IAR Systems

WRITING
DEVICE HEADER FILES

Document revision: PA3

Date: 28 June 2005

Author: Sara Skrtic

Revision log:

Revision Date Author M odification

PA1 2005-05-06 Sara Skrtic Initial preliminary reoin

PA2 2005-06-03 Sara Skrtic Interrupt values — adsteidtion with conflicting bit names
/ interrupt names

PA3 2005-06-28 Sara Skrtic Added MISRA C control

1(7)

IAR Systems

Useful documents

There are some useful documents to help you weisglér files.

*IAR code standards (CppGuide.html)

*IAR header file template (EWARM_HeaderTemplate.doc)

Whereto start

A few pointers:

1.

Find the relevant and up-to-date device user gigde usually be downloaded from the chip manufactsiwveb
site).

Check if IAR Systems already supports more deViimaa the same family. You can often re-use padmfother
header files belonging to the same chip family.

What isincluded in a header file?

A header file can be said to consist afegtions:

1.

A header with the following information:
* Which IAR Compiler and Assembler that the headerdesigned for
e that the header file is used with ARM IAR C/C++ Qutar and Assembler
* 1AR Systems copyright information and the headerdieation year
« File revision: $ Revision $
Protection against multiple inclusions of the same header file
0 by defining and testing on __iochipname_h
#i fndef __| OCH PNAME_H
#define __| OCH PNAME_H

o check if IAR compiler

#if (((__TID _ >> 8) & O0x7F) != Ox4F) /* Ox4F = 79 dec */
#error This file should only be conpiled using the ARM I AR conpil er and assenbl er
#endi f

0 by including the macro definition file (io_macros.h

#i ncl ude "i o_macros. h"

Guard against MISRA C errorsand Special Function Registers.

0 Guard against MISRA C errors with a pragma. Thisesessary since the declaration of 10 registelts wi
otherwise cause MISRA C rule violation errors. Guard applies to this file only.

#i f ndef _SYSTEM BUI LD
#pragma system.incl ude
#endi f

0 The bit structs containing the bit names of thestegs.
Common declar ations of the register groups.
Assembler-specific declar ations (optional).

Various symbol definitions. These are most often related to interrupt valuesbers (optional).

2(7)

IAR Systems

|AR standardsfor header files

* The header file name should beiochipname.h

Example

The header file for thehip c1234 is called ioc1234.h

* Registersaredefined usingthe __ 10_REGXX macrosdefined in io_macros.h.

(0]

e Thecorrect

There are two formats used, one for registers witkpecific bit names and one for registers with
specific bit names.

Without bit names:
__ 1 O REGXX(REG_NAME, REG ADDR, | NFO ACCESS TYPE);

With bit names:
__ I O REGXX_BI T(REG_NAME, REG ADDR, | NFO ACCESS TYPE, BI T_STRUCT_NAME);

T Name Description
o XX The register width in bits
E REG._NAME The name of the register. Always use Fhe name amdatt found in the device
user guide.

S REG_ADDR The address of the register.
X The way the information is accessed. Always sttt e double underscore.
_ __READ

INFO_ACCESS TYPE TWRITE

__READ_WRITE
The structure in which you name and order thedfitie register. See the
BIT_STRUCT_NAME sectionThe bit struct order for further information

Example without bit names:

register REG_NAME_A is a 32-bit read-only regidtrated at address 0x10000004 with no bit
names defined.

1 O_REG32(REG_NAME_A, 0x10000004, __ READ);

Example with bit names:

register REG_NAME_B is a 16-bit read/write regidterated at address 0x10000008 with bit names
defined.

__10_REGL6_BI T(REG NAME_B, 0x10000008, _ READ WRITE, _ regnaneb_bits);

To use the file with the assembler, there cannatriyespace between __|O_REGXX and the left
parentheses in a register definition.

Example:
__ 1 O_REGL6(HDLC_TFBC, 0xCO00E040, _ READ WRI TE); /] Correct
"1 O_REGL6 (HDLC_RFBC, 0xCO00E044, —_READ); /1 Wong

bit struct order must be used. When writing the bit struct definition, always gtaith bit 0 and end

with the highest numbered bit. The total numbebitsf declared must be equal to the size of théddd used (that
is, in a struct using the __ RE®& macro the total number of bitsXX). This requires that all reserved/unused bits
are declared as well. Do this by not naming the biéave an empty space. Always start the nantieecftruct

with a double underscore “__”, the name of thegtegiin lowercase letters and end with _.bits

The format used:

typedef struct {
REGXX

}
XXis the

B BITNAMEL : # OF BITS;
REGXX BITNAME2 : # OF BITS;

__registernane_bits;

total length of the register in bits (8,dr632).

