
AARM-10

IAR Embedded Workbench®

IAR Assembler Reference Guide

for Advanced RISC Machines Ltd’s
ARM Cores

AFE1_AFE2-1:1

2

COPYRIGHT NOTICE
© 1999–2016 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE,
Focus on Your Code, IAR KickStart Kit, IAR Experiment!, I-jet, I-jet Trace, I-scope,
IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.
EmbeddedICE is a trademark of Advanced RISC Machines Ltd. OCDemon is a
trademark of Macraigor Systems LLC. uC/OS-II and uC/OS-III are trademarks of
Micrium, Inc. CMX-RTX is a trademark of CMX Systems, Inc. ThreadX is a trademark
of Express Logic. RTXC is a trademark of Quadros Systems. Fusion is a trademark of
Unicoi Systems.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Tenth edition: October 2016

Part number: AARM-10

This guide applies to version 7.8x of IAR Embedded Workbench® for ARM.

Internal reference: M21, Hom7.5, asrct2010.3, V_110411, asrcarm7.80, IMAE.

AFE1_AFE2-1:1

 3

Contents
Tables ... 5

Preface .. 7

Who should read this guide ... 7

How to use this guide ... 7

What this guide contains ... 8

Document conventions .. 8

Introduction to the IAR Assembler for ARM 11

Introduction to assembler programming 11

Modular programming ... 12

External interface details .. 13

Source format .. 15

Assembler instructions .. 15

Expressions, operands, and operators ... 15

List file format .. 23

Programming hints .. 24

Tracking call frame usage ... 25

Call frame information overview ... 25

Call frame information in more detail .. 26

Defining a names block .. 26

Defining a common block .. 28

Annotating your source code within a data block 28

Specifying rules for tracking resources and the stack depth 29

Using CFI expressions for tracking complex cases 31

Stack usage analysis directives .. 32

Examples of using CFI directives .. 32

Assembler options ... 35

Using command line assembler options 35

Summary of assembler options .. 36

Description of assembler options .. 37

AFE1_AFE2-1:1

4
IAR Assembler
Reference Guide for ARM

Assembler operators .. 53

Precedence of assembler operators ... 53

Summary of assembler operators ... 53

Description of assembler operators ... 56

Assembler directives .. 69

Summary of assembler directives ... 69

Description of assembler directives ... 73

Assembler pseudo-instructions .. 119

Summary .. 119

Descriptions of pseudo-instructions ... 120

Assembler diagnostics .. 129

Message format ... 129

Severity levels .. 129

Migrating to the IAR Assembler for ARM ... 131

Introduction .. 131

Thumb code labels ... 131

Alternative register names .. 132

Alternative mnemonics ... 133

Operator synonyms ... 134

Warning messages ... 135

The first register operand omitted .. 135

The first register operand duplicated ... 135

Immediate #0 omitted in Load/Store ... 135

Index ... 137

AFE1_AFE2-1:1

 5

Tables
1: Typographic conventions used in this guide ... 8

2: Naming conventions used in this guide .. 9

3: Assembler environment variables ... 14

4: Assembler error return codes .. 14

5: Integer constant formats .. 16

6: ASCII character constant formats ... 16

7: Floating-point constants .. 17

8: Predefined register symbols .. 19

9: Predefined symbols ... 19

10: Symbol and cross-reference table ... 24

11: Code sample with backtrace rows and columns ... 32

12: Assembler options summary ... 36

13: Assembler directives summary ... 69

14: Module control directives ... 74

15: Symbol control directives ... 77

16: Mode control directives ... 78

17: Section control directives .. 81

18: Value assignment directives .. 84

19: Macro processing directives .. 87

20: Listing control directives ... 96

21: C-style preprocessor directives ... 101

22: Data definition or allocation directives ... 105

23: Assembler control directives ... 108

24: Call frame information directives names block .. 112

25: Call frame information directives common block .. 113

26: Call frame information directives for data blocks ... 114

27: Unary operators in CFI expressions .. 115

28: Binary operators in CFI expressions ... 115

29: Ternary operators in CFI expressions ... 116

30: Call frame information directives for tracking resources and CFAs 117

31: Call frame information directives for stack usage analysis 118

AFE1_AFE2-1:1

6
IAR Assembler
Reference Guide for ARM

32: Pseudo-instructions ... 119

33: Alternative register names ... 132

34: Alternative mnemonics ... 133

35: Operator synonyms ... 134

AFE1_AFE2-1:1

7

Preface
Welcome to the IAR Assembler Reference Guide for ARM. The purpose of
this guide is to provide you with detailed reference information that can help
you to use the IAR Assembler for ARM to develop your application according
to your requirements.

Who should read this guide
You should read this guide if you plan to develop an application, or part of an
application, using assembler language for the ARM core and need to get detailed
reference information on how to use the IAR Assembler ARM. In addition, you should
have working knowledge of the following:

● The architecture and instruction set of the ARM core (refer to the chip
manufacturer’s documentation)

● General assembler language programming

● Application development for embedded systems

● The operating system of your host computer.

How to use this guide
When you first begin using the IAR Assembler for ARM, you should read the chapter
Introduction to the IAR Assembler for ARM.

If you are an intermediate or advanced user, you can focus more on the reference
chapters that follow the introduction.

If you are new to using the IAR Embedded Workbench, we recommend that you first
work through the tutorials, which you can find in the IAR Information Center and which
will help you get started using IAR Embedded Workbench.

AFE1_AFE2-1:1

8

What this guide contains

IAR Assembler
Reference Guide for ARM

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

● Introduction to the IAR Assembler for ARM provides programming information. It
also describes the source code format, and the format of assembler listings.

● Assembler options first explains how to set the assembler options from the
command line and how to use environment variables. It then gives an alphabetical
summary of the assembler options, and contains detailed reference information
about each option.

● Assembler operators gives a summary of the assembler operators, arranged in order
of precedence, and provides detailed reference information about each operator.

● Assembler directives gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into
groups according to their function.

● Assembler diagnostics contains information about the formats and severity levels of
diagnostic messages.

Document conventions
When, in the IAR Systems documentation, we refer to the programming language C, the
text also applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\arm\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS

The IAR Systems documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a directive, where [and] are not part of the actual
directive, but any [,], {, or } are part of the directive syntax.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

Preface

9

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems®, when referred to in the documentation:

{option} A mandatory part of a directive, where { and } are not part of the
actual directive, but any [,], {, or } are part of the directive syntax.

[option] An optional part of a command.

[a|b|c] An optional part of a command with alternatives.

{a|b|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for ARM IAR Embedded Workbench®

IAR Embedded Workbench® IDE for ARM the IDE

IAR C-SPY® Debugger for ARM C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for ARM the compiler

IAR Assembler™ for ARM the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)

AFE1_AFE2-1:1

10

Document conventions

IAR Assembler
Reference Guide for ARM

AFE1_AFE2-1:1

11

Introduction to the IAR
Assembler for ARM
● Introduction to assembler programming

● Modular programming

● External interface details

● Source format

● Assembler instructions

● Expressions, operands, and operators

● List file format

● Programming hints

● Tracking call frame usage

Introduction to assembler programming
Even if you do not intend to write a complete application in assembler language, there
might be situations where you find it necessary to write parts of the code in assembler,
for example, when using mechanisms in the ARM core that require precise timing and
special instruction sequences.

To write efficient assembler applications, you should be familiar with the architecture
and instruction set of the ARM core. Refer to Advanced RISC Machines Ltd’s hardware
documentation for syntax descriptions of the instruction mnemonics.

GETTING STARTED

To ease the start of the development of your assembler application, you can:

● Work through the tutorials—especially the one about mixing C and assembler
modules—that you find in the Information Center

● Read about the assembler language interface—also useful when mixing C and
assembler modules—in the IAR C/C++ Development Guide for ARM

AFE1_AFE2-1:1

12

Modular programming

IAR Assembler
Reference Guide for ARM

● In the IAR Embedded Workbench IDE, you can base a new project on a template
for an assembler project.

Modular programming
It is widely accepted that modular programming is a prominent feature of good software
design. If you structure your code in small modules—in contrast to one single
monolith—you can organize your application code in a logical structure, which makes
the code easier to understand, and which aids:

● efficient program development

● reuse of modules

● maintenance.

The IAR development tools provide different facilities for achieving a modular structure
in your software.

Typically, you write your assembler code in assembler source files; each file becomes a
named module. If you divide your source code into many small source files, you will get
many small modules. You can divide each module further into different subroutines.

A section is a logical entity containing a piece of data or code that should be mapped to
a physical location in memory. Use the section control directives to place your code and
data in sections. A section is relocatable. An address for a relocatable section is resolved
at link time. Sections let you control how your code and data is placed in memory. A
section is the smallest linkable unit, which allows the linker to include only those units
that are referred to.

If you are working on a large project you will soon accumulate a collection of useful
routines that are used by several of your applications. To avoid ending up with a huge
amount of small object files, collect modules that contain such routines in a library
object file. Note that a module in a library is always conditionally linked. In the IAR
Embedded Workbench IDE, you can set up a library project, to collect many object files
in one library. For an example, see the tutorials in the Information Center.

To summarize, your software design benefits from modular programming, and to
achieve a modular structure you can:

● Create many small modules, one per source file

● In each module, divide your assembler source code into small subroutines
(corresponding to functions on the C level)

● Divide your assembler source code into sections, to gain more precise control of
how your code and data finally is placed in memory

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

13

● Collect your routines in libraries, which means that you can reduce the number of
object files and make the modules conditionally linked.

External interface details
This section provides information about how the assembler interacts with its
environment:

● Assembler invocation syntax, page 13

● Passing options, page 13

● Environment variables, page 14

● Error return codes, page 14

You can use the assembler either from the IAR Embedded Workbench IDE or from the
command line. Refer to the IAR Embedded Workbench® IDE User Guide for ARM for
information about using the assembler from the IAR Embedded Workbench IDE.

ASSEMBLER INVOCATION SYNTAX

The invocation syntax for the assembler is:

iasmarm [options][sourcefile][options]

For example, when assembling the source file prog.s, use this command to generate an
object file with debug information:

iasmarm prog -r

By default, the IAR Assembler for ARM recognizes the filename extensions s, asm, and
msa for source files. The default filename extension for assembler output is .

Generally, the order of options on the command line, both relative to each other and to
the source filename, is not significant. However, there is one exception: when you use
the -I option, the directories are searched in the same order that they are specified on the
command line.

If you run the assembler from the command line without any arguments, the assembler
version number and all available options including brief descriptions are directed to
stdout and displayed on the screen.

PASSING OPTIONS

You can pass options to the assembler in three different ways:

● Directly from the command line

AFE1_AFE2-1:1

14

External interface details

IAR Assembler
Reference Guide for ARM

Specify the options on the command line after the iasmarm command; see
Assembler invocation syntax, page 13.

● Via environment variables

The assembler automatically appends the value of the environment variables to every
command line, so it provides a convenient method of specifying options that are
required for every assembly; see Environment variables, page 14.

● Via a text file by using the -f option; see -f, page 41.

For general guidelines for the option syntax, an options summary, and more information
about each option, see the Assembler options chapter.

ENVIRONMENT VARIABLES

You can use these environment variables with the IAR Assembler:

For example, setting this environment variable always generates a list file with the name
temp.lst:

set IASMARM=-l temp.lst

For information about the environment variables used by the compiler and linker, see the
IAR C/C++ Development Guide for ARM.

ERROR RETURN CODES

When using the IAR Assembler from within a batch file, you might have to determine
whether the assembly was successful to decide what step to take next. For this reason,
the assembler returns these error return codes:

Environment variable Description

IASMARM Specifies command line options; for example:
set IASMARM=-L -ws

IASMARM_INC Specifies directories to search for include files; for example:
set IASMARM_INC=c:\myinc\

Table 3: Assembler environment variables

Return code Description

0 Assembly successful, warnings might appear.

1 Warnings occurred (only if the -ws option is used).

2 Errors occurred.

Table 4: Assembler error return codes

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

15

Source format
The format of an assembler source line is as follows:

[label [:]] [operation] [operands] [; comment]

where the components are as follows:

The components are separated by spaces or tabs.

A source line cannot exceed 2047 characters.

Tab characters, ASCII 09H, are expanded according to the most common practice; i.e.
to columns 8, 16, 24 etc. This affects the source code output in list files and debug
information. Because tabs might be set up differently in different editors, do not use tabs
in your source files.

Assembler instructions
The IAR Assembler for ARM supports the syntax for assembler instructions as
described in the ARM Architecture Reference Manual. It complies with the requirement
of the ARM architecture on word alignment. Any instructions in a code section placed
on an odd address results in an error.

Expressions, operands, and operators
Expressions consist of expression operands and operators.

The assembler accepts a wide range of expressions, including both arithmetic and
logical operations. All operators use 32-bit two’s complement integers. Range checking
is performed if a value is used for generating code.

label A definition of a label, which is a symbol that represents
an address. If the label starts in the first column—that is, at
the far left on the line—the :(colon) is optional.

operation An assembler instruction or directive. This must not start
in the first column—there must be some whitespace to the
left of it.

operands An assembler instruction or directive can have zero, one,
or more operands. The operands are separated by commas.

comment Comment, preceded by a ; (semicolon)

C or C++ comments are also allowed.

AFE1_AFE2-1:1

16

Expressions, operands, and operators

IAR Assembler
Reference Guide for ARM

Expressions are evaluated from left to right, unless this order is overridden by the
priority of operators; see also Assembler operators.

These operands are valid in an expression:

● Constants for data or addresses, excluding floating-point constants.

● Symbols—symbolic names—which can represent either data or addresses, where
the latter also is referred to as labels.

● The program location counter (PLC), . (period).

The operands are described in greater details on the following pages.

Note: You cannot have two symbols in one expression, or any other complex
expression, unless the expression can be resolved at assembly time. If they are not
resolved, the assembler generates an error.

INTEGER CONSTANTS

Because all IAR Systems assemblers use 32-bit two’s complement internal arithmetic,
integers have a (signed) range from -2147483648 to 2147483647.

Constants are written as a sequence of digits with an optional - (minus) sign in front to
indicate a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

Note: Both the prefix and the suffix can be written with either uppercase or lowercase
letters.

ASCII CHARACTER CONSTANTS

ASCII constants can consist of any number of characters enclosed in single or double
quotes. Only printable characters and spaces can be used in ASCII strings. If the quote
character itself will be accessed, two consecutive quotes must be used:

Integer type Example

Binary 1010b, b'1010

Octal 1234q, q'1234

Decimal 1234, -1, d'1234

Hexadecimal 0FFFFh, 0xFFFF, h'FFFF

Table 5: Integer constant formats

Format Value

'ABCD' ABCD (four characters).

Table 6: ASCII character constant formats

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

17

FLOATING-POINT CONSTANTS

The IAR Assembler accepts floating-point values as constants and converts them into
IEEE single-precision (32-bit) floating-point format, double-precision (64-bit), or
fractional format.

Floating-point numbers can be written in the format:

[+|-][digits].[digits][{E|e}[+|-]digits]

This table shows some valid examples:

Spaces and tabs are not allowed in floating-point constants.

Note: Floating-point constants do not give meaningful results when used in expressions.

TRUE AND FALSE

In expressions a zero value is considered false, and a non-zero value is considered true.

Conditional expressions return the value 0 for false and 1 for true.

SYMBOLS

User-defined symbols can be up to 255 characters long, and all characters are
significant. Depending on what kind of operation a symbol is followed by, the symbol

"ABCD" ABCD'\0' (five characters the last ASCII null).

'A''B' A'B

'A''' A'

'''' (4 quotes) '

'' (2 quotes) Empty string (no value).

"" (2 double quotes) '\0' (an ASCII null character).

\' ', for quote within a string, as in 'I\'d love to'

\\ \, for \ within a string

\" ", for double quote within a string

Format Value

10.23 1.023 x 101

1.23456E-24 1.23456 x 10-24

1.0E3 1.0 x 103

Table 7: Floating-point constants

Format Value

Table 6: ASCII character constant formats (Continued)

AFE1_AFE2-1:1

18

Expressions, operands, and operators

IAR Assembler
Reference Guide for ARM

is either a data symbol or an address symbol where the latter is referred to as a label. A
symbol before an instruction is a label and a symbol before, for example the EQU
directive, is a data symbol. A symbol can be:

● absolute—its value is known by the assembler

● relocatable—its value is resolved at link time.

Symbols must begin with a letter, a–z or A–Z, ? (question mark), or _ (underscore).
Symbols can include the digits 0–9 and $ (dollar).

Symbols may contain any printable characters if they are quoted with ̀ (backquote), for
example:

`strange#label`

Case is insignificant for built-in symbols like instructions, registers, operators, and
directives. For user-defined symbols, case is by default significant but can be turned on
and off using the Case sensitive user symbols (-s) assembler option. For more
information, see -s, page 49.

Use the symbol control directives to control how symbols are shared between modules.
For example, use the PUBLIC directive to make one or more symbols available to other
modules. The EXTERN directive is used for importing an untyped external symbol.

Note that symbols and labels are byte addresses. See also Data definition or allocation
directives, page 105.

LABELS

Symbols used for memory locations are referred to as labels.

Program location counter (PLC)

The assembler keeps track of the start address of the current instruction. This is called
the program location counter.

If you must refer to the program location counter in your assembler source code, use the
. (period) sign. For example:

 section MYCODE:CODE(2)
 arm
 b . ; Loop forever
 end

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

19

REGISTER SYMBOLS

This table shows the existing predefined register symbols:

In addition, specific cores might allow you to use other registers, for example APSR for
the Cortex-M3, if available in the instruction syntax.

PREDEFINED SYMBOLS

The IAR Assembler for ARM defines a set of symbols for use in assembler source files.
The symbols provide information about the current assembly, allowing you to test them
in preprocessor directives or include them in the assembled code.

These predefined symbols are available:

Name Size Description

CPSR 32 bits Current program status register

D0-D31 64 bits Floating-point coprocessor registers for double precision

Q0-Q15 128 bits Advanced SIMD registers

FPEXC 32 bits Floating-point coprocessor, exception register

FPSCR 32 bits Floating-point coprocessor, status and control register

FPSID 32 bits Floating-point coprocessor, system ID register

R0–R12 32 bits General purpose registers

R13 (SP) 32 bits Stack pointer

R14 (LR) 32 bits Link register

R15 (PC) 32 bits Program counter

S0-S31 32 bits Floating-point coprocessor registers for single precision

SPSR 32 bits Saved program status register

Table 8: Predefined register symbols

Symbol Value

__ARM_ADVANCED_SIMD__ An integer that is set based on the --cpu option. The
symbol is set to 1 if the selected processor architecture
has the Advanced SIMD architecture extension. The
symbol is undefined for other cores.

__ARM_MEDIA__ An integer that is set based on the --cpu option. The
symbol is set to 1 if the selected processor architecture
has the ARMv6 SIMD extension for multimedia. The
symbol is undefined for other cores.

Table 9: Predefined symbols

AFE1_AFE2-1:1

20

Expressions, operands, and operators

IAR Assembler
Reference Guide for ARM

__ARM_MPCORE__ An integer that is set based on the --cpu option. The
symbol is set to 1 if the selected processor architecture
has the Multiprocessing Extensions. The symbol is
undefined for other cores.

__ARM_PROFILE_M__ An integer that is set based on the --cpu option. The
symbol is set to 1 if the selected processor is a profile M
core. The symbol is undefined for other cores.

__ARMVFP__ An integer that is set based on the --fpu option and that
identifies whether floating-point instructions for a vector
floating-point coprocessor have been enabled or not. The
symbol is defined to __ARMVFPV2__,
__ARMVFPV3__, or __ARMVFPV4__. These symbolic
names can be used when testing the __ARMVFP__
symbol. If floating-point instructions are disabled (default),
the symbol is undefined.

__BUILD_NUMBER__ A unique integer that identifies the build number of the
assembler currently in use. The build number does not
necessarily increase with an assembler that is released
later.

__DATE__ The current date in dd/Mmm/yyyy format (string).

__FILE__ The name of the current source file (string).

__IAR_SYSTEMS_ASM__ IAR assembler identifier (number). Note that the number
could be higher in a future version of the product. This
symbol can be tested with #ifdef to detect whether the
code was assembled by an assembler from IAR Systems.

__IASMARM__ An integer that is set to 1 when the code is assembled
with the IAR Assembler for ARM.

__LINE__ The current source line number (number).

__LITTLE_ENDIAN__ Identifies the byte order in use. Expands to the number 1
when the code is compiled with the little-endian byte
order, and to the number 0 when big-endian code is
generated. Little-endian is the default.

__TID__ Target identity, consisting of two bytes (number). The high
byte is the target identity, which is 0x4F (=decimal 79) for
the IAR Assembler for ARM.

__TIME__ The current time in hh:mm:ss format (string).

Symbol Value

Table 9: Predefined symbols (Continued)

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

21

In addition, predefined symbols are defined that allow you to identify the core you are
assembling for, for example __ARM5__ and __CORE__. For more information, see the
IAR C/C++ Development Guide for ARM.

Including symbol values in code

Several data definition directives make it possible to include a symbol value in the code.
These directives define values or reserve memory. To include a symbol value in the code,
use the symbol in the appropriate data definition directive.

For example, to include the time of assembly as a string for the program to display:

 name timeOfAssembly
 extern printStr
 section MYCODE:CODE(2)

 adr r0,time ; Load address of time
 ; string in R0.
 bl printStr ; Call string output routine.
 bx lr ; Return

 data ; In data mode:
time dc8 __TIME__ ; String representing the
 ; time of assembly.
 end

Testing symbols for conditional assembly

To test a symbol at assembly time, use one of the conditional assembly directives. These
directives let you control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you
are using an old assembler version or a new assembler version, do as follows:

#if (__VER__ > 6021000) ; New assembler version
;…
;…
#else ; Old assembler version
;…
;…
#endif

For more information, see Conditional assembly directives, page 85.

