input section first in its execution region

--last section-id
-Z segment=start-end or
-Z segment=start:+size

Places the selected input section last in its execution region

--entry location -s symbol Specifies the unique entry point of the image

--libpath pathlist -Ipathname Specifies a list of paths used to search for ARM standard C/C++
libraries

--userlibpath pathlist -Ipathname Specifies a list of paths used to search for user libraries

--remove No equivalent Removes unused sections from the image. This is performed by default
in IAR Embedded Workbench.

 20

RealView IAR Description
--map -l file -xm Creates an image/module map.
--symbols or -s -l file -xe Lists all local and global symbols used in linking, and their values
--xref -l file -xm Lists all cross-references between input sections

--list file -l file Redirects the diagnostics from the output of the command line options
to a file

--verbose or -v No equivalent Prints detailed information about the link operation, including objects
and libraries

--via file -f file Reads a list of input filenames and linker options from a file
--output or -o file -o file Specifies the name of the output file
 18. Linker command line options in RealView Developer Suite and IAR Embedded Workbench

LINKER SCATTER LOADING AND SEGMENT CONTROL

In order to specify the memory map of an image to the linker, RealView Developer Suite utilizes the scatter loading mechanism.
Although there is no direct IAR Embedded Workbench equivalent to this mechanism, a similar result can be achieved through
segment control.

With RealView Developer Suite, depending on the complexity of the memory maps of the image, images that have simple memory
maps may also be created using command line options. Scatter loading is used for images that have a complex memory map where
complete control is required over the grouping and placement of image components, for example, in situations where there are
different types of memory or memory-mapped I/O. The command line option for scatter loading in RealView Developer Suite is:

--scatter filename

This option instructs the linker to construct the image memory map as described in the description file filename.

As mentioned previously, the linker in IAR Embedded Workbench does not have a single equivalent command line option. However,
a similar result can be achieved with segment control using multiple -Z options to allocate or place segments in memory. Segment
placement is performed one placement command at a time, taking in to account previous placement commands. As each command is
processed, any parts of the ranges given for that placement command that are already in use (for example, by segments placed with
earlier segment placement commands) are removed from the considered ranges.

Furthermore, the -Q option in IAR Embedded Workbench can be used to do automatic setup for copy initialization of segments. The
command line option has the format below:

-Qsegment=initializer_segment

This option will make the linker place all data contents of the segment segment into a segment initializer_segment.
Debugging information, etc, is still associated with the segment segment. At runtime, the application must copy the contents of
initializer_segment (in ROM) to segment (in RAM) using any suitable method of copy (the standard memcpy routine is
perhaps the easiest way). This is useful for code that needs to be in RAM.

The table below shows an example of a simple RealView Developer Suite scatter loading description file for loading code and data
sections into non-contiguous regions in memory. The description file loads code (RO) at address 0x0000 in memory, data (RW) at
address 0xA000 in memory, and dynamically creates a zero-initialized (ZI) section at runtime.

Description File Listing Description/Comments
LR_1 0x0000 ;Define load region LR_1
{
 ER_RO +0 ;The execution region containing code, ER_RO has no offset and begins at

address 0x0000
 {
 * (+RO) ;All RO sections are placed consecutively into this region
 }
 ER_RW 0xA000 ;The execution region containing data, ER_RW is offset to address 0xA000
 {
 * (+RW) ;All RW sections are placed consecutively into this region
 }
 ER_ZI +0 ;The execution region containing the ZI section, ER_ZI has no offset and is

placed at address 0xA000 + size of the ER_RW region
 {
 * (+ZI) ;All ZI sections are placed consecutively into this region
 }
}
 19. Example of scatter loading and segment control

Note that the equivalent linker command line option in RealView Developer Suite is:

armlink --ro-base 0x0000 --rw-base 0xA000

The equivalent segment placement commands in IAR Embedded Workbench for placing a code segment at address 0x0000 in
memory and a data segment at address 0xA000 in memory are the following:

-Z (CODE) SEG_RO = 0x0000
-Z (DATA) SEG_RW,SEG_ZI = 0xA000

 21

COMPILER EXTENDED KEYWORDS

In RealView Developer Suite, function type attributes can be specified either before or after the return type:

__irq void InterruptHandler (void);
void __irq InterruptHandler (void);

In IAR Embedded Workbench, function type attributes can only be specified before the return type:

__irq void InterruptHandler (void);

