ARM® Developer Suite

to

ARM IAR Embedded Workbench®
Migration Guide

Introduction

This guide examines the differences between using the ARM® Developer Suite (ADS) development tools IDE and the IAR Systems
ARM devel opment tools IDE. The issues related to assembler conversion range from basic topics such as command line options,
system segment/area names, listing/output options, code generation options, register naming differences, assembler operators,
assembler directives, pseudo-instructions, and other assembler differences, to advanced topics such as predefined symbols,
conditional assembly, macros, and modules. Linker related topics such as command line options and image memory mapping are also
documented.

The features, options, descriptions, and examples specified in the document are based on tools associated with ARM Developer Suite
Version 1.2 and ARM | AR Embedded Workbench Version 4.20A.

Information about the ARM devel opment tools was obtained from the ARM Developer Suite Version 1.2 Assembler Guide (ARM
DUI 0068B) the ARM Developer Suite Version 1.2 Linker and Utilities Guide (ARM DUI 0151A) and the ARM Developer Suite
Version 1.2 Developer Guide (ARM DUI 0056D). Information about the IAR Systems development toolsis based on the ARM AR
Assembler Reference Guide (AARM-6), the ARM 1AR C/C++ Compiler Reference Guide (CARM-10) and the IAR Linker and
Library Tools Reference Guide (XLINK-459I).

IAR Embedded Workbench IDE overview

The IAR Embedded Workbench IDE consists of tools such as a compiler, assembler, linker, library builder, librarian, editor, project
manager, command line interface, debugger, and simulator.

ARM Developer Suite includes command-line development tools (which includes a compiler, ARM assembler, linker and various
support libraries), GUI development tools (which includes a debugger, editor and project manager), alibrarian and a simulator.

Equivalent tools from both development environments are listed in table 1 together with the command line commands for invoking
them:

Tools ARM Developer Suite IAR Embedded Workbench IDE
Compiler ADS C/C++ compiler, ar mcc orar ncpp IAR C/C++ Compiler,i ccar m
Assembler ADS ARM assembler, ar masm IAR ARM Assembler, aar m
Linker ADS ARM linker, ar m i nk IAR XLINK Linker, xI i nk
Library builder - IAR XAR Library Builder, xar
Librarian ADS ARM librarian, ar mar IAR XLIB Librarian, x| i b
Debugger ADS ARM eXtended Debugger (AXD) IAR C-SPY® Debugger
Simulator ADS ARMulator IAR C-SPY® Simulator

1. ARM Developer Suite and |AR Embedded Workbench IDE equivalents

The ARM IAR C/C++ Compiler features efficient code generation with debug information, C/C++ language support facilities and
type checking.

The ARM IAR Assembler features a built-in C preprocessor and supports conditional assembly.

The lAR XLINK Linker links object files produced by the compiler or assembler to produce machine code for the ARM core, while
the IAR XAR Library Builder and IAR XLIB Librarian allow manipulation of library object files.

The IAR C-SPY® Debugger is a high-level language debugger that is integrated into the IDE, so corrections are made directly in the
same source code window used to control the debugging.

TOOLS COMPARISON

An immediate difference between the tool setsisthe level of integration of the development environment. In IAR Embedded
Workbench, the C-SPY Debugger is completely integrated with the IDE, whereasin ARM Developer Suite, the Codewarrior™ IDE
by Metrowerks™ and the ARM eXtended Debugger (AXD) are separate tools that form a complete GUI-based devel opment
environment. However, essential project management options and tools, and make/build/debug menus are similar.

Metrowerks Codewarrior IDE is a project management tool for managing source files and building software development projects,
while the AXD debugger provides an environment for debugging C, C++ and assembly language source code. By default, the AXD
debugger is called to debug and run images built from the Codewarrior IDE. The AXD debugger is available for Microsoft®
Windows® and UNI X, but the Codewarrior IDE is only available for Windows.

General debugger features like source and disassembly level debugging, source stepping, setting breakpoints, variable, register and
expression monitoring/watching, call stack information and facilities for third-party extensions (RTOS awareness, simulation
modules, emulator drivers, etc.) are available in both tool sets. Both source code editors provide typical utilities such as colored
keywords and search and replace.

ARM also provides an IDE called the RealView Developer Suite. Project files created with the Codewarrior IDE have the filename
extension . ntp, compared to RealView Developer Suite project files that have the extension . pr j . Note that if you migrate from
the Codewarrior IDE to the RealView Developer Suite tools or vice versa, the project file will need to be re-created and relevant
source files re-added. No automatic conversion tools exist.

Getting started

This section discusses how to get started with converting C and assembler projects from ARM Developer Suite to IAR Embedded
Workbench.

Filename extensions

In ARM Developer Suite, projectslist all associated source files required by the target application. These project fileshavea. ncp
filename extension. In IAR Embedded Workbench, workspaces are used for organizing multiple projects. Thisis useful when you are
simultaneously managing several related projects. Workspace files have the filename extension . eww, and project files have the
extension . ewp in IAR Embedded Workbench.

The filename extensions of C source and header filesare. c and . h, respectively, in both ARM Developer Suite and IAR Embedded
Workbench, which includes standard library files and user-specific files.

The filename extension of assembler source filesin ARM Developer Suiteis. s. IAR Embedded Workbench uses. s79 by default,
but in addition acceptsthe . s extension.

The object files produced by the compiler or assembler have the filename extension . o (in ARM Developer Suite) or . r 79 (in IAR
Embedded Workbench).

Converting an ADS project to an IAR project

The guidelines below describe how to convert an existing ARM Devel oper Suite project, extract the options used for building and
convert the project into an IAR project.

As an example, the Codewarrior IDE project filet est . ntp in the following figure contains mai n. ¢ and count er . ¢ source files
inC, acount er. h header filein Cand al oad. s assembly file. This smple main function calls a counter function that delays up
tothevalue of i ndex and assignsthet enp variable the value of the external variableval ue from| oad. s.

{4 Metrowerks CodeWarrior for ARM Developer Suite vi.2

Fle Edit View Search Project Debug Window Help

AEsEo- <R ANEERSEER

{ E test.mep Q@g‘ {8 main.c ‘:”E"Z' : clloadis
® Debug By &5 e b > {} v M.~ [@~ d ~ Path|C\Darren\ADS\testimain.c & J| b v 4 v M~ B~ d v Path:|C\DanenlADS\testload.s el

AREXL move, DATA

Files |Lir\k Order | Targets | #include "counter.h"

¥ | Fie | Code | DMI‘_IE extern int walus: EXPORT walues
¥ @ manc 0 0 e « o~ int main{void) DCB walus

+ [counterc a 0« « = {

¥ @ lbads 0 0s + = int index = §; walus EQU 100

int temp;
END

counter(index):
tenp = walue;

return 0;

|

Line 15 Col 2

i 5 counter.c

bv{dvm~[EF~ d~Pah ‘C\Dansn\ADS\tsst\muntsrc b ~{} v~ [~ d~Pah |C\Darren\ADS\tast\cuumsrh

void counter (int indes):

#include "counter.h”
void counter (int index)
int i:

for (i=0; i<=index; i++):

Tfiles [0 abmﬂ Coll || 4] | L‘éLlneZ Coll || <] |

2. The Metrowerks Codewarrior IDE window

The project settings window is located under Edit -> “Debug/DebugRel/Release” Settings (Alt + F7) and is shown in the following
figure.

{8 Debug Settings

B Taiget Settings Panels B Taiget Setlings
- ngs Target Name: [Debug
B Edras Linker: [ARM Linker -
untime Settings Predinker[Mone =]
- File Mappings)
i~ Source Tiees Fostlnker [None -
- ARM Taget Output Dirsstory
=- Language Setfings == Chooss
L. ARM bssembler Project
L. ARM C Compier Clear
-+ ARM Ces Compiler [~ Save project snties using rslative paths

+ Thumb C Compier
- Thumb C+ Compller
= Linker

L ARM Linker
- ARM tromELF
= Edbar -
FaclnlySelhngs‘ ‘ it P | i el ‘
ok | cancd | ‘

3. The project settings window of the Codewarrior IDE

Settings for either the ARM Developer Suite compiler, assembler, linker or debugger can be selected from the Target Settings Panel'
at the left of the window. The command line outputs for each of these tools can be found under their respective 'Equivalent
Command Line fieldsin their project settings window.

When the project settings have been sel ected, build/make/compile the project. Any errors or warnings will be displayed in the
window below.

{8 Errors & Warnings

A nage component sizes

Code RO Data BW Deta ZI Data Debug

50 60 0 [2524 Object Totals
S] 0 26 984 Library Totals
Code RO Data RW Data ZI Date Debug

Ere 80 0 26 3508 Grand Totals
Total RO Size(Code + RO Data) 1008 (0.98KE)
Total RW Size(RW Data + ZI Data) 96 (0.09%B)
Total ROM Size(Code + RO Data + RW Data) 1008 (0.98KE)

E
B

b>}vrm~v B~ vPrah &
[u]
Line 14 Col14 | (A

4. The make window of the Codewarrior IDE

Once this processis successful, to run the AXD debugger, go to Project -> Debug (F5).