3(7)

IAR Systems

BITNAME is the name of the bit(s). Always follow the nanmel dormat used in the device user guide.
OF_BITSis the number of bits used ByTNAME.

Example:

Device user guide:

7 6 5 4 3 2 0
Src reserved Oiop reserved Add reserved
Header file:
typedef struct {
__RE&X :
__REG Addr 1;
__RE&X 1;
__RE&EB Qop 1;
__REX 2;
REGS Src 1;

} __registername_bits; '

* The name and format (upper lowercase) of bitsand registers must follow the device user guide. Sometimes bits
are referred to with descriptions instead of nartfebat is the case, check to see if IAR Systeoppsrts another
chip from the same family. Chances are that thistegand bit(s) have been named already. Otherwesee the

bit(s).
Example:

Device user guide:

Register X Bit Description
Interrupt Source [7:4] 0000 sourcel
0010 source2
1001 source3
Reserved [3:1] Must be 0
Interrupt Enable [0] 1 Enable
0 Disable

If the bits are named in another header file fdegice in the same family — use that name, otherwésne it
yourself (suggestions: IntSrc, IntEn)

 Bit names cannot start with a number. If the device user guide has a bit name thatrisegith a number, use a
single underscore “_" before the number when yoitevthe bit struct definition.

Example:

Device user guide:

3

0

3ipn

reserved

Addr

reserved

Header file:
typedef struct {
REE :

__REG Addr

_REG8

__REEB _3ipn
_RE&B Src

} __registernane_bits;

weeR

4(7)

IAR Systems

* Bit structsand register groups should be commented. Before every bit struct — make a comment expiginvhich
register it belongs to. Before every group of segjis — make a comment explaining which group it is

Example:

/* DVA - Status Register */
typedef struct {
__ RE&2 xx :20;
__REG2 vy 1 12;
} __dmastat_bits;

/***

* %

** DMA

* %
***/

__10_REG32_BI T(DMASTAT, 0x48000000, _ READ WRITE, _ dmastat _bits);
"1 O_REG32(DVASRC, 0x48000004, __ READ WRI TE);

* Place groups of registersand registersin the correct order. Often in the device user guide there is a tabtmgsall
special function registers. In the device header filace groups of registers in the same order teat table.
Within the groups try to place the registers inradd order.

« Interrupt values. In the device user guide, there might be interugiies/numbers that need to be defined. The
instructions for doing this differ significantlydm user guide to user guide. Some only describentberupts
without naming them, while others specifically givemes.

o If there are names, follow the guide. If the nam@sflict with bit names, add “INO_" in front of the
name.

o If there are no specific names, you have to use yoagination. (There is an effort going on to make a
list of standard interrupt names.)

Solving problems

« Problem: Which address should be used for an 8- or 16-bit register on a 32-bit device?

Base address: Bit

0x0000_0000 31|30| 29|28|27| 26| 25| 24| 23|22|21|20| 19| 18| 17| 16| 15| 14| 13| 12| 11| 10| 9| 8| 7| 6| 5|4| 3| 2| 1| 0
Byte#

Big-endian 0 1 2 3

Little-endian 3 2 1 0

Solution: This depends on the endian the devicsiizy. Sometimes the device user guide is giviageaific
address even for 8- and 16-bit registers; otherusgethe base address and the byte number asbaéekakiove.

An 8-bit, one byte, read from a 32-bit registereobig-endian device would return bit [31:24]
An 8-bit, one byte, read from a 32-bit registeradittle-endian device would return bit [7:0]

Normally a device supports either little- or bigdean byte order, but some support both. If it falsize register
there is no problem (that is, a 32-bit registea®®-bit device or a 16-bit register on a 16-bitide). Otherwise,
be careful with the addresses. There is a predeBgmbol called _ LITTLE_ENDIAN__ that will exparnd one
(1) when the code is compiled with the little-emdigyte order format, and zero (0) if the code ispived with the
big-endian format. Use #if ... #else ... #endif.