__VER__ The version number in integer format; for example,
version 6.21.2 is returned as 6021002 (number).

Symbol Value

Table 9: Predefined symbols (Continued)

AFE1_AFE2-1:1

22

Expressions, operands, and operators

IAR Assembler
Reference Guide for ARM

ABSOLUTE AND RELOCATABLE EXPRESSIONS

Depending on what operands an expression consists of, the expression is either absolute
or relocatable. Absolute expressions are those expressions that only contain absolute
symbols or relocatable symbols that cancel each other out.

Expressions that include symbols in relocatable sections cannot be resolved at assembly
time, because they depend on the location of sections. These are referred to as
relocatable expressions.

Such expressions are evaluated and resolved at link time, by the IAR ILINK Linker.
They can only be built up out of a maximum of one symbol reference and an offset after
the assembler has reduced it.

For example, a program could define absolute and relocatable expressions as follows:

 name simpleExpressions
 section MYCONST:CONST(2)
first dc8 5 ; A relocatable label.
second equ 10 + 5 ; An absolute expression.

 dc8 first ; Examples of some legal
 dc8 first + 1 ; relocatable expressions.
 dc8 first + second
 end

Note: At assembly time, there is no range check. The range check occurs at link time
and, if the values are too large, there is a linker error.

EXPRESSION RESTRICTIONS

Expressions can be categorized according to restrictions that apply to some of the
assembler directives. One such example is the expression used in conditional statements
like IF, where the expression must be evaluated at assembly time and therefore cannot
contain any external symbols.

The following expression restrictions are referred to in the description of each directive
they apply to.

No forward

All symbols referred to in the expression must be known, no forward references are
allowed.

No external

No external references in the expression are allowed.

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

23

Absolute

The expression must evaluate to an absolute value; a relocatable value (section offset) is
not allowed.

Fixed

The expression must be fixed, which means that it must not depend on variable-sized
instructions. A variable-sized instruction is an instruction that might vary in size
depending on the numeric value of its operand.

List file format
The format of an assembler list file is as follows:

HEADER

The header section contains product version information, the date and time when the file
was created, and which options were used.

BODY

The body of the listing contains the following fields of information:

● The line number in the source file. Lines generated by macros, if listed, have a .
(period) in the source line number field.

● The address field shows the location in memory, which can be absolute or relative
depending on the type of section. The notation is hexadecimal.

● The data field shows the data generated by the source line. The notation is
hexadecimal. Unresolved values are represented by (periods), where two periods
signify one byte. These unresolved values are resolved during the linking process.

● The assembler source line.

SUMMARY

The end of the file contains a summary of errors and warnings that were generated.

SYMBOL AND CROSS-REFERENCE TABLE

When you specify the Include cross-reference option, or if the LSTXRF+ directive was
included in the source file, a symbol and cross-reference table is produced.

AFE1_AFE2-1:1

24

Programming hints

IAR Assembler
Reference Guide for ARM

This information is provided for each symbol in the table:

Programming hints
This section gives hints on how to write efficient code for the IAR Assembler. For
information about projects including both assembler and C or C++ source files, see the
IAR C/C++ Development Guide for ARM.

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of ARM devices are included in the IAR Systems
product package, in the arm\inc directory. These header files define the
processor-specific special function registers (SFRs) and in some cases the interrupt
vector numbers.

Example

The UART read address 0x40050000 of the device is defined in the ionuc100.h file
as:

__IO_REG32_BIT(UA0_RBR,0x40050000,__READ_WRITE ,__uart_rbr_bits)

The declaration is converted by macros defined in the file io_macros.h to:

UA0_RBR DEFINE 0x40050000

USING C-STYLE PREPROCESSOR DIRECTIVES

The C-style preprocessor directives are processed before other assembler directives.
Therefore, do not use preprocessor directives in macros and do not mix them with
assembler-style comments. For more information about comments, see Assembler
control directives, page 107.

C-style preprocessor directives like #define are valid in the remainder of the source
code file, while assembler directives like EQU only are valid in the current module.

Information Description

Symbol The symbol’s user-defined name.

Mode ABS (Absolute), or REL (Relocatable).

Sections The name of the section that this symbol is defined relative to.

Value/Offset The value (address) of the symbol within the current module, relative to
the beginning of the current section.

Table 10: Symbol and cross-reference table

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

25

Tracking call frame usage
In this section, these topics are described::

● Call frame information overview, page 25

● Call frame information in more detail, page 26

These tasks are described:

● Defining a names block, page 26

● Defining a common block, page 28

● Annotating your source code within a data block, page 28

● Specifying rules for tracking resources and the stack depth, page 29

● Using CFI expressions for tracking complex cases, page 31

● Stack usage analysis directives, page 32

● Examples of using CFI directives, page 32

For reference information, see:

● Call frame information directives for names blocks, page 111

● Call frame information directives for common blocks, page 112

● Call frame information directives for data blocks, page 113

● Call frame information directives for tracking resources and CFAs, page 115

● Call frame information directives for stack usage analysis, page 117

CALL FRAME INFORMATION OVERVIEW

Call frame information (CFI) is information about the call frames. Typically, a call
frame contains a return address, function arguments, saved register values, compiler
temporaries, and local variables. Call frame information holds enough information
about call frames to support two important features:

● C-SPY can use call frame information to reconstruct the entire call chain from the
current PC (program counter) and show the values of local variables in each function
in the call chain.

● Call frame information can be used, together with information about possible calls
for calculating the total stack usage in the application. Note that this feature might
not be supported by the product you are using.

The compiler automatically generates call frame information for all C and C++ source
code. Call frame information is also typically provided for each assembler routine in the
system library. However, if you have other assembler routines and want to enable C-SPY
to show the call stack when executing these routines, you must add the required call
frame information annotations to your assembler source code. Stack usage can also be

AFE1_AFE2-1:1

26

Tracking call frame usage

IAR Assembler
Reference Guide for ARM

handled this way (by adding the required annotations for each function call), but you can
also specify stack usage information for any routines in a stack usage control file (see
the IAR C/C++ Development Guide for ARM), which is typically easier.

CALL FRAME INFORMATION IN MORE DETAIL

You can add call frame information to assembler files by using cfi directives. You can
use these to specify:

● The start address of the call frame, which is referred to as the canonical frame
address (CFA). There are two different types of call frames:

● On a stack—stack frames. For stack frames the CFA is typically the value of the
stack pointer after the return from the routine.

● In static memory, as used in a static overlay system—static overlay frames. This
type of call frame is not required by the ARM core and is thus not supported.

● How to find the return address.

● How to restore various resources, like registers, when returning from the routine.

When adding the call frame information for each assembler module, you must:

1 Provide a names block where you describe the resources to be tracked.

2 Provide a common block where you define the resources to be tracked and specify
their default values. This information must correspond to the calling convention
used by the compiler.

3 Annotate the resources used in your source code, which in practice means that you
describe the changes performed on the call frame. Typically, this includes
information about when the stack pointer is changed, and when permanent registers
are stored or restored on the stack.

To do this you must define a data block that encloses a continuous piece of source
code where you specify rules for each resource to be tracked. When the descriptive
power of the rules is not enough, you can instead use CFI expressions.

A full description of the calling convention might require extensive call frame
information. In many cases, a more limited approach will suffice. The recommended
way to create an assembler language routine that handles call frame information
correctly is to start with a C skeleton function that you compile to generate assembler
output. For an example, see the IAR C/C++ Development Guide for ARM.

DEFINING A NAMES BLOCK

A names block is used for declaring the resources available for a processor. Inside the
names block, all resources that can be tracked are defined.

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

27

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.

Only one names block can be open at a time.

Inside a names block, four different kinds of declarations can appear: a resource
declaration, a stack frame declaration, a static overlay frame declaration, and a base
address declaration:

● To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. The
name must be one of the register names defined in the AEABI document DWARF for
the ARM architecture. A virtual resource is a logical concept, in contrast to a
“physical” resource such as a processor register. Virtual resources are usually used
for the return address.

To declare more than one resource, separate them with commas.

A resource can also be a composite resource, made up of at least two parts. To declare
the composition of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part, …

The parts are separated with commas. The resource and its parts must have been
previously declared as resources, as described above.

● To declare a stack frame CFA, use the directive:

CFI STACKFRAME cfa resource type

The parameters are the name of the stack frame CFA, the name of the associated
resource (the stack pointer), and the memory type (to get the address space). To
declare more than one stack frame CFA, separate them with commas.

When going “back” in the call stack, the value of the stack frame CFA is copied into
the associated stack pointer resource to get a correct value for the previous function
frame.

● To declare a base address CFA, use the directive:

CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the memory type. To declare more than
one base address CFA, separate them with commas.

A base address CFA is used for conveniently handling a CFA. In contrast to the stack
frame CFA, there is no associated stack pointer resource to restore.

AFE1_AFE2-1:1

28

Tracking call frame usage

IAR Assembler
Reference Guide for ARM

DEFINING A COMMON BLOCK

The common block is used for declaring the initial contents of all tracked resources.
Normally, there is one common block for each calling convention used.

Start a common block with the directive:

CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously
defined names block.

Declare the return address column with the directive:

CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the memory in
which the calling function resides. You must declare the return address column for the
common block.

Inside a common block, you can declare the initial value of a CFA or a resource by using
the directives available for common blocks, see Call frame information directives for
common blocks, page 112. For more information about how to use these directives, see
Specifying rules for tracking resources and the stack depth, page 29 and Using CFI
expressions for tracking complex cases, page 31.

End a common block with the directive:

CFI ENDCOMMON name

where name is the name used to start the common block.

ANNOTATING YOUR SOURCE CODE WITHIN A DATA
BLOCK

The data block contains the actual tracking information for one continuous piece of
code.

Start a data block with the directive:

CFI BLOCK name USING commonblock

where name is the name of the new block and commonblock is the name of a previously
defined common block.

If the piece of code for the current data block is part of a defined function, specify the
name of the function with the directive:

CFI FUNCTION label

where label is the code label starting the function.

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

29

If the piece of code for the current data block is not part of a function, specify this with
the directive:

CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block, you can manipulate the values of the resources by using the
directives available for data blocks, see Call frame information directives for data
blocks, page 113. For more information on how to use these directives, see Specifying
rules for tracking resources and the stack depth, page 29, and Using CFI expressions for
tracking complex cases, page 31.

SPECIFYING RULES FOR TRACKING RESOURCES AND THE
STACK DEPTH

To describe the tracking information for individual resources, two sets of simple rules
with specialized syntax can be used:

● Rules for tracking resources

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

● Rules for tracking the stack depth (CFAs)

CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }

You can use these rules both in common blocks to describe the initial information for
resources and CFAs, and inside data blocks to describe changes to the information for
resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, you
can use a full CFI expression with dedicated operators to describe the information, see
Using CFI expressions for tracking complex cases, page 31. However, whenever
possible, you should always use a rule instead of a CFI expression.

Rules for tracking resources

The rules for resources conceptually describe where to find a resource when going back
one call frame. For this reason, the item following the resource name in a CFI directive
is referred to as the location of the resource.

To declare that a tracked resource is restored, in other words, already correctly located,
use SAMEVALUE as the location. Conceptually, this declares that the resource does not

AFE1_AFE2-1:1

30

Tracking call frame usage

IAR Assembler
Reference Guide for ARM

have to be restored because it already contains the correct value. For example, to declare
that a register R11 is restored to the same value, use the directive:

CFI R11 SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this
declares that the resource does not have to be restored (when going back one call frame)
because it is not tracked. Usually it is only meaningful to use it to declare the initial
location of a resource. For example, to declare that R11 is a scratch register and does not
have to be restored, use the directive:

CFI R11 UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource
name as its location. For example, to declare that a register R11 is temporarily located
in a register R12 (and should be restored from that register), use the directive:

CFI R11 R12

To declare that a resource is currently located somewhere on the stack, use FRAME(cfa,
offset) as location for the resource, where cfa is the CFA identifier to use as “frame
pointer” and offset is an offset relative the CFA. For example, to declare that a register
R11 is located at offset –4 counting from the frame pointer CFA_SP, use the directive:

CFI R11 FRAME(CFA_SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that
the location of the resource can be found by concatenating the resource parts for the
composite resource. For example, consider a composite resource RET with resource
parts RETLO and RETHI. To declare that the value of RET can be found by investigating
and concatenating the resource parts, use the directive:

CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules
described above.

Rules for tracking the stack depth (CFAs)

In contrast to the rules for resources, the rules for CFAs describe the address of the
beginning of the call frame. The call frame often includes the return address pushed by
the assembler call instruction. The CFA rules describe how to compute the address of
the beginning of the current stack frame.

Each stack frame CFA is associated with a stack pointer. When going back one call
frame, the associated stack pointer is restored to the current CFA. For stack frame CFAs
there are two possible rules: an offset from a resource (not necessarily the resource
associated with the stack frame CFA) or NOTUSED.

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

31

To declare that a CFA is not used, and that the associated stack pointer should be tracked
as a normal resource, use NOTUSED as the address of the CFA. For example, to declare
that the CFA with the name CFA_SP is not used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify
the stack pointer and the offset. For example, to declare that the CFA with the name
CFA_SP can be obtained by adding 4 to the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

USING CFI EXPRESSIONS FOR TRACKING COMPLEX CASES

You can use call frame information expressions (CFI expressions) when the descriptive
power of the rules for resources and CFAs is not enough. However, you should always
use a simple rule if there is one.

CFI expressions consist of operands and operators. Three sets of operators are allowed
in a CFI expression:

● Unary operators

● Binary operators

● Ternary operators

In most cases, they have an equivalent operator in the regular assembler expressions.

In this example, R12 is restored to its original value. However, instead of saving it, the
effect of the two post increments is undone by the subtract instruction.

AddTwo:
 cfi block addTwoBlock using myCommon
 cfi function addTwo
 cfi nocalls
 cfi r12 samevalue
 add @r12+, r13
 cfi r12 sub(r12, 2)
 add @r12+, r13
 cfi r12 sub(r12, 4)
 sub #4, r12
 cfi r12 samevalue
 ret
 cfi endblock addTwoBlock

For more information about the syntax for using the operators in CFI expressions, see
Call frame information directives for tracking resources and CFAs, page 115.

AFE1_AFE2-1:1

32

Tracking call frame usage

IAR Assembler
Reference Guide for ARM

STACK USAGE ANALYSIS DIRECTIVES

The stack usage analysis directives (CFI FUNCALL, CFI TAILCALL, CFI
INDIRECTCALL, and CFI NOCALLS) are used for building a call graph which is needed
for stack usage analysis. These directives can be used only in data blocks. When the data
block is a function block (in other words, when the CFI FUNCTION directive has been
used in the data block), you should not specify a caller parameter. When a stack usage
analysis directive is used in code that is shared between functions, you must use the
caller parameter to specify which of the possible functions the information applies to.

The CFI FUNCALL, CFI TAILCALL, and CFI INDIRECTCALL directives must be placed
immediately before the instruction that performs the call. The CFI NOCALLS directive
can be placed anywhere in the data block.

EXAMPLES OF USING CFI DIRECTIVES

The following is an example specific to the ARM core. More examples can be obtained
by generating assembler output when you compile a C source file.

Consider a Cortex-M3 device with its stack pointer R13, link register R14 and general
purpose registers R0–R12. Register R0, R2, R3 and R12 will be used as scratch registers
(these registers may be destroyed by a function call), whereas register R1 must be
restored after the function call.

Consider the following short code sample with the corresponding call frame
information. At entry, assume that the register R14 contains a 32-bit return address. The
stack grows from high addresses toward zero. The CFA denotes the top of the call frame,
in other words, the value of the stack pointer after returning from the function.

Each row describes the state of the tracked resources before the execution of the
instruction. As an example, for the MOV R1,R0 instruction, the original value of the R1
register is located in the R0 register and the top of the function frame (the CFA column)
is R13 + 0. The row at address 0000 is the initial row and the result of the calling
convention used for the function.

Address CFA R1 R4-R11 R14 R0, R2, R3, R12 Assembler code

00000000 R13 + 0 SAME SAME SAME Undefined PUSH {r1,lr}

00000002 R13 + 8 CFA - 8 CFA- 4 MOVS r1,#4

00000004 BL func2

00000008 POP {r0,lr}

0000000C R13 + 0 R0 SAME MOV r1,r0

0000000E SAME BX lr

Table 11: Code sample with backtrace rows and columns

AFE1_AFE2-1:1

Introduction to the IAR Assembler for ARM

33

The R14 column is the return address column—in other words, the location of the return
address. The R1 column has SAME in the initial row to indicate that the value of the R1
register will be restored to the same value it already has. Some of the registers are
undefined because they do not need to be restored on exit from the function.

Defining the names block

The names block for the small example above would be:

 cfi names ArmCore
 cfi stackframe cfa r13 DATA
 cfi resource r0:32, r1:32, r2:32, r3:32
 cfi resource r4:32, r5:32, r6:32, r7:32
 cfi resource r8:32, r9:32, r10:32, r11:32
 cfi resource r12:32, r13:32, r14:32
 cfi endnames ArmCore

Defining the common block

 cfi common trivialCommon using ArmCore
 cfi codealign 2
 cfi dataalign 4
 cfi returnaddress r14 CODE
 cfi cfa r13+0
 cfi default samevalue
 cfi r0 undefined
 cfi r2 undefined
 cfi r3 undefined
 cfi r12 undefined
 cfi endcommon trivialCommon

Note: R13 cannot be changed using a CFI directive because it is the resource associated
with CFA.

AFE1_AFE2-1:1

34

Tracking call frame usage

IAR Assembler
Reference Guide for ARM

Defining the data block

You should place the CFI directives at the point where the backtrace information has
changed, in other words, immediately after the instruction that changes the backtrace
information.

 section MYCODE:CODE(2)

 cfi block trivialBlock using trivialCommon
 cfi function func1

 thumb

func1 push {r1,lr}

 cfi r1 frame(cfa, -8)
 cfi r14 frame(cfa, -4)
 cfi cfa r13+8

 movs r1,#4

 cfi funcall func2

 bl func2
 pop {r0,lr}

 cfi r1 r0
 cfi r14 samevalue
 cfi cfa r13

 mov r1,r0

 cfi r1 samevalue

 bx lr

 cfi endblock trivialBlock

 end

AFE1_AFE2-1:1

35

Assembler options
● Using command line assembler options

● Summary of assembler options

● Description of assembler options

Using command line assembler options
Assembler options are parameters you can specify to change the default behavior of the
assembler. You can specify options from the command line—which is described in more
detail in this section—and from within the IAR Embedded Workbench® IDE.

The IAR Embedded Workbench® IDE User Guide for ARM describes how to set
assembler options in the IDE, and gives reference information about the available
options.

SPECIFYING OPTIONS AND THEIR PARAMETERS

To set assembler options from the command line, include them after the iasmarm
command:

iasmarm [options] [sourcefile] [options]

These items must be separated by one or more spaces or tab characters.

If all the optional parameters are omitted, the assembler displays a list of available
options a screenful at a time. Press Enter to display the next screenful.

For example, when assembling the source file power2.s, use this command to generate
a list file to the default filename (power2.lst):

iasmarm power2.s -L

Some options accept a filename (that may be prefixed by a path), included after the
option letter with a separating space. For example, to generate a list file with the name
list.lst:

iasmarm power2.s -l list.lst

Some other options accept a string that is not a filename. This is included after the option
letter, but without a space. For example, to generate a list file to the default filename but
in the subdirectory named list:

iasmarm power2.s -Llist\

AFE1_AFE2-1:1

36

Summary of assembler options

IAR Assembler
Reference Guide for ARM

Note: The subdirectory you specify must already exist. The trailing backslash is
required to separate the name of the subdirectory from the default filename.

EXTENDED COMMAND LINE FILE

In addition to accepting options and source filenames from the command line, the
assembler can accept them from an extended command line file.

By default, extended command line files have the extension xcl, and can be specified
using the -f command line option. For example, to read the command line options from
extend.xcl, enter:

iasmarm -f extend.xcl

Summary of assembler options
This table summarizes the assembler options available from the command line:

Command line option Description

-B Macro execution information

-c Conditional list

--cpu Core configuration

-D Defines preprocessor symbols

-E Maximum number of errors

-e Generates code in big-endian byte order

--endian Specifies the byte order for code and data

-f Extends the command line

--fpu Floating-point coprocessor architecture
configuration

-G Opens standard input as source

-g Disables the automatic search for system include
files

-I Adds a search path for a header file

-i Lists #included text

-j Enables alternative register names, mnemonics, and
operators

-L Generates a list file to path

-l Generates a list file

Table 12: Assembler options summary

AFE1_AFE2-1:1

Assembler options

37

Description of assembler options
The following sections give detailed reference information about each assembler option.

Note that if you use the page Extra Options to specify specific command line options,
the IDE does not perform an instant check for consistency problems like conflicting
options, duplication of options, or use of irrelevant options.

-B

Syntax -B

Description Use this option to make the assembler print macro execution information to the standard
output stream for every call to a macro. The information consists of:

● The name of the macro

--legacy Generates code linkable with older toolchains

-M Macro quote characters

--macro_positions_in

_diagnostics

Obtains positions inside macros in diagnostic
messages

-N Omits header from the assembler listing

-n Enables support for multibyte characters

-O Sets the object filename to path

-o Sets the object filename

-p Sets the number of lines per page in the list file

-r Generates debug information.

-S Sets silent operation

-s Case-sensitive user symbols

--system_include_dir Specifies the path for system include files

-t Tab spacing

-U Undefines a symbol

--use_unix_directory_

separators

Uses / as directory separator in paths

-w Disables warnings

-x Includes cross-references

Command line option Description

Table 12: Assembler options summary (Continued)

AFE1_AFE2-1:1

38

Description of assembler options

IAR Assembler
Reference Guide for ARM

● The definition of the macro

● The arguments to the macro

● The expanded text of the macro.

This option is mainly used in conjunction with the list file options -L or -l.

See also -L, page 44.

Project>Options>Assembler >List>Macro execution info

-c

Syntax -c{D|M|E|A|O}

Parameters

Description Use this option to control the contents of the assembler list file.