Fle Search Processor Views System Views Execute Options Window Help

rilr|ie| 2 #8 | @inl | D EPRE@EE || EEeEaEE| |] @elele] £ 5 8] 2

Target | image | Files | Cless | 3 ARM7TDMI - Disassembly
** 00007fd8 [0x=7ff0010] dci 0xe7££0010 ; ? undefined
00007fdc [0xe800e800] stmda r0, {rll, r13-pc} -
00007fe0 [0xe7f£0010] dci 0xe7££0010 ; ? undefined
00007fed4 [0xe800e800] stmda r0, {rll,r13-pc}
00007fe8 [0xe7f££f0010] dei 0xe7f££f0010 ; ? undefined
00007fec [0xeB00eB800] stmda 0, {rll,rl3-pc}
00007ff0 [0x=7f£f0010] dci 0xe7££0010 ; ? undefined
00007££f4 [0xe800e800] stmda r0,{rll,ri13-pc}
00007££8 [0xe7f£0010] dci 0xe7££0010 ; ? undefined
00007ffc [0xe800e800] stmda r0, {rll,r13-pc}
®» _ main [0xe28£8090] add r8,pc, #0x90 ; #0x8098
00008004 [0xeB5B000£L] ldmia 8, {x0-r3}
00008008 [0x=0800008] add r0,r0,r8
0000800c [0OxeDB811008] add rl,rl,r8
00008010 [0xe0822008] add r2,r2,r8
00008014 [0x=0833008] add r3,r3,r8
00008018 [0xe240p001] sub rll,z0,#1
0000801c [0xe242c001] sub riZz,r2,#1
_move_reg[0xel500001] cmp r0,rl —
00008024 [0x0a00000e] beg _zero_region
00008028 [0xeB8b00070] ldmia r0!, {rd4-ré}
0000802c [0xelS5S40005] cmp r4,rs
00008030 [OxOafffffa] beg _move_region
00008034 [0x=3140001] tst rd, #1
00008038 [0x1084400b] addne rd,r4,ril
0000803c [0xe3150001] tst r5,#1
00008040 [0x1085500b] addne r5,r5,r11
00008044 [0xe3150002] tst rS,#2
00008048 [0x10855009] addne r3,r5,r9%
0000804c [0x=3c55003] bic r5,r5,#3
_move_loo[0xe2566004] subs ré,ré,#4 -
00008054 [0x24547004] ldrcs 7, (4], %4 =
Il | »
System Qutput Monitor
RDILog | Debug Log |
Log file:
ARMulator ADS1.2 [Build 808B]
For support please contact armsupport@bluewatersys.com
Software supplied by ARM Limited
ARMZTDMI, BIU, Little endian, Semihosting, Debug Comms Channel, 4GB, Mapfile.
Timer. Profiler. Tube. Milisecond [20000 cycles_per_milisecond]. Pagetables.
IntCirl, Tracer, RDI Codesequences
ARM RDI 1561 -= ASYNC RDI Protocal Corverter ADS v1.2 [Build number 806]. Copyright (c) ARM Limited 2001
< >
For Help, press F1 <No Pos> |ARMUL |ARM7TDMI |test.axf

5. The ARM eXtended Debugger (AXD) window

In order to begin conversion of the ARM Developer Suite project to an IAR Embedded Workbench project, follow the guidelines
below. Comparison screen captures have been provided to aid in the conversion process.

CREATE A NEW IAR PROJECT/WORKSPACE

Start the IAR Embedded Workbench program and create a new workspace (if required) for adding the new project or open an
existing workspace, create the new project and add it to the existing workspace. To create a new workspace, goto File -> New ->
Workspace and to create a new project, go to Project -> Create New Project...

ADD SOURCE FILES

Next, add the C source and assembler files (i.e. mai n. c, count er . ¢ and | oad. s) from the ARM Developer Suite project into the
new IAR Embedded Workbench project. To add project files, go to Project -> Add Files... Note that the assembler file, | oad. s
needed to be converted according to the guidelines described in the remainder of this guide. In this example, the AREA and DCB
directives for creating a new code/data section and for allocating a byte of memory respectively, needed to be converted to their
equivalent |AR directives, which are RSEG and DC8.

IAR Embedded Workbench IDE

Fle Edit View Project Tools Window Help

L& S o YR 2EH BNHK LR
* | main.c | counter.c | counter.h |load.s =3
Debug ﬂ #include "counter.h” —
I

s R extern int value:

£ [Eltest - Debug * v

e B void main(void)

| FmCoutpu i

| L— B counterh int index = 5;

Fa B loads . int temp;

| L@ outpu

B mainc counter (index) ;

| = ouput

| L [counterh tenp = value;

L@ G Output '

; -
test |'FEJ| |1 | » T
= Messages

Building configuration: test- Debug
Linking

File Line

Total number of errors: 0
Total number of warnings: 0

o
= Build [Debug Log
Ready

Ln 9, Col 1
6. The IAR Embedded Workbench IDE window

SET C COMPILER CORE TYPE

Project options for the IAR Embedded Workbench project are located in Project -> Options (Alt + F7). A window as shown at the
right of the following figure should appear. In the example project, the ARM7TDMI processor core has been selected. A comparison
screen capture for selecting a processor corein ARM Developer Suite is shown at the left of the figure. This option can be viewed by
selecting '"ARM C Compiler' from the Target Settings Panel' at the left of the project settings window (which can be opened from
Edit -> “Debug/DebugRel/Release” Settings (Alt + F7) as mentioned previously). For IAR Embedded Workbench, the target core

can be selected from the 'Processor variant' panel under 'General Options' in the 'Category:' panel when the project options window is
opened.

ADS IAR
Options for node “test” W|
im Debug Settings Ceteqory:
Taiget Gellings Panels [FARM C Corpier - ”
S Tooa — = Gener: Target | Output | Library Configuration | Library options | MISRAC
- Tanget Seltings Targetand Source | ATPCS | Warnings | Errors | Debug/ Opt| Prep — G/C++ Campiler)
-~ Access Paths Architecture or Processor Eloating Point— — Assembler Processor variant
o Build Extras Custam Build
1 - - ® Core ARMZTDMI -
Funtime Setlings [ARM7TDMI ﬂ |Pure-end\an 50 Build Actions B
- File Mappings !
~ Souce Trees Linker Coonp | J
e ARM Target Debugger
= Languags Settings Simulator
Byte Order Source Language Angel EPU
(@ Litlle Endian 1AR ROM-manitor Naone -
L. Thumb C Compler — ¢ BigEndian ANSIISO Standard C J-Link
L Thumb C+ Compiler Macraigar [¥ Generate interwork code
= Linker
- ARM Linker RD.\ . Processor mode Endian mode Stack align
"o ARM homELF Eauivalent Command Line >4 Thirc-Party Driver ® Am (@ Litle ® 4bytes
= Edit ~| £ >
el | | Thumb Big Bbytes
Factom Settings | mport Panel. | Esport Panel. ‘
oK | carcel | ‘
0K Cancel

7. Selecting a processor core for the compiler in ARM Developer Suite and AR Embedded Workbench

SET C COMPILER ARM/THUMB MODE

To define ARM or Thumb mode for the C Compiler in ARM Developer Suite, go to the 'File Mappings option in Target Settings
Panels and select the appropriate compiler with the ‘Compiler:" multiple selection box for the associated file extensions. In the
example project, the ARM C Compiler will be used for the . ¢ and . h sourcefiles. For IAR Embedded Workbench, the option to
choose ARM or Thumb mode can be found in the 'Processor Mode' panel under 'General Options' in the 'Category:' panel.

ADS IAR
Options for node “test” §|
i 8 Debug Settings Category
Targe! Setfings Panels § Fie HMappings Pe—

= Taget - - SEEES > Target WOutpull Library Cnnﬁguratmn} Library nptmns} MISRAC

i TagetSetings || [§ Fie Type | Extension | &P | 47 @ | Compier C/C++ Compiler i

i hocess Paths c ARM C Compiler - Assembler Processor variant

.. Build Extras TEXT e &R C+ Compler Custam Build

i Runtime Seliings TEXT cpp ARM C++ Compiler Build Actians ® Core ARM7TDMI =

[BFic M arpings TEXT h + ARM C Compier !

- Souree Trees TEXT hpp « ARM o+ Compier Linker chip ‘ J

S ARM Target TEXT K ARM Assembler Debugger
= Langusge Settings TEXT ek None Simulator

|- ARM Assembler TEXT it + Mone el EPU

i ARM C Compiler s ARM ELF Importer -| 9

-+ AAM Cos Compiler Mapping Info 4R ROM-monitor Naone -

o ThumsCCompler — || = c J-Link

L Thumb Ce+ Compier e Type: [TEXT _Choose.. | Alension |.c Macraigor [v Generate interwark code
= ELW\:RrM L Flags: ¢ | Compiler[ARM C Compler RDI Processor mode Endian mode Stack align

Lo ARM fromELF Edit Language: [T/ > Fiemove Thirck-Party Driver @ Am @ Litle @ 4bytes
= Edior -

| " Thumb (" Big (" Bbytes
Factor Seliings ‘ ‘ mport Panel. | Esport Panel. ‘
oK | carcel | ‘
OK Cancel

8. Setting ARM./Thumb mode for the C compiler in ARM Developer Suite and |AR Embedded Workbench

The following screen captures demonstrate how to tell the C compiler to generate ARM or Thumb interwork code in ARM Developer
Suite. Choose either the 'ARM C Compiler' or 'Thumb C Compiler' options from Target Settings Panels, select the ATPCS' tab, then
select the ' ARM/Thumb interworking' checkbox in the 'ARM/Thumb Procedure Call Standard Options panel. To perform
ARM/Thumb interworking in IAR Embedded Workbench, select the 'Generate interwork code' checkbox from 'General Options in
the 'Category:' panel as shown in the previous figure.

ADS ADS
i 5 Debug Settings / i B/ Debug Settings
[Target Settings Panels [J ARM C Compier § Taiget Setlings Panels [§ Thumb C Compiler
=~ Taget ~ - 5 Terget - A
i TagetSetings | Targetand Source ATPCS WWammgs} Errorsl Debug/ Opﬂ Prep i TagetSetings | Targetand Source ATPCS WWammgs} Errorsl Debug[Opﬂ Prep
Lo Aocess Paths fe Agcess Paths
i Build Extras ARM/Thumb Procedure Call Standard Options i~ Build Extras ARM/Thumb Procedure Call Standard Options
i+ Rurtime Setings [v ARM/Thumb interworking i Runtime Settings [+ ARM/Thumb interworking
- File Mappings -~ File Mappings
. Source Trees r Software Stackgheck) Source Trees r Software stackgheck
S BRM Target - ARM Target
=- Language Settings [Read-only position independent = Language Settings [~ Read-only position independent
- ARM Assembler - ARM Assembler
ler | Read-write position independent - ARM C Compiler [~ Read-write position independent
ARM Cas Compiler]

S Thumb C Compiler
L. Thumb Co+ Compier

= Linker = Linker
i ARM Linker e AR Linker
S ARM fromELF Eauivalent Command Line bt i ARM fromELF Eauivalent Command Line i
= Edbar -« > = Ediar ~| < >
Factor Setlings Rt e Fe] | Export Panel, ‘ Factory Settings Revert rmport Panel. | Export Panel ‘
oK | Cemed | ook | oK ‘ Cancel | Apply ‘

9. Setting ARM./Thumb interworking mode for the C compiler in ARM Developer Suite

SET C COMPILER INCLUDE DIRECTORIES

Include directories for ARM Developer Suite projects can be found by selecting 'Source Trees from Target Settings Panels' in the
project settings window. For the example project, the ADSINC variable contains the directory path to theinclude files. In IAR
Embedded Workbench, include paths can be defined by selecting 'C/C++ Compiler' from the 'Category:' panel at the left of the
project options window, selecting the 'Preprocessor' tab and adding the paths to the 'Include paths (one per ling)' panel.

