IAR Embedded Workbench®

C-SPY® Debugging Guide

for Advanced RISC Machines Ltd’s
ARM® Cores

©IAR

UCSARM-3 SYSTEMS

COPYRIGHT NOTICE
© 1999-2011 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB. J-Link and J-Trace are trademarks licensed to
IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.
EmbeddedICE is a trademark of Advanced RISC Machines Ltd. OCDemon is a
trademark of Macraigor Systems LLC. nC/OS-II is a trademark of Micripm, Inc.
CMX-RTX is a trademark of CMX Systems, Inc. ThreadX is a trademark of Express
Logic. RTXC is a trademark of Quadros Systems. Fusion is a trademark of Unicoi
Systems.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Third edition: October 2011

Part number: UCSARM-3

This guide applies to version 6.3x of IAR Embedded Workbench® for ARM®.
Internal reference: M11, Too6.3, IMAE.

Brief contents

TaABIES ... 17
FISUIES ..ot 19
Preface ... 25
The IAR C-SPY Debugger ... 31
Getting started using C-SPY ... 45
Executing your application ... 65
Working with variables and expressions ..., 83
UsiNg breakpPoints ... 107
Monitoring memory and registers ... 139
Collecting and using trace data in the JTAGjet driver 161
Collecting and using trace data ... 169
Using the Profiler ... 213
Debugging in the power domain ... 225
COdE COVEIAZEoooirieiieee e 241
INEEITUPES ...t 245
UsiNg C-SPY MACIOS ..ot seesseeninnn 267
The C-SPY Command Line Utility—cspybat ..., 321
DebUZEEI OPLIONSviveereiiees e 353
Additional information on C-SPY drivers ... 385
Using flash loaders ... 397

C-SPY® Debugging Guide
4 for ARM

Contents

TaADIES ..o 17
FISUIES ..ot 19
PrEfACe ... 25

Who should read this guide ... 25

How to use this guide

What this guide contains ...

Other documentation ... 27
User and reference gUidescccooeeeeereeieienienienienieneseseeeeeeneeneas 27

The online help SYStEMoveiriiriiniiiiiieeie e 28

WED SIEES .euieniiniitieieeiieteete ettt ettt 28
Document cONVENLIONSc.ocoooiuiiiiiiiineesee e 28
Typographic CONVENTIONScccuevuierierieeniierieeieeieeie ettt 29
Naming CONVENTIONScoueeueruiriieieieietententenieseneeseestesseesesseeeeeeseenees 29

The IAR C-SPY Debugger ... 31
Introduction to C-SPY ... 31
An integrated enVIrONMENLcceeveeueerereerieirieeenieneenie e seesieeeeseeneas 31
General C-SPY debugger featuresccccocevveverenienicneeeeieecnncnnens 32

RTOS awareness

Debugger concepts

C-SPY and target SYSLEIMSc.eeververueerierieieienieiererenrenienieniesiessensenne 34
The deDUZEETcviiieiierieiieiieieeeteeeee s 35
The target SYSEIMcceeviiriieriienieeieeieete ettt 35
The apPlICAIONccveviiierieiieiieieeieeecietercrete e 35
C-SPY debugger SYStEIMSccueeeeeeerienienienienienienieniesieniesieeseeseeseeneens 36
The ROM-MONItOr ProZramc.cceeeerueerueeruerreerseenreseesieeneenseenseenees 36
Third-party debUZZETSccovevuiviiriirininininirecreetcesesee e 36
C-SPY plugin modulesccccevuevievieriineninenieneneneeeeeneeeeeeeeeene 36
C-SPY drivers OVerview ...

Differences between the C-SPY drivers

The IAR C-SPY Simulatorccocoooieieiieceeeeeeeeeen 39

FEAtUIESooiiiiiiiiiiiiicecectcee s 39
Selecting the simulator dIiVercccceeveeieievieiierienenencneneeeeene 39
The C-SPY hardware debugger drivers ..., 40
Communication OVEIVIEWcccceuereruieiieieieieieieienienienesreseeneeneene 40
Hardware installationc..coceeevereeieiinienienienenenenenene e

USB driver installation

Getting started using C-SPY ... 45
Setting Up C-SPY ..o s 45
Setting up for debuggingcccoveviiiiiniiniin 45

Executing from IStccceeererirerieiinieieieecere e

Using a Setup mMacro fileccceveririririeieieieeseseeesesceeeee

Selecting a device description file

Loading plugin modulesceceeerieieieieienienieneneneneseeeeeeeeeneen
Starting C-SPY ... s 48
Starting the debUZZETccccovvieiiiiiiriirieeeeee e 48
Loading executable files built outside of the IDEc.ccceeueeneeee 48
Starting a debug session with source files missingcc.coccceeueneeee 49

Loading multiple images

Adapting for target hardware ..., 50
Modifying a device description filec..cccceeveveneneneneneneeieienees 51
Initializing target hardware before C-SPY startscccccecevevinenene 51
Remapping MEmOTYccccceeeeerirerieiiieieeneee e 52

An overview of the debugger startup ..., 53
Debugging code in flashccocoviiniiiiniiniiiee, 53
Debugging code in RAMccooiiiiiiiiniiineneneeecseeeee 54

Running example projects ... 54
Running an example Projectcocevervierierieneenieenenieeneeseenieeees 55

Reference information on starting C-SPY ... 56

C-SPY Debugger main window

ITMAages WINAOW ...coc.oiiiiiiiiiieeeceee et

Get Alternative File dialog box

C-SPY® Debugging Guide
for ARM

Contents °

Executing your application ... 65
Introduction to application execution ... 65
Briefly about application €XeCutionc.ccceceeveerierieneeneeneeneennes 65
Source and disassembly mode debuggingc..ccccecevverererieieeenne 65
Single stepping
Running the appliCationcccceeveriirienienienieesienieeeseeee e 68
Highlightingcooovioiininiicceeeee e 69
Call stack informationc.cccccceeeeircieiiniiinceeceeeeeceeeeee 69
Terminal input and OULPULcceevieiririiirieeienieeeeeeeeeee e 70
Debug lOZZING ...couviuviiiiiiiniiieeneeeeeeeteretere et 70

Reference information on application execution 71
Disassembly WINAOWcccooiiriiriiniiiiiniecesteseee e 71
Call Stack WindOWccccoiiiiiiiiiiiiiiee 75
Terminal I/O WindOWccoiiiiiiiiiiiccececee e 71
Terminal I/O Log File dialog boXccccevievierieneiniiiiinienienienene 78
Debug Log WINAOWcc.coivininininiiieieiccnicienieneseseeseeee e 79
Log File dialog BOXcccoceeuiririiieieicicieenenereneseeeee e 80
Autostep settings dialog BOXcccuervereeniiriinieerienie et 81

Working with variables and expressions ..., 83

Introduction to working with variables and expressions 83
Briefly about working with variables and expressions 83
C-SPY EXPIESSIONS ...ouvirverieieiiriinieeiteiteietetete e stesiesbesiesieebeeseeseeneens
Limitations on variable information

Procedures for working with variables and expressions 87
Using the windows related to variables and expressions 88
Viewing assembler variablesc.cccocevvierienienieneenienieeieeieeiene 88
Getting started using data l0ZZINGcccecvevveievienenienencncneneeeeene 89
Getting started using event loggingccccveveverennennencccnenne. 90

Reference information on working with variables and

EXPIESSIONSoiiiiiiiiieeiie ettt 91
AULO WINAOW .ottt eas 92
Locals WINdOW ..o 92
Watch WindOWcoooiiiiiiiiiiiice e 93

Live Watch WindOWcccoeeiiiiiiiiiiiieecceeeeeee e 94

Statics WINAOW ...coveviiiiiiiiiiiiiiiieiciciceeeete et 95
Quick Watch WINAOWccoveieiiiiiiiieciiecieeeee e 98
SymDbOIS WINAOW ...c..eruiriiiiiiiiiiiieieiceteteestesesese et 99
Resolve Symbol Ambiguity dialog boXcccceeceevieriinieeneeneenen. 100
Data Log WINAOW ..c..coeiuiiiiiiiiiiiiniiniieeeiteeeeeeeeetetene e

Data Log Summary window

Event Log WiNAOWoociiiiiiiiniiiiiiieeeeeeeteseee et
Event Log Summary Windowccccceevininenriniincieiienienicnenenenne 105
UsINg breakpPoints ... eseseenns 107
Introduction to setting and using breakpoints 107
Reasons for using breakpointscoceeceeererierereenienienienienenennens 107
Briefly about setting breakpointsccocceeceeveeneenieniiennieneeneeneens 108
Breakpoint tyPescc.eeeeeeieiieieieienereneeeeeeeeet ettt 108
Breakpoint 1CONSceveieierieiieieieseneseeeetee ettt 110
Breakpoints in the C-SPY simulator 110

Breakpoints in the C-SPY hardware drivers ...

Breakpoint CONSUMETScccuevievieriirineniinieneeeee ettt 111
Breakpoints OPtiONSccovereeriierieirienienieneeneesieeeeere et sieens 112
Breakpoints on eXception VECIOTScccoevererereenienieneeneenieneniennens 112
Setting breakpoints in __ramfunc declared functionsc..cccceueue 112
Procedures for setting breakpoints ...
Various ways to set a breakpointc.coceeveeeeverereenieneeneenenenenens
Toggling a simple code breakpointcccceceeeveenienienienienenenennens
Setting breakpoints using the dialog box
Setting a data breakpoint in the Memory windowc...ccccceeueenee. 115
Setting breakpoints using SYSt€mM MACIOSc.ceceeveeveierueruerereerenne 116
Setting a breakpoint on an eXception VECOrccceeveevierieereeenuennne 117
Useful breakpoint hintscccceevevenenienenineneneeieeeeeneseneeene 117
Reference information on breakpoints ... 118
Breakpoints WIndOWccccoveeriiiiiiinieniienieeeeseeieeeee st

Breakpoint Usage WindOWcccccceverenineninenineeieieieneneneeneens

Code breakpoints dialog box

C-SPY® Debugging Guide
for ARM

Contents °

JTAG Watchpoints dialog box 124
Log breakpoints dialog DOXc.ccocerieriierienienieieeieeieseeseenee s 127
Data breakpoints dialog bOXccccevevieiniriniinieieieieienenenenene 128
Data Log breakpoints dialog BOXcccceerererereenienierieneniencniennene 130
Breakpoints OPtiONScocveveeriierieirienienieneeneesieere et 132
Immediate breakpoints dialog bOXc.ccoceeververeenienienieniinininencne. 134
Vector Catch dialog box .. 135
Enter Location dialog DOXcccceeviriiriienienieniieieeieneste e 135
Resolve Source Ambiguity dialog bOXcceceeveciiciiciencncncnenenne 137
Monitoring memory and registers ... 139
Introduction to monitoring memory and registers 139
Briefly about monitoring memory and registerscccceceeveunene. 139
C-SPY memory zones .
Stack diSPIAY ..evververieriiirece e e
Memory access Checkingccevveieiieninieninenceceeeeseee 142
Reference information on memory and registers 143
MEMOTY WINAOWeoviuiiiiiieiiiieieieieniesesesieeeeieeie ettt
Memory Save dialog DOXcccccevierieiirenireneceeeeeeteeee e
Memory Restore dialog box
Fill dialog DOX ..eveevieiieiieiieiieicieeeeeseeeeet et
Symbolic Memory WindOWccceceeererenieneeieieieieiesienieseesienee
Stack WINAOWc.cooviiiiiiiiiiiiii
RegiSter WINAOWcc.eoueeuiiiieieieieiceeseneneeeee et

Memory Access Setup dialog box

Edit Memory Access dialog DOXccceeveevierienienieenenieniesieneenens
Collecting and using trace data in the JTAGjet driver 161
Using JTAGJEt tracCeocoveiiiieiicrerece s 161
Briefly about using JTAGJEt tracecccecvevvevenereneneeeeieneneneens 161
The JTAGjet Trace WindOWc.ccceeerereneneneneneeieeetesiese e 162
Trace view field configuration dialog boXc..ccccecevevvericricncnennene 164
Trace search query dialog boXc..cccovevereniniininiiiicieicereene 165
ETM Control dialog DOXcc.coevuerienienenienenieneneeieeteeeeesee e 167
ETM Configuration dialog BOXc..cccceverveereenieniinrenenineneneeeenenn 168

Collecting and using trace data ... 169

Introduction to using trace ... 169
Reasons fOr USING traCeccoceeverriierieriieeiienientesee e 169
Briefly about tracecccceveeeeeririiiiicieneneree e 170
Requirements for using trace 171

Procedures for using trace 172
Getting started with trace in the C-SPY simulatorcc.ccceceeeeee. 172
Getting started with ETM tracecccccoeviveninencnieninineeieeene 173
Getting started with SWO traceccccovveeveriieeiieniieniienieneeneeneene 173
Setting up concurrent use of ETM and SWOccceoeviviiiincncne 174
Trace data collection using breakpoints
Searching in trace dataecceeveerierienieneeieieceeeeee e
Browsing through trace datac.cccceceevveneneneninnnnecieeeee

Reference information on trace ...
ETM Trace Settings dialog BOXcccceevverierieniieneinienieeiesieneenene
SWO Trace Window Settings dialog boXc.ccceeveevicvecvencncncnenne 179
SWO Configuration dialog DOXcccceeverieerenenieiieieienierenenee 181
Trace WINAOW ...cc.ocuivuieiiiiiiiiiiiiicicnieseseneeeec e
Trace Save dialog DOXccccevveiiriirienenininineceneceeeeeee e
Function Trace Windowcccocooiiiniiiiiniiineicccenceee e
Timeline WindOWccccceevieiiiiiiniiniiniineneneneeeeceecteeee e

Viewing Range dialog box

Trace Start breakpoints dialog box (simulator)cccceeeerereneennne 198
Trace Stop breakpoints dialog box (simulator)c.ccceccevcvereennene 199
Trace Start breakpoints dialog bOXccccecevvevererienicnenencncnennene 200
Trace Stop breakpoints dialog DOXc..cocevverererieiieiienienenenenenene 203
Trace Filter breakpoints dialog boXcccceeveevieniineniieenenieneenens 205
Trace Expressions window
Find in Trace dialog BOXccccevveverenieneninineneceteeeeeneseeieeene
Find in Trace WindOWcccccceeievieriiniininininineceeienienesresiesieneen
Using the Profiler ... 213
Introduction to the profiler ... 213
Reasons for using the profiler ..o 213

C-SPY® Debugging Guide
10 for ARM

Contents °

Briefly about the profilercccceceeieierieiieiinneneneececiercene 214
Requirements for using the profilerc.coocevveveenienenncenennene 215
Procedures for using the profiler ... 215
Getting started using the profiler on function levelcccccccoc.e 216
Getting started using the profiler on instruction level 216
Selecting a time interval for profiling informationccccceeennene 217
Reference information on the profiler ... 218
Function Profiler Windowcccceveveninininiininiciiieicienenien 219
Debugging in the power domain ..., 225
Introduction to power debuggingc..cccocovinincninninnes 225
Reasons for using power debuggingccceoeveiiiiniinincinne. 225
Briefly about power debuggingccccceverereneneneneneeeeeeienens 225
Requirements for power debuggingceccevevveiecienienenencnennens 227
Optimizing your source code for power consumption 227