Example:
O REG32(REG_NAME1l, 0x40000000, _ READ); [//big- or little-endian

I
#f __LITTLE _ENDIAN__
__| O_REG8(REG_NAME2, "0x40000004, _ READ WRI TE);

#el se
__ | O REGB(REG_NAME2, 0x40000007, _ READ WRI TE);
#endi f /* __LITTLE _ENDI AN__*/

5(7)

IAR Systems

* Problem: Two registers sharethe same address

Solution: If two registers share the same addes®er in a situation where bit names are not éefior where the
bit names are also identical, use a #define

Example 1:

Register REG_NAME_A is a 32-bit read only registeated at address 0x10000008 with no bit names
defined.

Register REG_NAME_B is a 32-bit read/write regidtmated at the same address with no bit names
defined. Note in the following example that althb(REG_NAME_A is a read-only register it must be
read/write for REG_NAME_B to work.

1 O_REG32(REG NAME_A, 0x10000008, __ READ Rl TE);
#define REG NAVE B REG_NAME A

Example 2:

REG_C is an 8-bit read-only register located aress 0x10000014
Bit [0] is called EN and the rest of the bits [[7ate reserved
REG_D is a write-only register that otherwise lp@xactly the same as REG_C.

/* C—COﬁleer SpeCIfIC deCI al’athI’]S *********************************/
typedef struct {

__REG EN -

__RE&X T
} __regn_bits;

/* Declarations common to conpiler and assenbl er ****x*kkdkkxkkkdkdkkxxsk/
__IOREG_BIT(REG C, 0x10000014, _ READ WRITE, __regn_bits);

#define REG D REG C

#define REG D_bit REG C bit

* Problem: Several registers using different bit names shar e the same address

Solution: Use a union of structs and #define. Olesénat
1. bit names only can be used once in the same union.
2. before the struct you should make a // comment thighregister name. If the register name contains a
wildcard character for numbers it can only be ¥ @nd only in lowercase (for instance REGX.)

Example:

REG_E is an 8-bit read-only register located atres&l0x10000014
Bit [0] is called EN and the rest of the bits [7akE reserved

REG_F8 and REG_F9 are read/write registers locatéite same address
Bit [0] is called EN

Bits [4:1] are reserved

Bits [7:5] are called ST

/* C_Con-pller spEC|f|C deCI arathﬂS *********************************/
typedef union {

/1 REG E
struct {
__ RE&SB EN 1;
__RE&X 7;
b
/I REG_Fx
struct {
__RE&X R
__ RE&X3 L4,
T REGB ST D3

s
} __regx_bits;

/* Declarations commpn to conpiler and assenbl er **xxxxxxxxxxxxxxxxxxx/
1O REG8_BI T(REG E, 0x10000014, _ READ WRITE, __regx_bits);

#defi ne REG F8 REG E
#define REG F8_bit REG E bit
#define REG F9 REG E
#define REG F9_bit REG E hit

6(7)

IAR Systems

* Problem: Oneregister hasdifferent bit names

Solution: Sometimes there can be registers thaerats differently depending on different object\source,
read or write et cetera). Use a union of struas,the example with several registers using difitebé names
sharing the same address, with the two // comnrentsng the same register name.

« Problem: | have wideregisterson a 32-bit device

Solution: Wide registers, for example 48- or 64¢biisters, have to be divided into two parts chtiggh and
Low.

Example:
A register REG_G is a 64-bit read/write registeralied at address 0x10000000 on a little-endiarcdevi
__ 1O REG32(REG G Low, 0x10000000, __ READ VRI TE);
"I O_REG32(REG_G_Hi gh, 0x10000004, __READ WRI TE);
* Problem: Therearetwo or more deviceswith the sameregisters

Solution: This is a nice “problem” to have. If teeare two or more devices that have the same eegstup, make
a “dummy” header file in which you include the fireeader file.

Example:

Two devices, x1000 and x1001 have the same registeeate the header file iox1000.h in which yacel
all the registers and structs. Then make an enilptgdlled iox1001.h in which you put only the hea(see
What isincluded in a header file) and a #include “iox1000.h".

Ending the header file

Remember to always end your file with an end-oé-lomaracter (EOL).

7(7)