ADS

IAR

Options for node "test”

im Debug Settings Cateqary:
Taiget 5eltings Panels Source Trees
= Target - General Options
o TargetSeftings |
o Access Paths Assembler
- Buid Extizs Custom Build
- Runtime Settings Build Actions
- File Mappings A
- Linker
L ARM Target _,J Debugger
= Language Seftings J Simulatar
-~ ARM Assembler Source Tres Info el
- #RM C Compiler .
. AAM o Compilr Mo | AR FOM-manitor
‘- Thumb € Compller Type:[Absolute Path - J-Link
- Thumb C++ Compiler Macraigar
S Linker C:\Program Files\ARMVADS v1_2\nclide Choose: Ol i
- ARM Linker -)
L ARM fromELF Remove Third-Party Driver
= Editor -
Factory Settings Fevert ‘ Import Panel ‘ Export Panel |
oK ‘ Cancel | Apply |

X

Language} Opumizaﬁun‘ Outpull List

Include paths: (one per line)

Factary Settings

Preprocessor IDiagnosﬁcs} Cmd 4|

$TOOLKIT_DIRS\INCY

Defined symbaols: (one per ling)

Preinclude file

[Preprocessor outputio file
[
]

o]

Cancel

10. Setting include directories for the C compiler in ARM Developer Suite and |1AR Embedded Workbench

SET C COMPILER PREDEFINED SYMBOLS

The figure below shows the location of predefined compiler symbols and variables for ARM Developer Suite and IAR Embedded
Workbench. In ARM Developer Suite, the predefined symbols are located under the 'Preprocessor’ tab in the’ARM C Compiler'

option in 'Target Settings Panels, whilein IAR Embedded Workbench, the variables are located in the 'Defined symbols (one per
line)' panel under the 'Preprocessor’ tab in the 'C/C++ Compiler' option in the 'Category:' panel.

X

ADS IAR
Options for node "test”
i 5 Debug Settings Cateqary:
T aige! Seflings Panels [3 £FM C Compler
= Target - = General Options
S Target Settings Targetand Suur:e} ATPCS I Wamingsl Erruvs} Debug/ Opt ; Prep
i hocess Paths List of 8DEFINEs = Assembler
i Build Extras = Custom Build
i Rurtime Setings __TARGET_FEATURE_THUMB Build Actions
s File Mappings __TARGET_FEATURE_HALFWORD 8
Lo Source Trees __sizeof_ptr=4 Linker
L ARM Taiget TAMAET NIl oAETIER Debugger
=- Language Settings ‘ Simulator
L BRM Assembler Angsl
ARM Cor Compier 4P ROM-moritor
- Thumb C Compiler ™~ J-Link
* Thumb C++ Compiler Mecraigor
= Linker
L. ARM Linker RD_‘ .
to BRM fromELF Eauivalent Command Line b Third-Party Driver
= Edior M [>
Factory Settings Impot Panel. ‘ Export Panel |
oK | Cancel ‘ Apply |

Language} Opumizaﬁun‘ Outpull List

Include paths: (one per line)

Factary Settings

Preprocessor IDiagnosﬁcs} Cmd 4|

$TOOLKIT_DIRS\INCY

Defined symbols: (one per ling)

Preinclude file

[Preprocessor outputto file
[
[

Cancel

o]

11. Setting C compiler predefinesin ARM Developer Suite and |AR Embedded Workbench

SET ASSEMBLER CORE TYPE

As mentioned previously, the example project uses the ARM7TDMI processor core. To change a processor core type for the ADS
Developer Suite assembler, go to '"ARM Assembler' from Target Settings Panels and select the desired core type from the
‘Architecture or Processor' multiple options box. For IAR Embedded Workbench, the target core for the assembler is set in the same
location as the compiler. Thisislocated in the 'Processor variant' panel under ‘General Options in the 'Category:' panel as shownin
the comparison figures below. It is not possible to select a different core type for the C compiler and assembler in IAR Embedded

Workbench.

ADS

i B Debug Settings.

IAR

Targel Selings Panels [ARM Asserbler
= Taget
i Target Setings Target | ATPCS | Options | Predsfines | Listing Contiol | Extras| =
i+ Access Paths Architecture or Processor Eloating Point——
- Build Extras
S Runtime Settings ARM7TOMI -
| File Mappings ‘ | ﬂ ‘F’ure endian so
- Source Trees
S BRM Target
nguage Setings
&1
SAM € Compiler Byte Order Initial State
i ARM C++ Compller (s Litile Endian ® ARM
i Thumb C Corpiler -~ ~ Big Endian (~ Thumb
.. Thumb C++ Compiler
= Linker
i ARM Linker
© ARM fromELF Eauivalent Command Line >
= Ediar - | >
[e [‘ et Pl |
ok | cadd | amy |

Options for node "test”

Category:

Gen s
GiC++ Compiler
Assembler
Custom Build
Build Actions
Linker
Debugger
Simulator
Angel

14F ROM-monitar
J-Link

Macraigor

RDI

Third-Party Driver

X

Target IOutpuﬂ Library Configuration I Library options ‘ MISRAC

Processor variant

& Core ARM7TDMI A

(" Chip | J
EPU

None A
™ [Generate intework codsl

Processor mode Endian mode Stack align

@ Arm @ Litle ® 4bytes

" Thumb (" Big (" 8bytes

.

Cancel

12. Selecting a processor core for the assembler in ARM Developer Suite and |AR Embedded Workbench

SET ASSEMBLER ARM/THUMB MODE

In order to define either ARM or Thumb mode for the assembler, refer to the figure below. In ARM Developer Suite, thisis defined
inthe'Initial State' panel in the Target' tab of the 'ARM Assembler' option in Target Settings Panels. For IAR Embedded

Workbench, this option is defined in the 'Processor mode' panel of the Target' tab in 'General Options' in the 'Category:' panel. Thisis

similar to setting ARM/Thumb mode for the IAR Embedded Workbench C compiler.

ADS

in Debug Settings

IAR

Options for node "test”

Targel Settings Panels [J ATH Assembler
= Taget
.- Terget Setings Target | ATPCS | Options | Predefines | Listing Control | Extras| =
i+ Aooess Paths Architecture or Processor Eloating Point———
i Build Exiras
- Runtine Setings ARM7TOMI .
- File Mappings ‘ ﬂ |Pure endian so
.. Source Trees
L. ARM Target
- Language Setfings
e
A & Compiler Byte Order Initial State
i ARM C++ Compier (@ Little Endian ® ARM
i Thumb € Compiler (" Big Endian ¢ Thumb
- Thumb C++ Compier
= Linker
.. ARM Linker
L. ARM fromELF Equivalent Command Line hd
- Edior ~| =) 3
Factory Settings mpont Panel | Export Parel. |
ok | cercel | ‘

Category:

G{C++ Compiler
Assemhler
Custom Build
Build Actions
Linker
Debugger

Simulator

Angel

1AR: ROM-monitor
J-Link

Macraigor

RDI

Third-Party Driver

Target WOutpull Library Cunﬁgurauonl Library opuonsl MISRAC

Processor variant

® Core ARMZTDMI A

(" Chip ‘ J
EPU

None hd
[v Generate interwork code

Processor mode Endian mode Stack align

® Arm (e Litlle (@ 4bytes

(~ Thumb (" Big (" 8bytes

Cancel

o]

13. Setting ARM/Thumb mode for the assembler in ARM Developer Suite and AR Embedded Workbench

SET ASSEMBLER INCLUDE DIRECTORIES

This step sets the include directories for the assembler. In ARM Developer Suite, the include directories are set in the same location
in the project settings window as the compiler, i.e. under the 'Source Trees option in Target Settings Panels. For IAR Embedded

Workbench, include paths can be defined in the 'Include paths (one per line)' panel in the 'Include’ tab from the 'Assembler’ option in
the 'Category:' panel. The figure below shows the comparison screen captures.

ADS IAR

Options for node “test” W‘
i B Debug Settings Category: Factory Setiings
Taige! Sellings Panels Souce Trees

= Teget N General Options Code generauonl Hdeﬁne} List I#undef Include ‘Cmd Opﬂ

- Taget Setings || BHAmE i CiC++ Compiler

i Access Paths ADSINC C:\Proaram 2 Include paths: (one perline)

" Build Exras Custom Build $TOOLKIT_DIRS|NC}

- Runtime Setings Build Actions -

le Mappings ik

L ees nker

L. BRM Target _,J Diebugger
= Language Settings J Simulator

- RM Assembler Sourcs Tres Info el

- HRM € Compiler Name: [ADSINC]

- ARM G+ Cornpler ‘ 4R ROM-monitor

o Thumb € Compller | |~ Type:[Ebsolute Path = Hink

. Thumb Ce+ Compiler Macraigor
= Linker CAProgiam Files\ARMAAD5+1_2inchide Choass Ol E

- HRM Linker

Third-Party Driver

ARM homELF e
= Ediar -
Fesin i Revert ‘ [‘ et P |
oK \] | Apply |

0K Cancel

14. Setting include directories for the assembler in ARM Developer Suite and |AR Embedded Workbench

SET ASSEMBLER PREDEFINED SYMBOLS
The list of assembler predefined symbols or variables for both ARM Developer Suite and IAR Embedded Workbench are shown in
the figure below. In ARM Developer Suite, the symbols are located in the 'Predefines tab under 'ARM Assembler' in Target Settings

Panels and for IAR Embedded Workbench, they can be found in the #undef' tab under the 'Assembler’ option in the 'Category:'
panel. Note that the ARM Developer Suite allows predefined variables to be edited.