Waiting for device status

Software delays

DMA versus polled I/O ..
Low-power mode diagnostiCscceverierierererereneneneeiereeieneens 228
CPU fTEQUENCY ..eouvieiieriiiniieniienitenieeieeteete et sttt et et e e e s 228
Detecting mistakenly unattended peripheralsccccoceeveeviencnennene 229
Peripheral units in an event-driven SyStemc.ccocevververerieeeeneene 230
Finding conflicting hardware Setupscccccecvevveerieneeneeneeneenens 231
ANAlOg INLETTETENCEeevveviiieiniieiieiieiieicctesere ettt 231
Procedures for power debugging ... 232

Displaying the application’s power profile and analyzing
the TESULL ... 232

Detecting unexpected power usage during application execution ...233

Reference information on power debugging 234

Power Setup WindOWccccveviiieiiininininineneeeceeteeee e 234

Power Log WIdOWcccoeiiiiiiiieieniinienieseeicetet ettt 236

COdE COVEIAZEoooiriieieee e 241
Introduction to code coverageooonrinicnicninnenans 241
Reasons for using code COVEragecccoveveevueniinrenenenenennenenenn 241

Briefly about code COVETagec.cceeeereeieienieneneneneneneeeeieeene 241

Requirements for using code COVEragecc.covveereeneenernuennieennenne 241

Reference information on code coveragecccocovurnne. 242

Code Coverage WindOWc.cccceveerierienieneineninenieneeeeieeeeeeeeeenne 242

INEEITUPTS ..ot 245
Introduction to interrupts ... 245
Briefly about the interrupt simulation SyStemcccccevceereeneennenne 245

Interrupt characteristics

Interrupt sSiMulation StAteScceceeeeierierienieneneneneeeeeete e 247
C-SPY system macros for interrupt simulationc.ccceceeveennenee. 249
Target-adapting the interrupt simulation Systemc..cc.ccceveruennene 249
Briefly about interrupt loggingcccceeevveverieneneneneneeeeeeienens 250
Procedures for interrupts ... 250
Simulating a Simple INTETTUPL ...c.ceoververeerirrirrireeieieeeietereie e 251
Simulating an interrupt in a multi-task systemcccceeeverenene 252

Getting started using interrupt logging using C-SPY

hardware drivers

Reference information on interrupts ... 253
Interrupt Setup dialog boXccccvevieviniinininiiiiiiicicicieee 254

Edit Interrupt dialog BOXcceeerueeerieieieieienenenenereeeeeeeeeeeene 256

Forced Interrupt Windowccecevereneninineneeieteeeeeseese e 257
Interrupt Status WINAOWcc.eevviviiriiiniinieiieiercete e 258
Interrupt Log Windowcceviiiieiininenininineeeceeteeeeeneseeeeeeae 260
Interrupt Log Summary Windowcccceceeerenineenienienenenenenens 264
UsiNg C-SPY MACIOS ..o seseseeninns 267
Introduction to C-SPY macrosccccoooooiiiieciee 267
Reasons for using C-SPY mMacroscccceceeveevuenvenineneneneneeeenenn 267

Briefly about using C-SPY macrosc..ccceceeveevvenenenienenenneeniennens 268
Briefly about setup macro functions and filescccecerverrieneennene 268

Briefly about the macro 1anguageccccoceverevereniceieienicnennene. 269
Procedures for using C-SPY macrosccocoocevvevnncnnnne. 270
Registering C-SPY macros—an OVEIrVIeWcccceceevereereenvenieniennens 270
Executing C-SPY macros—an OVEIVIeWc..ccceceeeevevevecrenenenne 270

C-SPY® Debugging Guide
for ARM

Contents °

Using the Macro Configuration dialog boXc..ccccevuevveveenencnennne 271
Registering and executing using setup macros and setup files 272
Executing macros using Quick Watchc..ccceveviniinincnicinnene 273
Executing a macro by connecting it to a breakpointc..c.cceueeee. 274
Reference information on the macro language 275
Macro fUNCHONSccooviuiiiiiiiiiiiiiceeecee e 276

Macro variables

MACTO SLIINES ..veveeiieiieieeteeteee ettt ettt st saee st e e enaeens
MaACTO SLALEMENLS ...euveeeeeiieeieeieeteeierteesteerteeteeeeeeeseesaeesseesseenseenes 277
Formatted OULPULcc.ooveririieieieiieicicieeeeneeeeeteeee e 278

Reference information on reserved setup macro function

Using C-SPY in batchmode ...

INVOCAtION SYNEAX ..eeviiiiiiiiiiieeie ettt

Summary of C-SPY command line options ...

General cSpybat OPHONS ...cc.evueeeeeriereenieieniinrenieeteeeee ettt nieee
Options available for all C-SPY driversc..cocceceeverienienienenenenne
Options available for the simulator driverccccocceevervenriennenne
Options available for the C-SPY Angel debug monitor driver 325
Options available for the C-SPY GDB Server driver 325
Options available for the C-SPY IAR ROM-monitor driver 325
Options available for the C-SPY J-Link/J-Trace driver 325
Options available for the C-SPY TI Stellaris driverc..cc..c...... 326
Options available for the C-SPY TI XDS100 driverc..ccccevueenee 326
Options available for the C-SPY Macraigor driverc.c.ceceeue... 326
Options available for the C-SPY RDI driver and the

JTAGJEt ATIVET ..ottt et 327
Options available for the C-SPY ST-LINK driverccccccceceeuenenee. 327
Options available for the C-SPY third-party driversc.cc......... 327

Reference information on C-SPY command line options ...327

Debugger OPLIONS ..o 353

IAR ROM-monitor
Setup options for J-Link/J-Tracecccceeevevinenenenenenenieeenn 365
Connection options for J-Link/J-Traceccccceceverevincneeinccnennne 369
JTAGIEE ettt 371
RDI Configuration dialog box for JTAGjetcccocevveveeeeriencnennne 373
MACTAIZOT ..ttt sttt ettt et s 375
RDIc....
ST-LINK
Setup options for TL Stellariscccccoevevirenininininieeeeeieeene 380
Setup options for TI XDS100cccceeviriiirieniinieneeeeieeieeieeeee 381
Third-Party Driver OPtionSc.cccceeeeeeieieienienieneneneneeeeeeeeeens 382
Additional information on C-SPY drivers ... 385
Reference information on the C-SPY simulator 385
SIMUIAtOr MENU ..ovveiiiiiiiiiiiieieteeeee et 386
The C-SPY GDB Server driver ..., 387
GDB SeIrver MENUc..cocevererieieieieieientenrenteereeteete ettt seesaenee 387
The C-SPY J-Link/}J-Trace driverccccoovvvvvvvciriceern 387
J-LANK MIGIU vttt sttt 388
Live watch and use of DCCcccocoeieiinieiiiinincneneeececcrceene 390
Terminal I/O and use of DCCccccoeivuiiiriiieieneneneneseeeeeene 390

C-SPY® Debugging Guide
for ARM

Contents °

The C-SPY JTAGjet driver ... 391
JTAGjet menu
The C-SPY Macraigor driver
Macraigor JTAG MENU ...oceevvivviriieiieiieiieicieienenie et 392
The C-SPY RDI dFriver ... 392
RDI menu
The C-SPY ST-LINK driverccooovvvvvneeeeeee
ST-LINK MENU ..ccoeriiriiriiniiiiiiiiieieieiciettreeeeeeee e s
The C-SPY TI Stellaris driver
T Stellaris MENUcc.eeueeeeieiieieieneneenerenee ettt ettt
The C-SPY TI1 XDSI100 driver
TI XDST100 MENU ..ottt ettt

Using flash [0aders ... 397

Introduction to the flash loader ... 397
Briefly about the flash loader

Setting up the flash loader(s)

The flash loading mechanismcccceeeeieveninienenenieneniecene 398

Reference information on the flash loader 398

Flash Loader Overview dialog boXcccccevveevieneinieniieniienieneenene 399

Flash Loader Configuration dialog bOXccccecevverenenenenneeniennns 400

INAEX oot 403

C-SPY® Debugging Guide
16 for ARM

Tables

1: Typographic conventions used in this UIAEcc.cccevervieieiieiienieneiinercneenee 29
2: Naming conventions used in this UIdec..cccccvecireneiineiineneeneeeccreeene 29
3: Driver differences, J-Link/J-Trace and ST-LINKcccoovviiiiiiiiiieeieeeeereeee. 38
4: Driver differences, other AriVETScccoiiiiiiiiiiiiiiee e e eaaas 39
5: Available quickstart reference informationc.cceceveveeeriieiieiienenenenenenene 46
6: C-SPY assembler Symbols XPreSSiOnsc..ceccecveuerueruenrenrineeeeieeeeensesenenenne 85
7: Handling name conflicts between hardware registers and assembler labels 85
8: Effects of display format setting on different types of expressions 94
9: Effects of display format setting on different types of expressionsc..c.c..... 97
10: C-SPY macros for breakpoints

11: JTAGjet trace save fOrMALSccceeverrierieriienieniieneeeeieee st

12: JTAGjet trcae searching CONAItIONSc..cocererereeeeieienienieneerenresresreseereeenenns

13: Supported graphs in the Timeline window

14: C-SPY driver profiling SUPPOTTccoeeriieriieniiriieriente ettt e

15: Project options for enabling the profilerc..cccovveininvniniinciicieiiencncnene

16: Project options for enabling code coverage

17: Timer INtEITUPL SELLNZS wouveerveerierieeieriientententee st et et et st e st esttesaeesieenbeebeennens

18: Examples of C-SPY macro variablesccccevvereriniicenienininenenenceeeene

19: C-SPY SELUP MACTOS .eeveeuieuieuieuieienientenienienienieesteste st etesteseesbesbeebesseenteneesesenaenee

20: Summary of SYSLEM MACIOScevvreruierieerieerierieerienteetesieesieesieenteesteesseeeeereensens 281
21: __cancellnterrupt retUrn VAUEScccceveeeeieienienieninineeceeeeetereercre e 284
22: __disableInterrupts return Valluescocceceeievierienienenenenieeeeeiesesreeie e 286
23: __driverType return VAlUESc..coceevveeiieiieniiinienieste ettt 286
24: __emulatorSpeed return VAlUESc..ccccoevereninineeieieteienienecseseereeie e 287
25: __enableInterrupts return ValUESccoevuererererieneneeeeieeeneenresressesieeneeeeenes 288
26: __evaluate return Values ..o 289
27: __hwReset return values

28: __hwResetRunToBp return valuescccccoevereneneneneeienieiceneecnieseeeeee 290
29: __hwResetWithStrategy return valuescccooceeveeniineenenneeneeeeeeee e 291
30: __isBatchMode return Valuesc..coceveeieienienienieninineneeceeeierercre e 292
31: __jtagResetTRST return valuesccceveverenenineninieeeieeneceeseereeie e 297

C-SPY® Debugging Guide
for ARM

32:

__loadImage return values ...

33: __openFile return VAlUESccccooeeviierierieniienienieeiceicete et

34: __readFile return ValuEscccccceveerierienininininirceieeteeesreee e

35: __setCodeBreak return valuesc.ccevererererenenieeeieieneeniesesreerceie e 306
36: __setDataBreak return valuesc..ccccoceevievieiiiniinienininiiicicicieece e 308
37: __setLogBreak return values

38: __setSimBreak return values

39: __setTraceStartBreak return valuescccccoeveninininininniiicicncnceeeeeee 312
40: __setTraceStopBreak return Valuesc..cocceceveerieienieniineneneeeeieeerenenenne 314
41: __sourcePosition return VAIUEScoceeerveerienienienineneeiieeeieiesenieseeseesieeneene 315
42: __unloadImage return VAlUEScccecvereeriierieriienienieneenieeieeeesiteniee e 318
43: CSPYDAL PATAIMELELS ..c.veeveevieuieuienieriretereeteete ettt et este e stesae s saesee st st vt eneens 321
44: Options specific to the C-SPY drivers you are usingccceceevererererenreenens 353
45: CatChing EXCEPLIONS ..eoverurireieriienieerieeieeteeteeitesetenteesteeteetestessaesaeesseenseenseensens 372
46: Catching EXCEPHONS ...eoverviruiriiriieiieiieiieteteetestee ettt et et es e aesaesaesaesreeseeneens 378

Figures

1: C-SPY and target SYSIEIMNScc.eeeruerieieienienienientententeeseeseeseestetesesressessesieseessesseene 35
2: C-SPY driver communication overview with a debug probe or emulator 41
3: C-SPY driver communication overview without a debug probec.ccoccoencee 42
4: Get Alternative File dialog DOXccceeieieiieiiinininieneneneneeteteeeeeeese e 49
5: Debugger startup when debugging code in flashcccccoeveiinininiennininenene 53
6: Debugger startup when debugging code in RAMcccccceviivinininencninineneene 54
7: Example appliCAtIONSccceeeerieuieieieieienienientenieeie sttt ettt sbe e enees 55
81 DEDUZ MENU ..ottt st be et s 58
9: Disassembly MENUcc.coeruiruiririeieieietetcntestese ettt ettt 60
10: Images window

11: Images WindOw CONtEXE MENUovueeuieriiriirieriieneenieesieeneeeeeereseesreesieeneesseenee 63
12: Get Alternative File dialog DOXccccoeviriiininiiiiieiciccccenenesescseene 63
13: C-SPY highlighting Source 10Cationcccceceeieienieneneneneeeeieeeeeiesreeneenee 69
14: C-SPY Disassembly WINAOWcoceriiriiniiriiiiieiieniestesieecenieeie st 71
15: Disassembly window CONtEXt MENU ...c..ecverueruirrirrirenreeieieeterererenreneenresieniensenne 73
16: Call Stack window

17: Call Stack WindOW CONLEXE MENUc..ecveruieuiriiriieiieieiereieierese s sie e sresiesresaeens 76
18: Terminal I/O WINAOWc.c.coueoiirinininiiriinirirtceteteeee s 77
19: Ctrl COAES MENUeeiiiiiiiieiiicceee et s s 71
20: Input Mode dialog DOXoccveviiriiniierieiieeieeteee sttt 78
21: Terminal I/O Log File dialog BOXcc.ceceevueiiniiniiniinininieieicicicnenenesieeeeaene 78
22: Debug Log window (message WindOW)ccceeeeeeieieienienienienieneneneneneneene 79
23: Debug Log WindOow CONEXt MENU ...cc.eerveiuierierieniieniienieeieenieerestenieeneeeseeeseenees 79
24: Log File dialog DOX ...cocociviiiiniiiiiiiitineeeeeteteetet ettt 80
25: Autostep settings dialog DOXcccoveriiriiririinininieeeiee et 81
26: Viewing assembler variables in the Watch windowcccceeininininicnnens 89
27: Auto window

28: Locals WINAOWcuiiiiiiiiiciiiciieeerce e 92
29: Watch WINdOWccociiiiiiiiiiiiiiiic s 93
30: Watch window CONEEXt MEIUc.eeuveuriruinrinrirrierietiereeteeretetentenretesreseeseessessesseene 93
31: Live Watch WindOWc.cccoiiiiiiiiiiiiicice e 94

20

C-SPY® Debugging Guide
for ARM

32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:

Statics window

Statics WindOW CONLEXE MENUceeuieuiiiiiiienrinienienieeeeiteeetestesesre s e saeeneens 96
QUICK WatCh WINAOWoooviiiiiiiiiiiecieecceeeie ettt e ereeeene e 98
SYMDBOIS WINAOW ..cuiiniiniiiiiiiiiiirieeeee ettt ettt st 99
Symbols WindOw CONEXE MENUcccuerverierienieeniierierteeeesteneeeneeereeresresieesaeenee 99
Resolve Symbol Ambiguity dialog BOXcccecvevverieninininininininccceeeeeeanee 100
Data Log window

Data Log Summary WindOWcccccecierieriiniiinienieeieeiestesiteseesie e 103
Event Log WINAOWcc.coiiiiiiinininiiieietectcctesesteseeseeee et 104
Event Log Summary WindOWc..ceceverereriiniiniinienieneneneeeeeeieeeeee e 105
Breakpoint 1CONS ...cc.eivieriiiiiiiiriieitei ettt ettt 110
Modifying breakpoints via the cOnteXt Menucccceceeeeveieneneneneneneeeene. 115
Breakpoints WinAOWc..cocoerererenenininceceeteeeestesresee et 119
Breakpoints WindoOw CONtEXt MENUcc.eeruierieerieriieienienteniienieenieeeeneeeeeseeae 120
Breakpoint Usage dialog bOXccccoceeiriiririiiiiiiiiniencneneneeseeeeeeeeeee 121
Code breakpoints dialog DOXc.ccoceverereririinierieieieneete e 122
JTAG Watchpoints dialog BOXcoceeveriiiniiniienieniieieeeeieetesceeee e 124
Log breakpoints dialog box

Data breakpoints dialog DOXcceveriereriririeieieteseeteeeeeie e 128
Data Log breakpoints dialog BOXcoceevieiiiiniriiiinieniinieeieeeeeieeie e 130
Breakpoints OPLIONScc.ccuieueeriririnenieneeteitetetete et see s ere ettt nes 132
Immediate breakpoints dialog DOXccceeveevieierienienienieieseseseeeeeee e 134
The Vector Catch dialog box—for ARM9/Cortex-R4 versus for Cortex-M3 .. 135

Enter Location dialog box

Resolve Source Ambiguity dialog bOXccccocevereririiiiienieniineeneeeeeeeee 137
Z0nes in C-SPY ... 141
MeMOTY WINAOW ...cveriiriiiiiiiiiiiiiieieicteeteet ettt st 143
Memory Window CONEXE MEMUc..eververrieertieiieieeieieteee e siesieseesiesseeseeeeneens 145
Memory Save dialog box

Memory Restore dialog DOXcccceeeeruieiririiiiiiicienenenenieeeeeeceeeeeeeenes 148
Fill dialog DOX ..cuieiieiieiieieieeesese ettt bbbttt 148
Symbolic MemOry WiNAOWccccevierierniiriieiienientesiestesite e eee e 150
Symbolic Memory window cOnteXt MENUc..coceeereeeevenuenrenreneneneneenenne 151
StACK WINAOW ...ttt sttt ettt 152

66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
T7:
78:
79:
80:
81:
82:
83:
84:
85:
86:
87:
88:
89:
90:
91:
92:
93:
94:
95:
96:
97:
98:
99:

Figures __o

Stack window context menu

REZIStEr WINAOW ...cuviiiiiiiiiiiiieiceeees ettt s
Memory Access Setup dialog DOXceceeveieieiiiiienenineneneneneeeeeeeeees 157
Edit Memory Access dialog DOXcccoererenenirineiiiieieeecseeeeeeeeeee 159
The JTAGjet Trace WINAOWcovueeeerierienieniienieeieete et ae e 162
Trace view field configuration dialog BOXc.cccceevevvivinininienineneeieeeeene 164
Trace search query dialog box

ETM Control dialog DOXcooviviiriiiieiieniieiceeeieeteetetese e
ETM Configuration dialog DOXcccceceeeevieieiinienenenieneneneneseeeereeeeeeeeanes 168
ETM Trace Settings dialog DOX ...c..coceverereriinieriiieienieneneseeeeieeee e 177
SWO Trace Window Settings dialog BOXccocevvieviininiiniiiniienienienceeene, 179
SWO Configuration dialog BOXcc.ceceeveeiriiiiiiiiniiniininerececeeeeeee 181
The Trace window in the sSIMUlatorccccoceveivieiienienieneiieeeeeeeeeee 184
Trace Save dialog DOXoovirieriereeiieieeieee ettt 188
Function Trace WindOWcccceceeieiririninieieieienencnestesesese et 189
TImMElNe WINAOW ...coueiiiiiiiiiiiiiiienereer ettt e 190
Timeline window context menu for the Call Stack Graphcccccoeverveeennnne. 194
Viewing Range dialog box

Trace Start breakpoints dialog BOXc.ccevivieereiinenneneineeeeeenee e 198
Trace Stop breakpoints dialog DOXccccevieriineriiiiiieniinientereereee e 199
Trace Start breakpoints dialog box (J-Link/J-Trace)cccceceeververerercereenenne 200
Trace Stop breakpoints dialog box (J-Link/J-Trace)cccceceevreeveenecenennencns 203
Trace Filter breakpoints dialog BOXcccceeviiiiiniiiiiiniiiiceceeeeeee 205
Trace Expressions window

Find in Trace dialog DOXccccoevereririniiieiee e
Find in Trace Windowccccoooiiiiiiiiiiiiii
Instruction count in Disassembly WindOwc..ccccoevenenenininencnieeeeeeeenes
Power Graph with a selected time intervalc.ccoccoceveevieninenenenencncee
Function Profiler window in time-interval mode ...

Function Profiler WindOWc.ccooviiiiiiiiiiccieeee e e
Function Profiler window CONtEXt MENUcccveeeeieeiuieeerieeeireeeeree e eevee e
Power consumption in an event-driven SYStemcceceeveereeneenieenieeneenenne

A noise spike recorded by an 0SCIllOSCOPEccevverererererecieienieicenenenes

POWET SEtup WINAOWoouiviiiiriiriinienieeeeieeieetetete ettt

21

22

C-SPY® Debugging Guide
for ARM

100:
101:
102:
103:
104:
105:
106:
107:
108:
109:
110:
111:
112:
113:
114:
115:
116:
117:
118:
119:
120:
121:
122:
123:
124
125:
126:
127:
128:
129:
130:
131:
132:
133:

Power Setup window context menu

Power Log WINAOWcoouiiiiiiiiiinieiteeeeeeee ettt
Power Log window CONEXE MENU ...c..couerueeueeieieieieieienienienieereereereeeeneeeennes
Code CoVerage WildOWccccoerirerienieneneneeitetetetetestestesresbe b b ne
Code coverage window context menu

Simulated interrupt CONfigurationc..cecceveeveerienienenenenenineneeeeeeeeeenne
Simulation states - example 1

Simulation states - eXamPpPle 2occeevieviiirieriiinienieeeeee e
Interrupt Setup dialog DOX ..c..covevvirvirieieieiiieieiecteete ettt
Edit Interrupt dialog DOX ...cc.evverieriinininiirereeeeceeteeteeee e
Forced Interrupt WinAOWc.cocverieriinienieiienieniteetesie et s
Forced Interrupt window CONteXt MENUc.coeeuveuverenienienreniinrinreereeeeeeeeneennes 258
Interrupt Status WIndOWcccoeririninininieeeceeeeeee e 258
Interrupt Log WINAOW ...c.oiiiiiiiiiiieiteieeeeeeee et 260
Interrupt Log window CONtEXt MENUcc.eeveeureuieieieienienienieniereneneeeeeneeneennens 263
Interrupt Log Summary Windowc..cccceceeeririeiieieienenenencnesceieeeeeeeenee 264
Macro Configuration dialog BOXcccceveereriiirieriienienieeeeeeeee et 271
Quick Watch window

Debugger SEtUP OPLIONSc.eeterierierieniiriieiesieeitetete ettt nee 355
C-SPY Download OPHONSccuvevieriieniieniienienieeienite et sieenieesie e eae e seee s 357
Debugger eXtra OPONSccevererierererenentetetetetenrenrenre ettt et aenes 358
Debugger images OPLONSccccceieieirieirieieerieieeneeestee et erenenens 359
Debugger plugin OPIONScccueevverieriierienieeieerientestesieesie e et ere s seesaee e 360
C-SPY Angel options

GDB SEIVET OPHONS ...ueeuieiieiiierieniesieriesie sttt et ettt sbe ettt et ee s
TAR ROM-mONItOr OPLIONSeevevereieiieniieierieeeenieetesieenteesteereenesareseeesieenees 364
J-Link/J-Trace Setup OPONScccevveruirrirririieieieiieiieteteresresresresre oo 365
J-Link/J-Trace Connection OPLiONScccceeeuereeirrereeuerueenreeereneerenseessennenens 369
JTAGJEL OPLIONS ...eenvieneieiieiiieeiieetesiteit ettt ettt st et e see et eane st saeesbeeaes 371
The RDI Configuration dialog boXccceceeveririenieniinenineneneceneeeeeeeenne 373
MACTAIZOT OPLIONS ..euviviiieiteierieniertesteet ettt ettt e e e bbb b sbeebeebe s eneenee 375
RDI OPLIONS ..ottt ettt ettt et sae e 377
ST-LINK S@tUp OPLIONS ...c.eecviiiiiriiriirieriieiteiteiteitetetetenresee sttt eeeseenennes 379
TI Stellaris SEtuP OPLIONSceverieriereiriiriirierieeiteiteitetete ettt st nee 380

Figures __o

134: C-SPY Third-Party DIiver OPtiONSc.ccecererereeeeieienienieneeneeniesreneesneereeaeenns 382
135: SIMUlator MENUcocooiiiiiiiiiiieieniee ettt 386
136: The GDB Server MENUc..coccocererieririrereeieteeenientenenresres e seeeneeeeesennenee 387
137: The J-Link MENU ...c..ccueiiiiiiriiriinineniencrreeteteeee et 388
138: The JTAGIEt MENU ..c.eeviiriiiriieiieniieieeieeie ettt ettt s e e e saeeaeeeees 391
139: The Macraigor JTAG MENUcoccoerieriririiiiieieteeteereereereere e 392
140: The RDI menu

141: The ST-LINK MENU ...cooviiiiiiiiiiiniiniiiieitcteteeeeeeeie e 393
142: The TI Stellaris MENUcccoveririirereririieeecteeeteterereere e 395
143: The TI XDST00 MENU ...oveieiiriiniinieniinieeieetetetete et ere e 395
144: Flash Loader Overview dialog DOXcccceevieriinieniinieniinienieseeenieeeeeen 399
145: Flash Loader Configuration dialog bOXcccccoevverininininienieninieeeeeieenn 400

23

C-SPY® Debugging Guide
24 for ARM

Preface

Welcome to the C-SPY® Debugging Guide for ARM. The purpose of this guide
is to help you fully use the features in the IAR C-SPY® Debugger for debugging
your application based on the ARM core.

Who should read this guide

Read this guide if you want to get the most out of the features available in C-SPY. In
addition, you should have working knowledge of:

o The C or C++ programming language

o Application development for embedded systems

e The architecture and instruction set of the ARM core (refer to the chip
manufacturer's documentation)

o The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 27.

How to use this guide

If you are new to using IAR Embedded Workbench, we suggest that you first read the
guide Getting Started with IAR Embedded Workbench® for an overview of the tools and
the features that the IDE offers.

If you already have had some experience using IAR Embedded Workbench, but need
refreshing on how to work with the IAR Systems development tools, the tutorials which
you can find in the IAR Information Center is a good place to begin. The process of
managing projects and building, as well as editing, is described in the IDE Project
Management and Building Guide for ARM, whereas information about how to use
C-SPY for debugging is described in this guide.

This guide describes a number of fopics, where each topic section contains an
introduction which also covers concepts related to the topic. This will give you a good
understanding of the features in C-SPY. Furthermore, the topic section provides
procedures with step-by-step descriptions to help you use the features. Finally, each
topic section gives all relevant reference information.

25

What this guide contains

26

We also recommend the Glossary which you can find in the I/DE Project Management
and Building Guide for ARM if you should encounter any unfamiliar terms in the IAR
Systems user and reference guides.

What this guide contains

This is a brief outline and summary of the chapters in this guide:

C-SPY® Debugging Guide
for ARM

The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

Working with variables and expressions describes the syntax of the expressions and
variables used in C-SPY, as well as the limitations on variable information. The
chapter also demonstrates the various methods for monitoring variables and
expressions.

Using breakpoints describes the breakpoint system and the various ways to set
breakpoints.

Monitoring memory and registers shows how you can examine memory and
registers.

Collecting and using trace data describes how you can inspect the program flow up
to a specific state using trace data.

Using the profiler describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

Debugging in the power domain describes hardware solutions for measuring power
consumption and how you can use them from C-SPY to find source code
constructions that result in power leaks.

Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

Using C-SPY macros describes the C-SPY macro system, its features, the purposes
of these features, and how to use them.

Preface __4

® The C-SPY Command Line Utility—cspybat describes how to use C-SPY in batch
mode.

® Debugger options describes the options you must set before you start the C-SPY
debugger.

® Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

o Using flash loaders describes the flash loader, what it is and how to use it.

Other documentation

User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the Information
Center or from the Help menu in the IAR Embedded Workbench IDE. The online help
system is also available via the F1 key.

USER AND REFERENCE GUIDES

The complete set of IAR Systems development tools is described in a series of guides.
For information about:

o System requirements and information about how to install and register the AR
Systems products, refer to the booklet Quick Reference (available in the product
box) and the Installation and Licensing Guide.

o Getting started using IAR Embedded Workbench and the tools it provides, see the
guide Getting Started with IAR Embedded Workbench®.

o Using the IDE for project management and building, see the /DE Project
Management and Building Guide for ARM.

o Programming for the IAR C/C++ Compiler for ARM and linking using the IAR
ILINK Linker, see the IJAR C/C++ Development Guide for ARM.

o Programming for the IAR Assembler for ARM, see the IAR Assembler Reference
Guide for ARM.

o Using the IAR DLIB Library, see the DLIB Library Reference information,
available in the online help system.

e Porting application code and projects created with a previous version of the AR
Embedded Workbench for ARM, see the IAR Embedded Workbench® Migration
Guide for ARM.

o Developing safety-critical applications using the MISRA C guidelines, see the /AR
Embedded Workbench® MISRA C:2004 Reference Guide or the IAR Embedded
Workbench® MISRA C:1998 Reference Guide.

27

Document conventions

28

o IAR J-Link and IAR J-Trace, refer to the /AR J-Link and IAR J-Trace User Guide
for JTAG Emulators for ARM Cores.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains:

Comprehensive information about debugging using the IAR C-SPY® Debugger
Reference information about the menus, windows, and dialog boxes in the IDE

Compiler reference information

Keyword reference information for the DLIB library functions. To obtain reference
information for a function, select the function name in the editor window and press
FI.

WEB SITES

Recommended web sites:

® The Advanced RISC Machines Ltd web site, www.armcom, that contains
information and news about the ARM cores.

o The IAR Systems web site, www.iar.com, that holds application notes and other
product information.

o The web site of the C standardization working group,
www.open-std.org/jtcl/sc22/wgl4.

o The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

e Finally, the Embedded C++ Technical Committee web site,

www.caravan.net/ec2plus, that contains information about the Embedded C++
standard.