This option is mainly used in conjunction with the list file options -L or -l.

See also -L, page 44.

To set related options, select:

Project>Options>Assembler>List

--cpu

Syntax --cpu target_core

Parameters

Description Use this option to specify the target core and get the correct instruction set.

D Disables list file

M Includes macro definitions

E Excludes macro expansions

A Includes assembled lines only

O Includes multiline code

target_core Can be values such as ARM7TDMI or architecture versions,
for example 4T. The default value is ARM7TDMI.

AFE1_AFE2-1:1

Assembler options

39

See also The IAR C/C++ Development Guide for ARM for a complete list of coprocessor
architecture variants.

Project>Options>General Options>Target>Processor variant>Core

-D

Syntax -Dsymbol[=value]

Parameters

Description Use this option to define a symbol to be used by the preprocessor.

Example You might want to arrange your source code to produce either the test version or the
production version of your application, depending on whether the symbol TESTVER was
defined. To do this, use include sections such as:

#ifdef TESTVER
... ; additional code lines for test version only
#endif

Then select the version required on the command line as follows:

Production version: iasmarm prog

Test version: iasmarm prog -DTESTVER

Alternatively, your source might use a variable that you must change often. You can then
leave the variable undefined in the source, and use -D to specify the value on the
command line; for example:

iasmarm prog -DFRAMERATE=3

Project>Options>Assembler>Preprocessor>Defined symbols

symbol The name of the symbol you want to define.

value The value of the symbol. If no value is specified, 1 is used.

AFE1_AFE2-1:1

40

Description of assembler options

IAR Assembler
Reference Guide for ARM

-E

Syntax -Enumber

Parameters

Description Use this option to specify the maximum number of errors that the assembler reports. By
default, the maximum number is 100.

Project>Options>Assembler>Diagnostics>Max number of errors

-e

Syntax -e

Description Use this option to cause the assembler to generate code and data in big-endian byte
order. The default byte order is little-endian.

Project>Options>General Options>Target>Endian mode

--endian

Syntax --endian {little|l|big|b}

Parameters

Description Use this option to specify the byte order of the generated code and data.

Project>Options>General Options>Target>Endian mode

number The number of errors before the assembler stops the
assembly. number must be a positive integer; 0 indicates no
limit.

little, l (default) Specifies little-endian byte order.

big, b Specifies big-endian byte order.

AFE1_AFE2-1:1

Assembler options

41

-f

Syntax -f filename

Parameters

For information about specifying a filename, see Using command line assembler
options, page 35.

Description Use this option to extend the command line with text read from the specified file.

The -f option is particularly useful if there are many options which are more
conveniently placed in a file than on the command line itself.

Example To run the assembler with further options taken from the file extend.xcl, use:

iasmarm prog -f extend.xcl

See also Extended command line file, page 36.

To set this option, use:

Project>Options>Assembler>Extra Options

--fpu

Syntax --fpu fpu_variant

Parameters

Description Use this option to specify the floating-point coprocessor architecture variant and get the
correct instruction set and registers.

See also The IAR C/C++ Development Guide for ARM for a complete list of coprocessor
architecture variants.

Project>Options>General Options>Target>FPU

filename The commands that you want to extend the command line
with are read from the specified file. Notice that there must
be a space between the option itself and the filename.

fpu_variant A floating-point coprocessor architecture variant, such
as VFPv3 or none (default).

AFE1_AFE2-1:1

42

Description of assembler options

IAR Assembler
Reference Guide for ARM

-G

Syntax -G

Description Use this option to make the assembler read the source from the standard input stream,
rather than from a specified source file.

When -G is used, you cannot specify a source filename.

This option is not available in the IDE.

-g

Syntax -g

Description By default, the assembler automatically locates the system include files. Use this option
to disable the automatic search for system include files. In this case, you might need to
set up the search path by using the -I assembler option.

Project>Options>Assembler>Preprocessor>Ignore standard include directories

-I

Syntax -Ipath

Parameters

Description Use this option to specify paths to be used by the preprocessor. This option can be used
more than once on the command line.

By default, the assembler searches for #include files in the current working directory,
in the system header directories, and in the paths specified in the IASMARM_INC
environment variable. The -I option allows you to give the assembler the names of
directories which it will also search if it fails to find the file in the current working
directory.

Example For example, using the options:

-Ic:\global\ -Ic:\thisproj\headers\

path The search path for #include files.

AFE1_AFE2-1:1

Assembler options

43

and then writing:

#include "asmlib.hdr"

in the source code, make the assembler search first in the current directory, then in the
directory c:\global\, and then in the directory C:\thisproj\headers\. Finally,
the assembler searches the directories specified in the IASMARM_INC environment
variable, provided that this variable is set, and in the system header directories.

Project>Options>Assembler>Preprocessor>Additional include directories

-i

Syntax -i

Description Use this option to list #include files in the list file.

By default, the assembler does not list #include file lines because these often come
from standard files and would waste space in the list file. The -i option allows you to
list these file lines.

Project>Options>Assembler >List>#included text

-j

Syntax -j

Description Use this option to enable alternative register names, mnemonics, and operators in order
to increase compatibility with other assemblers and allow porting of code.

See also Operator synonyms, page 134 and the chapter Migrating to the IAR Assembler for ARM.

Project>Options>Assembler>Language>Allow alternative register names,
mnemonics and operands

AFE1_AFE2-1:1

44

Description of assembler options

IAR Assembler
Reference Guide for ARM

-L

Syntax -L[path]

Parameters

Description By default, the assembler does not generate a list file. Use this option to make the
assembler generate one and send it to the file [path]sourcename.lst.

-L cannot be used at the same time as -l.

Example To send the list file to list\prog.lst rather than the default prog.lst:

iasmarm prog -Llist\

To set related options, select:

Project>Options>Assembler >List

-l

Syntax -l filename

Parameters

For information about specifying a filename, see Using command line assembler
options, page 35.

Description Use this option to make the assembler generate a listing and send it to the file filename.
By default, the assembler does not generate a list file.

To generate a list file with the default filename, use the -L option instead.

To set related options, select:

Project>Options>Assembler >List

No parameter Generates a listing with the same name as the source file, but
with the filename extension lst.

path The path to the destination of the list file. Note that you must
not include a space before the path.

filename The output is stored in the specified file. Note that you must
include a space before the filename. If no extension is
specified, lst is used.

AFE1_AFE2-1:1

Assembler options

45

--legacy

Syntax --legacy {RVCT3.0}

Parameters

Description Use this option to generate object code that is compatible with the specified toolchain.

To set this option, use Project>Options>Assembler>Extra Options.

-M

Syntax -Mab

Parameters

Description Use this option to sets the characters to be used as left and right quotes of each macro
argument to a and b respectively.

By default, the characters are < and >. The -M option allows you to change the quote
characters to suit an alternative convention or simply to allow a macro argument to
contain < or > themselves.

Example For example, using the option:

-M[]

in the source you would write, for example:

print [>]

to call a macro print with > as the argument.

Note: Depending on your host environment, it might be necessary to use quote marks
with the macro quote characters, for example:

iasmarm filename -M’<>’

Project>Options>Assembler >Language>Macro quote characters

RVCT3.0 Specifies the linker in RVCT3.0. Use this parameter together
with the --aeabi option to generate code that should be
linked with the linker in RVCT3.0.

ab The characters to be used as left and right quotes of each
macro argument, respectively.

AFE1_AFE2-1:1

46

Description of assembler options

IAR Assembler
Reference Guide for ARM

--macro_positions_in_diagnostics

Syntax --macro_positions_in_diagnostics

Description Use this option to obtain position references inside macros in diagnostic messages. This
is useful for detecting incorrect source code constructs in macros.

To set this option, use Project>Options>Assembler>Extra Options.

-N

Syntax -N

Description Use this option to omit the header section that is printed by default in the beginning of
the list file.

This option is useful in conjunction with the list file options -L or -l.

See also -L, page 44.

Project>Options>Assembler >List>Include header

-n

Syntax -n

Description By default, multibyte characters cannot be used in assembler source code. Use this
option to interpret multibyte characters in the source code according to the host
computer’s default setting for multibyte support.

Multibyte characters are allowed in C/C++ style comments, in string literals, and in
character constants. They are transferred untouched to the generated code.

Project>Options>Assembler >Language>Enable multibyte support

AFE1_AFE2-1:1

Assembler options

47

--no_literal_pool

Syntax --no_literal_pool

Description Use this option for code that should run from a memory address range where read access
via the data bus is prohibited.

With the option --no_literal_pool, the assembler uses the MOV32
pseudo-instruction instead of using a literal pool for LDR. Note that other instructions
can still cause read access via the data bus

The option also affects the automatic library selection performed by the linker. An
IAR-specific ELF attribute is used for determining whether libraries compiled with the
option --no_literal_pool should be used.

The option --no_literal_pool is only allowed for cores with the architectures
ARMv6-M, ARMv7-M, and ARMv8-M.

See also The compiler and linker options with the same name in the IAR C/C++ Development
Guide for ARM.

To set this option, use Project>Options>Assembler>Extra Options.

-O

Syntax -O[path]

Parameters

Description Use this option to set the path to be used on the name of the object file.

By default, the path is null, so the object filename corresponds to the source filename.
The -O option lets you specify a path, for example, to direct the object file to a
subdirectory.

Note that -O cannot be used at the same time as -o.

Example To send the object code to the file obj\prog.o rather than to the default file prog.o:

iasmarm prog -Oobj\

Project>Options>General Options>Output>Output directories>Object files

path The path to the destination of the object file. Note that you
must not include a space before the path.

AFE1_AFE2-1:1

48

Description of assembler options

IAR Assembler
Reference Guide for ARM

-o

Syntax -o {filename|directory}

Parameters

For information about specifying a filename or directory, see Using command line
assembler options, page 35.

Description By default, the object code produced by the assembler is located in a file with the same
name as the source file, but with the extension o. Use this option to specify a different
output filename for the object code.

The -o option cannot be used at the same time as the -O option.

Project>Options>General Options>Output>Output directories>Object files

-p

Syntax -plines

Parameters

Description Use this option to set the number of lines per page explicitly.

This option is used in conjunction with the list options -L or -l.

See also -L, page 44

-l, page 44.

Project>Options>Assembler>List>Lines/page

filename The object code is stored in the specified file.

directory The object code is stored in a file (filename extension o)
which is stored in the specified directory.

lines The number of lines per page, which must be in the range 10
to 150.

AFE1_AFE2-1:1

Assembler options

49

-r

Syntax -r

Description Use this option to make the assembler generate debug information, which means the
generated output can be used in a symbolic debugger such as IAR C-SPY® Debugger.

Project>Options>Assembler >Output>Generate debug information

-S

Syntax -S

Description By default, the assembler sends various minor messages via the standard output stream.
Use this option to make the assembler operate without sending any messages to the
standard output stream.

The assembler sends error and warning messages to the error output stream, so they are
displayed regardless of this setting.

This option is not available in the IDE.

-s

Syntax -s{+|-}

Parameters

Description Use this option to control whether the assembler is sensitive to the case of user symbols.
By default, case sensitivity is on.

Example By default, for example LABEL and label refer to different symbols. When -s- is used,
LABEL and label instead refer to the same symbol.

Project>Options>Assembler>Language>User symbols are case sensitive

+ Case-sensitive user symbols.

- Case-insensitive user symbols.

AFE1_AFE2-1:1

50

Description of assembler options

IAR Assembler
Reference Guide for ARM

--system_include_dir

Syntax --system_include_dir path

Parameters

Description By default, the assembler automatically locates the system include files. Use this option
to explicitly specify a different path to the system include files. This might be useful if
you have not installed IAR Embedded Workbench in the default location.

This option is not available in the IDE.

-t

Syntax -tn

Parameters

Description By default, the assembler sets 8 character positions per tab stop. Use this option to
specify a different tab spacing.

This option is useful in conjunction with the list options -L or -l.

See also -L, page 44

-l, page 44.

Project>Options>Assembler>List>Tab spacing

-U

Syntax -Usymbol

Parameters

Description By default, the assembler provides certain predefined symbols.

path The path to the system include files.

n The tab spacing; must be in the range 2 to 9.

symbol The predefined symbol to be undefined.

AFE1_AFE2-1:1

Assembler options

51

Use this option to undefine such a predefined symbol to make its name available for your
own use through a subsequent -D option or source definition.

Example To use the name of the predefined symbol __TIME__ for your own purposes, you could
undefine it with:

iasmarm prog -U__TIME__

See also Predefined symbols, page 19.

This option is not available in the IDE.

-w

Syntax -w[+|-|+n|-n|+m-n|-m-n][s]

Parameters

Description By default, the assembler displays a warning message when it detects an element of the
source code which is legal in a syntactical sense, but might contain a programming error.

Use this option to disable all warnings, a single warning, or a range of warnings.

Note that the -w option can only be used once on the command line.

Example To disable just warning 0 (unreferenced label), use this command:

iasmarm prog -w-0

To disable warnings 0 to 8, use this command:

iasmarm prog -w-0-8

No parameter Disables all warnings.

+ Enables all warnings.

- Disables all warnings.

+n Enables just warning n.

-n Disables just warning n.

+m-n Enables warnings m to n.

-m-n Disables warnings m to n.

s Generates the exit code 1 if a warning message is produced.
By default, warnings generate exit code 0.

AFE1_AFE2-1:1

52

Description of assembler options

IAR Assembler
Reference Guide for ARM

See also Assembler diagnostics, page 129.

To set related options, select:

Project>Options>Assembler>Diagnostics

-x

Syntax -x{D|I|2}

Parameters

Description Use this option to make the assembler include a cross-reference table at the end of the
list file.

This option is useful in conjunction with the list options -L or -l.

See also -L, page 44

-l, page 44.

Project>Options>Assembler>List>Include cross reference

D Includes preprocessor #defines.

I Includes internal symbols.

2 Includes dual-line spacing.

AFE1_AFE2-1:1

53

Assembler operators
● Precedence of assembler operators

● Summary of assembler operators

● Description of assembler operators

Precedence of assembler operators
Each operator has a precedence number assigned to it that determines the order in which
the operator and its operands are evaluated. The precedence numbers range from 1 (the
highest precedence, that is, first evaluated) to 7 (the lowest precedence, that is, last
evaluated).

These rules determine how expressions are evaluated:

● The highest precedence operators are evaluated first, then the second highest
precedence operators, and so on until the lowest precedence operators are evaluated.

● Operators of equal precedence are evaluated from left to right in the expression.

● Parentheses (and) can be used for grouping operators and operands and for
controlling the order in which the expressions are evaluated. For example, this
expression evaluates to 1:

7/(1+(2*3))

Summary of assembler operators
The following tables give a summary of the operators, in order of precedence.
Synonyms, where available, are shown after the operator name.

Note: The operator synonyms are enabled by the option -j. See also the chapter
Migrating to the IAR Assembler for ARM.

PARENTHESIS OPERATOR

Precedence: 1

() Parenthesis.

AFE1_AFE2-1:1

54

Summary of assembler operators

IAR Assembler
Reference Guide for ARM

UNARY OPERATORS

Precedence: 1

MULTIPLICATIVE ARITHMETIC OPERATORS

Precedence: 2

ADDITIVE ARITHMETIC OPERATORS

Precedence: 3

+ Unary plus.

– Unary minus.

!, :LNOT: Logical NOT.

~, :NOT: Bitwise NOT.

LOW Low byte.

HIGH High byte.

BYTE1 First byte.

BYTE2 Second byte.

BYTE3 Third byte.

BYTE4 Fourth byte

LWRD Low word.

HWRD High word.

DATE Current time/date.

SFB Section begin.

SFE Section end.

SIZEOF Section size.

* Multiplication.

/ Division.

%, :MOD: Modulo.

+ Addition.

AFE1_AFE2-1:1

Assembler operators

55

SHIFT OPERATORS

Precedence: 2.5-4

AND OPERATORS

Precedence: 3-8

OR OPERATORS

Precedence: 3-8

– Subtraction.

>> Logical shift right (4).

:SHR: Logical shift right (2.5).

<< Logical shift left (4).

:SHL: Logical shift left (2.5).

&& Logical AND (5).

:LAND: Logical AND (8).

& Bitwise AND (5).

:AND: Bitwise AND (3).

||, :LOR: Logical OR (6).

| Bitwise OR (6).

:OR: Bitwise OR (3).

XOR Logical exclusive OR (6).

:LEOR: Logical exclusive OR (8).

^ Bitwise exclusive OR (6).

:EOR: Bitwise exclusive OR (3).

AFE1_AFE2-1:1

56

Description of assembler operators

IAR Assembler
Reference Guide for ARM

COMPARISON OPERATORS

Precedence: 7

Description of assembler operators
This section gives detailed descriptions of each assembler operator.

See also Expressions, operands, and operators, page 15.

() Parenthesis

Precedence 1

Description (and) group expressions to be evaluated separately, overriding the default precedence
order.

Example 1+2*3 –> 7
(1+2)*3 –> 9

* Multiplication

Precedence 2

Description * produces the product of its two operands. The operands are taken as signed 32-bit
integers and the result is also a signed 32-bit integer.

Example 2*2 –> 4
-2*2 –> -4

=, == Equal.

<>, != Not equal.

> Greater than.

< Less than.

UGT Unsigned greater than.

ULT Unsigned less than.

>= Greater than or equal.

<= Less than or equal.

AFE1_AFE2-1:1

Assembler operators

57

+ Unary plus

Precedence 1

Description Unary plus operator; performs nothing.

Example +3 –> 3
3*+2 –> 6

+ Addition

Precedence 3

Description The + addition operator produces the sum of the two operands which surround it. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example 92+19 –> 111
-2+2 –> 0
-2+-2 –> -4

– Unary minus

Precedence 1

Description The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer and the result of the operator is the
two’s complement negation of that integer.

Example -3 –> -3
3*-2 –> -6
4--5 –> 9

– Subtraction

Precedence 3

Description The subtraction operator produces the difference when the right operand is taken away
from the left operand. The operands are taken as signed 32-bit integers and the result is
also signed 32-bit integer.

AFE1_AFE2-1:1

58

Description of assembler operators

IAR Assembler
Reference Guide for ARM

Example 92-19 –> 73
-2-2 –> -4
-2--2 –> 0

/ Division

Precedence 2

Description / produces the integer quotient of the left operand divided by the right operator. The
operands are taken as signed 32-bit integers and the result is also a signed 32-bit integer.

Example 9/2 –> 4
-12/3 –> -4
9/2*6 –> 24

< Less than

Precedence 7

Description < evaluates to 1 (true) if the left operand has a lower numeric value than the right
operand, otherwise it is 0 (false).

Example -1 < 2 –> 1
2 < 1 –> 0
2 < 2 –> 0

<= Less than or equal

Precedence 7

Description <= evaluates to 1 (true) if the left operand has a numeric value that is lower than or equal
to the right operand, otherwise it is 0 (false).

Example 1 <= 2 –> 1
2 <= 1 –> 0
1 <= 1 –> 1

AFE1_AFE2-1:1

Assembler operators

59

<>, != Not equal

Precedence 7

Description <> evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its two
operands are not identical in value.

Example 1 <> 2 –> 1
2 <> 2 –> 0
'A' <> 'B' –> 1

=, == Equal

Precedence 7

Description = evaluates to 1 (true) if its two operands are identical in value, or to 0 (false) if its two
operands are not identical in value.

Example 1 = 2 –> 0
2 == 2 –> 1
'ABC' = 'ABCD' –> 0

> Greater than

Precedence 7

Description > evaluates to 1 (true) if the left operand has a higher numeric value than the right
operand, otherwise it is 0 (false).

Example -1 > 1 –> 0
2 > 1 –> 1
1 > 1 –> 0

>= Greater than or equal

Precedence 7

Description >= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand, otherwise it is 0 (false).

>= evaluates to 1 (true) if the left operand is equal to or has a higher numeric value than
the right operand, otherwise it is 0 (false).

AFE1_AFE2-1:1

60

Description of assembler operators

IAR Assembler
Reference Guide for ARM

Example 1 >= 2 –> 0
2 >= 1 –> 1
1 >= 1 –> 1

&& Logical AND

Precedence 5

The precedence of :LAND: is 8.

Description && or the synonym :LAND: performs logical AND between its two integer operands. If
both operands are non-zero the result is 1 (true), otherwise it is 0 (false).

Example 1010B && 0011B –> 1
1010B && 0101B –> 1
1010B && 0000B –> 0

& Bitwise AND

Precedence 5

The precedence of :AND: is 3.

Description & or the synonym :AND: performs bitwise AND between the integer operands. Each bit
in the 32-bit result is the logical AND of the corresponding bits in the operands.

Example 1010B & 0011B –> 0010B
1010B & 0101B –> 0000B
1010B & 0000B –> 0000B

~ Bitwise NOT

Precedence 1

Description ~ or the synonym :NOT: performs bitwise NOT on its operand. Each bit in the 32-bit
result is the complement of the corresponding bit in the operand.

Example ~ 1010B –> 11111111111111111111111111110101B

AFE1_AFE2-1:1

Assembler operators

61

| Bitwise OR

Precedence 6

The precedence of :OR: is 3.

Description | or the synonym :OR: performs bitwise OR on its operands. Each bit in the 32-bit result
is the inclusive OR of the corresponding bits in the operands.

Example 1010B | 0101B –> 1111B
1010B | 0000B –> 1010B

^ Bitwise exclusive OR

Precedence 6

The precedence of :EOR: is 3.

Description ^ or the synonym :EOR: performs bitwise XOR on its operands. Each bit in the 32-bit
result is the exclusive OR of the corresponding bits in the operands.

Example 1010B ^ 0101B –> 1111B
1010B ^ 0011B –> 1001B

% Modulo

Precedence 2

Description %or the synonym :MOD: produces the remainder from the integer division of the left
operand by the right operand. The operands are taken as signed 32-bit integers and the
result is also a signed 32-bit integer.

X % Y is equivalent to X-Y*(X/Y) using integer division.