ADS IAR

Options for node "test” g

ig Debug Settings

Category: Factary Settings
Target Gettings Panch [[ARM Assembler

= Targel . - General Uptions Code generauonl Hdeﬁne} List #undef I Include I Cmd Opﬂ
- TagelSetngs | Target| ATPCS | Options Predsfines | Listing Contiol | Extras| = C/C++ Compiler
- tecess Paths Predefined symbols
o Build Extras o "

List of Predefines

]) Custom Build [v i FI
L File Mappings X [_UNE__
- Souce Trees Linkear
. ARM Target Edit predefined variable Debugger o e
= Langusge Seltms Variable Name ‘ Simulator [+ _DATE__
[et

Angel

- ARM C Compiler Directive

SETA . [¢ _IAR_SYSTEMS_ASM__
- ARM C++ Campiler [4R ROM-monitor F D
~ Thumb C Compier J-Link ==
oo Thumb C++ Campiler Numeric Value ‘ Macraigor v _VER__
= Linker ~ - ol
L ARM Linker !) [¢ _LITTLE_ENDIAN__
- ARM fomELF Eauivalent Command Line b/ Third-Party Driver
= Editar | |8 | >
Factory Settings Import Panel ‘ Export Panel |

oK ‘ Cancel | Apply |

0K Cancel

15. Selecting a processor core for the assembler in ARM Developer Suite and |AR Embedded Workbench

SET LINKER CODE AND DATA BASE ADDRESSES

The example project has a memory map with read-only and read-write base addresses of 0x0000 and 0xAQQO respectively. In the
ARM Developer Suite, this information can be input to the linker by selecting the 'Output’ tab from the 'ARM Linker' option in
Target Settings Panels and filling in the 'RO Base' and 'RW Base' fields as shown. Although the IAR Embedded Workbench does not
have an equivalent fields to input this information, the 'Cmd Opt' tab (selected from the ‘Linker' option in the ‘Category:' panel) can
be used. Select the '‘Use command line options checkbox and add in the commands as shown in the figure below. A discussion of
specifying amemory map of an image to the linker can be found further in the guide. Note that in ARM Developer Suite, the

fromELF utility of the linker may be used to translate executable image files generated by the linker into other output formats such as
plain binary.

10

ADS IAR

Options for node "tes
= Debug Settings Categony: Factory Settings

[Targe Settings Panels N ERM Linker P — =
= Lamguage Settings General Options Extra Output' #deﬁne' D\agnush:s' List | Conﬁg' Processing Cmd Optl 4|

A
ARM Assembler Qutput | Optmnsl Layuml L\sungsl Exuasl S C{C++ Compiler
i~ &RM C Compiler Linkype | [Simpleimage Aszembler [+ Use command line options
i ARM C++ Compiler Custom Build
i+ Thumb C Compiler @ (i RQ Base R r Build Actions Command line options: (one per ling)
_ ~L‘-ﬂkr;umh Co+ Compilsr (® Simple 0x0000 I(xAQD0 - L Z (CODE) SEG_RO - 00000
 Scatiered r Debugger Z (DATA) SEG_RW.SEG_ZI = 0xA000
- ARM fromELF Simulator
- Edior Scatter description file I Angel
Custom Kepwords)
= Debugger ST I 4R ROM-manitor
.. Other Exscutsbles UNARETIE S JLink
Debugger Settings Macraigor
. ARM Debugger Symbol editing file I Ol
© ARM Rurner . .
= Miscellaneous —Eauivalent Command Line [Third-Party Driver
o ARM Features £ >
Factor Seings | Rt Import Parel.. | Evport Panel.. |

oK Cancel | ol |

0K I Cancel

16. Selecting a processor core for the assembler in ARM Developer Suite and |AR Embedded Workbench

START IAR C-SPY DEBUGGER

After setting the relevant project options, compile/make/build the project and go to Project -> Debug (Ctrl + D) to start the IAR C-
SPY Debugger as shown in the figure below. Once in the IAR C-SPY Debugger, to return to the editor go to Debug -> Stop
Debugging.

IAR Embedded Workbench IDE

Fle Edit View Project Debug Disassembly Simulator Tools Window Help

DEE@ &l sl o] My el e » @[EWE XL R
= 2 LE228

main.c | counter.c | counter.h | load.s » > BT =
#include "counter.h” - ¥ | |Memory || B

extern int value;

[| ® 5oid main (void) 0=000080F6 BOS SF, SF, #8 =
L [load.s ; int indes = 5
5 0=000080F8 2005 Hov RO, #5
B main.c int index = 5: connter (indes
DOutput int temp; 0z000080FA F7FF . _pre BL/BLE
0=000080FC FFF1 BL counter ;. 0=80ED
dex) tenp = value
counter (index) 0=0000B0FE 4802 1DR RO, [PC.#0=008] . [0x8108] =value {0xb4}
000008100 6800 LDR RO, [RO. #0]
temp = values i
1 0x00008102 BOO2 ADD SP, SP. #8
0=00008104 BCO1 FPOF {RO}
000008106 4700 BE RO
0x00008108 0064 LSL Ri, R4, #1
000008104 0000 LS RO, RO, #0
Next label is a Thumb label
_ DebugBresk
0x0000810C 4770 BX IR
0=0000810E 0000 15T RO. RO. #0
Next label is a Thumb label
_ exit:
000008110 BSOO PUSH {LRE}
0=00008112 BO&1 SUB SP. SP. #4
000008114 9000 STR RO, [SF. #0]
0=00008116 4669 MOV Rl SP
0x=00008118 2001 Hov RO, #1
0=00008114 F?FF . pre BL/BLE
0x0000811C FFE? BL __DebugBreak ; 0=810C
0=0000811E E7FE B 0=00811E
Hext label is a Thumb label
exit
0x00008120 BSOO PUSH {LR}
0x00008122 BOSL SUB SP, #4
0x00008124 FOOO ; pre BL/BLE
0x00008126 F204 BL exit . 0=8130
000008128 BOOL ADD SP, SP. #4
0x0000812& BCOL POP {R0}
0=0000812C 4700 BE RO
— 0x0000812E 0000 IsL RO, RO, #0
= Hext label iz a Thumb label -
[fol 4] | ‘ =
* ‘ ! File: Ling
Building configuration: test- Debug
load.s
Linking
Total number of errors: 0
Total number of warnings: 0
=|
= DebugLog Buid x
Ready Ln 5, Col 1 [[

17. ThelAR C-SPY Debugger window

11

Converting assembler source files

The guidelines in the foll owing sections describe how to accurately and systematically convert assembler source files from ARM
Developer Suite to IAR Embedded Workbench.

BASIC ASSEMBLER CONVERSION
For basic assembler conversion, use the following steps, shown with a simple example:

1) Redefine system segments and areas.

Before step 1:
AREA t est, CODE

i ndex i?N 9
LDR r0, [index, #4]

LDR r 1, =&FF00
AREA hash, DATA

DCFD 12. 3

val ue EQJ 8
LDR r5, =val ue || OxF9
END
After step 1:
RSEG t est : CODE: NOROOT(2)
i ndex i?N 9
LDR r0, [index, #4]
LDR r 1, =&FF00
RSEG hash: DATA: NOROOT(2)
DCFD 12. 3
val ue EQU 8

LDR r5, =val ue || OxF9

END

2) Remove use of the ARM Developer Suite RN directive. Rename registers (if required).

Before step 2:
RSEG t est : CODE: NOROOT(2)
i ndex RN 9
LDR r0, [index, #4]
LDR r 1, =&FF00
RSEG hash: DATA: NOROOT(2)
DCFD 12. 3
val ue EQU 8
LDR r5, =val ue || OxF9
END
After step 2:

RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]
LDR r 1, =&FF00

RSEG hash: DATA: NOROOT(2)

12

After step 2:

val ue

DCFD 12. 3

EQU 8
LDR r5, =value || OxF9

END

3) Modify unary and binary assembler operators, while noting operator precedence. The example shows the modification of the

bitwise OR operator from | | (in ARM Developer Suite) to| (in IAR Embedded Workbench).

Before step 3:

val ue

RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]

LDR r 1, =&FF00

RSEG hash: DATA: NOROOT(2)
DCFD 12. 3

EQU 8
LDR r5, =val ue || OxF9

END

After step 3:

val ue

RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]

LDR r 1, =&FF00

RSEG hash: DATA: NOROOT(2)

DCFD 12. 3

EQU 8
LDR r5, =val ue | OxF9

END

4) Modify assembler directives

Before step 4:

val ue

After step 4:

RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]

LDR r 1, =&FF00

RSEG hash: DATA: NOROOT(2)
DCFD 12. 3

EQU 8
LDR r5, =val ue : OR: 0xF9

END

RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]
LDR r 1, =&FF00

RSEG hash: DATA: NOROOT(2)

13

After step 4:
DF64 12.3

val ue EQJ 8
LDR r5, =val ue : OR 0xF9

END

5) Maodify assembler symbols, numeric literals and numeric expressions (if required). Note that assembler pseudo-instructions and
labels do not need to be modified. The example below shows the modification of anumeric literal.

Before step 5:
RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]
LDR r 1, =&FF00
RSEG hash: DATA: NOROOT(2)
DF64 12.3

val ue EQJ 8
LDR r5, =val ue : OR OxF9
END

After step 5:
RSEG t est : CODE: NOROOT(2)
LDR r0, [r9, #4]
LDR r 1, =OxFF00
RSEG hash: DATA: NOROOT(2)
DF64 12.3

val ue EQJ 8

LDR r5, =val ue : OR 0xF9

END

COMPLEX ASSEMBLER CONVERSION

For more complex assembler conversions, follow the steps outlined below. (Detailed descriptions and associated examples have been
provided in the section Advanced conversion 24.)

1) Modify predefined symbols.

2) Maodify conditional assembly directives.
3) Convert macros.

4) Create modules (if required).

Makefiles

ARM Developer Suite tools may also be used with makefiles. If makefiles are required, the following steps describe the method of
converting makefiles from ARM Developer Suite to IAR Embedded Workbench. A simple example of a makefile conversion is
provided.

1) Changethe assembler to use from ar masm(ARM Developer Suite) to aar m(IAR Embedded Workbench)

Before step 1:
#Assenbl er to use

AS=ar masm
#O0ptions to pass to the assembler
AFLAGS=-g -bigend -list=test

hello.o: hello.s
S (AS) S$(AFLAGS) hello.s

14

Before step 1:
clean:
rm -rf *.o

After step 1:

#Assenbl er to use

AS=aar m

#Options to pass to the assembler
AFLAGS=-g -bigend -list=test

hello.o: hello.s
$(AS) $(AFLAGS) hello.s

clean:

rm -rf *.o

Modify command line options. The example shows how to change the - g option used for generating debug information in ARM
Developer Suite to the equivalent option in IAR Embedded Workbench, - r .

Before step 2:

#Assenbl er to use

AS=aar m

#Options to pass to the assembler
AFLAGS=-g -bigend -|ist=test

hello.o: hello.s
$(AS) $(AFLAGS) hello.s

clean:
rm -rf *.o

After step 2:

#Assenbl er to use

AS=aar m

#Options to pass to the assembler
AFLAGS=-r -bigend -list=test

hello.0: hello.s
$(AS) $(AFLAGS) hello.s

cl ean:
rm-rf *.0

15

3) Maodify code generation options. The example shows how to change the ARM Developer Suite option for generating big-endian
ordered code and data to the equivalent option in |AR Embedded Workbench.