Document conventions

C-SPY® Debugging Guide
for ARM

When, in this text, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example arm\ doc, the full
path to the location is assumed, for example c: \Program Files\IAR
Systems\Embedded Workbench 6.n\arm\doc.

Preface __4

TYPOGRAPHIC CONVENTIONS
This guide uses the following typographic conventions:

Style Used for

computer * Source code examples and file paths.
* Text on the command line.
* Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where £ilename represents the name of the
file.arm79

[option] An optional part of a command.

[a|b]|c] An optional part of a command with alternatives.

{a|b]|c} A mandatory part of a command with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.

italic * A cross-reference within this guide or to another guide.
* Emphasis.

An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1: Typographic conventions used in this guide

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR
Systems® referred to in this guide:

Brand name Generic term

IAR Embedded Workbench® for ARM IAR Embedded Workbench®
IAR Embedded Workbench® IDE for ARM the IDE

IAR C-SPY® Debugger for ARM C-SPY, the debugger

IAR C-SPY® Simulator the simulator

Table 2: Naming conventions used in this guide

29

Document conventions

30

C-SPY® Debugging Guide
for ARM

Brand name

Generic term

IAR C/C++ Compiler™ for ARM
IAR Assembler™ for ARM

IAR ILINK Linker™

IAR DLIB Library™

the compiler
the assembler
ILINK, the linker
the DLIB library

Table 2: Naming conventions used in this guide (Continued)

The IAR C-SPY Debugger

This chapter introduces you to the IAR C-SPY® Debugger and to the
concepts that are related to debugging in general and to C-SPY in particular.
The chapter also introduces the various C-SPY drivers. More specifically, this
means:

e Introduction to C-SPY

e Debugger concepts

e C-SPY drivers overview
e The IAR C-SPY Simulator

e The C-SPY hardware debugger drivers.

Introduction to C-SPY

This section covers these topics:

e An integrated environment
e General C-SPY debugger features

o RTOS awareness.

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR Systems compilers and assemblers, and is completely integrated in the
IDE, providing development and debugging within the same application. This will give
you possibilities such as:

e Editing while debugging. During a debug session, you can make corrections directly
in the same source code window that is used for controlling the debugging. Changes
will be included in the next project rebuild.

e Setting breakpoints at any point during the development cycle. You can inspect and
modify breakpoint definitions also when the debugger is not running, and
breakpoint definitions flow with the text as you edit. Your debug settings, such as
watch properties, window layouts, and register groups will be preserved between
your debug sessions.

31

Introduction to C-SPY

32

C-SPY® Debugging Guide
for ARM

All windows that are open in the Embedded Workbench workspace will stay open when
you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are opened.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR Systems provides an entire toolchain, the output from the compiler and
linker can include extensive debug information for the debugger, resulting in good
debugging possibilities for you.

C-SPY offers these general features:

Source and disassembly level debugging

C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

Single-stepping on a function call level

Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function
call—inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

Code and data breakpoints

The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

Monitoring variables and expressions

For variables and expressions there is a wide choice of facilities. Any variable and
expression can be evaluated in one-shot views. You can easily both monitor and log
values of a defined set of expressions during a longer period of time. You have instant
control over local variables, and real-time data is displayed non-intrusively. Finally,
the last referred variables are displayed automatically.

Container awareness

When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

Call stack information

The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the

The IAR C-SPY Debugger __o

program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

e Powerful macro system

C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in
conjunction with complex breakpoints and—if you are using the simulator—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features
This list shows some additional features:

Threaded execution keeps the IDE responsive while running the target application
Automatic stepping

The source browser provides easy navigation to functions, types, and variables
Extensive type recognition of variables

Configurable registers (CPU and peripherals) and memory windows

Graphical stack view with overflow detection

Support for code coverage and function level profiling

The target application can access files on the host PC using file /O

Optional terminal I/O emulation.

RTOS AWARENESS

C-SPY supports real-time OS aware debugging. These operating systems are currently
supported:

AVIX-RT

CMX-RTX

CMX-Tiny+

eForce LC3/Compact

eSysTech X realtime kernel

Express Logic ThreadX

FreeRTOS, OpenRTOS, and SafeRTOS
Freescale MQX

Micripm pC/OS-II

Micro Digital SMX

MISPO NORTi

OSEK (ORTI)

33

Debugger concepts

34

o RTXC Quadros
o Segger embOS

@ unicoi Fusion.

RTOS plugin modules can be provided by IAR Systems, and by third-party suppliers.
Contact your software distributor or IAR Systems representative, alternatively visit the
IAR Systems web site, for information about supported RTOS modules.

Provided that one or more real-time operating system plugin modules are supported for
the IAR Embedded Workbench version you are using, you can load one for use with
C-SPY. A C-SPY RTOS awareness plugin module gives you a high level of control and
visibility over an application built on top of a real-time operating system. It displays
RTOS-specific items like task lists, queues, semaphores, mailboxes, and various RTOS
system variables. Task-specific breakpoints and task-specific stepping make it easier to
debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module. For links to the RTOS documentation, see the release notes that are
available from the Help menu.

Debugger concepts

C-SPY® Debugging Guide
for ARM

This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR Systems user documentation uses the terms described
in this section when referring to these concepts.

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

The IAR C-SPY Debugger __o

This figure gives an overview of C-SPY and possible target systems:

Simulator

|
| X Simulator
driver

|
| ——
|

ROM-monitor — ROM-
| monitor

Target hardware

Workbench C-SPY
Emulator
| driver —\[JTAG Target
emulator [T | hardware

3rd-party
driver

Target
| hardware

|
|
|
|
|
|
|
I .
IAR Embedded | driver 1
|
|
|
|
|
|
|
|
|
|
|

= Provided by IAR Systems
|:| = Provided by IAR Systems or third-party vendors

Figure 1: C-SPY and target systems

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

35

Debugger concepts

36

C-SPY® Debugging Guide
for ARM

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints. Typically, there are three main types of C-SPY
drivers:

e Simulator driver

o ROM-monitor driver

e Emulator driver.

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY

drivers and the functionality provided by each driver, see C-SPY drivers overview, page
37.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware; it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR Systems toolchain as long as
the third-party debugger can read ELF/DWAREF, Intel-extended, or Motorola. For
information about which format to use with a third-party debugger, see the user
documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR Systems, or can be supplied by third-party vendors.
Examples of such modules are:

o Code Coverage, which is integrated in the IDE.

o The various C-SPY drivers for debugging using certain debug systems.

o RTOS plugin modules for support for real-time OS aware debugging.

The IAR C-SPY Debugger __o

e Peripheral simulation modules make C-SPY simulate peripheral units. Such plugin
modules are not provided by IAR Systems, but can be developed and distributed by
third-party suppliers.

o C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, refer to the
documentation provided with IAR visualSTATE.

For more information about the C-SPY SDK, contact IAR Systems.

C-SPY drivers overview
At the time of writing this guide, the IAR C-SPY Debugger is available with drivers for
these target systems and evaluation boards:

Simulator

J-Link / J-Trace JTAG/SWD probes

JTAGjet probes

RDI (Remote Debug Interface)

Macraigor JTAG probes

GDB Server

ST-LINK JTAG/SWD probe (for ST Cortex-M devices only)

TI Stellaris JTAG/SWD interface using FTDI or ICDI (for Stellaris Cortex devices
only)

e TI XDS100 JTAG interface

o P&E Microcomputer Systems. For information about this driver, see the document

Configuring IAR Embedded Workbench for ARM to use a P&E Microcomputer
Systems Interface, available in the arm\doc directory.

e Angel debug monitor
o IAR ROM-monitor for Analog Devices ADuC7xxx boards, and IAR Kickstart Card
for Philips LPC210x.

Note: In addition to the drivers supplied with the AR Embedded Workbench, you can
also load debugger drivers supplied by a third-party vendor; see Third-Party Driver
options, page 382.

37

C-SPY drivers overview

38

C-SPY® Debugging Guide
for ARM

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the Simulator, J-Link/J-Trace, and

ST-LINK:

Feature Simulator J-Link/}J-Trace ST-LINK Comment, for J-Link and ST-LINK

Code breakpoints x x x -

Data breakpoints ~ x X X --

Interrupt logging X X X Cortex with SWD/SWO

Data logging -- x x Cortex with SWD/SWO

Call stack trace - X - Requires ETM/ETB trace.

Power logging -- X -- Requires a Cortex-M device with
SWO and a J-Link or J-Link Ultra
debug probe.

Event logging -- X X Cortex with SWD/SWO, using ITM
channel

Live watch - X x Supported by Cortex devices. For
ARM7/9 devices, Live watch is
supported if you add a DCC handler
to your application. See Live watch
and use of DCC, page 390.

Cycle counter X X X For Cortex-M devices only.

Code coverage X X X Supported by J-Trace and J-link with
ETB. For Cortex-M devices, J-Link
and ST-LINK with SWO support
partial code coverage. For more
information about code coverage,
see Code coverage, page 241.

Data coverage X -- -- --

Function/instruction x X X Requires either SWD/SWO

profiler interface or ETM/ETB trace.

Trace X X - Requires ETM/ETB trace.

Table 3: Driver differences, J-Link/J-Trace and ST-LINK

The IAR C-SPY Debugger __o

This table summarizes the key differences between the Simulator and other supported
hardware debugger drivers:

Mac- GDB TI TI
Feature Simulator JTAGjet RDI .) Angel
raigor Server Stellaris XDSI100
Code breakpoints x X X X X X X X
Data breakpoints x X X X X X -- --

Interrupt logging ~ x - - - - - - -

Cycle counter X - - - - - - -
Code coverage X - - - - - - -
Data coverage X - - - - - - -

Function/instruction x - -- -- -- -- -- -
profiler

Trace X X X - - -- -- -

Table 4: Driver differences, other drivers

The IAR C-SPY Simulator

The C-SPY Simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

FEATURES

In addition to the general features in C-SPY, the simulator also provides:

Instruction-level simulation
Memory configuration and validation

Interrupt simulation

Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

SELECTING THE SIMULATOR DRIVER
Before starting C-SPY, you must choose the simulator driver:

I In the IDE, choose Project>Options and click the Setup tab in the Debugger
category.

2 Choose Simulator from the Driver drop-down list.

39

The C-SPY hardware debugger drivers

40

The C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for ARM

C-SPY can connect to a hardware debugger using a C-SPY hardware debugger driver as
an interface.

When a debugging session is started, your application is automatically downloaded and
programmed into target memory. You can disable this feature, if necessary.

COMMUNICATION OVERVIEW

There are two main communication setups, depening on the type of target system. Many
of the ARM cores have built-in, on-chip debug support. Because the hardware debugger
logic is built into the core, no ordinary ROM-monitor program or extra specific
hardware is needed to make the debugging work, other than the debug probe. For some
devices that do not have such built-in, on-chip debug support, there are instead a
ROM-monitor debugger solution that can be used.

The IAR C-SPY Debugger __o

Overview of a target system with a debug probe or emulator

Most target systems have an emulator, a debug probe or a debug adapter connected
between the host computer and the evaluation board:

C-SPY debugger
C-SPY driver

Parallel, serial, Ethernet, or
connection

/ / \JTAG probe
| X
/ JTAG cable { e

Figure 2: C-SPY driver communication overview with a debug probe or emulator

When USB connection is used, a specific USB driver must be installed before you can
use the probe over the USB port. You can find the driver on the IAR Embedded
Workbench for ARM installation media.

Overview of a target systems using a ROM-monitor
IAR Embedded Workbench comes with two ready-made ROM-monitors:

e Using the IAR Angel debug monitor driver, you can communicate with any device
compliant with the Angel debug monitor protocol. In most cases these are
evaluation boards.

e Using the AR ROM-monitor driver, C-SPY can connect to the Analog Devices
ADuC7xxx boards and the IAR Kickstart Card for Philips LPC210x. Most
ROM-monitors require that the code that you want to debug is located in RAM,

41

The C-SPY hardware debugger drivers

because the only way you can set breakpoints and step in your application code is to
download it to RAM. For some ROM-monitors, for example for Analog Devices
ADuC7xxx, the code that you want to debug can be located in flash memory. To
maintain debug functionality, the ROM-monitor might simulate some instructions,
for example when single stepping.

The boards contain firmware (the ROM-monitor itself) that runs in parallel with your
application software. The firmware receives commands from the IAR C-SPY debugger
over a serial port, and controls the execution of your application.

Using the C-SPY ROM-monitor driver, C-SPY can connect to a target system equipped
with a ROM-monitor located in flash memory.

C-SPY debugger
C-SPY driver

Figure 3: C-SPY driver communication overview without a debug probe

This is an inexpensive solution to debug a target. because only a serial cable is needed.
All the parts of your code that you want to debug must be located in RAM. The only
way you can set breakpoints and step in your application code is to download it into
RAM.

For further information, see:

® The angel_guickstart.html file, available in the arm\doc\infocenter
directory, or refer to the manufacturer’s documentation.

C-SPY® Debugging Guide
42 for ARM

vi A W BN

The IAR C-SPY Debugger __o

® The iar_rom_quickstart.html file, available in the arm\doc\infocenter
directory, or refer to the manufacturer’s documentation.
HARDWARE INSTALLATION

For information about the hardware installation, see the documentation supplied with
the target system from the manufacturer. The following power-up sequence is
recommended to ensure proper communication between the target board, the emulator
or debug probe, and C-SPY:

Connect the USB cable to the debug probe.

Connect the probe to the target board.

Power up the debug probe, if it is not powered via USB.
Power up the target board.

Start the C-SPY debugging session.

USB DRIVER INSTALLATION

A USB driver is also needed. In some cases this driver is automatically installed, but for
some probes you need to manual install it.

Installing the)-Link USB driver

Before you can use the J-Link JTAG probe over the USB port, the Segger J-Link USB
driver must be installed.

Install IAR Embedded Workbench for ARM.

Use the USB cable to connect the computer and J-Link. Do not connect J-Link to the
target board yet. The green LED on the front panel of J-Link will blink for a few
seconds while Windows searches for a USB driver.

Run the InstDrivers.exe application, which is located in the product installation in
the arm\drivers\JLink directory.

Once the initial setup is completed, you will not have to install the driver again.

Note that J-Link will continuously blink until the USB driver has established contact
with the J-Link probe. When contact has been established, J-Link will start with a steady
light to indicate that it is connected.

43

The C-SPY hardware debugger drivers

44

C-SPY® Debugging Guide
for ARM

Installing the ST-LINK USB driver for ST-LINK ver. 2

Before you can use the ST-LINK version 2 JTAG probe over the USB port, the ST-LINK
USB driver must be installed.

Install IAR Embedded Workbench for ARM.

Use the USB cable to connect the computer and ST-LINK. Do not connect ST-LINK to
the target board yet.

Because this is the first time ST-LINK and the computer are connected, Windows will
open a dialog box and ask you to locate the USB driver. The USB driver can be found
in the product installation in the arm\drivers\ST-Link directory:
ST-Link_V2_USBdriver.exe.

Once the initial setup is completed, you will not have to install the driver again.