Example 2 % 2 –> 0
12 % 7 –> 5
3 % 2 –> 1

AFE1_AFE2-1:1

62

Description of assembler operators

IAR Assembler
Reference Guide for ARM

! Logical NOT

Precedence 1

Description ! or the synonym :LNOT: negates a logical argument.

Example ! 0101B –> 0
! 0000B –> 1

|| Logical OR

Precedence 6

Description || or the synonym :LOR: performs a logical OR between two integer operands.

Example 1010B || 0000B –> 1
0000B || 0000B –> 0

<< Logical shift left

Precedence 4

Description << or the synonym :SHL: shifts the left operand, which is always treated as unsigned,
to the left. The number of bits to shift is specified by the right operand, interpreted as an
integer value between 0 and 32.

Note: The precedence of :SHL: is 2.5.

Example 00011100B << 3 –> 11100000B
00000111111111111B << 5 –> 11111111111100000B
14 << 1 –> 28

>> Logical shift right

Precedence 4

Description >> or the synonym :SHR: shifts the left operand, which is always treated as unsigned,
to the right. The number of bits to shift is specified by the right operand, interpreted as
an integer value between 0 and 32.

Note: The precedence of :SHR: is 2.5.

AFE1_AFE2-1:1

Assembler operators

63

Example 01110000B >> 3 –> 00001110B
1111111111111111B >> 20 –> 0
14 >> 1 –> 7

BYTE1 First byte

Precedence 1

Description BYTE1 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example BYTE1 0xABCD –> 0xCD

BYTE2 Second byte

Precedence 1

Description BYTE2 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-low byte (bits 15 to 8) of the operand.

Example BYTE2 0x12345678 –> 0x56

BYTE3 Third byte

Precedence 1

Description BYTE3 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the middle-high byte (bits 23 to 16) of the operand.

Example BYTE3 0x12345678 –> 0x34

BYTE4 Fourth byte

Precedence 1

Description BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value.
The result is the high byte (bits 31 to 24) of the operand.

Example BYTE4 0x12345678 –> 0x12

AFE1_AFE2-1:1

64

Description of assembler operators

IAR Assembler
Reference Guide for ARM

DATE Current time/date

Precedence 1

Description DATE gets the time when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

Example To specify the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

HIGH High byte

Precedence 1

Description HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit
integer value. The result is the unsigned 8-bit integer value of the higher order byte of
the operand.

Example HIGH 0xABCD –> 0xAB

HWRD High word

Precedence 1

Description HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the high word (bits 31 to 16) of the operand.

Example HWRD 0x12345678 –> 0x1234

DATE 1 Current second (0–59).

DATE 2 Current minute (0–59).

DATE 3 Current hour (0–23).

DATE 4 Current day (1–31).

DATE 5 Current month (1–12).

DATE 6 Current year MOD 100 (1998 Õ98, 2000 Õ00, 2002 Õ02).

AFE1_AFE2-1:1

Assembler operators

65

LOW Low byte

Precedence 1

Description LOW takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the unsigned, 8-bit integer value of the lower order byte of the operand.

Example LOW 0xABCD –> 0xCD

LWRD Low word

Precedence 1

Description LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value.
The result is the low word (bits 15 to 0) of the operand.

Example LWRD 0x12345678 –> 0x5678

SFB section begin

Syntax SFB(section [{+|-}offset])

Precedence 1

Parameters

Description SFB accepts a single operand to its right. The operator evaluates to the absolute address
of the first byte of that section. This evaluation occurs at linking time.

Example name sectionBegin
 section MYCODE:CODE(2) ; Forward declaration
 ; of MYCODE.
 section MYCONST:CONST(2)
 data
start dc32 sfb(MYCODE)
 end

Even if this code is linked with many other modules, start is still set to the address of
the first byte of the section MYCODE.

section The name of a section, which must be defined before SFB is used.

offset An optional offset from the start address. The parentheses are
optional if offset is omitted.

AFE1_AFE2-1:1

66

Description of assembler operators

IAR Assembler
Reference Guide for ARM

SFE section end

Syntax SFE (section [{+ | -} offset])

Precedence 1

Parameters

Description SFE accepts a single operand to its right. The operator evaluates to the address of the first
byte after the section end. This evaluation occurs at linking time.

Example name sectionEnd
 section MYCODE:CODE(2) ; Forward declaration
 ; of MYCODE.
 section MYCONST:CONST(2)
 data
end dc32 sfe(MYCODE)
 end

Even if this code is linked with many other modules, end is still set to the first byte after
the section MYCODE.

The size of the section MYCODE can be achieved by using the SIZEOF operator.

SIZEOF section size

Syntax SIZEOF section

Precedence 1

Parameters

Description SIZEOF generates SFE-SFB for its argument. That is, it calculates the size in bytes of a
section. This is done when modules are linked together.

Example These two files set size to the size of the section MYCODE.

Table.s:

section The name of a section, which must be defined before SFE is used.

offset An optional offset from the start address. The parentheses are
optional if offset is omitted.

section The name of a relocatable section, which must be defined
before SIZEOF is used.

AFE1_AFE2-1:1

Assembler operators

67

 module table
 section MYCODE:CODE ; Forward declaration of MYCODE.
 section SEGTAB:CONST(2)
 data
size dc32 sizeof(MYCODE)
 end

Application.s:

 module application
 section MYCODE:CODE(2)
 code
 nop ; Placeholder for application.
 end

UGT Unsigned greater than

Precedence 7

Description UGT evaluates to 1 (true) if the left operand has a larger value than the right operand,
otherwise it is 0 (false). The operation treats the operands as unsigned values.

Example 2 UGT 1 –> 1
-1 UGT 1 –> 1

ULT Unsigned less than

Precedence 7

Description ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand,
otherwise it is 0 (false). The operation treats the operands as unsigned values.

Example 1 ULT 2 –> 1
-1 ULT 2 –> 0

XOR Logical exclusive OR

Precedence 6

Description XOR or the synonym :LEOR: evaluates to 1 (true) if either the left operand or the right
operand is non-zero, but to 0 (false) if both operands are zero or both are non-zero. Use
XOR to perform logical XOR on its two operands.

Note: The precedence of :LEOR: is 8.

AFE1_AFE2-1:1

68

Description of assembler operators

IAR Assembler
Reference Guide for ARM

Example 0101B XOR 1010B –> 0
0101B XOR 0000B –> 1

AFE1_AFE2-1:1

69

Assembler directives
This chapter gives a summary of the assembler directives and provides detailed
reference information for each category of directives.

Summary of assembler directives
The assembler directives are classified into these groups according to their function:

● Module control directives, page 73

● Symbol control directives, page 76

● Mode control directives, page 78

● Section control directives, page 80

● Value assignment directives, page 83

● Conditional assembly directives, page 85

● Macro processing directives, page 86

● Listing control directives, page 95

● C-style preprocessor directives, page 100

● Data definition or allocation directives, page 105

● Assembler control directives, page 107

● Function directives, page 110

● Call frame information directives for names blocks, page 111.

● Call frame information directives for common blocks, page 112

● Call frame information directives for data blocks, page 113

● Call frame information directives for tracking resources and CFAs, page 115

● Call frame information directives for stack usage analysis, page 117

This table gives a summary of all the assembler directives:

Directive Description Section

_args Is set to number of arguments passed to macro. Macro processing

$ Includes a file. Assembler control

#define Assigns a value to a label. C-style preprocessor

#elif Introduces a new condition in an #if…#endif
block.

C-style preprocessor

Table 13: Assembler directives summary

AFE1_AFE2-1:1

70

Summary of assembler directives

IAR Assembler
Reference Guide for ARM

#else Assembles instructions if a condition is false. C-style preprocessor

#endif Ends an #if, #ifdef, or #ifndef block. C-style preprocessor

#error Generates an error. C-style preprocessor

#if Assembles instructions if a condition is true. C-style preprocessor

#ifdef Assembles instructions if a symbol is defined. C-style preprocessor

#ifndef Assembles instructions if a symbol is undefined. C-style preprocessor

#include Includes a file. C-style preprocessor

#line Changes the line numbers. C-style preprocessor

#message Generates a message on standard output. C-style preprocessor

#pragma Recognized but ignored. C-style preprocessor

#undef Undefines a label. C-style preprocessor

/*comment*/ C-style comment delimiter. Assembler control

// C++ style comment delimiter. Assembler control

= Assigns a permanent value local to a module. Value assignment

AAPCS Sets module attributes. Module control

ALIAS Assigns a permanent value local to a module. Value assignment

ALIGN Aligns the program location counter by inserting
zero-filled bytes.

Section control

ALIGNRAM Aligns the program location counter. Section control

ALIGNROM Aligns the program location counter by inserting
zero-filled bytes.

Section control

ARM Interprets subsequent instructions as 32-bit (ARM)
instructions.

Mode control

ASSIGN Assigns a temporary value. Value assignment

CASEOFF Disables case sensitivity. Assembler control

CASEON Enables case sensitivity. Assembler control

CFI Specifies call frame information. Call frame
information

CODE16 Interprets subsequent instructions as 16-bit
(Thumb) instructions. Replaced by THUMB.

Mode control

CODE32 Interprets subsequent instructions as 32-bit (ARM)
instructions. Replaced by ARM.

Mode control

Directive Description Section

Table 13: Assembler directives summary (Continued)

AFE1_AFE2-1:1

Assembler directives

71

COL Sets the number of columns per page. Retained for
backward compatibility reasons; recognized but
ignored.

Listing control

DATA Defines an area of data within a code section. Mode control

DC8 Generates 8-bit constants, including strings. Data definition or
allocation

DC16 Generates 16-bit constants. Data definition or
allocation

DC24 Generates 24-bit constants. Data definition or
allocation

DC32 Generates 32-bit constants. Data definition or
allocation

DCB Generates 8-bit byte constants, including strings. Data definition or
allocation

DCD Generates 32-bit long word constants. Data definition or
allocation

DCW Generates 16-bit word constants, including strings. Data definition or
allocation

DEFINE Defines a file-wide value. Value assignment

DS8 Allocates space for 8-bit integers. Data definition or
allocation

DS16 Allocates space for 16-bit integers. Data definition or
allocation

DS24 Allocates space for 24-bit integers. Data definition or
allocation

DS32 Allocates space for 32-bit integers. Data definition or
allocation

ELSE Assembles instructions if a condition is false. Conditional
assembly

ELSEIF Specifies a new condition in an IF…ENDIF block. Conditional
assembly

END Ends the assembly of the last module in a file. Module control

ENDIF Ends an IF block. Conditional
assembly

ENDM Ends a macro definition. Macro processing

Directive Description Section

Table 13: Assembler directives summary (Continued)

AFE1_AFE2-1:1

72

Summary of assembler directives

IAR Assembler
Reference Guide for ARM

ENDR Ends a repeat structure. Macro processing

EQU Assigns a permanent value local to a module. Value assignment

EVEN Aligns the program counter to an even address. Section control

EXITM Exits prematurely from a macro. Macro processing

EXTERN Imports an external symbol. Symbol control

EXTWEAK Imports an external symbol (which can be
undefined.

Symbol control

IF Assembles instructions if a condition is true. Conditional
assembly

IMPORT Imports an external symbol. Symbol control

INCLUDE Includes a file. Assembler control

LIBRARY Begins a module; an alias for PROGRAM and NAME. Module control

LOCAL Creates symbols local to a macro. Macro processing

LSTCND Controls conditional assembler listing. Listing control

LSTCOD Controls multi-line code listing. Listing control

LSTEXP Controls the listing of macro generated lines. Listing control

LSTMAC Controls the listing of macro definitions. Listing control

LSTOUT Controls assembler-listing output. Listing control

LSTPAG Retained for backward compatibility reasons.
Recognized but ignored.

Listing control

LSTREP Controls the listing of lines generated by repeat
directives.

Listing control

LSTXRF Generates a cross-reference table. Listing control

LTORG Directs the current literal pool to be assembled
immediately following the directive.

Assembler control

MACRO Defines a macro. Macro processing

MODULE Begins a module; an alias for PROGRAM and NAME. Module control

NAME Begins a program module. Module control

ODD Aligns the program location counter to an odd
address.

Section control

OVERLAY Recognized but ignored. Symbol control

PAGE Retained for backward compatibility reasons. Listing control

PAGSIZ Retained for backward compatibility reasons. Listing control

Directive Description Section

Table 13: Assembler directives summary (Continued)

AFE1_AFE2-1:1

Assembler directives

73

Description of assembler directives
The following pages give reference information about the assembler directives.

Module control directives

Syntax AAPCS [modifier [...]]

END

NAME symbol

PRESERVE8

PROGRAM symbol

REQUIRE8

PRESERVE8 Sets a module attribute. Module control

PROGRAM Begins a module. Module control

PUBLIC Exports symbols to other modules. Symbol control

PUBWEAK Exports symbols to other modules, multiple
definitions allowed.

Symbol control

RADIX Sets the default base. Assembler control

REPT Assembles instructions a specified number of
times.

Macro processing

REPTC Repeats and substitutes characters. Macro processing

REPTI Repeats and substitutes strings. Macro processing

REQUIRE Forces a symbol to be referenced. Symbol control

REQUIRE8 Sets a module attribute. Module control

RSEG Begins a section. Section control

RTMODEL Declares runtime model attributes. Module control

SECTION Begins a section. Section control

SECTION_TYPE Sets ELF type and flags for a section. Section control

SETA Assigns a temporary value. Value assignment

THUMB Interprets subsequent instructions as Thumb
execution-mode instructions.

Mode control

Directive Description Section

Table 13: Assembler directives summary (Continued)

AFE1_AFE2-1:1

74

Description of assembler directives

IAR Assembler
Reference Guide for ARM

RTMODEL key, value

Parameters

Description Module control directives are used for marking the beginning and end of source program
modules, and for assigning names to them. For information about the restrictions that
apply when using a directive in an expression, see Expression restrictions, page 22.

Beginning a program module

Use NAME or PROGRAM to begin a program module, and to assign a name for future
reference by the IAR XLINK Linker, the IAR XAR Library Builder, and the IAR XLIB
Librarian.

Program modules are unconditionally linked by XLINK, even if other modules do not
reference them.

Beginning a module

Use any of the directives NAME or PROGRAM to begin an ELF module, and to assign a
name.

A module is included in the linked application, even if other modules do not reference
them. For more information about how modules are included in the linked application,
read about the linking process in the IAR C/C++ Development Guide for ARM.

key A text string specifying the key.

modifier An AAPCS extension; possible values are INTERWORK, VFP,
VFP_COMPATIBLE, ROPI, RWPI, RWPI_COMPATIBLE. Modifiers can
be combined to specify AAPCS variants.

symbol Name assigned to module.

value A text string specifying the value.

Directive Description Expression restrictions

END Ends the assembly of the last module in a file. Locally defined symbols
plus offset or integer
constants

NAME Begins a module; alias to PROGRAM. No external references
Absolute

PROGRAM Begins a module. No external references
Absolute

RTMODEL Declares runtime model attributes. Not applicable

Table 14: Module control directives

AFE1_AFE2-1:1

Assembler directives

75

Note: There can be only one module in a file.

Terminating the source file

Use END to indicate the end of the source file. Any lines after the END directive are
ignored. The END directive also ends the module in the file.

Setting module attributes for AEABI compliance

You can set specific attributes on a module to inform the linker that the exported
functions in the module are compliant to certain parts of the AEABI standard.

Use AAPCS, optionally with modifiers, to indicate that a module is compliant with the
AAPCS specification. Use PRESERVE8 if the module preserves an 8-byte aligned stack
and REQUIRE8 if an 8-byte aligned stack is expected.

Note that it is up to you to verify that the module in fact is compliant to these parts as
the assembler does not verify this.

Declaring runtime model attributes

Use RTMODEL to enforce consistency between modules. All modules that are linked
together and define the same runtime attribute key must have the same value for the
corresponding key value, or the special value *. Using the special value * is equivalent
to not defining the attribute at all. It can however be useful to explicitly state that the
module can handle any runtime model.

A module can have several runtime model definitions.

Note: The compiler runtime model attributes start with double underscores. In order to
avoid confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to
control the module consistency, refer to the IAR C/C++ Development Guide for ARM.

The following examples defines three modules in one source file each, where:

● MOD_1 and MOD_2 cannot be linked together since they have different values for
runtime model CAN.

● MOD_1 and MOD_3 can be linked together since they have the same definition of
runtime model RTOS and no conflict in the definition of CAN.

● MOD_2 and MOD_3 can be linked together since they have no runtime model
conflicts. The value * matches any runtime model value.

AFE1_AFE2-1:1

76

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Assembler source file f1.s:

 module mod_1
 rtmodel "CAN", "ISO11519"
 rtmodel "Platform", "M7"
 ; ...
 end

Assembler source file f2.s:

 module mod_2
 rtmodel "CAN", "ISO11898"
 rtmodel "Platform", "*"
 ; ...
 end

Assembler source file f3.s:

 module mod_3
 rtmodel "Platform", "M7"
 ; ...
 end

Symbol control directives

Syntax

EXTERN symbol [,symbol] …

EXTWEAK symbol [,symbol] …

IMPORT symbol [,symbol] …

PUBLIC symbol [,symbol] …

PUBWEAK symbol [,symbol] …

REQUIRE symbol

Parameters
label Label to be used as an alias for a C/C++ symbol.

symbol Symbol to be imported or exported.

AFE1_AFE2-1:1

Assembler directives

77

Description These directives control how symbols are shared between modules:

Exporting symbols to other modules

Use PUBLIC to make one or more symbols available to other modules. Symbols defined
PUBLIC can be relocatable or absolute, and can also be used in expressions (with the
same rules as for other symbols).

The PUBLIC directive always exports full 32-bit values, which makes it feasible to use
global 32-bit constants also in assemblers for 8-bit and 16-bit processors. With the LOW,
HIGH, >>, and << operators, any part of such a constant can be loaded in an 8-bit or
16-bit register or word.

There can be any number of PUBLIC-defined symbols in a module.

Exporting symbols with multiple definitions to other modules

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined in
more than one module. Only one of those definitions is used by ILINK. If a module
containing a PUBLIC definition of a symbol is linked with one or more modules
containing PUBWEAK definitions of the same symbol, ILINK uses the PUBLIC definition.

Note: Library modules are only linked if a reference to a symbol in that module is made,
and that symbol was not already linked. During the module selection phase, no
distinction is made between PUBLIC and PUBWEAK definitions. This means that to
ensure that the module containing the PUBLIC definition is selected, you should link it
before the other modules, or make sure that a reference is made to some other PUBLIC
symbol in that module.

Importing symbols

Use EXTERN or IMPORT to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the section
containing the symbol must be loaded even if the code is not referenced.

Directive Description

EXTERN, IMPORT Imports an external symbol.

EXTWEAK Imports an external symbol. The symbol can be undefined.

OVERLAY Recognized but ignored.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions
allowed.

REQUIRE Forces a symbol to be referenced.

Table 15: Symbol control directives

AFE1_AFE2-1:1

78

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Example The following example defines a subroutine to print an error message, and exports the
entry address err so that it can be called from other modules.

Because the message is enclosed in double quotes, the string will be followed by a zero
byte.

It defines print as an external routine; the address is resolved at link time.

 name errorMessage
 extern print
 public err

 section MYCODE:CODE(2)
 arm

err adr r0,msg
 bl print
 bx lr

 data
msg dc8 "** Error **"
 end

Mode control directives

Syntax ARM

CODE16

CODE32

DATA

THUMB

Description These directives provide control over the processor mode:

Directive Description

ARM, CODE32 Subsequent instructions are assembled as 32-bit (ARM) instructions.
Labels within a CODE32 area have bit 0 set to 0. Force 4-byte
alignment.

CODE16 Subsequent instructions are assembled as 16-bit (Thumb) instructions,
using the traditional CODE16 syntax. Labels within a CODE16 area
have bit 0 set to 1. Force 2-byte alignment.

Table 16: Mode control directives

AFE1_AFE2-1:1

Assembler directives

79

To change between the Thumb and ARM processor modes, use the CODE16/THUMB and
CODE32/ARM directives with the BX instruction (Branch and Exchange) or some other
instruction that changes the execution mode. The CODE16/THUMB and CODE32/ARM
mode directives do not assemble to instructions that change the mode, they only instruct
the assembler how to interpret the following instructions.

The use of the mode directives CODE32 and CODE16 is deprecated. Instead, use ARM and
THUMB, respectively.

Always use the DATA directive when defining data in a Thumb code section with DC8,
DC16, or DC32, otherwise labels on the data will have bit 0 set.

Note: Be careful when porting assembler source code written for other assemblers. The
IAR Assembler always sets bit 0 on Thumb code labels (local, external or public). See
the chapter Migrating to the IAR Assembler for ARM for details.

The assembler will initially be in ARM mode, except if you specified a core which does
not support ARM mode. In this case, the assembler will initially be in Thumb mode.

Example The following example shows how a Thumb entry to an ARM function can be
implemented:

 name modeChange
 section MYCODE:CODE(2)
 thumb
thumbEntry
 bx pc ; Branch to armEntry, and
 ; change execution mode.
 nop ; For alignment only.
 arm
armEntry
 ; ...

 end

DATA Defines an area of data within a code section, where labels work as in a
CODE32 area.

THUMB Subsequent instructions are assembled either as 16-bit Thumb
instructions, or as 32-bit Thumb-2 instructions if the specified core
supports the Thumb-2 instruction set. The assembler syntax follows
the Unified Assembler syntax as specified by Advanced RISC Machines
Ltd.