Before step 3:

#Assenbl er to use

AS=aar m

#0ptions to pass to the assembler
AFLAGS=-r -bigend -1list=test

hello.o: hello.s
$(AS) $(AFLAGS) hello.s

clean:
rm -rf *.o

After step 3:

#Assembler to use

AS=aarm

#O0ptions to pass to the assembler
AFLAGS=-r --endian big -|ist=test

hello.o: hello.s
$(AS) $(AFLAGS) hello.s

clean:
rm -rf *.o

4) Modify listing/output options. The example shows how to change the ARM Developer Suite option for producing alisting
output file to the equivalent option in IAR Embedded Workbench.

Before step 4:

#Assembler to use

AS=aarm

#O0ptions to pass to the assembler
AFLAGS=-r --endian big -|ist=test

hello.o: hello.s
$(AS) $(AFLAGS) hello.s

clean:
rm -rf *.o

After step 4:

#Assembler to use

AS=aarm

#Options to pass to the assembler
AFLAGS=-r --endian big -l test

hello.o: hello.s
$(AS) $(AFLAGS) hello.s

clean:
rm -rf *.o

Linker Files

Converting linker files from ARM Developer Suite to IAR Embedded Workbench is similar to the conversion of makefiles. Refer to
the section Linker and other tools 28 for a detailed description of linker options and the memory mapping mechanism.

Follow these steps:

1) Modify linker command line options.

2) Change the memory mapping method from using scatter loading (ARM Developer Suite) to segment control (IAR Embedded
Workbench).

6)

16

Migration reference

This section lists the differences in assembler, compiler, and linker options between ARM® Developer Suite and ARM AR
Embedded Workbench®.

Assembler conversion
In ARM Developer Suite, the assembler is called ar masm whilein ARM AR Embedded Workbench, the assembler iscalled aar m

COMMON ASSEMBLER COMMAND LINE OPTIONS

The following table lists the commonly used command line options.

ADS IAR Description

-apcs [none| No equivalent Specifies which Procedure Call Standard for the ARM Architecture (AAPCS) that is being

[/qualifier[/qualif used

ier[...]11]

- bi gend or - bi -e Generates code in big-endian byte order

r b! gendor-bi, . --endian{little|l]big| Specifies the byte order of the generated code and data

-littleendor-1i b}

-Ccpu nane --Cpu nane Specifies the target CPU or core

-iodir [,dir]... -lprefix Adds directories to the include file search path

-0 -r[en] Instructs the assembler to generate debug information; - r e includes the full source file
into the object file and - r n generates an object file without source information

-list [fil ename] -1 filenane Instructs the assembler to generate a listing

-m No equivalent Instructs the assembler to write source file dependency lists to st dout

-o filename -o filenane Sets the output object filename

-via file -f extend. xcl Instructs the assembler to open and read command line arguments from a file

-xref or -x -x{Dl 2} Instructs the assembler to list cross-reference information; In ARM IAR Embedded

Workbench, - x Dincludes #def i ne references, - x| includes internal symbols and
- X2 includes dual line spacing

18. Common command line options in ARM Developer Suite and ARM 1AR Embedded Workbench

DEFINING SYSTEM SEGMENTS/AREAS

System segments and areas are defined with the AREA directive in ARM Developer Suite. In ARM AR Embedded Workbench, the
equivalent directiveis called RSEG.

In ARM IAR Embedded Workbench, ORGis used to set the program location counter of the current segment to the value of an
expression. There is no support for ORGin ARM Developer Suite. Instead, ARM Developer Suite uses either thear m i nk option
-first or scatter loading.

The example below compares the methods of defining system segments/areasin ARM Developer Suite and ARM 1AR Embedded
Workbench.

ADS IAR Description

AREA t est, CODE RSEG t est : CODE: NOROOT(2) : Assenbl es a new code section called test
MOV RO, #10 MOV RO, #10 ; Set up a paraneter

LDR R3, =0x1234 LDR R3, =0x1234 :Load 0x1234 into register R3

iEND iEND End of source file

19. Defining system segments/areas in ARM Developer Suite and ARM |AR Embedded Workbench

LISTING/OUTPUT OPTIONS

In both ARM Developer Suite and ARM IAR Embedded Workbench, the - o command line option sets the filename to be used for
the output object file. If no filename argument (or extension) is defined, the assembler creates an object filename of the form
i nputfil enane. o (in ARM Developer Suite) or i nput fi | ename. r 79 (in ARM IAR Embedded Workbench).

In order to instruct the assembler to generate a detailed list file of the assembler code it produced, the- | i st option in ARM
Developer Suite or the -1 optionin ARM |AR Embedded Workbench can be used. By default, the assembler does not generate a list
file.

The behavior of - 1 i st (in ARM Developer Suite) and - | (in IAR) can be controlled with the cross-reference option. InARM
Developer Suite, the - xr ef (or - x) command line option instructs the assembler to list cross-reference information about where
symbols were defined and where they were used, both inside and outside macros. In comparison, the - x option in IAR Embedded
Workbench makes the assembler include a cross-reference table at the end of the list file. Additionally, IAR Embedded Workbench

17

provides the following parameters: - x D for inclusion of #def i ne symbols, - xI for inclusion of internal symbols and - x2 for
inclusion of dual line spacing.

CODE GENERATION OPTIONS

In ARM Developer Suite, the - apcs command line option can be used to specify the attributes of code sections. Thereisno
equivalent command line option in IAR Embedded Workbench. Vdid qualifiersfor - apcs are provided in the table below.

[qualifier] Description

/ none Input file does not use AAPCS

/interwork or /inter Code in the input file is suitable for ARM/Thumb interworking

/ noi nterwork or /nointer Code in the input file is not suitable for ARM/Thumb interworking

/ropi or /pic Content of the input file is read-only position-independent

/ noropi or /nopic Content of the input file is not read-only position-independent (default)
/rwpi or /pid Content of the input file is read-write position-independent

/ norwpi or /nopid Content of the input file is not read-write position-independent (default)

/ swst ackcheck or /swst Code in the input file performs software stack-limit checking

/ noswst ackcheck or /noswst Code inthe input file does not perform software stack-limit checking (default)
/ swst na Code in the input file is compatible with code that performs and does not perform software stack-limit checking

20. Qualifiers for the -apcs command line option in ARM Devel oper Suite

The- bi gend (or-bi)and-littleend (or-1i)optionsin ARM Developer Suite specify the byte order of the generated code or
data, while the equivalent option in IAR Embedded Workbenchis- - endi an{littl e| || bi g| b} . Furthermore, the - e option in
IAR Embedded Workbench can also be used to generate code in big-endian byte order. The default byte order in both ARM
Developer Suite and ARM IAR Embedded Workbench is little-endian.

The - cpu command line option in ARM Developer Suite and the - - cpu option in IAR Embedded Workbench are used to specify
the target core and obtain the correct instruction set. The default CPU name is ARM7 TDM in both ARM Developer Suite and IAR
Embedded Workbench.

REGISTER NAMING DIFFERENCES

The following table lists the register naming differences between ARM Developer Suite and AR Embedded Workbench. Note that
the assembler option - j (for allowing alternative register names, mnemonics, and operands) is needed to alow the use of the register
names A1-A4, V1-V8, SB, SL, FP, and | P in IAR Embedded Workbench.

ADS IAR Description

r0,R0,andal RO and A1 Argument, result or scratch register
r1,R1,anda2 R1 and A2 Argument, result or scratch register
r2,R2,and a3 R2 and A3 Argument, result or scratch register
r 3,R3,and a4 R3 and A4 Argument, result or scratch register
r4,R4,andv1l R4 and V1 Variable register

r5 R5,andv2 R5 and V2 Variable register

r6,R6,andv3 R6 and V3 Variable register

r7,R7,andv4 R7 and V4 Variable register

r8,R8,andv5 R8 and V5 Variable register

r9,R9,andv6 R9 and V6 Variable register
r10,R10,andv7 R10 and V7 Variable register
r11,R11,andv8 R11 Variable register

r12 and R12 R12 General purpose register

sband SB SB Static base, r 9

sl and SL SL Stack limit, r 10

f pand FP FP Frame pointer, r 11

ipandl P I P Intra-procedure-call scratch register, r 12
sp and SP R13 (SP) Stack pointer, r 13

I randLR R14 (LR Link register, r 14

pc and PC R15 (PO Program counter, r 15

cpsr and CPSR CPSR Current program status register
spsr and SPSR SPSR Saved progress status register

21. Register naming differencesin ARM Developer Suite and |AR Embedded Workbench

18

ASSEMBLER OPERATORS

ARM Developer Suite and IAR Embedded Workbench possess many operators in common, and shift and mask operators can be used
to implement many of the missing operators.

Operator precedence

The assemblersin ARM Developer Suite and AR Embedded Workbench use extensive sets of operators. Operators with the highest
precedence are evaluated first, followed by the operators with the second highest precedence and so forth until the lowest precedence
operators are evaluated. If an expression contains operators of equal precedence, the operators are evaluated from left to right. In
ARM Developer Suite and IAR Embedded Workbench both, the parentheses (and) can be used for grouping operators and
operands and to denote precedence.

The table below shows the order of precedence (from top to bottom) of operatorsin both development environments.

ADS

Unary operators

Multiplicative arithmetic operators
String manipulation operators

IAR

Unary operators

Multiplicative arithmetic operators
Addition and subtraction operators

Shift operators

Addition, subtraction and logical operators

Relational operators
Boolean operators

22. Operator precedence in ARM Developer Suite and |AR Embedded Workbench

Unary operators

Shift operators

Logical AND operators
Logical OR operators
Relational operators

The following table shows the equivalent assembler unary operatorsin ARM Developer Suite and IAR Embedded Workbench. Note
that IAR Embedded Workbench does not have any unary operators that return strings, only numeric or logical values.

ADS
Returns strings
- CHR:

. STR

Returns numeric or logical values

IAR

No equivalent

No equivalent

Description

ASCII character return
Numeric expression: Returns 8-digit hex string
Logical expression: Returns “ T" or “ F”

+ + Unary plus

- - Unary minus

. LNOT: | or: LNOT: Logical complement
- NOT: ~or: NOT: Bitwise complement
No equivalent LOwW Low byte

No equivalent HI GH High byte

No equivalent BYTE1 First byte

No equivalent BYTE2 Second byte

No equivalent BYTE3 Third byte

No equivalent BYTE4 Fourth byte

No equivalent LWRD Low word

No equivalent HWRD High word

No equivalent DATE Current time/date
No equivalent SFB Segment begin

No equivalent SFE Segment end

No equivalent SI ZEOF Segment size

?