Installing the TI Stellaris USB driver

Before you can use the TI Stellaris JTAG interface using FTDI or ICDI over the USB
port, the Stellaris USB driver must be installed.

Install IAR Embedded Workbench for ARM.
Use the USB cable to connect the computer to the TI board.

Because this is the first time the Stellaris JTAG interface and the computer are
connected, Windows will open a dialog box and ask you to locate the USB driver. There
are different USB drivers for FTDI and ICDI. The drivers can be found in the product
installation in the arm\drivers\StellarisFTDI and the
arm\drivers\StellarisICDI directories, respectively.

Once the initial setup is completed, you will not have to install the driver again.

Installing the T1 XDS100 USB driver

Before you can use the TI XDS100 JTAG interface over the USB port, the TI XDS100
USB driver must be installed.

Install IAR Embedded Workbench for ARM.

Install the TI XDS100 package which can be found in the arm\drivers\ti-xds
directory. It is recommended to choose the suggested installation directory.

Use the USB cable to connect the computer to the TI board.

Configuring the OpenOCD Server

For further information, see the gdbserv_quickstart.html file, available in the
arm\doc\infocenter directory, or refer to the manufacturer’s documentation.

Getting started using
C-SPY

This chapter helps you get started using C-SPY®. More specifically, this means:

e Setting up C-SPY

e Starting C-SPY

e Adapting for target hardware

e An overview of the debugger startup
e Running example projects

e Reference information on starting C-SPY.

Setting up C-SPY

This section describes the steps involved for setting up C-SPY.
More specifically, you will get information about:

Setting up for debugging
Executing from reset
Using a setup macro file

Selecting a device description file

Loading plugin modules.

SETTING UP FOR DEBUGGING

Install a USB driver if your C-SPY driver requires it. For more information, see:
Installing the J-Link USB driver, page 43

Installing the ST-LINK USB driver for ST-LINK ver. 2, page 44

Installing the TI Stellaris USB driver, page 44

Installing the TI XDS100 USB driver, page 44

Configuring the OpenOCD Server, page 44.

45

Setting up C-SPY

46

C-SPY® Debugging Guide
for ARM

Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system: simulator or a hardware debugger
system.

Note: You can only choose a driver you have installed on your computer.

In the Category list, select the appropriate C-SPY driver and make your settings.
For information about these options, see Debugger options, page 353.

Click OK.

Choose Tools>Options>Debugger to configure:

o The debugger behavior
e The debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide for ARM.

The following documents containing information about how to set up various debugging
systems are available in the arm\doc\infocenter subdirectory:

File Debugger system
rdi_quickstart.html Quickstart reference for RDI-controlled JTAG debug
interfaces

gdbserver_quickstart.html Quickstart reference for a GDB Server using OpenOCD
together with STR9-comStick

angel_quickstart.html Quickstart reference for Angel ROM-monitors and JTAG
interfaces
iar_rom_quickstart.html Quickstart reference for IAR ROM-monitor

Table 5: Available quickstart reference information

See also Adapting for target hardware, page 50.

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start the debugger as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

Getting started using C-SPY ___4

If you leave the check box empty, the program counter will then contain the regular
hardware reset address at each reset. The reset address is set by C-SPY.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time-consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY Simulator, where
breakpoints are not limited.

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Briefly about setup
macro functions and files, page 268. For an example of how to use a setup macro file,
see the chapter Initializing target hardware before C-SPY starts, page 51.

To register a setup macro file:

Before you start C-SPY, choose Project>Options>Debugger>Setup.

Select Use macro file and type the path and name of your setup macro file, for

example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information. Device
description files can be of two different formats—IAR Systems device description files
or CMSIS System View Description files (SVD).

A default device description file is automatically used based on your project settings. If
you want to override the default file, you must select your device description file. IAR
Systems device description files are provided in the arm\config directory and they
have the filename extension ddf.

For more information about device description files, see Adapting for target hardware,
page 50.

To override the default device description file:
Before you start C-SPY, choose Project>Options>Debugger>Setup.

47

Starting C-SPY

48

Enable the use of a device description file and select a file using the Device
description file browse button.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR Systems, and by
third-party suppliers. Contact your software distributor or AR Systems representative,
or visit the AR Systems web site, for information about available modules.

For more information, see Plugins, page 360.

Starting C-SPY

C-SPY® Debugging Guide
for ARM

When you have set up the debugger, you are ready to start a debug session; this section
describes the steps involved.

More specifically, you will get information about:

Starting the debugger
Loading executable files built outside of the IDE

°
°
e Starting a debug session with source files missing
°

Loading multiple images.
STARTING THE DEBUGGER

You can choose to start the debugger with or without loading the current project.

To start C-SPY and load the current project, click the Download and Debug button.
Alternatively, choose Project>Download and Debug.

To start C-SPY without reloading the current project, click the Debug without
Downloading button. Alternatively, choose Project>Debug without Downloading.
LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:

Choose Project>Create New Project, and specify a project name.

To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the Files of type drop-down list. Locate the executable file.

g

Getting started using C-SPY ___4

b 3 To start the executable file, click the Download and Debug button. The project can be

reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the AR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Get Alternative File g|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Figure 4: Get Alternative File dialog box

Typically, you can use the dialog box like this:

o The source files are not available: Click If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there simply is no source file available.
The dialog box will not appear again, and the debug session will not try to display
the source code.

e Alternative source files are available at another location: Specify an alternative
source code file, click If possible, don’t show this dialog again, and then click Use
this file. C-SPY will assume that the alternative file should be used. The dialog box
will not appear again, unless a file is needed for which there is no alternative file
specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have clicked If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 63.

49

Adapting for target hardware

50

LOADING MULTIPLE IMAGES

Normally, a debuggable application consists of exactly one file that you debug.
However, you can also load additional debug files (images). This means that the
complete program consists of several images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided

features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

If more than one image has been loaded, you will have access to the combined debug
information for all the loaded images. In the Images window you can choose whether
you want to have access to debug information for one image or for all images.

To load additional images at C-SPY startup:

Choose Project>Options>Debugger>Images and specify up to three additional
images to be loaded. For more information, see /mages, page 359.

Start the debug session.

To load additional images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Procedures for using C-SPY macros, page 270.

To display a list of loaded images:

Choose Images from the View menu. The Images window is displayed, see /mages
window, page 62.

Adapting for target hardware

C-SPY® Debugging Guide
for ARM

This section provides information about how to describe the target hardware to C-SPY,
and how you can make C-SPY initialize the target hardware before your application is
downloaded to memory.

More specifically, you will get information about:

o Modifying a device description file
e Initializing target hardware before C-SPY starts

o Remapping memory.

Getting started using C-SPY ___4

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 47. They contain
device-specific information such as:

o Definitions of registers in peripheral units and groups of these

o Interrupt definitions (for Cortex-M devices only); see Interrupts, page 245.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrade versions of the
product.

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file.

The syntax of the device description files is described in the /AR Embedded Workbench
for ARM device description file format guide (EWARM_DDFFormat .pdf) located in the
arm\doc directory.

For information about how to load a device description file, see Selecting a device
description file, page 47.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

If your hardware uses external memory that must be enabled before code can be
downloaded to it, C-SPY needs a macro to perform this action before your application
can be downloaded. For example:

Create a new text file and define your macro function. For example, a macro that
enables external SDRAM might look like this:

/* Your macro function. */

enableExternal SDRAM ()

{
__message "Enabling external SDRAM\n";
__writeMemory32(/* Place your code here. */);
/* And more code here, if needed. */

}

/* Setup macro determines time of execution. */
execUserPreload()
{
enableExternal SDRAM() ;
}

51

Adapting for target hardware

52

C-SPY® Debugging Guide
for ARM

Because the built-in execUserPreload setup macro function is used, your macro
function will be executed directly after the communication with the target system is
established but before C-SPY downloads your application.

Save the file with the filename extension mac.
Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.
Select the option Use Setup file and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

REMAPPING MEMORY

A common feature of many ARM-based processors is the ability to remap memory.
After a reset, the memory controller typically maps address zero to non-volatile
memory, such as flash. By configuring the memory controller, the system memory can
be remapped to place RAM at zero and non-volatile memory higher up in the address
map. By doing this, the exception table will reside in RAM and can be easily modified
when you download code to the target hardware.

You must configure the memory controller before you download your application code.
You can do this best by using a C-SPY macro function that is executed before the code
download takes place—execUserPreload (). The macro function
__writeMemory32 () will perform the necessary initialization of the memory
controller.

The following example illustrates a macro used for remapping memory on the Atmel
AT91SAM7S256 chip, similar mechanisms exist in processors from other ARM
vendors.

execUserPreload()
{
// REMAP command
// Writing 1 to MC_RCR (MC Remap Control Register)
// will toggle remap bit.
__writeMemory32 (0x00000001, OxXFFFFFF00, "Memory");
}

Note that the setup macro execUserReset () might have to be defined in the same way
to reinitialize the memory mapping after a C-SPY reset. This can be needed if you have
set up your hardware debugger system to do a hardware reset on C-SPY reset, for
example by adding __hwReset () to the execUserReset () macro.

For instructions on how to install a macro file in C-SPY, see Registering and executing
using setup macros and setup files, page 272. For information about the macro functions
used, see Reference information on C-SPY system macros, page 281.

Getting started using C-SPY ___4

An overview of the debugger startup

To make it easier to understand and follow the startup flow, the following figures show
the flow of actions performed by C-SPY, and by the target hardware, as well as the
execution of any predefined C-SPY setup macros. There is one figure for debugging
code located in flash and one for debugging code located in RAM.

For more information about C-SPY system macros, see the chapter Using C-SPY
macros available in this guide.

DEBUGGING CODE IN FLASH

C-SPY Debugger C-SPY Setup Macro Target Hardware

JTAG speed is set to | - - =
the specified frequency, CPU reset |
or very low (typically — —
32 kHz) if auto speed is

selected CPU halted

[
|'If the option for auto- rfl_
| speed is selected, JTAG
speed is set to the maxi- |
| mum reliable speed |

L N

T 777777 Target flash loader
Flash loader loaded to __J execUserFlashReset () | executes from RAM
target RAM e . and loads application
image from host and
writes it to flash

If the option l ‘ execUserFlashExit () [—— CPU halted
Verify download . _J

|
is selected, the flash ™~
memory is verified for
| correct content k] L———— — — |

____________ CPU reset [
\‘I I [

execUserReset ()
L ————
The debugger is ready to |- T T CPU halted
B execUserSetup () [

work with the application

| J = Optional

Figure 5: Debugger startup when debugging code in flash

53

Running example projects

DEBUGGING CODE IN RAM

C-SPY Debugger C-SPY Setup Macro Target Hardware

Debugger start

JTAG speed is set to [— — —
the specified frequency, CPU reset |
or very low (typically p— -
32 kHz) if auto speed is

selected CPU halted

| If the qption for auto- e execUserPreload () I‘/
| speed is selected, JTAG s —

speed is set to the maxi- |
| mum reliable speed |

L__T___

The application image is
loaded to target RAM

|4IftFeo;tion_ o
Verify download |
I s selected, the RAM —|

| memory is verified for | | execUserReset () |
1 correct content | —— _l_ ——
execUserSetup() |

The debugger is ready to 1|
work with the application

r— — — —

| =Optional

-

Figure 6: Debugger startup when debugging code in RAM

Running example projects

C-SPY® Debugging Guide

54 for ARM

IAR Embedded Workbench comes with example applications. You can use these
examples to get started using the development tools from IAR Systems or simply to
verify that contact has been established with your target board. You can also use the
examples as a starting point for your application project.

You can find the examples in the arm\examples directory. The examples are ready to
be used as is. They are supplied with ready-made workspace files, together with source
code files and all other related files.

Getting started using C-SPY ___4

RUNNING AN EXAMPLE PROJECT

To run an example project:
Choose Help>Information Center and click EXAMPLE PROJECTS.

Browse to the example that matches the specific evaluation board or starter kit you are
using.

Information Center for ARM - EXAMPLE PROJECTS Tx

m

Example applications that demonstrates hardware peripherals for
specific devices and evaluation boards.

Actel

Aiji

AnalogDevices

ARM

ATMEL

< I b -

JFU 4

Figure 7: Example applications

Click the Open Project button.

In the dialog box that appears, choose a destination folder for your project location.
Click Select to confirm your choice.

The available example projects are displayed in the workspace window. Select one of
the projects, and if it is not the active project (highlighted in bold), right-click it and
choose Set As Active from the context menu.

To view the project settings, select the project and choose Options from the context
menu. Verify the settings for General Options>Target>Processor variant and
Debugger>Setup>Driver. As for other settings, the project is set up to suit the target
system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact
with the target board, see Debugger options, page 353.

55

Reference information on starting C-SPY

Click OK to close the project Options dialog box.

goa 6 To compile and link the application, choose Project>Make or click the Make button.
= T To start C-SPY, choose Project>Debug or click the Download and Debug button.
#++] 8 Choose Debug>Go or click the Go button to start the application.

Click the Stop button to stop execution.

Reference information on starting C-SPY

This section gives reference information about these windows and dialog boxes:

o C-SPY Debugger main window, page 56
o [mages window, page 62

o Get Alternative File dialog box, page 63
See also:

o Tools options for the debugger in the IDE Project Management and Building Guide
for ARM.

C-SPY Debugger main window
When you start the debugger, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:
o A dedicated Debug menu with commands for executing and debugging your
application

o Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

e A special debug toolbar
o Several windows and dialog boxes specific to C-SPY.

The C-SPY main window might look different depending on which components of the
product installation you are using.

C-SPY® Debugging Guide
56 for ARM

Getting started using C-SPY ___4

Menu bar

These menus are available when C-SPY is running:

Debug Provides commands for executing and debugging the source
application, see Debug menu, page 58. Most of the
commands are also available as icon buttons on the debug
toolbar.

Disassembly Provides commands for controlling the disassembly
processor mode; see Disassembly window, page 71.

Simulator Provides access to the dialog boxes for setting up interrupt
simulation and memory access checking. This menu is only
available when the C-SPY Simulator is used, see Simulator
menu, page 386.

GDB Server Provides commands specific to the C-SPY GDB Server
driver. This menu is only available when the driver is used;
see GDB Server menu, page 387.

J-Link Provides commands specific to the C-SPY J-Link driver.
This menu is only available when the driver is used; see
J-Link menu, page 388.

TI Stellaris Provides commands specific to the C-SPY TI Stellaris
driver. This menu is only available when the driver is used;
see T1 Stellaris menu, page 395.

TI XDS100 Provides commands specific to the TI XDS100 driver. This
menu is only available when the driver is used; see 77
XDS100 menu, page 395.

JTAG Provides commands specific to the C-SPY Macraigor driver.
This menu is only available when the driver is used; see
Macraigor JTAG menu, page 392.

JTAGjet Provides commands specific to the JTAGjet driver. This
menu is only available when the driver is used; see JT4Gjet
menu, page 391.

RDI Provides commands specific to the C-SPY RDI driver. This
menu is only available when the driver is used; see RDI
menu, page 392.

57

Reference information on starting C-SPY

ST-LINK

Debug menu

Provides commands specific to the C-SPY ST-LINK driver.
This menu is only available when the driver is used; see
ST-LINK menu, page 393.

The Debug menu is available when C-SPY is running. The Debug menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.