Directive Description

Table 16: Mode control directives

AFE1_AFE2-1:1

80

Description of assembler directives

IAR Assembler
Reference Guide for ARM

The following example shows how 32-bit labels are initialized after the DATA directive.
The labels can be used within a Thumb section.

 name dataDirective
 section MYCODE:CODE(2)
 thumb
thumbLabel ldr r0,dataLabel
 bx lr

 data ; Change to data mode, so
 ; that bit 0 is not set
 ; on labels.
dataLabel dc32 0x12345678
 dc32 0x12345678

 end

Section control directives

Syntax ALIGN align [,value]

ALIGNRAM align

ALIGNROM align [,value]

EVEN [value]

ODD [value]

RSEG section [:type] [:flag] [(align)]

SECTION segment :type [:flag] [(align)]

SECTION_TYPE type-expr {,flags-expr}

Parameters
align The power of two to which the address should be aligned. The

permitted range is 0 to 8.
The default align value is 0, except for code sections where the
default is 1.

AFE1_AFE2-1:1

Assembler directives

81

Description The section directives control how code and data are located. For information about the
restrictions that apply when using a directive in an expression, see Expression
restrictions, page 22.

flag ROOT, NOROOT

ROOT (the default mode) indicates that the section fragment must not
be discarded.

NOROOT means that the section fragment is discarded by the linker if
no symbols in this section fragment are referred to. Normally, all
section fragments except startup code and interrupt vectors should
set this flag.

REORDER, NOREORDER

NOREORDER (the default mode) starts a new fragment in the section
with the given name, or a new section if no such section exists.

REORDER starts a new section with the given name.

section The name of the section. The section name is a user-defined symbol
that follows the rules described in Symbols, page 17.

type The memory type, which can be either CODE, CONST, or DATA.

value Byte value used for padding, default is zero.

type-expr A constant expression identifying the ELF type of the section.

flags-expr A constant expression identifying the ELF flags of the section.

Directive Description Expression restrictions

ALIGN Aligns the program location counter by inserting
zero-filled bytes.

No external references
Absolute

ALIGNRAM Aligns the program location counter by
incrementing it.

No external references
Absolute

ALIGNROM Aligns the program location counter by inserting
zero-filled bytes.

No external references
Absolute

EVEN Aligns the program counter to an even address. No external references
Absolute

ODD Aligns the program counter to an odd address. No external references
Absolute

RSEG Begins an ELF section; alias to SECTION. No external references
Absolute

Table 17: Section control directives

AFE1_AFE2-1:1

82

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Beginning a named absolute segment

Use ASEGN to start a named absolute segment located at the address address.

This directive has the advantage of allowing you to specify the memory type of the
segment.

Beginning a relocatable section

Use SECTION (or RSEG) to start a new section. The assembler maintains separate
location counters (initially set to zero) for all sections, which makes it possible to switch
sections and mode anytime without having to save the current program location counter.

Note: The first instance of a SECTION or RSEG directive must not be preceded by any
code generating directives, such as DC8 or DS8, or by any assembler instructions.

To set the ELF type, and possibly the ELF flags for the newly created section, use
SECTION_TYPE. By default, the values of the flags are zero. For information about valid
values, refer to the ELF documentation.

In the following example, the data following the first SECTION directive is placed in a
relocatable section called MYDATA.

The code following the second SECTION directive is placed in a relocatable section
called MYCODE:

 name calculate
 extern subrtn,divrtn

 section MYDATA:DATA (2)
 data
funcTable dc32 subrtn
 dc32 divrtn

 section MYCODE:CODE (2)
 arm
main ldr r0,=funcTable ; Get address, and
 ldr pc,[r0] ; jump to it.
 end

SECTION Begins an ELF section. No external references
Absolute

SECTION_TYPE Sets ELF type and flags for a section.

STACK Begins a stack segment.

Directive Description Expression restrictions

Table 17: Section control directives (Continued)

AFE1_AFE2-1:1

Assembler directives

83

Aligning a section

Use ALIGNROM to align the program location counter to a specified address boundary.
You do this by specifying an expression for the power of two to which the program
counter should be aligned. That is, a value of 1 aligns to an even address and a value of
2 aligns to an address evenly divisibly by 4.

The alignment is made relative to the section start; normally this means that the section
alignment must be at least as large as that of the alignment directive to give the desired
result.

ALIGNROM aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN
directive aligns the program counter to an even address (which is equivalent to
ALIGNROM 1) and the ODD directive aligns the program location counter to an odd
address. The value used for padding bytes must be within the range 0 to 255.

Use ALIGNRAM to align the program location counter to a specified address aoundary.
The expression gives the power of two to which the program location counter should be
aligned. ALIGNRAM aligns by incrementing the program location counter; no data is
generated.

For both RAM and ROM, the parameter align can be within the range 0 to 30.

This example starts a section, , and adds some data. It then aligns to a 64-byte boundary
before creating a 64-byte table. The section has an alignment of 64 bytes to ensure the
64-byte alignment of the table.

 name alignment
 section MYDATA:DATA(6) ; Start a relocatable data
 ; section aligned to a
 ; 64-byte boundary.
 data
target1 ds16 1 ; Two bytes of data.
 alignram 6 ; Align to a 64-byte boundary
results ds8 64 ; Create a 64-byte table, and
target2 ds16 1 ; two more bytes of data.
 alignram 3 ; Align to an 8-byte boundary
ages ds8 64 ; and create another 64-byte
 ; table.
 end

Value assignment directives

Syntax label = expr

label ALIAS expr

label ASSIGN expr

AFE1_AFE2-1:1

84

Description of assembler directives

IAR Assembler
Reference Guide for ARM

label DEFINE const_expr

label EQU expr

label SET expr

label SETA expr

label VAR expr

Parameters

Description These directives are used for assigning values to symbols:

Defining a temporary value

Use ASSIGN, SET, or VAR to define a symbol that might be redefined, such as for use
with macro variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared
PUBLIC.

This example uses SET to redefine the symbol cons in a loop to generate a table of the
first 8 powers of 3:

 name table
cons set 1

; Generate table of powers of 3.
cr_tabl macro times
 dc32 cons
cons set cons * 3
 if times > 1
 cr_tabl times - 1
 endif
 endm

const_expr Constant value assigned to symbol.

expr Value assigned to symbol or value to be tested.

label Symbol to be defined.

Directive Description

=, EQU Assigns a permanent value local to a module.

ALIAS Assigns a permanent value local to a module.

ASSIGN, SET, SETA, VAR Assigns a temporary value.

DEFINE Defines a file-wide value.

Table 18: Value assignment directives

AFE1_AFE2-1:1

Assembler directives

85

 section .text:CODE(2)
table cr_tabl 4
 end

Defining a permanent local value

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is
only valid in the module in which it was defined, but can be made available to other
modules with a PUBLIC directive (but not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

Defining a permanent global value

Use DEFINE to define symbols that should be known to the module containing the
directive . After the DEFINE directive, the symbol is known.

A symbol which was given a value with DEFINE can be made available to modules in
other files with the PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file. Also, the
expression assigned to the defined symbol must be constant.

Conditional assembly directives

Syntax ELSE

ELSEIF condition

ENDIF

IF condition

Parameters
condition One of these:

An absolute expression The expression must not contain
forward or external references, and
any non-zero value is considered as
true.

string1=string2 The condition is true if string1 and
string2 have the same length and
contents.

string1<>string2 The condition is true if string1 and
string2 have different length or
contents.

AFE1_AFE2-1:1

86

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Description Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly
time. If the condition following the IF directive is not true, the subsequent instructions
do not generate any code (that is, it is not assembled or syntax checked) until an ELSE
or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly
directives can be used anywhere in an assembly, but have their greatest use in
conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files can be disabled
by the conditional directives. Each IF directive must be terminated by an ENDIF
directive. The ELSE directive is optional, and if used, it must be inside an IF...ENDIF
block. IF...ENDIF and IF...ELSE...ENDIF blocks can be nested to any level.

Example This example uses a macro to add a constant to a register:

?add macro a,b,c
 if _args == 2
 adds a,a,#b
 elseif _args == 3
 adds a,b,#c
 endif
 endm

 name addWithMacro
 section MYCODE:CODE(2)
 arm

main ?add r1,0xFF ; This,
 ?add r1,r1,0xFF ; and this,
 adds r1,r1,#0xFF ; are the same as this.

 end

Macro processing directives

Syntax _args

ENDM

ENDR

EXITM

LOCAL symbol [,symbol] …

name MACRO [argument] [,argument] …

AFE1_AFE2-1:1

Assembler directives

87

REPT expr

REPTC formal,actual

REPTI formal,actual [,actual] …

Parameters

Description These directives allow user macros to be defined. For information about the restrictions
that apply when using a directive in an expression, see Expression restrictions, page 22.

A macro is a user-defined symbol that represents a block of one or more assembler
source lines. Once you have defined a macro, you can use it in your program like an
assembler directive or assembler mnemonic.

actual Strings to be substituted.

argument Symbolic argument names.

expr An expression.

formal An argument into which each character of actual (REPTC) or each
string of actual (REPTI) is substituted.

name The name of the macro.

symbol Symbols to be local to the macro.

Directive Description Expression restrictions

_args Is set to number of arguments passed to macro.

ENDM Ends a macro definition.

ENDR Ends a repeat structure.

EXITM Exits prematurely from a macro.

LOCAL Creates symbols local to a macro.

MACRO Defines a macro.

REPT Assembles instructions a specified number of times. No forward references
No external references
Absolute
Fixed

REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 19: Macro processing directives

AFE1_AFE2-1:1

88

Description of assembler directives

IAR Assembler
Reference Guide for ARM

When the assembler encounters a macro, it looks up the macro’s definition, and inserts
the lines that the macro represents as if they were included in the source file at that
position.

Macros perform simple text substitution effectively, and you can control what they
substitute by supplying parameters to them.

The macro process consists of three distinct phases:

1 The assembler scans and saves macro definitions. The text between MACRO and
ENDM is saved but not syntax checked. Include-file references $file are recorded
and included during macro expansion.

2 A macro call forces the assembler to invoke the macro processor (expander). The
macro expander switches (if not already in a macro) the assembler input stream
from a source file to the output from the macro expander. The macro expander takes
its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with
text substitutions at source level. Before a line from the called macro definition is
handed over to the assembler, the expander scans the line for all occurrences of
symbolic macro arguments, and replaces them with their expansion arguments.

3 The expanded line is then processed as any other assembler source line. The input
stream to the assembler continues to be the output from the macro processor, until
all lines of the current macro definition have been read.

Defining a macro

You define a macro with the statement:

name MACRO [argument] [,argument] …

Here name is the name you are going to use for the macro, and argument is an argument
for values that you want to pass to the macro when it is expanded.

For example, you could define a macro errMacro as follows:

 name errMacro
 extern abort
errMac macro text
 bl abort
 data
 dc8 text,0
 endm

AFE1_AFE2-1:1

Assembler directives

89

This macro uses a parameter text (passed in LR) to set up an error message for a routine
abort. You would call the macro with a statement such as:

 section MYCODE:CODE(2)
 arm
 errMac 'Disk not ready'

The assembler expands this to:

 section MYCODE:CODE(2)
 arm
 bl abort
 data
 dc8 'Disk not ready',0

 end

If you omit a list of one or more arguments, the arguments you supply when calling the
macro are called \1 to \9 and \A to \Z.

The previous example could therefore be written as follows:

 name errMacro
 extern abort
errMac macro text
 bl abort
 data
 dc8 \1,0
 endm

Use the EXITM directive to generate a premature exit from a macro.

EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before
the symbol is used.

Each time that a macro is expanded, new instances of local symbols are created by the
LOCAL directive. Therefore, it is legal to use local symbols in recursive macros.

Note: It is illegal to redefine a macro.

Passing special characters

Macro arguments that include commas or white space can be forced to be interpreted as
one argument by using the matching quote characters < and > in the macro call.

AFE1_AFE2-1:1

90

Description of assembler directives

IAR Assembler
Reference Guide for ARM

For example:

 name cmpMacro
cmp_reg macro op
 CMP op
 endm

The macro can be called using the macro quote characters:

 section MYCODE:CODE(2)
 cmp_reg <r3,r4>
 end

You can redefine the macro quote characters with the -M command line option; see -M,
page 45.

Predefined macro symbols

The symbol _args is set to the number of arguments passed to the macro. This example
shows how _args can be used:

fill macro
 if _args == 2
 rept \2
 dc8 \1
 endr
 else
 dc8 \1
 endif
 endm

 module filler
 section .text:CODE(2)
 fill 3
 fill 4, 3
 end

AFE1_AFE2-1:1

Assembler directives

91

It generates this code:

 19 module fill
 20 section .text:CODE(2)
 21 fill 3
 21.1 if _args == 2
 21.2 rept
 21.3 dc8 3
 21.4 endr
 21.5 else
 21 00000000 03 fill 3
 21.1 endif
 21.2 endm
 22 fill 4, 3
 22.1 if _args == 2
 22.2 rept 3
 22.3 dc8 4
 22.4 endr
 22 00000001 04 dc8 4
 22 00000002 04 dc8 4
 22 00000003 04 dc8 4
 22.1 else
 22.2 dc8 4
 22.3 endif
 22.4 endm
 23 end

Repeating statements

Use the REPT...ENDR structure to assemble the same block of instructions several
times. If expr evaluates to 0 nothing is generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the
string contains a comma it should be enclosed in quotation marks.

Only double quotes have a special meaning and their only use is to enclose the
characters to iterate over. Single quotes have no special meaning and are treated as any
ordinary character.

Use REPTI to assemble a block of instructions once for each string in a series of strings.
Strings containing commas should be enclosed in quotation marks.

AFE1_AFE2-1:1

92

Description of assembler directives

IAR Assembler
Reference Guide for ARM

This example assembles a series of calls to a subroutine plotc to plot each character in
a string:

 name reptc
 extern plotc
 section MYCODE:CODE(2)

banner reptc chr, "Welcome"
 movs r0,#'chr' ; Pass char as parameter.
 bl plotc
 endr

 end

This produces this code:

 9 name reptc
 10 extern plotc
 11 section MYCODE:CODE(2)
 12
 13 banner reptc chr,"Welcome"
 14 movs r0,#'chr' ; Pass char as
parameter
 15 bl plotc
 16 endr
 16.1 00000000 5700B0E3 movs r0,#'W' ; Pass char as
parameter
 16.2 00000004 bl plotc
 16.3 00000008 6500B0E3 movs r0,#'e' ; Pass char
as
 16.4 0000000C bl plotc
 16.5 00000010 6C00B0E3 movs r0,#'l' ; Pass char
as parameter.
 16.6 00000014 bl plotc
 16.7 00000018 6300B0E3 movs r0,#'c' ; Pass char
as parameter.
 16.8 0000001C bl plotc
 16.9 00000020 6F00B0E3 movs r0,#'o' ; Pass char
as parameter.
 16.10 00000024 bl plotc
 16.11 00000028 6D00B0E3 movs r0,#'m' ; Pass char
as parameter.
 16.12 0000002C bl plotc
 16.13 00000030 6500B0E3 movs r0,#'e' ; Pass char
as parameter.
 16.14 00000034 bl plotc
 17
 18 end

AFE1_AFE2-1:1

Assembler directives

93

This example uses REPTI to clear several memory locations:

 name repti
 extern a,b,c
 section MYCODE:CODE(2)

clearABC movs r0,#0
 repti location,a,b,c
 ldr r1,=location
 str r0,[r1]
 endr

 end

This produces this code:

 9 name repti
 10 extern a,b,c
 11 section MYCODE:CODE(2)
 12
 13 00000000 0000B0E3 clearABC movs r0,#0
 14 repti location,a,b,c
 15 ldr r1,=location
 16 str r0,[r1]
 17 endr
 17.1 00000004 10109FE5 ldr r1,=a
 17.2 00000008 000081E5 str r0,[r1]
 17.3 0000000C 0C109FE5 ldr r1,=b
 17.4 00000010 000081E5 str r0,[r1]
 17.5 00000014 08109FE5 ldr r1,=c
 17.6 00000018 000081E5 str r0,[r1]
 18
 19 end

Coding inline for efficiency

In time-critical code it is often desirable to code routines inline to avoid the overhead of
a subroutine call and return. Macros provide a convenient way of doing this.

AFE1_AFE2-1:1

94

Description of assembler directives

IAR Assembler
Reference Guide for ARM

This example outputs bytes from a buffer to a port:

 name ioBufferSubroutine
 section MYCODE:CODE(2)
 arm
play ldr r1,=buffer ; Pointer to buffer.
 ldr r2,=ioPort ; Pointer to ioPort.
 ldr r3,=512 ; Size of buffer.
 add r3,r3,r1 ; Address of first byte
 ; after buffer.
loop ldrb r4,[r1],#1 ; Read a byte of data, and
 strb r4,[r2] ; write it to the ioPort.
 cmp r1,r3 ; Reached first byte after?
 bne loop ; No: repeat.
 bx lr ; Return.

ioPort equ 0x0100

 section MYDATA:DATA(2)
 data
buffer ds8 512 ; Reserve 512 bytes.

 section MYCODE:CODE(2)
 arm
main bl play
done b done

 end

AFE1_AFE2-1:1

Assembler directives

95

For efficiency we can recode this using a macro:

 name ioBufferInline
play macro buf,size,port
 local loop
 ldr r1,=buf ; Pointer to buffer.
 ldr r2,=port ; Pointer to ioPort.
 ldr r3,=size ; Size of buffer.
 add r3,r3,r1 ; Address of first byte
 ; after buffer.
loop ldrb r4,[r1],#1 ; Read a byte of data, and
 strb r4,[r2] ; write it to the ioPort.
 cmp r1, r3 ; Reached first byte after?
 bne loop ; No: repeat.
 endm

ioPort equ 0x0100

 section MYDATA:DATA(2)
 data
buffer ds8 512 ; Reserve 512 bytes.

 section MYCODE:CODE(2)
 arm
main play buffer,512,ioPort
done b done

 end

Notice the use of the LOCAL directive to make the label loop local to the macro;
otherwise an error is generated if the macro is used twice, as the loop label already
exists.

Listing control directives

Syntax COL columns

LSTCND{+|-}

LSTCOD{+|-}

LSTEXP{+|-}

LSTMAC{+|-}

LSTOUT{+|-}

LSTPAG{+|-}

AFE1_AFE2-1:1

96

Description of assembler directives

IAR Assembler
Reference Guide for ARM

LSTREP{+|-}

LSTXRF{+|-}

PAGE

PAGSIZ lines

Parameters

Description These directives provide control over the assembler list file:

Turning the listing on or off

Use LSTOUT- to disable all list output except error messages. This directive overrides
all other listing control directives.

The default is LSTOUT+, which lists the output (if a list file was specified).

To disable the listing of a debugged section of program:

 lstout-
 ; This section has already been debugged.
 lstout+
 ; This section is currently being debugged.
 end

columns An absolute expression in the range 80 to 132, default is 80

lines An absolute expression in the range 10 to 150, default is 44

Directive Description

COL Sets the number of columns per page.

LSTCND Controls conditional assembly listing.

LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembly-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat directives.

LSTXRF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Sets the number of lines per page.

Table 20: Listing control directives

AFE1_AFE2-1:1

Assembler directives

97

Listing conditional code and strings

Use LSTCND+ to force the assembler to list source code only for the parts of the assembly
that are not disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.

Use LSTCOD- to restrict the listing of output code to just the first line of code for a source
line.

The default setting is LSTCOD+, which lists more than one line of code for a source line,
if needed; that is, long ASCII strings produce several lines of output. Code generation
is not affected.

This example shows how LSTCND+ hides a call to a subroutine that is disabled by an IF
directive:

 name lstcndTest
 extern print
 section FLASH:CODE(2)

debug set 0
 if debug
 bl print
 endif

 lstcnd+
begin2 if debug
 bl print
 endif

 end

This generates the following listing:

 9 name lstcndTest
 10 extern print
 11 section FLASH:CODE(2)
 12
 13 debug set 0
 14 begin if debug
 15 bl print
 16 endif
 17
 18 lstcnd+
 19 begin2 if debug
 21 endif
 22
 23 end

AFE1_AFE2-1:1

98

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Controlling the listing of macros

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+,
which lists all macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the
listing of macro definitions.

This example shows the effect of LSTMAC and LSTEXP:

 name lstmacTest
 extern memLoc
 section FLASH:CODE(2)

dec2 macro arg
 subs r1,r1,#arg
 subs r1,r1,#arg
 endm

 lstmac+
inc2 macro arg
 adds r1,r1,#arg
 adds r1,r1,#arg
 endm

begin dec2 memLoc
 lstexp-
 inc2 memLoc
 bx lr

; Restore default values for
; listing control directives.

 lstmac-
 lstexp+

 end

AFE1_AFE2-1:1

Assembler directives

99

This produces the following output:

 13 name lstmacTest
 14 extern memLoc
 15 section FLASH:CODE(2)
 16
 21
 22 lstmac+
 23 inc2 macro arg
 24 adds r1,r1,#arg
 25 adds r1,r1,#arg
 26 endm
 27
 28 begin dec2 memLoc
 28.1 00000000 subs r1,r1,#memLoc
 28.2 00000004 subs r1,r1,#memLoc
 28.3 endm
 29 lstexp-
 30 inc2 memLoc
 31 00000010 1EFF2FE1 bx lr
 32
 33 ; Restore default values for
 34 ; listing control directives.
 35
 36 lstmac-
 37 lstexp+
 38
 39 end

Controlling the listing of generated lines

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC,
and REPTI.

The default is LSTREP+, which lists the generated lines.

Generating a cross-reference table

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the
current module. The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF-, which does not give a cross-reference table.

Specifying the list file format

Use COL to set the number of columns per page of the assembler list. The default number
of columns is 80.

AFE1_AFE2-1:1

100

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default
number of lines per page is 44.

Use LSTPAG+ to format the assembler output list into pages.

The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.

C-style preprocessor directives

Syntax #define symbol text

#elif condition

#else

#endif

#error "message"

#if condition

#ifdef symbol

#ifndef symbol

#include {"filename" | <filename>}

#line line-no {"filename"}

#message "message"

#undef symbol

Parameters
condition An absolute assembler expression, see Expressions, operands, and

operators, page 15.