. BASE:

. DEF:

. | NDEX:

. LEN:

. SB_OFFSET_19_12:
: SB_OFFSET_11_0:

No equivalent

No equivalent

No equivalent

No equivalent

No equivalent

(:SHR:) :AND: OxFF
. AND: OxFFF

23. Unary operatorsin ARM Developer Suite and AR Embedded Workbench

Number of bytes of executable code generated by line defining a symbol, for
example ?A

Number of register component

If defined, TRUE, else FALSE

Offset from base register

Length of string

Bits[19: 12]

Least significant 12 bytes

19

Binary operators

The following table shows the equivalent assembler binary operatorsin ARM Developer Suite and AR Embedded Workbench.

ADS IAR Description
Multiplicative Arithmetic Operators
i r Multiplication
/ / Division
. MOD: % or : MOD: Modulo
String Manipulation Operators
. CC No equivalent Concatenate
. LEFT: No equivalent Left-most characters
- RI GHT: No equivalent Right-most characters
Shift Operators
Logical rotation left. In IAR Embedded Workbench, there is no direct equivalent, but
- ROL: No equivalent can be achieved with the following (x : SHL: 1) :OR (X :SHR
(32-1))
Logical rotation right. In IAR Embedded Workbench, there is no direct equivalent,
- ROR: No equivalent but can be achieved with the following (x : SHR: 1) :OR (x :SHL
(32-1))
- SHL: << or :SHL: Logical shift left
. SHR: >> or :SHR Logical shift right
Addition, Subtraction, Logical and Boolean Operators
+ + Addition
B - Subtraction
- LAND: && or : LAND: Logical AND
. AND: & or : AND: Bitwise AND
- LOR: |] or :LOR Logical OR
- OR | or :OR Bitwise OR
- LEOR: XOR or :LECR Logical exclusive OR
- EOR: Noor P EOR Bitwise exclusive OR
Relational or Comparison Operators
= =or== Equal
/ =or<> <>or!= Not equal
> > Greater than
< < Less than
>= >= Greater than or equal
<= <= Less than or equal
No equivalent uGr Unsigned greater than
No equivalent ULT Unsigned less than
24. Binary operatorsin ARM Developer Suite and |AR Embedded Workbench
ASSEMBLER DIRECTIVES
The following table shows the equivalent common assembler directivesin ARM Developer Suite and IAR Embedded Workbench.
ADS IAR Description
Aligns the current location to a specified boundary by padding with zeroes. Note
ALI GN AL GNROM that in IAR Embedded Workbench, there is also a directive called ALI GNRAM
that aligns the location counter by incrementing it.
AREA RSEG Instructs assembler to assemble a new code or data section
CODE1L6 CODEL6 !nstructg assembler to interpret subsequent instructions as 16-bit Thumb
instructions
CODE32 CODE32 Instructs assembler to interpret subsequent instructions as 32-bit ARM instructions
DATA DATA Dgfinfes ap ar.ea of data within a code §egment. Note that in ARM Developer Suite,
this directive is no longer needed and is ignored by the assembler.
DCB or = DCB or DC8 Allocates one or more bytes of memory and defines initial runtime contents of the
memory
DCD or & DCD or DC32 .AI.Ic.Jcates pne or more words of memory, aligned on 4-byte boundaries and defines
initial runtime contents of the memory
DCFD DFE64 Allgcate_s rr_wemory for word-aligned doub!e-precision floating-point numbers and
defines initial runtime contents of the register
DOW DOW or DC16 Allgcates one or more half words of memory, aligned on 2-byte boundaries and
defines the initial runtime contents of the memory
END END Informs the assembler that the end of a source file has been reached
Declares an entry point to a program. In IAR Embedded Workbench,
. expr essi on provides the entry point address. An entry point to a program
ENTRY END expr essi on can also be defined with the linker command line option - s in IAR Embedded
Workbench
EQU or * EQU or = Gives a symbolic name to a numeric constant, a register-relative value or a

20

ADS

IAR Description

program-relative value

Declares a symbol that can be used by the linker to resolve symbol references in

EXPORT or GLOBAL EXPCRT or PUBLIC separate object and library files. Note that in IAR Embedded Workbench,
#i ncl ude may also be used.
| NCLUDE or GET I NCLUDE or $ Includes a file within the file being assembled
Includes a binary file as it is (without being assembled) within the file being
| NCBI N No equivalent assembled. There is no direct equivalent in IAR Embedded Workbench, but can be
defined with the linker command line option - - i mage_i nput
| MPORT | MPORT or EXTERN Provides the assembler with a name that is not defined in the current assembly
LTORG LTORG Instrupts tlhe assembler to assemble the current literal pool immediately following
the directive
RN No equivalent Defines a register name for a specified register
Reserves a zeroed block of memory. There is no direct equivalent in IAR
Embedded Workbench, but a workaround to this would be to use the REPT
SPACE or % No equivalent directive to zero a block of memory. Alternatively, the DS8, DS16, DS24, or

DS32 directives may be used, but the memory is not filled with zeroes. If these
directives are used, the default ROM/Flash content will be preserved.

25. Assembler directivesin ARM Developer Suite and |AR Embedded Workbench

The example below compares the use of directivesin ARM Developer Suite and IAR Embedded Workbench.

ADS

I NCLUDE “ header.inc”

IAR

dat a I NCBI N “dat a. dat”

AREA fred, CODE

ENTRY
CODE32

BX func

CODE16

BX t hunb

AREA j ohn, DATA

ALI GN 16

table DCB “test”
DCD 1,5, 10

DCFD 1. 2E-8

DCW - 255

t est EQU 5

tab RN 4

ADR t ab, tabl e
ADRL tab, table

LDR r0, =t abl e

LTORG

SPACE 50
EXPORT tabl e

END

I NCLUDE “ header.inc”

Description/Comments
;I nclude a header file
;Include a binary file.

i?SEG fred: CODE: NOROOT(2) ; Assenbl es a new code section

CODE32
BX func
CCDE16

BX t hunb

RSEG j ohn: DATA: NOROOT(2)

ALI GNROM 4

tabl e DC8 'test'
DC32 1,5,10

DF64 1.2E-8
DC16 -225

t est EQU 5

ADR r4,table
ADRL r4,table
LDR r0, =t abl e
LTORG

DC8 0x32
EXPORT tabl e

END

called fred

s Entry point to the program

; Fol owi ng instructions are 32-
bit ARMinstructions

; Branch and change to Thunb
state

; Fol l owi ng instructions are 16-
bit Thumb instructions

; Branch and change back to ARM
state

: Assenbl es a new data section
called john

;Aligns current |ocation to 16-
byt e boundari es

; Defines a string

; Defines 3 words containing
deci mal values 1, 5 and 10

; Defines a floating point
number 1.2 x 10-8

; Defines a halfword with a

val ue of -255

; Assign test a value of 5

; Defines tab for register 4

; Load address of table into
register 4

; Load address of table into
register 4

; Load address of table into
register O

; Assenbl e current literal pool
; Reserves 50 bytes of nenory
; Export the |abel table

: End of source file

21

26. Use of directivesin ARM Developer Suite and AR Embedded Workbench

CONVERTING PSEUDO-INSTRUCTIONS

The following table compares the avail able pseudo-instructions on ARM Developer Suite and equivalent instructions on IAR
Embedded Workbench.

ADS IAR Mode Description

ADR ADR ARM, Thumb Load a program-relative or register-relative address into a register (short range)
ADRL ADRL ARM Load a program-relative or register-relative address into a register (wide range)
LDR LDR ARM, Thumb Load a register with a 32-bit constant value or an address

NOP NOP ARM, Thumb Generate the preferred ARM no-operation code

Move the value of a low register to another low register (RO-R7). This translates to the
instruction: ADDRn, Rn, 0

No equivalent BLF ARM, Thumb Calls functions that may be far away or in ARM/Thumb mode
27. Pseudo-instructions in ARM Developer Suite and |AR Embedded Workbench

MOV MoV Thumb

ASSEMBLER DIFFERENCES

This section highlights other differences between and the ADSARM Assembler, ar masmand the ARM |AR Embedded Workbench
Assembler, aar m

Label differences

In both ARM Developer Suite and IAR Embedded Workbench, symbols representing addresses or memory locations of instructions
or data are referred to as labels. Labels can be program-relative, register-relative, or absolute. There are no label differences between
ARM Developer Suite and IAR Embedded Workbench.

Symbol naming rules

In ARM Developer Suite and IAR Embedded Workbench, user-defined symbols can use a to z (lowercase |etters), A to Z (uppercase
letters), 0 to 9 (numeric characters) or _ (underscore). Numeric characters cannot be used for the first character of symbol names,
although in IAR Embedded Workbench the ? (question mark) may be used to begin a symbol name and the $ (dollar) may also be
included in asymbol name. User-defined symbolsin IAR Embedded Workbench can be up to 255 characters long.

Symbol names are case-sensitive, al character names in the symbol are significant and the symbol name must be unique. For built-in
symbols such asinstructions, registers, operators, and directives, case is insignificant.

Symbols are allowed to contain any printable characters if they are delimited with the | (single bar) in ARM Developer Suite or the
(backquote) in IAR Embedded Workbench. Note that the single bars or backquotes do not form part of the symbol.

The examples below define the symbol #f unny- | abel @

ADS: | #f unny-1 abel @
1AR: “#funny- | abel @

Numeric literals

Numeric literalsin ARM Developer Suite and IAR Embedded Workbench can be of the binary, octal, decimal, hexadecimal,
character or floating-point type. The table below shows the examples of the forms taken by numeric literalsin ARM Developer Suite
and |IAR Embedded Workbench.

Type ADS Examples IAR Examples

Binary No equivalent 0101b, b'0101"

Octal No equivalent 1234q, q'1234'

Decimal 1234, -1234 1234, -1234, d'1234'
Hexadecimal OxFFFF, &FFFF OxFFFF, OFFFFh, h'FFFF'
ASCII character 'ABCD' 'ABCD'

Floating-point 12.3, 1.23E-24, -1.23e-24, 1.0E3 12.3, 1.23E-24, -1.23e-24, 1.0E3

28. Numeric literalsin ARM Developer Suite and |AR Embedded Workbench

Numeric expressions

In both ARM Developer Suite and AR Embedded Workbench, numeric expressions consist of combinations of numeric constants,
numeric variables, ordinary numeric literals, binary operators, and parentheses. Numeric expressions evaluate to 32-bit integers,
which have an unsigned range from 0 to 2% - 1 and a signed range from -2%! to 2%t -1.