Go F5
Break:
Reset

Stop Debugging

Chrl+Shift+D

Step Over F10
Step Into Fii

Step Qut Shift+F11

MNext Statement
Run to Cursor
Autostep...

Set Next Statement

C++ Exceptions

Memory
Refresh
Macros...
Logging

Figure 8: Debug menu

These commands are available:

-
+*
+*

Go
F5

Break
Reset

Stop Debugging
Ctrl+Shift+D

Step Over
F10

& x[ijE D

&

Step Into
F11

C-SPY® Debugging Guide
for ARM

Executes from the current statement or instruction until a
breakpoint or program exit is reached.

Stops the application execution.
Resets the target processor.

Stops the debugging session and returns you to the project
manager.

Executes the next statement, function call, or instruction,
without entering C or C++ functions or assembler
subroutines.

Executes the next statement or instruction, or function call,
entering C or C++ functions or assembler subroutines.

Getting started using C-SPY ___4

5' Step Out Executes from the current statement up to the statement after
Shift+F11 the call to the current function.
E Next Statement Executes directly to the next statement without stopping at

individual function calls.

g Run to Cursor Executes from the current statement or instruction up to a
selected statement or instruction.

Autostep Displays a dialog box where you can customize and perform
autostepping, see Autostep settings dialog box, page 81.

Set Next Statement Moves the program counter directly to where the cursor is,
without executing any source code. Note, however, that this
creates an anomaly in the program flow and might have
unexpected effects.

C++ Exceptions> Specifies that the execution shall break when the target
Break on Throw application executes a throw statement.

To use this feature, your application must be built with the
option Library low-level interface implementation
selected and the language option C++ for Standard C++.

C++ Exceptions> Specifies that the execution shall break when the target
Break on Uncaught application throws an exception that is not caught by any
Exception matching catch statement.

To use this feature, your application must be built with the
option Library low-level interface implementation
selected and the language option C++ for Standard C++.

Memory>Save Displays a dialog box where you can save the contents of a
specified memory area to a file, see Memory Save dialog
box, page 147.

Memory>Restore Displays a dialog box where you can load the contents of a
file in Intel-extended or Motorola s-record format to a
specified memory zone, see Memory Restore dialog box,
page 148.

Refresh Refreshes the contents of all debugger windows. Because
window updates are automatic, this is needed only in
unusual situations, such as when target memory is modified
in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

59

Reference information on starting C-SPY

60

Macros Displays a dialog box where you can list, register, and edit
your macro files and functions, see Using the Macro
Configuration dialog box, page 271.

Logging>Set Log file Displays a dialog box where you can choose to log the
contents of the Debug Log window to a file. You can select
the type and the location of the log file. You can choose what
you want to log: errors, warnings, system information, user
messages, or all of these. See Log File dialog box, page 80.

Logging> Displays a dialog box where you can choose to log
Set Terminal I/O Log simulated target access communication to a file. You can
file select the destination of the log file. See Terminal 1/0 Log

File dialog box, page 78.

Disassembly menu

C-SPY® Debugging Guide
for ARM

The Disassembly menu is available when C-SPY is running. This menu provides
commands for executing and debugging the source application. Most of the commands
are also available as icon buttons on the debug toolbar.

Disassemble in Thumb mode

Disassemble in ARM mode

Disassemble in Current processor mode
v Disassemble in Auto mode

Figure 9: Disassembly menu
Use the commands on the menu to select which disassembly mode to use.

Note: After changing disassembly mode, use the Refresh command on the Debug
menu to refresh the view of the Disassembly window contents.

These commands are available:

Disassemble in Thumb Disassembles your application in Thumb mode.
mode

Disassemble in ARM Disassembles your application in ARM mode.
mode

Disassemble in Current Disassembles your application in the current processor mode.
processor mode

Disassemble in Auto Disassembles your application in automatic mode. This is the
mode default option.

See also Disassembly window, page 71.

Getting started using C-SPY ___4

C-SPY windows
Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available when C-SPY is running:
C-SPY Debugger main window
Disassembly window
Memory window
Symbolic Memory window
Register window
Watch window
Locals window
Auto window
Live Watch window
Quick Watch window
Statics window
Call Stack window
Trace window
Function Trace window
Timeline window
Terminal I/O window
Code Coverage window
Function Profiler window
Images window

Stack window

Symbols window.

Additional windows are available depending on which C-SPY driver you are using.

Editing in C-SPY windows

You can edit the contents of the Memory, Symbolic Memory, Register, Auto, Watch,
Locals, Statics, Live Watch, and Quick Watch windows.

Use these keyboard keys to edit the contents of these windows:

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

61

Reference information on starting C-SPY

62

Images window

In windows where you can edit the Expression field, you can specify the number of
elements to be displayed in the field by adding a semicolon followed by an integer. For
example, to display only the three first elements of an array named myArray, or three
elements in sequence starting with the element pointed to by a pointer, write:

myArray; 3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10-14, write:

myArray;5,10

The Images window is available from the View menu.

MName Fath

<All images> [Combines debug information from all images]

project] ChDocuments and Settingsihy Documentsi| AR Embedded WorkbenchDebughExeyproject! .out
exfralmage ChDocuments and Settingsi\hy Documentst| AR Embedded WorkbenchDebughExehextralmage.out

Display area

C-SPY® Debugging Guide
for ARM

Figure 10: Images window

The Images window lists all currently loaded images (debug files).

Normally, a source application consists of exactly one image that you debug. However,
you can also load additional images. This means that the complete debuggable unit
consists of several images.

This area lists the loaded images in these columns:

Name The name of the loaded image.

Path The path to the loaded image.

C-SPY can either use debug information from all of the loaded images simultaneously,
or from one image at a time. Double-click on a row to show information only for that
image. The current choice is highlighted.

Getting started using C-SPY ___4

Context menu

This context menu is available:

Show only 'projectl’
Figure 11: Images window context menu

These commands are available:

Show all images Shows debug information for all loaded debug images.

Show only image Shows debug information for the selected debug image.

Related information
For related information, see:
o Loading multiple images, page 50
® Images, page 359
® _ loadlmage, page 297.

Get Alternative File dialog box

The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

Get Alternative File Pz|

Could nat find the following source file:
C:hprojectshtutorsTutor.c

<RNones J
| Skip |

Suggested alternative:

I If possible, don't show this dialog again

Figure 12: Get Alternative File dialog box

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

63

Reference information on starting C-SPY

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.
Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 49.

C-SPY® Debugging Guide
64 for ARM

Executing your application

This chapter contains information about executing your application in
C-SPY®. More specifically, this means:

e Introduction to application execution

e Reference information on application execution.

Introduction to application execution

This section covers these topics:

Briefly about application execution
Source and disassembly mode debugging
Single stepping

Running the application

Highlighting

Call stack information

Terminal input and output

Debug logging.

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

65

Introduction to application execution

66

C-SPY® Debugging Guide
for ARM

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just

stepping on statements. There are four step commands:
e Step Into

o Step Over

o Next Statement
e Step Out.

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 81.

If your application contains an exception that is caught outside the code which would
normally be executed as part of a step, C-SPY terminates the step at the catch
statement.

Executing your application __4

Consider this example and assume that the previous step has taken you to the £ (1)
function call (highlighted):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}
int main()

{

£(i);
value ++;

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g (n-1):

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g (n-2) function
call, which is not a statement on its own but part of the same statement as g (n-1) . Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

67

Introduction to application execution

68

C-SPY® Debugging Guide
for ARM

(e
Ly

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) + g(n-3);
return value;

}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);

int f(int n)

{

value = g(n-1) + g(n-2) g(n-3);
return value;

}

int main()

{

£(1i);
value ++;

}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

Executing your application ___4

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

Tutor.c I!EEE

void init_fib{ void |

i

int i = 45;
o root[0] = root[l] = 1;

for { i=2 ; i<MAX _FIE : i++)
{

Figure 13: C-SPY highlighting source location

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

CALL STACK INFORMATION

The compiler generates extensive backtrace information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

o Determining in what context the current function has been called

o Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

69

Introduction to application execution

70

C-SPY® Debugging Guide
for ARM

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any backtrace information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For further information, see the /AR
Assembler Reference Guide for ARM.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O
window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/0 Log Files dialog box.

This facility is useful in two different contexts:
e If your application uses stdin and stdout
e For producing debug trace printouts.

For more information, see Terminal 1/0 window, page 77 and Terminal 1/0 Log File
dialog box, page 78.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, event log messages, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it. The two main advantages are:

o The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts

o The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

Executing your application ___4

Reference information on application execution

This section gives reference information about these windows and dialog boxes:

Disassembly window, page 71

Call Stack window, page 75

Terminal 1/0 window, page 77

Terminal 1/0 Log File dialog box, page 78
Debug Log window, page 79

Log File dialog box, page 80

Autostep settings dialog box, page 81.

See also Terminal I/O options in IDE Project Management and Building Guide for
ARM.

Disassembly window
The C-SPY Disassembly window is available from the View menu.

Toggle embedded

Go to memory address Zone display source mode
Disassembly #

Goto I ! j IMemory ' j IE
wvoid mainiwoid) -
L
main:
Ctext_ 5
& Oxd3c: 0=xb5E0 PUSH ir?. lr}
callCount = 0;
Code coverage o O=z43e: 0=4807 LIR. N rl, ??DataTabled [0x4S5c] ; callCount
information & Oxd440: 0=2100 HOVS rl, #0
& Oxd442: 0=6001 STR rl, [x0]
InitFibiy;
& Oxdd4: 0=f7if ; pre BL-ELX
& Oxdd6: 0=f£00 BL InitFib o O=2418

. while (callCount < MAX FIB
Current positon —— —

Oxdda: 0=6800 LLRE r0, [r0]
Ox44c: 0x280a CHP r0, #10 ;o O=a
Oxdde: 0O=xdald2 BGE.H Pimain_1 ; DO=456
DoForegroundProcess() ;
0x450: 0=xf7ff ; pre BL-ELX
0x452: O=zffeb EL DoForegroundProcess s O=420
0x454: 0=z=7f8 BE.H Pimain_0 s DO=448 _ILI
|
[| 3

Figure 14: C-SPY Disassembly window

This window shows the application being debugged as disassembled application code.

71

Reference information on application execution

72

&

Toolbar

Display area

C-SPY® Debugging Guide
for ARM

To change the default color of the source code in the Disassembly window:
Choose Tools>Options>Debugger.

Set the default color using the Source code coloring in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

The toolbar contains:

Go to The location you want to view. This can be a memory
address, or the name of a variable, function, or label.

Zone display Lists the available memory zones to display, see C-SPY
memory zones, page 141.

Toggle Mixed-Mode Toggles between displaying only disassembled code or
disassembled code together with the corresponding source
code. Source code requires that the corresponding source
file has been compiled with debug information.

The display area shows the disassembled application code.

This area contains these graphic elements:

Green highlight Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line in
the Disassembly window, click the line. Alternatively, move
the cursor using the navigation keys.

Yellow highlight Indicates a position other than the current position, such as
when navigating between frames in the Call Stack window
or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Using breakpoints, page 107.

Green diamond Indicates code that has been executed—that is, code
coverage.

Executing your application ___4

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed.

Context menu

This context menu is available:

Move to PC

Run ko Cursor

Code Coverage 3
Instruction Profiling 3

Toggle Breakpoint {Code)
Toggle Breakpoint {Log)

Toggle Breakpoint {Trace Start)
Toggle Breakpoint {Trace Stop)
Enable/disable Ereakpaint

Set Mext Statement

Copy Window Contents
v Mixed-Mode

Figure 15: Disassembly window context menu

Note: The contents of this menu are dynamic, which means it might look different
depending on your product package.

These commands are available:

Move to PC Displays code at the current program counter location.

Run to Cursor Executes the application from the current position up to the
line containing the cursor.

Code Coverage Displays a submenu that provides commands for controlling
code coverage. This command is only enabled if the driver
you are using supports it.

Enable, toggles code coverage on or off.

Show, toggles the display of code coverage on or off.
Executed code is indicated by a green diamond.

Clear, clears all code coverage information.

73

Reference information on application execution

74

C-SPY® Debugging Guide
for ARM

Instruction Profiling

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Toggle Breakpoint
(Trace Start)

Toggle Breakpoint
(Trace Stop)

Enable/Disable
Breakpoint

Edit Breakpoint

Set Next Statement

Copy Window
Contents

Displays a submenu that provides commands for controlling
instruction profiling. This command is only enabled if the
driver you are using supports it.

Enable, toggles instruction profiling on or off.

Show, toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays how
many times the instruction has been executed.

Clear, clears all instruction profiling information.

Toggles a code breakpoint. Assembler instructions and any
corresponding label at which code breakpoints have been set
are highlighted in red. For more information, see Code
breakpoints dialog box, page 122.

Toggles a log breakpoint for trace printouts. Assembler
instructions at which log breakpoints have been set are
highlighted in red. For more information, see Log breakpoints
dialog box, page 127.

Toggles a Trace Start breakpoint. When the breakpoint is
triggered, the trace data collection starts. Note that this menu
command is only available if the C-SPY driver you are using
supports trace. For more information, see Trace Start
breakpoints dialog box (simulator), page 198.

Toggles a Trace Stop breakpoint. When the breakpoint is
triggered, the trace data collection stops. Note that this menu
command is only available if the C-SPY driver you are using
supports trace. For more information, see Trace Stop
breakpoints dialog box (simulator), page 199.

Enables and Disables a breakpoint. If there is more than one
breakpoint at a specific line, all those breakpoints are affected
by the Enable/Disable command.

Displays the breakpoint dialog box to let you edit the
currently selected breakpoint. If there is more than one
breakpoint on the selected line, a submenu is displayed that
lists all available breakpoints on that line.

Sets the program counter to the address of the instruction at
the insertion point.

Copies the selected contents of the Disassembly window to
the clipboard.

Executing your application ___4

Mixed-Mode Toggles between showing only disassembled code or
disassembled code together with the corresponding source
code. Source code requires that the corresponding source file
has been compiled with debug information.

Call Stack window

The Call stack window is available from the View menu.

3 fibonacci:nth(ing

©nth(3)

— Destination for Step Into

[Pestartup_call_main + 0xd]

Figure 16: Call Stack window

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function
is displayed in the grey bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

Display area

Provided that the command Show Arguments is enabled, each entry in the display area
has the format:

function(values)

where (values) is alist of the current value of the parameters, or empty if the function
does not take any parameters.

75

Reference information on application execution

76

Context menu

C-SPY® Debugging Guide
for ARM

This context menu is available:

G0 to Source

v Show Arguments
Run ko Cursor
Toggle Breakpoint {Code)
Toggle Breakpoint {Log)
Enablefdisable Ereakpaoint

Figure 17: Call Stack window context menu

These commands are available:

Go to Source

Show Arguments

Run to Cursor

Toggle Breakpoint (Code)
Toggle Breakpoint (Log)
Enable/Disable Breakpoint

Displays the selected function in the Disassembly or
editor windows.

Shows function arguments.

Executes until return to the function selected in the call
stack.

Toggles a code breakpoint.
Toggles a log breakpoint.

Enables or disables the selected breakpoint.

Executing your application ___4

Terminal 1/O window

The Terminal I/O window is available from the View menu.

Terminal I/0 5]

Output: Log file: OFff

[a—

21
34
bh

Input: LCtl codes Input Mode...