The expression must not contain any assembler labels or symbols,
and any non-zero value is considered as true. The C preprocessor
operator defined can be used.

filename Name of file to be included or referred.

line-no Source line number.

message Text to be displayed.

symbol Preprocessor symbol to be defined, undefined, or tested.

text Value to be assigned.

AFE1_AFE2-1:1

Assembler directives

101

Description The assembler has a C-style preprocessor that is similar to the C89 standard.

These C-language preprocessor directives are available:

You must not mix assembler language and C-style preprocessor directives.
Conceptually, they are different languages and mixing them might lead to unexpected
behavior because an assembler directive is not necessarily accepted as a part of the C
preprocessor language.

Note that the preprocessor directives are processed before other directives. As an
example avoid constructs like:

redef macro ; Avoid the following!
#define \1 \2
 endm

because the \1 and \2 macro arguments are not available during the preprocessing
phase.

Defining and undefining preprocessor symbols

Use #define to define a value of a preprocessor symbol.

#define symbol value

Use #undef to undefine a symbol; the effect is as if it had not been defined.

Directive Description

#define Assigns a value to a preprocessor symbol.

#elif Introduces a new condition in an #if...#endif block.

#else Assembles instructions if a condition is false.

#endif Ends an #if, #ifdef, or #ifndef block.

#error Generates an error.

#if Assembles instructions if a condition is true.

#ifdef Assembles instructions if a preprocessor symbol is defined.

#ifndef Assembles instructions if a preprocessor symbol is undefined.

#include Includes a file.

#line Changes the source references in the debug information.

#message Generates a message on standard output.

#pragma This directive is recognized but ignored.

#undef Undefines a preprocessor symbol.

Table 21: C-style preprocessor directives

AFE1_AFE2-1:1

102

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Conditional preprocessor directives

Use the #if...#else...#endif directives to control the assembly process at assembly
time. If the condition following the #if directive is not true, the subsequent instructions
will not generate any code (that is, it will not be assembled or syntax checked) until an
#endif or #else directive is found.

All assembler directives (except for END) and file inclusion can be disabled by the
conditional directives. Each #if directive must be terminated by an #endif directive.
The #else directive is optional and, if used, it must be inside an #if...#endif block.

#if...#endif and #if...#else...#endif blocks can be nested to any level.

Use #ifdef to assemble instructions up to the next #else or #endif directive only if
a symbol is defined.

Use #ifndef to assemble instructions up to the next #else or #endif directive only if
a symbol is undefined.

This example defines the labels tweak and adjust. If adjust is defined, then register
16 is decremented by an amount that depends on adjust, for example 30 when adjust
is 3.

 name calibrate
 extern calibrationConstant
 section MYCODE:CODE(2)
 arm

#define tweak 1
#define adjust 3

calibrate ldr r0,calibrationConstant
#ifdef tweak
#if adjust==1
 subs r0,r0,#4
#elif adjust==2
 subs r0,r0,#20
#elif adjust==3
 subs r0,r0,#30
#endif
#endif /* ifdef tweak */
 str r0,calibrationConstant
 bx lr

 end

AFE1_AFE2-1:1

Assembler directives

103

Including source files

Use #include to insert the contents of a header file into the source file at a specified
point.

#include "filename" and #include <filename> search these directories in the
specified order:

1 The source file directory. (This step is only valid for #include "filename".)

2 The directories specified by the -I option, or options. The directories are searched
in the same order as specified on the command line, followed by the ones specified
by environment variables.

3 The current directory, which is the same as where the assembler executable file is
located.

4 The automatically set up library system include directories. See -g, page 42.

This example uses #include to include a file defining macros into the source file. For
example, these macros could be defined in Macros.inc:

; Exchange registers a and b.
; Use the register c for temporary storage.

xch macro a,b,c
 movs c,a
 movs a,b
 movs b,c
 endm

The macro definitions can then be included, using #include, as in this example:

 name includeFile
 section MYCODE:CODE(2)
 arm

; Standard macro definitions.
#include "Macros.inc"

xchRegs xch r0,r1,r2
 bx lr

 end

Displaying errors

Use #error to force the assembler to generate an error, such as in a user-defined test.

AFE1_AFE2-1:1

104

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Ignoring #pragma

A #pragma line is ignored by the assembler, making it easier to have header files
common to C and assembler.

Changing the source line numbers

Use the #line directive to change the source line numbers and the source filename used
in the debug information. #line operates on the lines following the #line directive.

Comments in C-style preprocessor directives

If you make a comment within a define statement, use:

● the C comment delimiters /* ... */ to comment sections

● the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected
behavior.

This expression evaluates to 3 because the comment character is preserved by #define:

#define x 3 ; This is a misplaced comment.

 module misplacedComment1
expression equ x * 8 + 5
 ;...
 end

This example illustrates some problems that might occur when assembler comments are
used in the C-style preprocessor:

#define five 5 ; This comment is not OK.
#define six 6 // This comment is OK.
#define seven 7 /* This comment is OK. */

 module misplacedComment2
 section MYCONST:CONST(2)

 DC32 five, 11, 12
; The previous line expands to:
; "DC32 5 ; This comment is not OK., 11, 12"

 DC32 six + seven, 11, 12
; The previous line expands to:
; "DC32 6 + 7, 11, 12"

 end

AFE1_AFE2-1:1

Assembler directives

105

Data definition or allocation directives

Syntax DC8 expr [,expr] ...
DC16 expr [,expr] ...
DC24 expr [,expr] ...
DC32 expr [,expr] ...
DCB expr [,expr] ...
DCD expr [,expr] ...
DCW expr [,expr] ...
DF32 value [,value] ...
DF64 value [,value] ...
DS count
DS8 count
DS16 count
DS24 count
DS32 count

Parameters

Description These directives define values or reserve memory.

Use DC8, DC16, DC24, DC32, DCB, DCD, DCW, DF32, or DF64 to create a constant, which
means an area of bytes is reserved big enough for the constant.

Use DS8, DS16, DS24, or DS32 to reserve a number of uninitialized bytes.

For information about the restrictions that apply when using a directive in an expression,
see Expression restrictions, page 22.

The column Alias in the following table shows the Advanced RISC Machines Ltd
directive that corresponds to the IAR Systems directive.

count A valid absolute expression specifying the number of elements to be
reserved.

expr A valid absolute, relocatable, or external expression, or an ASCII string.
ASCII strings are zero filled to a multiple of the data size implied by the
directive. Double-quoted strings are zero-terminated.

value A valid absolute expression or floating-point constant.

Directive Alias Description

DC8 DCB Generates 8-bit constants, including strings.

DC16 DCW Generates 16-bit constants.

DC24 Generates 24-bit constants.

DC32 DCD Generates 32-bit constants.

Table 22: Data definition or allocation directives

AFE1_AFE2-1:1

106

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Generating a lookup table

This example sums up the entries of a constant table of 8-bit data.

 module sumTableAndIndex
 section MYDATA:CONST
 data

table dc8 12
 dc8 15
 dc8 17
 dc8 16
 dc8 14
 dc8 11
 dc8 9

 section MYCODE:CODE(2)
 arm
count set 0

addTable movs r0,#0
 ldr r1,=table

 rept 7
 if count == 7
 exitm
 endif
 ldrb r2,[r1,#count]
 adds r0,r0,r2
count set count + 1
 endr

 bx lr

 end

DF32 Generates 32-bit floating-point constants.

DF64 Generates 64-bit floating-point constants.

DS8 DS Allocates space for 8-bit integers.

DS16 Allocates space for 16-bit integers.

DS24 Allocates space for 24-bit integers.

DS32 Allocates space for 32-bit integers.

Directive Alias Description

Table 22: Data definition or allocation directives (Continued)

AFE1_AFE2-1:1

Assembler directives

107

Defining strings

To define a string:

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string."

To include a single quote in a string, enter it twice; for example:

errMsg DC8 'Don''t understand!'

Reserving space

To reserve space for 10 bytes:

table DS8 10

Assembler control directives

Syntax $filename

/*comment*/

//comment

CASEOFF

CASEON

INCLUDE filename

LTORG

RADIX expr

Parameters
comment Comment ignored by the assembler.

expr Default base; default 10 (decimal).

filename Name of file to be included. The $ character must be the first
character on the line.

AFE1_AFE2-1:1

108

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Description These directives provide control over the operation of the assembler. For information
about the restrictions that apply when using a directive in an expression, see Expression
restrictions, page 22.

Use $ to insert the contents of a file into the source file at a specified point. This is an
alias for #include.

Use /*...*/ to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

Use RADIX to set the default base for constants. The default base is 10.

Use LTORG to direct where the current literal pool is to be assembled. By default, this is
performed at every END and RSEG directive. For an example, see LDR (ARM), page 123.

Controlling case sensitivity

Use CASEON or CASEOFF to turn on or off case sensitivity for user-defined symbols. By
default, case sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by
ILINK should be written in upper case in the ILINK definition file.

Directive Description Expression restrictions

$ Includes a file.

/*comment*/ C-style comment delimiter.

// C++ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

INCLUDE Includes a file.

LTORG Directs the current literal pool to be
assembled immediately after the
directive.

RADIX Sets the default base on all numeric
values.

No forward references
No external references
Absolute
Fixed

Table 23: Assembler control directives

AFE1_AFE2-1:1

Assembler directives

109

When CASEOFF is set, label and LABEL are identical in this example:

 module caseSensitivity1
 section MYCODE:CODE(2)

 caseoff
label nop ; Stored as "LABEL".
 b LABEL
 end

The following will generate a duplicate label error:

 module caseSensitivity2

 caseoff
label nop ; Stored as "LABEL".
LABEL nop ; Error, "LABEL" already defined.
 end

Including a source file

This example uses $ to include a file defining macros into the source file. For example,
these macros could be defined in Macros.inc:

; Exchange registers a and b.
; Use register c for temporary storage.

xch macro a,b,c
 movs c,a
 movs a,b
 movs b,c
 endm

The macro definitions can be included with a $ directive, as in:

 name includeFile
 section MYCODE:CODE(2)

; Standard macro definitions.
$Macros.inc

xchRegs xch r0,r1,r2
 bx lr

 end

AFE1_AFE2-1:1

110

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Defining comments

This example shows how /*...*/ can be used for a multi-line comment:

/*
Program to read serial input.
Version 1: 19.2.11
Author: mjp
*/

See also C-style preprocessor directives, page 101.

Changing the base

To set the default base to 16:

 module radix
 section MYCODE:CODE(2)

 radix 16 ; With the default base set
 movs r0,#12 ; to 16, the immediate value
 ;... ; of the mov instruction is
 ; interpreted as 0x12.

; To reset the base from 16 to 10 again, the argument must be
; written in hexadecimal format.

 radix 0x0a ; Reset the default base to 10.
 movs r0,#12 ; Now, the immediate value of
 ;... ; the mov instruction is
 ; interpreted as 0x0c.
 end

Function directives

Syntax CALL_GRAPH_ROOT function [,category]

Parameters

Description Use this directive to specify that, for stack usage analysis purposes, the function
function is a call graph root. You can also specify an optional category, a quoted
string.

The compiler will generate this directive in assembler list files, when needed.

function The function, a symbol.

category An optional call graph root category, a string.

AFE1_AFE2-1:1

Assembler directives

111

Example CALL_GRAPH_ROOT my_interrupt, "interrupt"

See also Call frame information directives for stack usage analysis, page 117, for information
about CFI directives required for stack usage analysis.

IAR C/C++ Development Guide for ARM for information about how to enable and use
stack usage analysis.

Call frame information directives for names blocks

Syntax Names block directives:

CFI NAMES name

CFI ENDNAMES name

CFI RESOURCE resource : bits [, resource : bits] …

CFI VIRTUALRESOURCE resource : bits [, resource : bits] …

CFI RESOURCEPARTS resource part, part [, part] …

CFI STACKFRAME cfa resource type [, cfa resource type] …

CFI BASEADDRESS cfa type [, cfa type] …

Parameters
bits The size of the resource in bits.

cfa The name of a CFA (canonical frame address).

name The name of the block.

namesblock The name of a previously defined names block.

offset The offset relative the CFA. An integer with an optional sign.

part A part of a composite resource. The name of a previously
declared resource.

resource The name of a resource.

size The size of the frame cell in bytes.

type The segment memory type, such as CODE, CONST or DATA. In
addition, any of the memory types supported by the IAR ILINK
Linker. It is only used for denoting an address space.

AFE1_AFE2-1:1

112

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Description Use these directives to define a names block:

Example Examples of using CFI directives, page 32

See also Tracking call frame usage, page 25

Call frame information directives for common blocks

Syntax Common block directives:

CFI COMMON name USING namesblock

CFI ENDCOMMON name

CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

CFI DEFAULT { UNDEFINED | SAMEVALUE }

CFI RETURNADDRESS resource type

Parameters

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).

CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.

CFI NAMES Starts a names block.

CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI STACKFRAME Declares a stack frame CFA.

CFI VIRTUALRESOURCE Declares a virtual resource.

Table 24: Call frame information directives names block

codealignfactor The smallest common factor of all instruction sizes. Each CFI
directive for a data block must be placed according to this
alignment. 1 is the default and can always be used, but a larger
value reduces the produced call frame information in size. The
possible range is 1–256.

commonblock The name of a previously defined common block.

AFE1_AFE2-1:1

Assembler directives

113

Description Use these directives to define a common block:

In addition to these directives you might also need the call frame information directives
for specifying rules or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 115.

Example Examples of using CFI directives, page 32

See also Tracking call frame usage, page 25

Call frame information directives for data blocks

Syntax CFI BLOCK name USING commonblock

CFI ENDBLOCK name

CFI { NOFUNCTION | FUNCTION label }

CFI { INVALID | VALID }

dataalignfactor The smallest common factor of all frame sizes. If the stack
grows toward higher addresses, the factor is negative; if it grows
toward lower addresses, the factor is positive. 1 is the default, but
a larger value reduces the produced call frame information in
size. The possible ranges are –256 to –1 and 1 to 256.

name The name of the block.

namesblock The name of a previously defined names block.

resource The name of a resource.

type The memory type, such as CODE, CONST or DATA. In addition,
any of the segment memory types supported by the IAR ILINK
Linker. It is only used for denoting an address space.

Directive Description

CFI CODEALIGN Declares code alignment.

CFI COMMON Starts or extends a common block.

CFI DATAALIGN Declares data alignment.

CFI DEFAULT Declares the default state of all resources.

CFI ENDCOMMON Ends a common block.

CFI RETURNADDRESS Declares a return address column.

Table 25: Call frame information directives common block

AFE1_AFE2-1:1

114

Description of assembler directives

IAR Assembler
Reference Guide for ARM

CFI { REMEMBERSTATE | RESTORESTATE }

CFI PICKER

CFI CONDITIONAL label [, label] …

Parameters

Description These directives allow call frame information to be defined in the assembler source
code:

In addition to these directives you might also need the call frame information directives
for specifying rules or CFI expressions for resources and CFAs, see Call frame
information directives for tracking resources and CFAs, page 115.

Example Examples of using CFI directives, page 32

See also Tracking call frame usage, page 25

commonblock The name of a previously defined common block.

label A function label.

name The name of the block.

Directive Description

CFI BLOCK Starts a data block.

CFI CONDITIONAL Declares a data block to be a conditional thread.

CFI ENDBLOCK Ends a data block.

CFI FUNCTION Declares a function associated with a data block.

CFI INVALID Starts a range of invalid call frame information.

CFI NOFUNCTION Declares a data block to not be associated with a function.

CFI PICKER Declares a data block to be a picker thread. Used by the
compiler for keeping track of execution paths when code
is shared within or between functions.

CFI REMEMBERSTATE Remembers the call frame information state.

CFI RESTORESTATE Restores the saved call frame information state.

CFI VALID Ends a range of invalid call frame information.

Table 26: Call frame information directives for data blocks

AFE1_AFE2-1:1

Assembler directives

115

Call frame information directives for tracking resources and CFAs

Syntax CFI cfa { resource | resource + constant | resource - constant }

CFI cfa cfiexpr

CFI resource { UNDEFINED | SAMEVALUE | CONCAT }

CFI resource { resource | FRAME(cfa, offset) }

CFI resource cfiexpr

Parameters

Unary operators Overall syntax: OPERATOR(operand)

Binary operators Overall syntax: OPERATOR(operand1,operand2)

cfa The name of a CFA (canonical frame address).

cfiexpr A CFI expression, which can be one of these:

● A CFI operator with operands

● A numeric constant

● A CFA name

● A resource name.

constant A constant value or an assembler expression that can be
evaluated to a constant value.

offset The offset relative the CFA. An integer with an optional sign.

resource The name of a resource.

CFI operator Operand Description

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFI expression.

LITERAL expr Get the value of the assembler expression. This can insert
the value of a regular assembler expression into a CFI
expression.

NOT cfiexpr Negates a logical CFI expression.

UMINUS cfiexpr Performs arithmetic negation on a CFI expression.

Table 27: Unary operators in CFI expressions

CFI operator Operands Description

ADD cfiexpr,cfiexpr Addition

Table 28: Binary operators in CFI expressions

AFE1_AFE2-1:1

116

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Ternary operators Overall syntax: OPERATOR(operand1,operand2,operand3)

AND cfiexpr,cfiexpr Bitwise AND

DIV cfiexpr,cfiexpr Division

EQ cfiexpr,cfiexpr Equal

GE cfiexpr,cfiexpr Greater than or equal

GT cfiexpr,cfiexpr Greater than

LE cfiexpr,cfiexpr Less than or equal

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

LT cfiexpr,cfiexpr Less than

MOD cfiexpr,cfiexpr Modulo

MUL cfiexpr,cfiexpr Multiplication

NE cfiexpr,cfiexpr Not equal

OR cfiexpr,cfiexpr Bitwise OR

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The
number of bits to shift is specified by the right
operand. In contrast with RSHIFTL, the sign bit is
preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of
bits to shift is specified by the right operand. The sign
bit will not be preserved when shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

CFI operator Operands Description

Table 28: Binary operators in CFI expressions (Continued)

Operator Operands Description

FRAME cfa,size,offset Gets the value from a stack frame. The operands are:
cfa, an identifier that denotes a previously declared CFA.
size, a constant expression that denotes a size in bytes.
offset, a constant expression that denotes a size in
bytes.
Gets the value at address cfa+offset of size size.

Table 29: Ternary operators in CFI expressions

AFE1_AFE2-1:1

Assembler directives

117

Description Use these directives to track resources and CFAs in common blocks and data blocks:

Example Examples of using CFI directives, page 32

See also Tracking call frame usage, page 25

Call frame information directives for stack usage analysis

Syntax CFI FUNCALL { caller } callee

CFI INDIRECTCALL { caller }

CFI NOCALLS { caller }

CFI TAILCALL { callee }

Parameters

IF cond,true,false Conditional operator. The operands are:
cond, a CFI expression that denotes a condition.
true, any CFI expression.
false, any CFI expression.
If the conditional expression is non-zero, the result is the
value of the true expression; otherwise the result is the
value of the false expression.

LOAD size,type,addr Gets the value from memory. The operands are:
size, a constant expression that denotes a size in bytes.
type, a memory type.
addr, a CFI expression that denotes a memory address.
Gets the value at address addr in the segment memory
type type of size size.

Operator Operands Description

Table 29: Ternary operators in CFI expressions (Continued)

Directive Description

CFI cfa Declares the value of a CFA.

CFI resource Declares the value of a resource.

Table 30: Call frame information directives for tracking resources and CFAs

callee The label of the called function.

caller The label of the calling function.

AFE1_AFE2-1:1

118

Description of assembler directives

IAR Assembler
Reference Guide for ARM

Description These directives allow call frame information to be defined in the assembler source
code:

See also Tracking call frame usage, page 25

The IAR C/C++ Development Guide for ARM for information about stack usage
analysis.

Directive Description

CFI FUNCALL Declares function calls for stack usage analysis.

CFI INDIRECTCALL Declares indirect calls for stack usage analysis.

CFI NOCALLS Declares absence of calls for stack usage analysis.

CFI TAILCALL Declares tail calls for stack usage analysis.

Table 31: Call frame information directives for stack usage analysis

AARM-9

 119

Assembler
pseudo-instructions
The IAR Assembler for ARM accepts a number of pseudo-instructions, which
are translated into correct code. This chapter lists the pseudo-instructions
and gives examples of their use.

Summary
In the following table, as well as in the following descriptions:

● ARM denotes pseudo-instructions available after the ARM directive

● CODE16* denotes pseudo-instructions available after the CODE16 directive

● THUMB denotes pseudo-instructions available after the THUMB directive.

Note: The properties of THUMB pseudo-instructions depend on whether the used core
has the Thumb-2 instruction set or not.

Note: In Thumb mode (and CODE16), the syntax LDR register, =expression can,
for values from 0 to 255, be translated into a MOVS instruction. This instruction modifies
the program status register.

The following table shows a summary of the available pseudo-instructions:

Pseudo-instruction Directive Translated to Description

ADR ARM ADD, SUB Loads a program-relative address
into a register.

ADR CODE16* ADD Loads a program-relative address
into a register.

ADR THUMB ADD, SUB Loads a program-relative address
into a register.

ADRL ARM ADD, SUB Loads a program-relative address
into a register.

ADRL THUMB ADD, SUB Loads a program-relative address
into a register.

LDR ARM MOV, MVN, LDR Loads a register with any 32-bit
expression.

Table 32: Pseudo-instructions

AARM-9

120

Descriptions of pseudo-instructions

IAR Assembler
Reference Guide for ARM

* Deprecated. Use THUMB instead.

Descriptions of pseudo-instructions
The following section gives reference information about each pseudo-instruction.

ADR (ARM)

Syntax ADR{condition} register,expression

Parameters

LDR CODE16* MOV, MOVS, LDR Loads a register with any 32-bit
expression.

LDR THUMB MOV, MOVS, MVN, LDR Loads a register with any 32-bit
expression.

MOV CODE16* ADD Moves the value of a low register
to another low register (R0–R7).

MOV32 THUMB MOV, MOVT Loads a register with any 32-bit
value.

NOP ARM MOV Generates the preferred ARM
no-operation code.