SPECIFIC DIRECTIVES REFERENCE

This section describes some of the more complex assembler directives available in ARM Developer Suite and how to change them to
work with IAR Embedded Workbench .

22

AREA directive

In ARM Developer Suite, the AREA directive instructs the assembler to assemble a new code or data section. Sections are
independent, named, indivisible chunks of code or data that are manipulated by the linker.

In IAR Embedded Workbench, the equivalent directive isthe RSEG directive. The RSEG directive is used to begin a program.

Syntax

ARM Developer Suite:
AREA sectionnane{,attr}{,attr}...

Where secti onnane = the name to be given to the section

at t r = one or more comma-delimited section attributes. Vaid attributes include ALI GN=expr essi on,
ASSCC=sect i on, CODE, COVDEF, COVMON, DATA, NOALLCC, NO NI T, READONLY, READVRI TE

IAR Embedded Workbench:
RSEG segnmentnane [:type][flag][(align)]

where segnent nane = the name assigned to the segment
t ype =the memory type, typically CODE or DATA (and types supported by the IAR XLINK Linker)

f | ag = may either be NOROOT, REORDER, or SORT. NOROOT indicates that the segment part may be discarded by the
linker even if no symbolsin this segment are referred to. All segment parts except startup code and interrupt vectors should
set this flag. The default mode is ROOT, which indicates that the segment part must not be discarded. REORDER alows the
linker to reorder segment parts. The default mode is NOREORDER, which indicates that the segment parts must remain in
order. SORT allows the linker to sort the segment partsin decreasing alignment order. The default mode is NOSORT which
indicates that the segment parts will not be sorted.

al i gn = exponent of the value to which the address should be aligned, in the range of 0 to 30. For example, if al i gnis1,
thisresultsin word alignment 2
Example
ARM Developer Suite:
The following example defines aread-only code section named Test .
AREA Test , CODE, READONLY

IAR Embedded Workbench:
The following example defines a 32-bit code segment named Test .
RSEG Test : CODE: NOROOT(2)

MAP directive

In ARM Developer Suite, the MAP directive sets the origin of a storage map to a specified address. Thisdirectiveisused in
conjunction with the FI ELD directive to describe a storage map.

In IAR Embedded Workbench, thereis no equivalent directive.

Syntax
ARM Developer Suite:
MAP expr{, base-register}
Where expr =numeric or program-relative expression

base-regi st er = specifiesaregister. If specified, the address where the storage map starts is the sum of expr and the
value of base-regi st er at runtime

IAR Embedded Workbench:
In IAR Embedded Workbench, there is no equivalent directive. See the FI ELD directive 24 below for how to convert this construct.

23

Example

ARM Developer Suite:

The following example shows that the storage maps starts at the address stored in register r 9.
MAP 0,r9

IAR Embedded Workbench:
In IAR Embedded Workbench, there is no equivalent example.

FIELD directive
In ARM Developer Suite, the FI ELD directive describes space within a storage map that has been defined using the MAP directive.
In IAR Embedded Workbench, there is no equivalent directive, although the EQU directive may be used to achieve the same purpose.

Syntax

ARM Developer Suite:

{l abel } FI ELD expr

Where | abel =optional label. If specified, | abel isassigned the value of storage location counter

expr = expression that evaluates to the number of bytes to increment the storage counter

IAR Embedded Workbench:
Label EQU expr

where | abel =symbol to be defined
expr =vaueassigned to symbol

Example
ARM Developer Suite:
The following example shows how the MAP and FI ELD directives are used to define register-relative labels:

MAP 0,r9 ; Set storage |ocation counter to address stored in r9
FIELD 8 ;I ncrement storage |ocation counter by 8 bytes
Code FIELD 4 ; Set Code to the address [r9 + 8] and increnent storage

;location counter by 4 bytes
Size FIELD 4 ;Set Size to the address [r9 + 12] and increnent storage
;location counter by 4 bytes

MOV ro, ...
LDR r0, Code ; Equivalent to LDR rO,[r9, #8]

IAR Embedded Workbench:
The following example shows the equivalent instructions in |AR to define register-relative labels:

Code EQU 8 ; Set Code to the address [r9 + 8]
Si ze EQU 12 ;Set Size to the address [r9 + 12]
MoV ro,...
LDR ro,[r9, #Code]

Advanced conversion

PREDEFINED SYMBOLS
The following table compares the predefined symbols available in ARM Developer Suite and |AR Embedded Workbench.

24

ADS

{ ARCHI TECTURE}

{ ARVASM VERSI ON} or
ads$ver si on|

{ CODESI ZE} or { CONFI G}

IAR
No equivalent

VER

No equivalent

Description
Name of selected ARM architecture
Integer that increases with each version number

Has the value 32 if assembler is assembling ARM code, or 16 if assembling Thumb
code

{ CPU} No equivalent Name of selected CPU
_ BIGENDIAN _ or In ARM Developer Suite, the value * bi @' or' i ttl e' isreturned depending
{ ENDI AN} LI TTLE ENDI AN on the assembler mode. In IAR Embedded Workbench, the symbol expands to the
_— - - number 1 when the code is compiled, thereby identifying the byte order in use
{ FPU} No equivalent Name of selected fpu
{1 NTER} No equivalent Has the value Tr ue if/ i nt er is set. The default is Fal se
{ NOSW&T} No equivalent Has the value Tr ue if/ swst is set. The defaultis Fal se
{ OPT} No equivalent Holds the value of the currently set listing option
{PC} or Address of current instruction
. Offset between the address of the STR pc, [...] orSTM
{ PCSTOREGFFSET} No equivalent Rb, {. .., pc} instruction and the value of pc st or ed out
{ROPI'} No equivalent Has the value True if / r opi is set. The default is False
{ RWPI } No equivalent Has the value True if / r wpi is set. The default is False
{ SWsT} No equivalent Has the value True if / swst is set. The default is False
{VAR} or @ No equivalent Current value of storage area location counter

No equivalent
No equivalent
No equivalent

__DATE__
__FILE__

I AR_SYSTEMS_ASM __

String in dd/mm/yyyy format indicating the current date
String indicating the name of the current source file
Hold the IAR Embedded Workbench assembler identifier

No equivalent __LINE__ Integer indicating line number in current source file

No equivalent _TID_ Target |d§nt|ty consisting of 2-bytes. High byte is target identity, 0x49 for AARM),
low byte is unused

No equivalent TI ME String in hh:mm:ss format indicating current time

29. Predefined symbols in ARM Devel oper_S_Jite and 1AR Embedded Workbench

CONDITIONAL ASSEMBLY

The following table shows the equivalent conditional assembly directivesin ARM Developer Suite and IAR Embedded Workbench.

ADS IAR Description

| For[| F Assemble a sequence of instructions if condition is true

ELSE or | ELSE Assemble a sequence of instructions if condition is false

ENDI For] ENDI F Marks the end of a sequence of instructions that were conditionally assembled

ELSE | Forl| ELSEI F Crea?(-?‘s a structure equivalent to ELSE | F, without the nesting or repeating the
condition

VHI LE REPT Begins a sequence of instructions that are assembled repeatedly.

WMEND ENDR Terminates a sequence of instructions that are assembled repeatedly

| NCLUDE, GET or #i ncl ude

SETA

No equivalent

No equivalent

[:DEF: symbol

[:NOT: :DEF:. synbol
No equivalent

| NCLUDE, $ or #i ncl ude

SETA, ASSI GN, VAR or
#def i ne

#error

#message

#i f def

#i f ndef

#undef

Includes a file within the file being assembled. In ARM Developer Suite,

#i ncl ude may be used if the file is preprocessed with the C preprocessor, before
using ar mas mto assemble it.

Sets the value of a local or global arithmetic variable

Generates an error

Generate message on standard output

Assemble a sequence of instructions if symbol is defined
Assemble a sequence of instructions if symbol is undefined
Undefine a label

30. Conditional assembly directivesin ARM Developer Suite and | AR Embedded Workbench

25

The example below compares the use of conditional assembly directivesin ARM Developer Suite and |AR Embedded Workbench. It

defines two different options for a FFT routine (1,2) plus an option with no routine.

ADS IAR Description/Comments
FFT_VARI ANT SETA 1 #define FFT_VARI ANT 1 :Define a variable called
FFT_VARI ANT that has a value of 1
[DuMw = 1 I F DUMWY == ; Assenbl e sequence of instructions
as condition is true
fft fft
MOV RO, #10 MOV RO, #10 ; Set up RO
MOV PC, LR MOV PC, LR ; Return
I[FFT_VARI ANT = 2 ELSElI F FFT_VARI ANT == ; Assenbl e sequence of instructions
if condition is false
fft fft ; FFT type 1
| ELSE ; Assenbl e sequence of instructions
if the next condition is true
fft fft ; FFT type 2
MOV RO, #-1 MOV RO, #-1 ;Set up RO (no fft avail able)
MOV PC, LR MOV PC, LR :Return
] ENDI F ; End of conditionally assenbl ed

i nstructions
31. Use of conditional assembly directivesin ARM Developer Suite and AR Embedded Workbench

MACROS

Macros are user-defined symbols that represent a block of one or more assembler source lines. The symbol can then be used instead
of repeating the whole block of code several times. The following table shows the equivalent macro processing directivesin ARM
Developer Suite and IAR Embedded Workbench.

ADS IAR Description
MACRO MACRO Define the start of a macro
VEND ENDM Define the end of a macro
MVEXI T EXI TM Generate premature exit from a macro
Create symbols local to a macro. In ARM Developer Suite, L CL A declares an arithmetic value
LCLA, LCLL or LCLS LOCAL (initialized to 0), LCLL declares a logical variable (initialized to { FALSE}) and LCLS declares a

string variable (initialized to a null string, * ")
32. Macro processing directives in ARM Developer Suite and |AR Embedded Workbench

The example below compares the use of macro processing directivesin ARM Developer Suite and AR Embedded Workbench for
decrementing avariable.

ADS IAR Descriptions
AREA count , CODE RSEG ; Assenbl e the source file count
count : CODE: NOROOT(2)
ENTRY .
MACRO count down MACRO start ;Start of macro called countdown
$l abel countdown $start . ; Paramet er accepted by the macro
LCLA val ue LOCAL val ue ;Create a local synbol
val ue SETA $start val ue SETA start ; Assign value the value of start
WHI LE value > 0 REPT val ue ;Start of repeated statenents
DCD val ue DC32 val ue ; Define a word call ed val ue
value SETA value - 1 value SETA value - 1 ; Decrenent value by 1
V\END ENDR ; End of repeated statenents
DCD val ue DC32 val ue ; Define a word call ed val ue
MEND ENDM ; End of a nacro
tab5 countdown 5 t ab5 countdown 5 ; Begi n countdown from5
END END ; End of source file

33. Use of macro processing directives in ARM Developer Suite and |AR Embedded Workbench

The following list files show the value of value counting down from 5 to 1.