Buffer size: 1]

Figure 18: Terminal I/0 window

Use this window to enter input to your application, and display output from it.
To use this window, you must:
I Build your application with the option Semihosted or the IAR breakpoint option.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

Input

Type the text that you want to input to your application.

Ctrl codes

Opens a menu for input of special characters, such as EOF (end of file) and NUL.

0:x00-0x0f »
O:x10-0:x1F »
ECF

Figure 19: Ctrl codes menu

77

Reference information on application execution

Input Mode

Opens the Input Mode dialog box where you choose whether to input data from the
keyboard or from a file.

Input Mode [%]

% Buffered

" Direct —IEanc:eI
" File

& Text

| Binary

$PROJ_DIR$AT erml Dlnput tat J

Figure 20: Input Mode dialog box

For reference information about the options available in this dialog box, see Terminal
/O options in IDE Project Management and Building Guide for ARM.

Terminal I/O Log File dialog box

The Terminal I/0 Log File dialog box is available by choosing Debug>Logging>Set
Terminal 1/0 Log File.

Terminal I/0 Log File

Termninal 140 Log File

™ Enable Teminal 10 log file

Cancel

[

Figure 21: Terminal /O Log File dialog box

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

Terminal 10 Log Files

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal 1O log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

C-SPY® Debugging Guide
78 for ARM

Debug Log window

Context menu

Executing your application ___4

The Debug Log window is available by choosing View>Messages.

Log

Fri Feb 06 10:41:40 2004: Loaded module
Fri Felb 06 10:41:40 2004: Target reset

Figure 22: Debug Log window (message window)

This window displays debugger output, such as diagnostic messages, macro-generated
output, event log messages, and information about trace. This output is only available
when C-SPY is running. When opened, this window is, by default, grouped together
with the other message windows, see IDE Project Management and Building Guide for
ARM.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>) :<message>
<path> (<row>,<column>) :<message>

This context menu is available:

Copy
Select Al

Clear Al
Figure 23: Debug Log window context menu

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Clears the contents of the window.

79

Reference information on application execution

80

Log File dialog box

Enable Log file

Include

C-SPY® Debugging Guide
for ARM

The Log File dialog box is available by choosing Debug>Logging>Set Log File.

r Log File
d Include:
¥ Enable log file
¥ Enmors ¥ “wamings
¥ Info IV User

$PROJ_DIR$'LogFileT.log

()3 I Cancel |

N

Figure 24: Log File dialog box

Use this dialog box to log output from C-SPY to a file.

Enables or disables logging to the file.

The information printed in the file is, by default, the same as the information listed in
the Log window. To change the information logged, choose between:

Errors
Warnings
Info

User

C-SPY has failed to perform an operation.

An error or omission of concern.

Progress information about actions C-SPY has performed.

Messages from C-SPY macros, that is, your messages using the
_ _message statement.

Use the browse button, to override the default file and location of the log file (the default
filename extension is 1og).

Executing your application ___4

Autostep settings dialog box

The Autostep settings dialog box is available from the Debug menu.

Autostep settings E

I Step Into [Source level] j Start I
Delay [miIIiseconds]:I‘I] Cancel |

Figure 25: Autostep settings dialog box

Use this dialog box to customize autostepping.

The drop-down menu lists the available step commands.

Delay

Specify the delay between each step in milliseconds.

81

Reference information on application execution

C-SPY® Debugging Guide
82 for ARM

Working with variables
and expressions

This chapter describes how variables and expressions can be used in C-SPY®.

More specifically, this means:

Introduction to working with variables and expressions
Procedures for working with variables and expressions

Reference information on working with variables and expressions.

Introduction to working with variables and expressions

This section covers these topics:

Briefly about working with variables and expressions
C-SPY expressions

Limitations on variable information.

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values:

Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

83

Introduction to working with variables and expressions

84

C-SPY® Debugging Guide
for ARM

The Statics window displays the values of variables with static storage duration. The
window is automatically updated when execution stops.

The Quick Watch window gives you precise control over when to evaluate an
expression.

The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

The Data Log window and the Data Log Summary window display logs of accesses
up to four different memory locations or areas you choose by setting Data Log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory. Data
logs are supported by the C-SPY J-Link/J-Trace driver and the C-SPY ST-LINK
driver.

The Event Log window and the Event Log Summary window display event logs
produced when the execution passes specific positions in your application code. The
Timeline window graphically displays these event logs correlated to a common
time-axis. Event logging can help you to analyze program flow and inspect data
correlated to a certain position in your application code. Event logs are supported by
the C-SPY J-Link/J-Trace driver and the C-SPY ST-LINK driver.

The Cortex ITM data channels are used for passing events from a running application
to the C-SPY Event log system. There are predefined preprocessor macros that you
can use in your application source code. An Event log will be generated every time
such macros are passed during program execution. You can pass a value with each
event. Typically, this value can be either an identifier or the content of a variable or
aregister (for example, the stack pointer). The value can be written in 8, 16, or 32-bit
format. Using a smaller size will reduce the bandwidth needed on the SWO pin.
Events can be generated with or without an associated PC (program counter) value,
the PC value makes it possible for the debugger to correlate the event to the executed
code.

The Trace-related windows let you inspect the program flow up to a specific state.
For more information, see Collecting and using trace data, page 169.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

C/C++ symbols
Assembler symbols (register names and assembler labels)
C-SPY macro functions

C-SPY macro variables.

Working with variables and expressions ___¢

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i+ 3

i = 42

#asm_label

#R2

#PC

my_macro_func (19)

In case you have a static variable with the same name declared in several different
functions

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Assembler symbols

Assembler symbols can be assembler labels or register names. That is, general purpose
registers, such as R4—R15, and special purpose registers, such as the program counter
and the status register. If a device description file is used, all memory-mapped peripheral
units, such as I/O ports, can also be used as assembler symbols in the same way as the
CPU registers. See Modifying a device description file, page 51.

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

Example What it does
#pc++ Increments the value of the program counter.
myptr = #label7 Sets myptr to the integral address of 1abel7 within its zone.

Table 6: C-SPY assembler symbols expressions

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes * (ASCII character 0x60). For example:

Example What it does
#pc Refers to the program counter.
pc’ Refers to the assembler label pc.

Table 7: Handling name conflicts between hardware registers and assembler labels

85

Introduction to working with variables and expressions

86

C-SPY® Debugging Guide
for ARM

Which processor-specific symbols are available by default can be seen in the Register
window, using the CPU Registers register group. See Register window, page 155.

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 269.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 275.

Using sizeof

According to standard C, there are two syntactical forms of sizeof:

sizeof (type)
sizeof expr

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the
sizeof operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Working with variables and expressions ___¢

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

myFunction ()

{
int i = 42;

x = computer(i); /* Here, the value of i is known to C-SPY */

}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should make sure to use the lowest optimization level during compilation, that is,
None.

Procedures for working with variables and expressions

This section gives you step-by-step descriptions about how to work with variables and
expressions.

More specifically, you will get information about:

Using the windows related to variables and expressions
Viewing assembler variables

°
°
e Getting started using data logging
°

Getting started using event logging.

87

Procedures for working with variables and expressions

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

@ For text that is too wide to fit in a column—in any of the these windows, except the Trace
window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, Data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Quick Watch, and Live Watch windows,
you can select a different interpretation to better suit the declaration of the variables.

C-SPY® Debugging Guide
88 for ARM

Asmmain. asm

asmvarl:
asmvarz:
asmvari:
asmvard:

Srmain

PUBLIC

COMMOH
CODE 32

BSEG

DC32
DC32
DCE
DCE

CODE 32
NOP
B main

Working with variables and expressions ___¢

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

nain Expression Walue Location Type
asmuvarl 42 0=3000 int
main asmvare 456 0x5004 int
asrmvard 55 0x8008 <8-bit unsigned>
INTVEC: CODE it
Add
Remove
main
v Defaulk Format
Binary Formak
ICODE : CODE Ockal Format
Decimal Format
az Hexadecimal Format
456 Char Format
55
1 3-bit Signed
8-bit Unsigned
16-bit Signed
16-hit Unsigned
32-bit Signed
mwain 32-bit Unsigned

Figure 26: Viewing assembler variables in the Watch window

Note that asmvard4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

GETTING STARTED USING DATA LOGGING

To set up for data logging, choose J-Link>SWO Configuration or ST-LINK>SWO
Configuration, respectively. In the dialog box, set up the serial-wire output
communication channel for trace data. Note specifically the CPU clock option. The
CPU clock can also be set up on the Project>Options>ST-LINK page.

In the Breakpoints or Memory window, right-click and choose New
Breakpoints>Data Log to open the breakpoints dialog box. Set a Data Log breakpoint
on the data you want to collect log information for.

Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

o C-SPY driver>Data Log Summary to open the Data Log Summary window

o C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

89

Procedures for working with variables and expressions

4 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

5 In the SWO Configuration dialog box, you can notice in the Data Log Evens area that
Data Logs are enabled. Choose which level of logging you want:
e PConly
e PC + data value + base addr

e Data value + exact addr
Start executing your application program to collect the log information.

To view the data log information, look in any of the Data Log, Data Log Summary, or
the Data graph in the Timeline window.

8 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

9 To disable data and interrupt logging, choose Disable from the context menu in each
window where you have enabled it.

GETTING STARTED USING EVENT LOGGING

I To specify the position in your application source code that you want to generate event
logs for, use the predefined preprocessor macros in arm_itm.h (located in
arm\inc\c). In your application source code, write (for example):

#include <arm_itm.h>
void func (void)
{
ITM_EVENT8_WITH_PC(1,25);

ITM_EVENT32_WITH_PC(2, get_PSP()) ;

}

The first line sends an event with the value 25 to channel 1. The second line sends an
event with the current value of the stack pointer to channel 2, which means that C-SPY
can display the stack pointer at a code position of your choice. When these source lines
are passed during program execution, events will be generated and visualized by C-SPY,
which means that you can further analyze them.

2 To view event log information, you can choose between these alternatives:

o Choose C-SPY driver>Timeline to open the Timeline window and choose Enable
from the context menu. You can now view events for each channel as a graph (Event
Log Graph).

o Choose C-SPY driver>Event Log to open the Event Log window and choose
Enable from the context menu. You can now view the events for each channel as
numbers.

C-SPY® Debugging Guide
90 for ARM

Working with variables and expressions ___¢

o Choose C-SPY driver>Event Log Summary to open the Event Log Summary
window and choose Enable from the context menu. You will now get a summary of
all event logs.

Note: Whenever the Event Log Graph or the Event Log window is enabled, you can at
any time enable also the Event Log Summary window to get a summary. However, if
you have enabled the Event Log Summary window, but not the Event Log window or
the Event Log Graph in the Timeline window, you can get a summary but not detailed
information about event logs.

To change the display format (you can choose between displaying values in
hexadecimal or in decimal format), select the event graph for which you want to
change the format in the Timeline window. Right-click and choose the display format
of your choice from the context menu. Note that this setting affects also the Event Log
window and the Event Log Summary window.

Start executing your application program to collect the log information.

To view the event log information, look at either the Event Log, the Event Log
Summary, or the event graph for the specific channel in the Timeline window.

If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window.

To disable event logging, choose Disable from the context menu in each window
where you have enabled it.

Reference information on working with variables and expressions

This section gives reference information about these windows and dialog boxes:

Auto window, page 92

Locals window, page 92

Watch window, page 93

Live Watch window, page 94

Statics window, page 95

Quick Watch window, page 98
Symbols window, page 99

Resolve Symbol Ambiguity dialog box, page 100
Data Log window, page 101

Data Log Summary window, page 103
Event Log window, page 104

Event Log Summary window, page 105.

Reference information on working with variables and expressions

92

Auto window

Context menu

Locals window

C-SPY® Debugging Guide
for ARM

For trace-related reference information, see Reference information on trace, page 176.

The Auto window is available from the View menu.

x
Expression Yalue Location Type
i 5 R4 short
Fib[i] 0 0x00102214 unsigned int
Fik <array> 0x00102200 unsigned int[10]
GetFib GetFib(int) (0x2... unsigned int(__...

Figure 27: Auto window

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

For more information about the context menu, see Watch window, page 93.

The Locals window is available from the View menu.

¥ Locals M= 3

Expression | Yalue | Location | Type
i 3 17 short

Figure 28: Locals window

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the Locals window are recalculated. Values
that have changed since the last stop are highlighted in red.

Working with variables and expressions ___¢

Context menu

For more information about the context menu, see Watch window, page 93.

Woatch window

The Watch window is available from the View menu.

Walue Location Type
5 R4 short
<array> 0x00102200 unsigned int[10]
1 0x00102200 unsigned int
1 0x00102204 unsigned int
2 0x00102208 unsigned int
3 Ox0010220C unsigned int
5 0x00102210 unsigned int
0 0x00102214 unsigned int
0 0x00102218 unsigned int
0 Ox0010221C unsigned int
0 0x00102220 unsigned int
0 0x00102224 unsigned int
|2
“Auto Watch B

Figure 29: Watch window

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Context menu

This context menu is available:

Add
Remave

v Default Format
Binary Format
Ockal Farmat
Decimal Format
Hexadecimal Format
Char Farmat

Show As 3

Figure 30: Watch window context menu

93

Reference information on working with variables and expressions

94

Live Watch window

C-SPY® Debugging Guide
for ARM

These commands are available:

Add
Remove

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Show As

Adds an expression.
Removes the selected expression.

Changes the display format of expressions. The display
format setting affects different types of expressions in
different ways, see Table 8, Effects of display format setting
on different types of expressions. Your selection of display
format is saved between debug sessions. These commands
are available if a selected line in the Watch window contains
a variable.

Displays a submenu that provides commands for changing
the default type interpretation of variables. The commands
on this submenu are mainly useful for assembler
variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see
Viewing assembler variables, page 88.

The display format setting affects different types of expressions in these ways:

Type of expression Effects of display format setting

Variable The display setting affects only the selected variable, not other
variables.

Array element The display setting affects the complete array, that is, the same display

format is used for each array element.

Structure field All elements with the same definition—the same field name and C

declaration type—are affected by the display setting.

Table 8: Effects of display format setting on different types of expressions

The Live Watch window is available from the View menu.

Live Watch =]

Expression | Yalue | Location | Type |
=l get_fib get_filb (0x1198) unsigned int (*)...
[

get_filb (0x1198) Mermor:0<1198 unsigned int {int)

Figure 31: Live Watch window

Context menu

Statics window

Working with variables and expressions ___¢

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

This window can only be used for hardware target systems supporting this feature.

For more information about the context menu, see Watch window, page 93.

In addition, the menu contains the Options command, which opens the Debugger
dialog box where you can set the Update interval option. The default value of this
option is 1000 milliseconds, which means the Live Watch window will be updated once
every second during program execution.

The Statics window is available from the View menu.

Expression | Walue | Location | Type |
call_count <Tutotcall_count> 0 DATA0x000060 int
=l root <Utilitiesiroot> <array> DATADx000062 unsigned int[10]
— [0 1 DATADx000062 unsigned int
= [1 DATADx000064 unsigned int
= [2] 2 DATADx000066 unsigned int
= [3] 0 DATADx000068 unsigned int
— [4] 0 DATADx00006A unsigned int
— [5] 0 DATADx00006C unsigned int
— [6] 0 DATADx00006E unsigned int
= [7] 0 DATADx000070 unsigned int
— [8] 0 DATADx000072 unsigned int
— 9 0 DATADx000074 unsigned int

Figure 32: Statics window

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

To select variables to monitor:

In the window, right-click and choose Select statics from the context menu. The
window now lists all variables with static storage duration.