NOP CODE16* MOV Generates the preferred Thumb
no-operation code.

Pseudo-instruction Directive Translated to Description

Table 32: Pseudo-instructions (Continued)

{condition} Can be one of the following: EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS,
GE, LT, GT, LE, and AL.

register The register to load.

expression A program location counter-relative expression that evaluates to an
address that is not word-aligned within the range -247 to +263 bytes,
or a word-aligned address within the range -1012 to +1028 bytes.
Unresolved expressions (for example expressions that contain
external labels, or labels in other sections) must be within the range
-247 to +263 bytes.

AARM-9

Assembler pseudo-instructions

121

Description ADR always assembles to one instruction. The assembler attempts to produce a single
ADD or SUB instruction to load the address:

 name armAdr
 section MYCODE:CODE(2)
 arm
 adr r0,thumbLabel ; Becomes "add r0,pc,#1".
 bx r0

 thumb
thumbLabel ; ...

 end

ADR (CODE16)

Syntax ADR register, expression

Parameters

Description This Thumb-1 ADR can generate word-aligned addresses only (that is, addresses
divisible by 4). Use the ALIGNROM directive to ensure that the address is aligned (unless
DC32 is used, because it is always word-aligned).

ADR (THUMB)

Syntax ADR{condition} register,expression

Parameters

Description Similar to ADR (CODE16), but the address range can be larger if a 32-bit Thumb-2
instruction is available in the architecture used.

register The register to load.

expression A program-relative expression that evaluates to a word-aligned
address within the range +4 to +1024 bytes.

{condition} An optional condition code if the instruction is placed after an IT
instruction.

register The register to load.

expression A program-relative expression that evaluates to an address within
the range -4095 to 4095 bytes.

AARM-9

122

Descriptions of pseudo-instructions

IAR Assembler
Reference Guide for ARM

If the address offset is positive and the address is word-aligned, the 16-bit ADR
(CODE16) version will be generated by default.

The 16-bit version can be specified explicitly with the ADR.N instruction. The 32-bit
version can be specified explicitly with the ADR.W instruction.

Example name thumbAdr
 section MYCODE:CODE(2)
 thumb
 adr r0,dataLabel ; Becomes "add r0,pc,#4".
 add r0,r0,r1
 bx lr

 data
 alignrom 2
dataLabel dc32 0xABCD19

 end

See also ADR (CODE16), page 121 if only 16-bit Thumb instructions are available.

ADRL (ARM)

Syntax ADRL{condition} register,expression

Parameters

Description The ADRL pseudo-instruction loads a program-relative address into a register. It is
similar to the ADR pseudo-instruction. ADRL can load a wider range of addresses than
ADR because it generates two data processing instructions. ADRL always assembles to
two instructions. Even if the address can be reached in a single instruction, a second,
redundant instruction is produced. If the assembler cannot construct the address in two
instructions, it generates an error message and the assembly fails.

{condition} Can be one of the following: EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS,
GE, LT, GT, LE, and AL.

register The register to load.

expression A register-relative expression that evaluates to an address that is not
word-aligned within 64 Kbytes, or a word-aligned address within
256 Kbytes. Unresolved expressions (for example expressions that
contain external labels, or labels in other sections) must be within 64
Kbytes. The address can be either before or after the address of the
instruction.

AARM-9

Assembler pseudo-instructions

123

Example name armAdrL
 section MYCODE:CODE(2)
 arm
 adrl r1,label+0x2345 ; Becomes "add r1,pc,#0x45"
 ; and "add r1,r1,#0x2300"
 data
label dc32 0

 end

ADRL (THUMB)

Syntax ADRL{condition} register,expression

Parameters

Description Similar to ADRL (ARM), but the address range can be larger. This instruction is only
available in a core supporting the Thumb-2 instruction set.

LDR (ARM)

Syntax LDR{condition} register,=expression1

or

LDR{condition} register,expression2

Parameters

{condition} An optional condition code if the instruction is placed after an IT
instruction.

register The register to load.

expression A program-relative expression that evaluates to an address within
the range ± 1 Mbyte.

condition An optional condition code.

register The register to load.

expression1 Any 32-bit expression.

expression2 A program location counter-relative expression in the range
-4087 to +4103 from the program location counter.

AARM-9

124

Descriptions of pseudo-instructions

IAR Assembler
Reference Guide for ARM

Description The first form of the LDR pseudo-instruction loads a register with any 32-bit expression.
The second form of the instruction reads a 32-bit value from an address specified by the
expression.

If the value of expression1 is within the range of a MOV or MVN instruction, the
assembler generates the appropriate instruction. If the value of expression1 is not
within the range of a MOV or MVN instruction, or if the expression1 is unsolved, the
assembler places the constant in a literal pool and generates a program-relative LDR
instruction that reads the constant from the literal pool. The offset from the program
location counter to the constant must be less than 4 Kbytes.

Example name armLdr
 section MYCODE:CODE(2)
 arm
 ldr r1,=0x12345678 ; Becomes "ldr r1,[pc,#4]":
 ; loads 0x12345678 from the
 ; literal pool.
 ldr r2,label ; Becomes "ldr r2,[pc,#-4]":
 ; loads 0xFFEEDDCC into r2.
 data
label dc32 0xFFEEDDCC
 ltorg ; The literal pool is placed
 ; here.
 end

See also The LTORG directive in the section Assembler control directives, page 108.

LDR (CODE16)

Syntax LDR register, =expression1

or

LDR register, expression2

Parameters

Description As in ARM mode, the first form of the LDR pseudo-instruction in Thumb mode loads a
register with any 32-bit expression. Note that the first form can be translated into a MOVS
instruction, which modifies the program status register.

register The register to load. LDR can access the low registers (R0–R7) only.

expression1 Any 32-bit expression.

expression2 A program location counter-relative expression +4 to +1024 from
the program location counter.

AARM-9

Assembler pseudo-instructions

125

The second form of the instruction reads a 32-bit value from an address specified by the
expression. However, the offset from the program location counter to the constant must
be positive and less than 1 Kbyte.

LDR (THUMB)

Syntax LDR{condition} register,=expression

Parameters

Description Similar to the LDR (CODE16) instruction, but by using a 32-bit instruction, a larger
value can be loaded directly with a MOV or MVN instruction without requiring the constant
to be placed in a literal pool.

By specifying a 16-bit version explicitly with the LDR.N instruction, a 16-bit instruction
is always generated. This may lead to the constant being placed in the literal pool, even
though a 32-bit instruction could have loaded the value directly using MOV or MVN.

By specifying a 32-bit version explicitly with the LDR.W instruction, a 32-bit instruction
is always generated.

If you do not specify either .N or .W, the 16-bit LDR (CODE16) instruction will be
generated, unless Rd is R8-R15, which leads to the 32-bit variant being generated.

As for LDR (CODE16), the 16-bit variant can be translated into a MOVS instruction,
which modifies the program status register.

Note: The syntax LDR{condition} register, expression2, as described for LDR
(ARM) and LDR (CODE16), is no longer considered a pseudo-instruction. It is part of
the normal instruction set as specified in the Unified Assembler syntax from Advanced
RISC Machines Ltd.

Example name thumbLdr
 extern extLabel

condition An optional condition code if the instruction is placed after an
IT instruction.

register The register to load.

expression Any 32-bit expression.

AARM-9

126

Descriptions of pseudo-instructions

IAR Assembler
Reference Guide for ARM

 section MYCODE:CODE(2)
 thumb
 ldr r1,=extLabel ; Becomes "ldr r1,[pc,#8]":
 nop ; loads extLabel from the
 ; literal pool.
 ldr r2,label ; Becomes "ldr r2,[pc,#0]":
 nop ; loads 0xFFEEDDCC into r2.
 data
label dc32 0xFFEEDDCC
 ltorg ; The literal pool is placed
 ; here.
 end

See also LDR (CODE16), page 124 if only 16-bit Thumb instructions are available.

MOV (CODE16)

Syntax MOV Rd, Rs

Parameters

Description The Thumb MOV pseudo-instruction moves the value of a low register to another low
register (R0-R7). The Thumb MOV instruction cannot move values from one low register
to another.

Note: The ADD immediate instruction generated by the assembler has the side-effect of
updating the condition codes.

The MOV pseudo-instruction uses an ADD immediate instruction with a zero immediate
value.

Note: This description is only valid when using the CODE16 directive. After the THUMB
directive, the interpretation of the instruction syntax is defined by the Unified Assembler
syntax from Advanced RISC Machines Ltd.

Example MOV r2,r3 ; generates the opcode for ADD r2,r3,#0

Rd The destination register.

Rs The source register.

AARM-9

Assembler pseudo-instructions

127

MOV32 (THUMB)

Syntax MOV32{condition} register,expression

Parameters

Description Similar to the LDR (THUMB) instruction, but will load the constant by generating a pair
of the MOV (MOVW) and the MOVT instructions.

This pseudo-instruction always generates two 32-bit instructions and it is only available
in a core supporting the Thumb-2 instruction set.

NOP (ARM)

Syntax NOP

Description NOP generates the preferred ARM no-operation code:

MOV r0,r0

Note: NOP is not a pseudo-instruction in architecture versions that include a NOP
instruction (ARMv6K, ARMv6T2, ARMv7, ARMv8-M).

NOP (CODE16)

Syntax NOP

Description NOP generates the preferred Thumb no-operation code:

MOV r8,r8

Note: NOP is not a pseudo-instruction in architecture versions that include a NOP
instruction (ARMv6T2, ARMv7, ARMv8-M).

condition An optional condition code if the instruction is placed after an IT
instruction.

register The register to load.

expression Any 32-bit expression.

AARM-9

128

Descriptions of pseudo-instructions

IAR Assembler
Reference Guide for ARM

AFE1_AFE2-1:1

129

Assembler diagnostics
The following pages describe the format of the diagnostic messages and
explains how diagnostic messages are divided into different levels of severity.

Message format
All diagnostic messages are displayed on the screen, and printed in the optional list file.

All messages are issued as complete, self-explanatory messages. The message consists
of the incorrect source line, with a pointer to where the problem was detected, followed
by the source line number and the diagnostic message. If include files are used, error
messages are preceded by the source line number and the name of the current file:

 ADS B,C
-----------^
"subfile.h",4 Error[40]: bad instruction

Severity levels
The diagnostic messages produced by the IAR Assembler for ARM reflect problems or
errors that are found in the source code or occur at assembly time.

OPTIONS FOR DIAGNOSTICS

There are two assembler options for diagnostics. You can:

● Disable or enable all warnings, ranges of warnings, or individual warnings, see -w,
page 51

● Set the number of maximum errors before the compilation stops, see -E, page 40.

ASSEMBLY WARNING MESSAGES

Assembly warning messages are produced when the assembler finds a construct which
is probably the result of a programming error or omission.

COMMAND LINE ERROR MESSAGES

Command line errors occur when the assembler is invoked with incorrect parameters.
The most common situation is when a file cannot be opened, or with duplicate,
misspelled, or missing command line options.

AFE1_AFE2-1:1

130

Severity levels

IAR Assembler
Reference Guide for ARM

ASSEMBLY ERROR MESSAGES

Assembly error messages are produced when the assembler finds a construct which
violates the language rules.

ASSEMBLY FATAL ERROR MESSAGES

Assembly fatal error messages are produced when the assembler finds a user error so
severe that further processing is not considered meaningful. After the diagnostic
message is issued, the assembly is immediately ended. These error messages are
identified as Fatal in the error messages list.

ASSEMBLER INTERNAL ERROR MESSAGES

An internal error is a diagnostic message that signals that there was a serious and
unexpected failure due to a fault in the assembler.

During assembly, several internal consistency checks are performed and if any of these
checks fail, the assembler terminates after giving a short description of the problem.
Such errors should normally not occur. However, if you should encounter an error of this
type, it should be reported to your software distributor or to IAR Systems Technical
Support. Please include information enough to reproduce the problem. This would
typically include:

● The product name

● The version number of the assembler, which can be seen in the header of the list
files generated by the assembler

● Your license number

● The exact internal error message text

● The source file of the program that generated the internal error

● A list of the options that were used when the internal error occurred.

AARM-9

 131

Migrating to the IAR
Assembler for ARM
Assembly source code that was originally written for assemblers from other
vendors can also be used with the IAR Assembler for ARM. The assembler
option -j allows you to use a number of alternative register names, mnemonics
and operators.

This chapter contains information that is useful when migrating from an
existing product to the IAR Assembler for ARM.

Introduction
The IAR Assembler for ARM (IASMARM) was designed using the same look and feel
as other IAR assemblers, while still making it easy to translate source code written for
the ARMASM assembler from Advanced RISC Machines Ltd.

When the option -j (Allow alternative register names, mnemonics and operands) is
selected, the instruction syntax is the same in IASMARM as in ARMASM. Many
features, such as directives and macros, are, however, incompatible and cause syntax
errors. There are also differences in Thumb code labels that can cause problems without
generating errors or warnings. Be extra careful when you use such labels in situations
other than jumps.

Note: For new code, use the IAR Assembler for ARM register names, mnemonics and
operators.

THUMB CODE LABELS

Labels placed in Thumb code, i.e. that appear after a CODE16 directive, always have bit
0 set (i.e. an odd label) in IASMARM. ARMASM, on the other hand, does not set bit 0
on symbols in expressions that are solved at assembly time. In the following example,
the symbol T is local and placed in Thumb code. It will have bit 0 set when assembled
with IASMARM, but not when assembled with ARMASM (except in DCD, since it is
solved at link time for relocatable sections). Thus, the instructions will be assembled
differently.

AARM-9

132

Alternative register names

IAR Assembler
Reference Guide for ARM

Example

 section MYCODE:CODE(2)
 arm

The two instructions below are interpreted differently by ARMASM and IASMARM.
ICCARM interprets a reference to T as an odd address (with the Thumb mode bit set),
but in ARMASM it is even (the Thumb mode bit is not set).

 adr r0,T+1
 mov r1,#T-.

To achieve the same interpretation for both ARMASM and ICCARM, use :OR: to set
the Thumb mode bit, or :AND: to clear it:

 add r0,pc,#(T-.-8) :OR: 1
 mov r1,#(T-.) :AND: ~1

 thumb
T nop
 end

Alternative register names
The IAR Assembler for ARM will translate the register names below used in other
assemblers when the option -j is selected. These alternative register names are allowed
in both ARM and Thumb modes. The following table lists the alternative register names
and the assembler register names:

Alternative register name Assembler register name

A1 R0

A2 R1

A3 R2

A4 R3

V1 R4

V2 R5

V3 R6

V4 R7

V5 R8

V6 R9

V7 R10

SB R9

Table 33: Alternative register names

AARM-9

Migrating to the IAR Assembler for ARM

133

For further descriptions of the registers, see Register symbols, page 19.

Alternative mnemonics
A number of mnemonics used by other assemblers will be translated by the assembler
when the option -j is specified. These alternative mnemonics are allowed in CODE16
mode only. The following table lists the alternative mnemonics:

SL R10

FP R11

IP R12

Alternative register name Assembler register name

Table 33: Alternative register names (Continued)

Alternative mnemonic Assembler mnemonic

ADCS ADC

ADDS ADD

ANDS AND

ASLS LSL

ASRS ASR

BICS BIC

BNCC BCS

BNCS BCC

BNEQ BNE

BNGE BLT

BNGT BLE

BNHI BLS

BNLE BGT

BNLO BCS

BNLS BHI

BNLT BGE

BNMI BPL

BNNE BEQ

BNPL BMI

BNVC BVS

Table 34: Alternative mnemonics

AARM-9

134

Operator synonyms

IAR Assembler
Reference Guide for ARM

Refer to the ARM Architecture Reference Manual (Prentice-Hall) for full descriptions of
the mnemonics.

Operator synonyms
A number of operators used by other assemblers will be translated by the assembler
when the option -j is specified. The following operator synonyms are allowed in both
ARM and Thumb modes:

BNVS BVC

CMN{cond}S CMN{cond}

CMP{cond}S CMP{cond}

EORS EOR

LSLS LSL

LSRS LSR

MOVS MOV

MULS MUL

MVNS MVN

NEGS NEG

ORRS ORR

RORS ROR

SBCS SBC

SUBS SUB

TEQ{cond}S TEQ{cond}

TST{cond}S TST{cond}

Alternative mnemonic Assembler mnemonic

Table 34: Alternative mnemonics (Continued)

Operator synonym Assembler operator

:AND: &

:EOR: ^

:LAND: &&

:LEOR: XOR

:LNOT: !

:LOR: ||

:MOD: %

Table 35: Operator synonyms

AARM-9

Migrating to the IAR Assembler for ARM

135

Note: In some cases, assembler operators and operator synonyms have different
precedence levels. For further descriptions of the operators, see the chapter Assembler
operators, page 53.

Warning messages
Unless the option -j is specified, the assembler will issue warning messages when the
alternative names are used, or when illegal combinations of operands are encountered.
The following sections list the warning messages:

THE FIRST REGISTER OPERAND OMITTED

The first register operand was missing in an instruction that requires three operands,
where the first two are unindexed registers (ADD, SUB, LSL, LSR, and ASR).

THE FIRST REGISTER OPERAND DUPLICATED

The first register operand was a register that was included in the operation, and was also
a destination register.

Example of incorrect code:

MUL R0, R0, R1

Example of correct code:

MUL R0, R1

IMMEDIATE #0 OMITTED IN LOAD/STORE

Immediate #0 was missing in a load/store instruction.

Example of incorrect code:

LDR R0,[R1]

Example of correct code:

LDR R0,[R1,#0]

:NOT: ~

:OR: |

:SHL: <<

:SHR: >>

Operator synonym Assembler operator

Table 35: Operator synonyms (Continued)

AARM-9

136

Warning messages

IAR Assembler
Reference Guide for ARM

AFE1_AFE2-1:1

Index

137

A
absolute expressions . 22
ADD (CFI operator) . 115
addition (assembler operator) . 57
address field, in assembler list file 23
addresses, loading into a register 120–123
ADR (ARM) (pseudo-instruction) 120
ADR (CODE16) (pseudo-instruction). 121
ADR (THUMB) (pseudo-instruction) 121
ADRL (ARM) (pseudo-instruction) 122
ADRL (THUMB) (pseudo-instruction). 123
ALIAS (assembler directive) . 84
ALIGN (assembler directive) . 81
alignment, of sections . 83
ALIGNRAM (assembler directive). 81
ALIGNROM (assembler directive). 81
:AND: (assembler operator) . 60
AND (CFI operator) . 116
_args (assembler directive) . 87
_args (predefined macro symbol) . 90
ARMASM assembler . 131
__ARMVFP__ (predefined symbol) 20
__ARM_ADVANCED_SIMD__ (predefined symbol) . . . 19
__ARM_MEDIA__ (predefined symbol) 19
__ARM_MPCORE__ (predefined symbol) 20
__ARM_PROFILE_M__ (predefined symbol). 20
ASCII character constants. 16
assembler control directives . 107
assembler diagnostics . 129
assembler directives

assembler control . 107
CFI directives for common blocks 112
CFI directives for data blocks 113
CFI directives for names blocks. 111
CFI directives for tracking resources and CFAs. 115
CFI for stack usage analysis) . 117
conditional assembly . 85

See also C-style preprocessor directives

C-style preprocessor . 100
data definition or allocation . 105
function . 110
list file control . 95
macro processing . 86
module control . 73
segment control . 80
summary . 69
symbol control . 76
value assignment . 83

assembler environment variables . 14
assembler expressions. 15
assembler instructions. 15

BX . 79
assembler invocation syntax . 13
assembler labels . 18

format of . 15
in Thumb code . 131

assembler list files
address field. 23
comments. 108
conditional code and strings. 97
cross-references

generating (LSTXRF) . 99
generating (-x) . 52

data field . 23
enabling and disabling (LSTOUT). 96
filename, specifying (-l). 44
generated lines, controlling (LSTREP) 99
generating (-L) . 44
header section, omitting (-N) . 46
#include files, specifying (-i) . 43
lines per page, specifying (-p) . 48
macro execution information, including (-B) 37
macro-generated lines, controlling 98
symbol and cross-reference table 23
tab spacing, specifying. 50
using directives to format. 99

Index

AFE1_AFE2-1:1

138
IAR Assembler
Reference Guide for ARM

assembler macros
arguments, passing to. 90
defining . 88
generated lines, controlling in list file 98
inline routines . 93
predefined symbol . 90
quote characters, specifying. 45
special characters, using. 89

assembler object file, specifying filename 47
assembler operators . 53

in expressions . 15
precedence . 53

assembler options
passing to assembler . 13
command line, setting . 35
extended command file, setting 36
specifying parameters . 35
summary . 36

assembler output, including debug information 49
assembler pseudo-instructions . 119
assembler source files, including 103, 109
assembler source format . 15
assembler symbols . 17

exporting . 77
importing . 77
in relocatable expressions . 22
predefined . 19

undefining. 50
assembling, invocation syntax . 13
assembly error messages. 130
assembly messages format . 129
assembly warning messages . 129

disabling . 51
ASSIGN (assembler directive) . 84
assumptions (programming experience) 7

B
-B (assembler option) . 37

bitwise AND (assembler operator) 60
bitwise exclusive OR (assembler operator) 61
bitwise NOT (assembler operator) 60
bitwise OR (assembler operator). 61
bold style, in this guide . 9
__BUILD_NUMBER__ (predefined symbol) 20
BX (assembler instruction) . 79
byte order . 20
BYTE1 (assembler operator) . 63
BYTE2 (assembler operator) . 63
BYTE3 (assembler operator) . 63
BYTE4 (assembler operator) . 63