ARM Developer Suite listing
ARM Macro Assenbl er Page 1

1 00000000 AREA test, CODE
2 00000000 ENTRY
3 00000000

26

4 00000000 MACRO
5 00000000 $l abel count down
6 00000000 LCLA
7 00000000
8 00000000 val ue SETA
9 00000000
10 00000000 VWHI LE
11 00000000 DCD
12 00000000 val ue SETA
13 00000000 VEND
14 00000000 DCD
15 00000000 MVEND
16 00000000
17 00000000 t ab50 count down
6 00000000 LCLA
7 00000000
8 00000000 00000005

val ue SETA
9 00000000
10 00000000 VWHI LE
11 00000000 00000005 DCD
12 00000004 00000004

val ue SETA
13 00000004 VEND
10 00000004 VWHI LE
11 00000004 00000004 DCD
12 00000008 00000003

val ue SETA
13 00000008 VEND
10 00000008 VWHI LE
11 00000008 00000003 DCD
12 0000000C 00000002

val ue SETA
13 0000000C VEND
10 0000000C VWHI LE
11 0000000C 00000002 DCD
12 00000010 00000001

val ue SETA
13 00000010 VEND
10 00000010 VWHI LE
11 00000010 00000001 DCD
12 00000014 00000000

val ue SETA
13 00000014 VEND
10 00000014 WHI LE
14 00000014 00000000 DCD
18 00000018
19 00000018 END

Command Line: -list=test count.s

IAR Embedded Workbench listing
A G G R LA D G P S I G i

#

Copyri ght

#
#
#
#
#
#
#
#
#

Source file
List file

oject file
Command |ine

00000000
00000000
00000000
00000000
00000000

| AR Systens ARM Assenbl er V4. 20A/ VB2 dd/ Mmi yyyy
1999- 2005 | AR Systens. Al

count.s
test.|st
count.r79

$start

val ue
$start
value > 0
val ue
value - 1
val ue

5

val ue

5

value > 0
val ue
value - 1
value > 0
val ue
value - 1
value > 0
val ue
value - 1
value > 0
val ue
value - 1
value > 0
val ue
value - 1
value > 0
val ue

-l test count.s

RSEG count :CODE :NOROOT (2)

B L L g

ALl GNROM 2

hh: mm ss
rights reserved

#
#
#
#
#
#
#
#
#
#

27

18 00000000 t ab5 count down 5

18.1 00000000
18.2 00000000 LOCAL val ue
18.3 00000000
18.4 00000005 val ue SETA 5
18.5 00000000 REPT val ue
18.6 00000000 DC32 val ue
18.7 00000000 val ue SETA value - 1
18.8 00000000
18.9 00000000 ENDR
18 00000000 05000000 DC32 val ue
18.1 00000004 val ue SETA value - 1
18.2 00000004
18 00000004 04000000 DC32 val ue
18.1 00000003 val ue SETA value - 1
18.2 00000008
18 00000008 03000000 DC32 val ue
18.1 00000002 val ue SETA value - 1
18.2 0000000C
18 0000000C 02000000 DC32 val ue
18.1 00000001 val ue SETA value - 1
18.2 00000010
18 00000010 01000000 DC32 val ue
18.1 00000000 val ue SETA value - 1
18.2 00000014
18 00000014 00000000 t ab5 count down 5
18.1 00000018 0O000OAOE1l NOP
18.2 0000001C ENDM
19 0000001C
20 0000001C END

HHHHHHH R R R H R R R AR HHHHHH

CRC. 4E7E

Errors: 0

Warnings: O

Bytes: 28

HHHBHHHHHH B AR

MODULES

In IAR Embedded Workbench, module directives are used to create libraries containing many small modules, where each module
represents a single routine. The number of source and object files can be reduced using module directives. There is no direct
equivalent in ARM Developer Suite, but a similar result can be achieved using the AREA directive.

ADS IAR Description
No equivalent MODULE or LI BRARY Defines the beginning of a library module.
No equivalent ENDMOD Defines the end of a library module

The Call Frame Information (CFl) directives are used to define backtrace information for the instructions in a program. The
backtrace information is used to keep track of the contents of resources in the assembler code. In the case of library functions and
assembler code, backtrace information has to be added in order to use the call frame stack in the debugger.

Linker and other tools

In ARM Developer Suite, the linker iscalled ar ni i nk, while in the IAR Embedded Workbench IDE, the linker is called the IAR
XLINK Linker.

LINKER COMMAND LINE OPTIONS
The table below compares the basic linker command line options in ARM Developer Suite and |AR Embedded Workbench.

ADS IAR Description
Prints summary of commonly used command line options. There is no direct
-help or -h No equivalent equivalent in IAR Embedded Workbench, but the task can be performed by

invoking x| i nk without arguments.

Displays ar m i nk version information and license details. There is no direct
-vsn No equivalent equivalent in IAR Embedded Workbench, but the task can be performed by
invoking X1 i nk without arguments.
Sets load and execution addresses of the region containing the read-only
output section
-rw base or -rw address -Z type segnent=start Sets execution addresses of the region containing the read-write output section

-ro-base or -ro address -Z type segnment=start

28

ADS IAR Description
-Z segment =start-end or Places the selected input section first in its execution region

rfirst section-id -Z segment =start: +si ze

-Z segment =start-end or Places the selected input section last in its execution region

-l ast section-id -Z segment=start: +si ze

-entry | ocation -s synbol Specifies the unique entry point of the image

-libpath pathlist - | pat hnane Specifies a list of paths used to search for ARM standard C/C++ libraries

_rermove No equivalent Removes unused sections from the image. This is performed by default in IAR
Embedded Workbench.

- map -1 file -xm Creates an image/module map.

-synbols or -s -l file -xe Lists all local and global symbols used in linking, and their values

- xref -1 file -xm Lists all cross-references between input sections

-list file -l file Redirects the diagnostics from the output of the command line options to a file

-verbose or -v No equivalent II:’t;irr;trsiedsetaiIed information about the link operation, including objects and

-via file -f file Reads a list of input filenames and linker options from a file

-output or -o file -o file Specifies the name of the output file

34. Linker command line options in ARM Developer Suite and AR Embedded Workbench

LINKER SCATTER LOADING AND SEGMENT CONTROL

In order to specify the memory map of an image to the linker, ARM Developer Suite utilizes the scatter |oading mechanism.
Although thereis no direct IAR Embedded Workbench equivalent to this mechanism, a similar result can be achieved through
segment control.

With ARM Developer Suite, depending on the complexity of the memory maps of the image, images that have simple memory maps
may also be created using command line options. Scatter loading is used for images that have a complex memory map where
complete control is required over the grouping and placement of image components, for example, in situations where there are
different types of memory or memory-mapped 1/0. The command line option for scatter loading in ARM Developer Suiteis:

-scatter filenane

This option instructs the linker to construct the image memory map as described in the description filef i | ename. The scatter-
loading description file is atext file that describes the memory map of the target to link. The file extension of the description fileis
not significant if the linker is used from the command line. However, if Codewarrior is used the default extension for a description
fileis. scf (thisdefault extension that Codewarrior recognises may be changed if required).

As mentioned previously, the linker in IAR Embedded Workbench does not have a single equivalent command line option. However,
asimilar result can be achieved with segment control using multiple - Z options to allocate or place segments in memory. Segment
placement is performed one placement command at a time, taking in to account previous placement commands. As each command is
processed, any parts of the ranges given for that placement command that are already in use (for example, by segments placed with
earlier segment placement commands) are removed from the considered ranges.

Furthermore, the - Qoption in IAR Embedded Workbench can be used to do automatic setup for copy initialization of segments. The
command line option has the format bel ow:

-Qsegnent=initializer_segnent

This option will make the linker place all data contents of the segment segnent intoasegmenti ni ti al i zer _segment .
Debugging information, etc, is still associated with the segment segnent . At runtime, the application must copy the contents of
initializer_segnment (in ROM) tosegnment (in RAM) using any suitable method of copy (the standard menc py routineis
perhaps the easiest way). Thisis useful for code that needsto be in RAM.

The table below shows an example of asimple ARM Developer Suite scatter |oading description file for loading code and data
sections into non-contiguous regions in memory. The description file loads code (RO) at address 0x0000 in memory, data (RW at
address 0xA000 in memory, and dynamically creates a zero-initialized (Z1) section at runtime.

Description File Listing Description/Comments
LR 1 0x0000 ; Define load region LR 1
ER_RO +0 ; The execution region containing code, ER RO has no offset and begins at

address 0x0000
* (+RO) ; All RO sections are placed consecutively into this region
EER_RW O0xA000 | The execution region containing data, ER RWis offset to address 0xA000
* (+RW ;All RWsections are placed consecutively into this region

ER ZI +0 ; The execution region containing the ZI section, ER ZI has no offset and is
pl aced at address OxA000 + size of the ER_ RWregion

* o (+21) ;All ZI sections are placed consecutively into this region

29

Description File Listing Description/Comments

35. Example of scatter loading in ARM Developer Suite

Note that the equivalent linker command line option in ARM Developer Suiteis:

arm i nk -ro-base 0x0000 -rw base 0xA000

The equivalent segment placement commands in IAR Embedded Workbench for placing a code segment at address 0x0000 in
memory and a data segment at address 0xA000 in memory are the following:

-Z (CODE) SEG RO = 0x0000

-Z (DATA) SEG RW SEG ZI = 0xA000

C COMPILER EXTENDED KEYWORDS

In ARM Developer Suite, function type attributes can be specified either before or after the return type:
__irg void InterruptHandler (void);

void __irqg InterruptHandl er (void);

In IAR Embedded Workbench, function type attributes can only be specified before the return type:
__irg void InterruptHandler (void);

USING THE FROMELF UTILITY

The ARM Developer Suite linker generates executable image files that have aformat called ELF (Executable Linkable Format). To
convert ELF images to other formats, the fromELF utility can be used. This utility translates ELF images into other formats, e.g.
plain binary format, that are suited to ROM tools and to loading directly into memory. The fromELF command syntax is shown
below:

fromel f -options

In comparison, the final output of the IAR Embedded Workbench XLINK linker is an absolute, executable object file that can be put
into ROM, downloaded to a hardware emulator or executed with the IAR C-SPY Debugger/Simulator.

30