C
-c (assembler option) . 38
call frame information directives 111–113, 115, 117
CALL_GRAPH_ROOT (assembler directive) 110
case sensitive user symbols. 49
case sensitivity, controlling. 108
CASEOFF (assembler directive). 108
CASEON (assembler directive) . 108
CFA, CFI directives for tracking 115
CFI BASEADDRESS (assembler directive). 112
CFI BLOCK (assembler directive) 114
CFI cfa (assembler directive) . 117
CFI CODEALIGN (assembler directive) 113
CFI COMMON (assembler directive). 113
CFI CONDITIONAL (assembler directive) 114
CFI DATAALIGN (assembler directive) 113
CFI DEFAULT (assembler directive). 113
CFI directives for common blocks 112
CFI directives for data blocks . 113
CFI directives for names blocks . 111
CFI directives for stack usage analysis 117
CFI directives for tracking resources and CFAs 115
CFI ENDBLOCK (assembler directive) 114
CFI ENDCOMMON (assembler directive). 113
CFI ENDNAMES (assembler directive) 112

AFE1_AFE2-1:1

Index

139

CFI expressions . 31
CFI FRAMECELL (assembler directive) 112
CFI FUNCALL (assembler directive). 118
CFI FUNCTION (assembler directive) 114
CFI INDIRECTCALL (assembler directive) 118
CFI INVALID (assembler directive) 114
CFI NAMES (assembler directive) 112
CFI NOCALLS (assembler directive). 118
CFI NOFUNCTION (assembler directive) 114
CFI PICKER (assembler directive). 114
CFI REMEMBERSTATE (assembler directive). 114
CFI RESOURCE (assembler directive) 112
CFI resource (assembler directive) 117
CFI RESOURCEPARTS (assembler directive) 112
CFI RESTORESTATE (assembler directive) 114
CFI RETURNADDRESS (assembler directive) 113
CFI STACKFRAME (assembler directive) 112
CFI TAILCALL (assembler directive) 118
CFI VALID (assembler directive). 114
CFI VIRTUALRESOURCE (assembler directive) 112
character constants, ASCII . 16
CODE16 (assembler directive) . 78
CODE32 (assembler directive) . 78
COL (assembler directive) . 96
command line error messages, assembler 129
command line options. 35

part of invocation syntax . 13
passing . 13
typographic convention . 9

command line, extending . 41
command prompt icon, in this guide 9
comments

in assembler list file . 108
in assembler source code . 15
in C-style preprocessor directives 104
multi-line, using with assembler directives 110

common block (call frame information) 26
common blocks, CFI directives for 112
common block, defining . 28

COMPLEMENT (CFI operator) . 115
computer style, typographic convention 8
conditional assembly directives . 85

See also C-style preprocessor directives
conditional code and strings, listing 97
constants

default base of . 108
integer . 16

conventions, used in this guide . 8
copyright notice . 2
--cpu (assembler option) . 38
CPU, defining in assembler. See processor configuration
CRC, in assembler list file . 23
cross-references, in assembler list file

generating (LSTXRF) . 99
generating (-x) . 52

current time/date (assembler operator) 64
C-style preprocessor directives . 100
C++ terminology. 8

D
-D (assembler option) . 39
data allocation directives. 105
data block (call frame information). 26
data blocks, CFI directives for . 113
data definition directives. 105
data field, in assembler list file . 23
DATA (assembler directive) . 79
data, defining in Thumb code section 79
__DATE__ (predefined symbol). 20
DATE (assembler operator) . 64
DCB (assembler directive) . 105
DCD (assembler directive) . 105
DCW (assembler directive). 105
DC8 (assembler directive) . 105
DC16 (assembler directive) . 105
DC24 (assembler directive) . 105
DC32 (assembler directive) . 105

AFE1_AFE2-1:1

140
IAR Assembler
Reference Guide for ARM

debug information, including in assembler output 49
default base, for constants. 108
#define (assembler directive) . 101
DEFINE (assembler directive) . 84
defining a common block . 28
defining a names block . 26
DF32 (assembler directive). 106
DF64 (assembler directive). 106
diagnostic messages

options for . 129
diagnostics . 129
directives. See assembler directives
disclaimer . 2
DIV (CFI operator) . 116
division (assembler operator) . 58
DLIB

naming convention. 9
document conventions . 8
DS (assembler directive). 106
DS8 (assembler directive). 106
DS16 (assembler directive). 106
DS24 (assembler directive). 106
DS32 (assembler directive). 106

E
-E (assembler option) . 40
-e (assembler option) . 40
edition, of this guide . 2
efficient coding techniques . 24
#elif (assembler directive). 101
#else (assembler directive) . 101
END (assembler directive) . 74
--endian (assembler option) . 40
#endif (assembler directive) . 101
ENDM (assembler directive) . 87
ENDR (assembler directive) . 87
environment variables

assembler . 14

:EOR: (assembler operator) . 61
EQ (CFI operator). 116
EQU (assembler directive) . 84
equal (assembler operator) . 59
#error (assembler directive) . 101
error messages

format . 129
maximum number, specifying . 40
#error, using to display . 103

EVEN (assembler directive) . 81
EXITM (assembler directive) . 87
experience, programming . 7
expressions . 15
extended command line file (extend.xcl) 36, 41
EXTERN (assembler directive) . 77
EXTWEAK (assembler directive) 77

F
-f (assembler option). 36, 41
false value, in assembler expressions 17
fatal errors. 130
__FILE__ (predefined symbol). 20
file extensions. See filename extensions
file types

extended command line . 36, 41
#include, specifying path . 42

filename extensions
xcl . 36, 41

filenames, specifying for assembler object file 47–48
first byte (assembler operator) . 63
floating-point constants. 17
floating-point coprocessor, defining in assembler. 41
formats

assembler source code . 15
diagnostic messages . 129
in list files . 23

fourth byte (assembler operator) . 63
--fpu (assembler option) . 41

AFE1_AFE2-1:1

Index

141

FRAME (CFI operator). 116
function directives . 110

G
-G (assembler option) . 42
-g (assembler option) . 42
GE (CFI operator). 116
global value, defining . 85
greater than or equal (assembler operator) 59
greater than (assembler operator) . 59
GT (CFI operator). 116

H
header files, SFR. 24
header section, omitting from assembler list file. 46
high byte (assembler operator) . 64
high word (assembler operator) . 64
HIGH (assembler operator). 64
HWRD (assembler operator) . 64

I
-I (assembler option). 42
__ IAR_SYSTEMS_ASM__ (predefined symbol) 20
__IASMARM__ (predefined symbol) 20
icons, in this guide . 9
#if (assembler directive) . 101
IF (CFI operator). 117
#ifdef (assembler directive) . 101
#ifndef (assembler directive) . 101
IMPORT (assembler directive) . 77
#include files . 43
#include files, specifying . 42
#include (assembler directive) . 101
include files, disabling search for . 42
include paths, specifying. 42
INCLUDE (assembler directive). 108

inline coding, using macros . 93
installation directory . 8
integer constants . 16
internal errors, assembler . 130
invocation syntax . 13
italic style, in this guide . 8–9

J
-j (assembler option) . 43

L
-L (assembler option) . 44
-l (assembler option) . 44
labels. See assembler labels
:LAND: (assembler operator) . 60
LDR (ARM) (pseudo-instruction). 123
LDR (CODE16) (pseudo-instruction) 124
LDR (THUMB) (pseudo-instruction) 125
LE (CFI operator) . 116
--legacy (assembler option). 45
:LEOR: (assembler operator) . 67
less than or equal (assembler operator) 58
less than (assembler operator). 58
LIBRARY (assembler directive). 72
lightbulb icon, in this guide. 9
__LINE__ (predefined symbol) . 20
#line (assembler directive) . 101
lines per page, in assembler list file 48
linker options

typographic convention . 8
list file format . 23

body. 23
CRC. 23
header . 23
symbol and cross reference

list files
control directives for . 95

AFE1_AFE2-1:1

142
IAR Assembler
Reference Guide for ARM

controlling contents of (-c). 38
cross-references, generating (-x) 52
filename, specifying (-l). 44
generating (-L) . 44
header section, omitting (-N) . 46
#include files, specifying (-i) . 43

literal pool. 47, 124
LITERAL (CFI operator) . 115
__LITTLE_ENDIAN__ (predefined symbol). 20
:LNOT: (assembler operator) . 62
LOAD (CFI operator) . 117
local value, defining . 85
LOCAL (assembler directive). 87
logical AND (assembler operator) 60
logical exclusive OR (assembler operator) 67
logical NOT (assembler operator). 62
logical OR (assembler operator) . 62
logical shift left (assembler operator) 62
logical shift right (assembler operator) 62
:LOR: (assembler operator) . 62
low byte (assembler operator). 65
low register values, moving 126–127
low word (assembler operator) . 65
LOW (assembler operator) . 65
LSHIFT (CFI operator). 116
LSTCND (assembler directive). 96
LSTCOD (assembler directive). 96
LSTEXP (assembler directives) . 96
LSTMAC (assembler directive) . 96
LSTOUT (assembler directive). 96
LSTPAG (assembler directive) . 96
LSTREP (assembler directive) . 96
LSTXRF (assembler directive) . 96
LT (CFI operator) . 116
LTORG (assembler directive). 108
LWRD (assembler operator) . 65

M
-M (assembler option). 45
macro execution information, including in list file 37
macro processing directives . 86
macro quote characters . 89

specifying . 45
MACRO (assembler directive) . 87
macros. See assembler macros
--macro_positions_in_diagnostics (compiler option) 46
memory, reserving space in . 105
#message (assembler directive). 101
messages, excluding from standard output stream 49
migration to the ARM IAR Assembler 131

alternative mnemonics . 133
alternative register names. 132
operator synonyms. 134
warning messages . 135

:MOD: (assembler operator) . 61
MOD (CFI operator) . 116
module consistency. 75
module control directives . 73
modules, beginning. 74
MOV (CODE16) (pseudo-instruction) 126
MOV (THUMB) (pseudo-instruction) 127
MUL (CFI operator) . 116
multibyte character support. 46
multiplication (assembler operator) 56

N
-N (assembler option) . 46
-n (assembler option) . 46
NAME (assembler directive) . 74
names block (call frame information) 26
names blocks, CFI directives for. 111
names block, defining . 26
naming conventions . 9
NE (CFI operator). 116

AFE1_AFE2-1:1

Index

143

NOP (ARM) (pseudo-instruction). 127
NOP (CODE16) (pseudo-instruction) 127
:NOT: (assembler operator) . 60
not equal (assembler operator) . 59
NOT (CFI operator) . 115
--no_literal_pool (assembler option) 47
no-operation code, generating. 127

O
-O (assembler option) . 47
-o (assembler option) . 48
ODD (assembler directive) . 81
operands

format of . 15
in assembler expressions . 15

operations, format of. 15
operation, silent . 49
operators. See assembler operators
option summary . 36
:OR: (assembler operator). 61
OR (CFI operator). 116
OVERLAY (assembler directive) . 77

P
-p (assembler option) . 48
PAGE (assembler directive) . 96
PAGSIZ (assembler directive) . 96
pair, of registers . 19
parameters

specifying . 35
typographic convention . 8

part number, of this guide . 2
#pragma (assembler directive) . 101
precedence, of assembler operators. 53
predefined register symbols . 19
predefined symbols . 19

in assembler macros. 90

undefining . 50
preprocessor symbols

defining and undefining . 101
defining on command line . 39

prerequisites (programming experience). 7
program location counter (PLC) . 18
program modules, beginning. 74
PROGRAM (assembler directive) 74
programming experience, required . 7
programming hints . 24
pseudo-instructions . 119
PUBLIC (assembler directive) . 77
publication date, of this guide . 2
PUBWEAK (assembler directive) 77

R
-r (assembler option). 49
RADIX (assembler directive) . 108
reference information, typographic convention. 9
registered trademarks . 2
registers . 19

alternative names of . 132
relocatable expressions . 22
repeating statements . 91
REPT (assembler directive) . 87
REPTC (assembler directive) . 87
REPTI (assembler directive) . 87
REQUIRE (assembler directive). 77
resources, CFI directives for tracking 115
RSEG (assembler directive) . 81
RSHIFTA (CFI operator) . 116
RSHIFTL (CFI operator) . 116
RTMODEL (assembler directive). 74
rules, in CFI directives . 29
runtime model attributes, declaring. 75

AFE1_AFE2-1:1

144
IAR Assembler
Reference Guide for ARM

S
-S (assembler option) . 49
-s (assembler option). 49
second byte (assembler operator) . 63
SECTION (assembler directive) . 82
sections

aligning . 83
beginning . 82

SECTION_TYPE (assembler directive) 82
segment begin (assembler operator) 65
segment control directives . 80
segment end (assembler operator). 66
segment size (assembler operator) 66
SET (assembler directive). 84
SETA (assembler directive) . 84
SFB (assembler operator) . 65
SFE (assembler operator) . 66
SFR. See special function registers
:SHL: (assembler operator). 62
:SHR: (assembler operator). 62
silent operation, specifying in assembler. 49
simple rules, in CFI directives . 29
SIZEOF (assembler operator) . 66
source files

example of including . 109
including . 103

source format, assembler . 15
source line numbers, changing . 104
special function registers. 24
stack usage analysis, CFI directives for 117
STACK (assembler directive) . 82
standard input stream (stdin), reading from. 42
standard output stream, disabling messages to 49
statements, repeating. 91
SUB (CFI operator) . 116
subtraction (assembler operator) . 57
symbol and cross-reference table, in assembler list file . . . 23

See also Include cross-reference

symbol control directives . 76
symbols

See also assembler symbols
exporting to other modules . 77
predefined, in assembler . 19
predefined, in assembler macro 90
user-defined, case sensitive . 49

system include files, disabling search for 42
--system_include_dir (assembler option) 50

T
-t (assembler option) . 50
tab spacing, specifying in assembler list file 50
target core, specifying. See processor configuration
temporary values, defining . 84
terminology. 8
third byte (assembler operator) . 63
THUMB (assembler directive) . 79
__TID__ (predefined symbol). 20
__TIME__ (predefined symbol) . 20
time-critical code . 93
tools icon, in this guide . 9
trademarks . 2
true value, in assembler expressions 17
typographic conventions . 8

U
-U (assembler option) . 50
UGT (assembler operator) . 67
ULT (assembler operator). 67
UMINUS (CFI operator). 115
unary minus (assembler operator) . 57
unary plus (assembler operator) . 57
#undef (assembler directive) . 101
unsigned greater than (assembler operator). 67
unsigned less than (assembler operator) 67
user symbols, case sensitive . 49

AFE1_AFE2-1:1

Index

145

V
value assignment directives . 83
values, defining. 105
VAR (assembler directive) . 84
__VER__ (predefined symbol) . 21
version

of this guide . 2

W
-w (assembler option) . 51
warnings . 129

disabling . 51
warnings icon, in this guide . 9

X
-x (assembler option) . 52
xcl (filename extension) . 36, 41
XOR (assembler operator) . 67
XOR (CFI operator) . 116

Symbols
_args (assembler directive) . 87
_args (predefined macro symbol) . 90
__ARMVFP__ (predefined symbol) 20
__ARM_ADVANCED_SIMD__ (predefined symbol) . . . 19
__ARM_MEDIA__ (predefined symbol) 19
__ARM_MPCORE__ (predefined symbol) 20
__ARM_PROFILE_M__ (predefined symbol). 20
__BUILD_NUMBER__ (predefined symbol) 20
__DATE__ (predefined symbol). 20
__FILE__ (predefined symbol). 20
__IAR_SYSTEMS_ASM__ (predefined symbol) 20
__IASMARM__ (predefined symbol) 20
__LINE__ (predefined symbol) . 20
__LITTLE_ENDIAN__ (predefined symbol). 20

__TID__ (predefined symbol). 20
__TIME__ (predefined symbol) . 20
__VER__ (predefined symbol) . 21
- (assembler operator) . 57
-B (assembler option) . 37
-c (assembler option) . 38
-D (assembler option) . 39
-E (assembler option) . 40
-e (assembler option) . 40
-f (assembler option). 36, 41
-G (assembler option) . 42
-g (assembler option) . 42
-I (assembler option). 42
-i (assembler option) . 43
-j (assembler option) . 43, 131
-L (assembler option) . 44
-l (assembler option) . 44
-M (assembler option). 45
-N (assembler option) . 46
-n (assembler option) . 46
-O (assembler option) . 47
-o (assembler option) . 48
-p (assembler option) . 48
-r (assembler option). 49
-S (assembler option) . 49
-s (assembler option). 49
-t (assembler option) . 50
-U (assembler option) . 50
-w (assembler option) . 51
-x (assembler option) . 52
--cpu (assembler option) . 38
--endian (assembler option) . 40
--fpu (assembler option) . 41
--legacy (assembler option). 45
--macro_positions_in_diagnostics (compiler option) 46
--no_literal_pool (assembler option) 47
--system_include_dir (assembler option) 50
:AND: (assembler operator) . 60
:EOR: (assembler operator) . 61

AFE1_AFE2-1:1

146
IAR Assembler
Reference Guide for ARM

:LAND: (assembler operator) . 60
:LEOR: (assembler operator) . 67
:LNOT: (assembler operator) . 62
:LOR: (assembler operator) . 62
:MOD: (assembler operator) . 61
:NOT: (assembler operator) . 60
:OR: (assembler operator). 61
:SHL: (assembler operator). 62
:SHR: (assembler operator). 62
! (assembler operator) . 62
!= (assembler operator) . 59
() (assembler operator) . 56
* (assembler operator) . 56
/ (assembler operator) . 58
/*...*/ (assembler directive). 108
// (assembler directive) . 108
& (assembler operator) . 60
&& (assembler operator) . 60
#define (assembler directive) . 101
#elif (assembler directive). 101
#else (assembler directive) . 101
#endif (assembler directive) . 101
#error (assembler directive) . 101
#if (assembler directive) . 101
#ifdef (assembler directive) . 101
#ifndef (assembler directive) . 101
#include files . 43
#include files, specifying . 42
#include (assembler directive) . 101
#line (assembler directive) . 101
#message (assembler directive). 101
#pragma (assembler directive) . 101
#undef (assembler directive) . 101
^ (assembler operator). 61
+ (assembler operator) . 57
< (assembler operator) . 58
<< (assembler operator) . 62
<= (assembler operator) . 58
<> (assembler operator) . 59

= (assembler directive) . 84
= (assembler operator) . 59
== (assembler operator) . 59
> (assembler operator) . 59
>= (assembler operator) . 59
>> (assembler operator) . 62
| (assembler operator) . 61
|| (assembler operator). 62
~ (assembler operator) . 60
$ (assembler directive) . 108
$ (program location counter). 18

Numerics
32-bit expressions, loading in register. 123

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to the IAR Assembler for ARM
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	Assembler instructions
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	True and false
	Symbols
	Labels
	Register symbols
	Predefined symbols
	Absolute and relocatable expressions
	Expression restrictions

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Using C-style preprocessor directives

	Tracking call frame usage
	Call frame information overview
	Call frame information in more detail
	Defining a names block
	Defining a common block
	Annotating your source code within a data block
	Specifying rules for tracking resources and the stack depth
	Using CFI expressions for tracking complex cases
	Stack usage analysis directives
	Examples of using CFI directives

	Assembler options
	Using command line assembler options
	Specifying options and their parameters
	Extended command line file

	Summary of assembler options
	Description of assembler options
	-B
	-c
	--cpu
	-D
	-E
	-e
	--endian
	-f
	--fpu
	-G
	-g
	-I
	-i
	-j
	-L
	-l
	--legacy
	-M
	--macro_positions_in_diagnostics
	-N
	-n
	--no_literal_pool
	-O
	-o
	-p
	-r
	-S
	-s
	--system_include_dir
	-t
	-U
	-w
	-x

	Assembler operators
	Precedence of assembler operators
	Summary of assembler operators
	Parenthesis operator
	Unary operators
	Multiplicative arithmetic operators
	Additive arithmetic operators
	Shift operators
	AND operators
	OR operators
	Comparison operators

	Description of assembler operators
	() Parenthesis
	* Multiplication
	+ Unary plus
	+ Addition
	– Unary minus
	– Subtraction
	/ Division
	< Less than
	<= Less than or equal
	<>, != Not equal
	=, == Equal
	> Greater than
	>= Greater than or equal
	&& Logical AND
	& Bitwise AND
	~ Bitwise NOT
	| Bitwise OR
	^ Bitwise exclusive OR
	% Modulo
	! Logical NOT
	|| Logical OR
	<< Logical shift left
	>> Logical shift right
	BYTE1 First byte
	BYTE2 Second byte
	BYTE3 Third byte
	BYTE4 Fourth byte
	DATE Current time/date
	HIGH High byte
	HWRD High word
	LOW Low byte
	LWRD Low word
	SFB section begin
	SFE section end
	SIZEOF section size
	UGT Unsigned greater than
	ULT Unsigned less than
	XOR Logical exclusive OR

	Assembler directives
	Summary of assembler directives
	Description of assembler directives
	Module control directives
	Symbol control directives
	Mode control directives
	Section control directives
	Value assignment directives
	Conditional assembly directives
	Macro processing directives
	Listing control directives
	C-style preprocessor directives
	Data definition or allocation directives
	Assembler control directives
	Function directives
	Call frame information directives for names blocks
	Call frame information directives for common blocks
	Call frame information directives for data blocks
	Call frame information directives for tracking resources and CFAs
	Call frame information directives for stack usage analysis

	Assembler pseudo-instructions
	Summary
	Descriptions of pseudo-instructions
	ADR (ARM)
	ADR (CODE16)
	ADR (THUMB)
	ADRL (ARM)
	ADRL (THUMB)
	LDR (ARM)
	LDR (CODE16)
	LDR (THUMB)
	MOV (CODE16)
	MOV32 (THUMB)
	NOP (ARM)
	NOP (CODE16)

	Assembler diagnostics
	Message format
	Severity levels
	Options for diagnostics
	Assembly warning messages
	Command line error messages
	Assembly error messages
	Assembly fatal error messages
	Assembler internal error messages

	Migrating to the IAR Assembler for ARM
	Introduction
	Thumb code labels

	Alternative register names
	Alternative mnemonics
	Operator synonyms
	Warning messages
	The first register operand omitted
	The first register operand duplicated
	Immediate #0 omitted in Load/Store

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Symbols
	Numerics