95

Reference information on working with variables and expressions

2 Either individually select the variables you want to be displayed, or choose Select All
or Deselect All from the context menu.

3 When you have made your selections, choose Select statics from the context menu to
toggle back to the normal display mode.

Display area

This area contains these columns:

Expression The name of the variable. The base name of the variable is
followed by the full name, which includes module, class, or
function scope. This column is not editable.

Value The value of the variable. Values that have changed are
highlighted in red.

Dragging text or a variable from another window and
dropping it on the Value column will assign a new value to
the variable in that row.

This column is editable.
Location The location in memory where this variable is stored.

Type The data type of the variable.

Context menu

This context menu is available:

v Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format

Char Format
Show As 3

Select statics
Select all

Deselect all

Figure 33: Statics window context menu

C-SPY® Debugging Guide
96 for ARM

Working with variables and expressions ___¢

These commands are available:

Default Format, Changes the display format of expressions. The display
Binary Format, format setting affects different types of expressions in
Octal Format, different ways, see Table 8, Effects of display format setting
Decimal Format, on different types of expressions. Your selection of display
Hexadecimal Format, format is saved between debug sessions. These commands
Char Format are available if a selected line in the Statics window contains
a variable.
Select Statics Lists all variables with static storage duration. Select the

variables you want to be monitored. When you have made
your selections, select this menu command again to toggle
back to normal display mode.

Select all Selects all variables.

Deselect all Deselects all variables.

The display format setting affects different types of expressions in these ways:

Type of expression Effects of display format setting

Variable The display setting affects only the selected variable, not other
variables.

Array element The display setting affects the complete array, that is, the same display

format is used for each array element.

Structure field All elements with the same definition—the same field name and C
declaration type—are affected by the display setting.

Table 9: Effects of display format setting on different types of expressions

97

Reference information on working with variables and expressions

98

Quick Watch window

Q?

Context menu

C-SPY® Debugging Guide
for ARM

The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Quick Watch B

o =]

| Expression | Yalue | Location | Type |
WOT status() "Watchdog not triggered” macro string

Figure 34: Quick Watch window

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,
but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

To evaluate an expression:

In the editor window, right-click on the expression you want to examine and choose
Quick Watch from the context menu that appears.

The expression will automatically appear in the Quick Watch window.
Alternatively:

In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

Click the Recalculate button to calculate the value of the expression.

For an example, see Executing macros using Quick Watch, page 273.

For more information about the context menu, see Watch window, page 93.

In addition, the menu contains the Add to Watch window command, which adds the
selected expression to the Watch window.

Working with variables and expressions ___¢

Symbols window

The Symbols window is available from the View menu.

Symbal | Location | Full Mame |"
call_count 0x00102228 call_count
do_foreground_process 0x000003C8 do_foreground_process()

exit 0x000005E4 exit

get_fib 0x0000028C get_fib(int)

init_fibh 0x00000248 init_fib()

main 0x000003E2 mainf)

next_counter 0x000003BC next_counter()

put_fib 0x000002B8 put_fib{unsigned int)

putchar 0x00000464 putchar

root 0x00102200 root v

Figure 35: Symbols window

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

Display area

This area contains these columns:

Symbol The symbol name.

Location The memory address.

Full name The symbol name; often the same as the contents of the
Symbol column but differs for example for C++ member
functions.

Click the column headers to sort the list by symbol name, location, or full name.

Context menu

This context menu is available:

Functions
Variables
Labels

Figure 36: Symbols window context menu

929

Reference information on working with variables and expressions

These commands are available:

Functions Toggles the display of function symbols on or off in the list.
Variables Toggles the display of variables on or off in the list.
Labels Toggles the display of labels on or off in the list.

Resolve Symbol Ambiguity dialog box

The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Resolve Symbol Ambiguity

Ambiguous symbol: foo

Fleaze select one symbal:

e
fon<T: Camcel

Figure 37: Resolve Symbol Ambiguity dialog box
Ambiguous symbol

Indicates which symbol that is ambiguous.
Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

C-SPY® Debugging Guide
100 for ARM

Working with variables and expressions ___¢

Data Log window
The Data Log window is available from the C-SPY driver menu.

, x|
Time | Program Counter | 11 Address 52 Address 5
0.1e0us —— W 0=x0000 @ 0=x2004
0.160us OxFFEOOO49 - @ 0=x2000
24 480us O0=xFFEOOOBS R 0=x0000 @ 0=x2006
24 . 720us O0=FFEOOOEF W 0=x0042 @ 0=x2004
24 760us O=xFFEOOOCE R 0=x0042 @ 0=x2006
24 960us O=xFFEOOOE4 W 0=x00004444 @ 0=x2000
FE. FElus 0=xFFEO0104 R 0=x0042 @ 0=x200447
79.000us — W 0=x0084 @ 0=x2004
100.800us O=xFFEOO104 R 0=x0084 @ 0=x2006
101.040us O=xFFEOO10E W 0=00CE @ 0=x2004
213k Edfus Owerilow
136 .880us O=xFFEOO10E @ 0=x2004 -
White rows indicate Grey rows indicate
read accesses write accesses

Figure 38: Data Log window
To use the Data Log window, you need:

o A J-Link debug probe, an ST-LINK debug probe, or a J-Trace debug probe. For
J-Trace, the Data Log window is available when ETM trace is disabled. The Data
Log window does not display any data when ETM is enabled.

o An SWD interface between the debug probe and the target system.
Use this window to log accesses to up to four different memory locations or areas.

See also Getting started using data logging, page 89.

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address in these columns:

Time The time for the data access, based on the clock frequency
specified in the SWO Configuration dialog box.

If the time is displayed in italics, the target system has not
been able to collect a correct time, but instead had to
approximate it.

This column is available when you have selected Show
cycles from the context menu.

101

Reference information on working with variables and expressions

Cycles

Program Counter*

Value

Address

The number of cycles from the start of the execution until
the event. This information is cleared at reset.

If a cycle is displayed in italics, the target system has not
been able to collect a correct time, but instead had to
approximate it.

This column is available when you have selected Show
cycles from the context menu.

The content of the pc, that is, the address of the instruction
that performed the memory access.

If the column displays ---, the target system failed to provide
the debugger with any information. If the column displays
Overflow in red, the communication channel transmit to
handle all data from the target system.

Displays the access type and the value (using the access
size) for the location or area you want to log accesses to. For
example, if zero is read using a byte access it will be
displayed as 0x00, and for a long access it will be displayed
as 0x00000000.

To specify what data you want to log accesses to, use the
Data Log breakpoint dialog box. See Data Log breakpoints
dialog box, page 130.

The actual memory address that is accessed. For example, if
only a byte of a word is accessed, only the address of the
byte is displayed. The address is calculated as base address
+ offset, where the base address is retrieved from the Data
Log breakpoint dialog box and the offset is retrieved from
the logs. If the log from the target system does not provide
the debugger with an offset, the offset contains + ?. If you
want the offset to be displayed, select the Value + exact
addr option in the SWO Setup dialog box.

* You can double-click a line in the display area. If the value of the PC for that line is available in
the source code, the editor window displays the corresponding source code (this does not include

library source code).

C-SPY® Debugging Guide
102 for ARM

Context menu

Working with variables and expressions ___¢

See Interrupt Log window context menu, page 263.

Data Log Summary window

Display area

The Data Log Summary window is available from the C-SPY driver menu.

Data Total accesses Fead accesses | Write accesses e’
I 2 0 1
52 20 £l £l

COwerflow count. 2
Current cycles: 14545

Figure 39: Data Log Summary window
To use the Data Log Summary window, you need:
o A J-Link debug probe, an ST-LINK debug probe, or a J-Trace debug probe. For

J-Trace, the Data Log Summary window is available when ETM trace is disabled.
The Data Log Summary window does not display any data when ETM is enabled.

o An SWD interface between the debug probe and the target system.
This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 89.

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns:

Data* The name of the data object you have selected to log
accesses to. To specify what data object you want to log
accesses to, use the Data Log breakpoint dialog box. See
Data Log breakpoints dialog box, page 130.

Total accesses** The number of total accesses.
Read accesses The number of total read accesses.
Write accesses The number of total write accesses.

* At the bottom of the column, overflow count displays the number of overflows.

** If the sum of read accesses and write accesses is less than the total accesses, there have been
a number of access logs for which the target system for some reason did not provide valid access
type information.

103

Reference information on working with variables and expressions

Context menu

See Interrupt Log window context menu, page 263.

Event Log window

The Event Log window is available from the C-SPY driver menu.

Cycles | Program Counter | [T I I
226458846 —— 0=78
226458868 —— 22136
FAESEREEE ——— 0=5678
FAEFESFTE ——— 1z0
Siare44 7 Q=z000048BC OzaBffel8d

F4SI07888 7 Nx0000ABEZ 2835341700

Figure 40: Event Log window

To use the Event Log window, you need:

o A J-Link/J-Trace or ST-LINK debug probe
o An SWD interface between the debug probe and the target system.

This window displays event logs produced when the execution passes specific positions
in your application code. The Cortex ITM data channels are used for passing the event
logs from a running application to the C-SPY Event Log system.

See also Getting started using event logging, page 90.

Display area

Each row in the display area shows the event logs in these columns:

Cycles

C-SPY® Debugging Guide

104 for ARM

The number of cycles from the start of the execution until
the event. This information is cleared at reset.

If a cycle is displayed in italics, the target system has not
been able to collect a correct time, but instead had to
approximate it.

This column is available when you have selected Show
cycles from the context menu.

Program Counter*

ITM1
IT™M2
ITM3
IT™M4

Working with variables and expressions ___¢

Displays one of these:

An address, which is the content of the pc, that is, the
address of the instruction that performed the memory
access.

---, the target system failed to provide the debugger with
any information.

Overflow in red, the communication channel failed to
transmit all data from the target system.

The Cortex I'TM data channels for which the events are
logged. For each event log, the event value is displayed.

Add a preprocessor macro to your application source code
where you want event logs to be generated. See Getting
started using event logging, page 90

* You can double-click a line in the display area. If the value of the PC for that line is available in
the source code, the editor window displays the corresponding source code (this does not include

library source code).

Context menu

See Interrupt Log window context menu, page 229.

Event Log Summary window
The Event Log Summary window is available from the C-SPY driver menu.

Ewent Log Summary

Channel Count | Average Value
[ThA1 13 1
IThAz 7 Bx2
IThA3 @

[ThA4 1 Bx47de

Approximative time count: 0
Overflow count: 0
Current time: 6507.580us

Min Value Max Value Average Interval MinInterval Max Interval

1 1 506.728us 444.206us 1189.986us

Bx2 Bx2 889.368us 888.400us 889.620us
Bx47de Bx47de

Figure 41: Event Log Summary window

To use the Event Log Summary window, you need:

o A J-Link/J-Trace or ST-LINK debug probe
o An SWD interface between the debug probe and the target system.

105

Reference information on working with variables and expressions

This window displays a summary of event logs produced when the execution passes
specific positions in your application code. The Cortex ITM data channels are used for
passing the event logs from a running application to the C-SPY Event Log system.

See also Getting started using event logging, page 90.

Display area

Each row displays the type and the number of accesses to each location in your
application code in these columns:

Channel The name of the communication channel for which event
logs are generated.

Count The number of logged events.

Average Value The average value of all received event values.
Min Value The smallest value of all received event values.
Max Value The largest value of all received event values.
Average Interval The average time (in cycles) between events.
Min Interval The shortest time (in cycles) between two events.
Max Interval The longest time (in cycles) between two events.

At the bottom of the column, the current time or cycles is displayed—execution time since the
start of execution or the number of cycles. Overflow count displays the number of overflows.
Approximative time count displays the number of inexact timestamps.

Context menu

See Interrupt Log window context menu, page 229.

C-SPY® Debugging Guide
106 for ARM

Using breakpoints

This chapter describes breakpoints and the various ways to define and
monitor them. More specifically, this means:

e Introduction to setting and using breakpoints
e Procedures for setting breakpoints

e Reference information on breakpoints.

Introduction to setting and using breakpoints

This section introduces breakpoints.
These topics are covered:

Reasons for using breakpoints

Briefly about setting breakpoints
Breakpoint types

Breakpoint icons

Breakpoints in the C-SPY simulator
Breakpoints in the C-SPY hardware drivers

Breakpoint consumers.

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

107

Introduction to setting and using breakpoints

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage dialog box also lists all internally used breakpoints,
see Breakpoint consumers, page 111.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping; for more information about the precision, see Single stepping, page
66.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace breakpoints

Trace Start and Stop breakpoints start and stop trace data collection—a convenient way
to analyze instructions between two execution points.

C-SPY® Debugging Guide
108 for ARM

Using breakpoints ___¢

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location. The execution will usually stop directly after the instruction that
accessed the data has been executed.

Immediate breakpoints

The C-SPY Simulator lets you set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
simulated processor is about to read data from a location or immediately after it has
written data. Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply
appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

Data Log breakpoints

Data Log breakpoints are available for the J-Link/J-Trace driver and the ST-LINK driver
when you are using a Cortex-M device.

Data Log breakpoints are triggered when data is accessed at the specified location. If
you have set a log breakpoint on a specific address or a range, a log message is displayed
in the SWO Trace window for each access to that location. A log message can also be
displayed in the Data Log window, if that window is enabled. However, these log
messages require that you have set up trace data in the SWO Configuration dialog box,
see SWO Configuration dialog box, page 181.

JTAG watchpoints

The C-SPY J-Link/J-Trace driver and the C-SPY Macraigor driver can take advantage
of the JTAG watchpoint mechanism in ARM7/9 cores.

The watchpoints are implemented using the functionality provided by the ARM
EmbeddedICE™ macrocell. The macrocell is part of every ARM core that supports the
JTAG interface. The EmbeddedICE watchpoint comparator compares the address bus,
data bus, CPU control signals and external input signals with the defined watchpoint in
real time. When all defined conditions are true, the program will break.

The watchpoints are implicitly used by C-SPY to set code breakpoints or data
breakpoints in the application. When setting breakpoints in read/write memory, only one

109

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
110 for ARM

watchpoint is needed by the debugger. When setting breakpoints in read-only memory,
one watchpoint is needed for each breakpoint. Because the macrocell only implements
two hardware watchpoints, the maximum number of breakpoints in read-only memory
is two.

For a more detailed description of the ARM JTAG watchpoint mechanism, refer to these
documents from Advanced RISC Machines Ltd:

® ARM7TDMI (rev 3) Technical Reference Manual: chapter 5, Debug Interface, and
appendix B, Debug in Depth

e Application Note 28, The ARM7TDMI Debug Architecture.
BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

Tukor.c E |
\ unsigned int get fih| int nr)
i

O Lf {mr>) e fnr <= MAX FIB) |
Log breakpoint

g P! — {

I keturn (rootfne- 117

%,
Log @ Ultilties.c:37.5

Mermaory: Dxbs [Fetch]
Disabled code — | Fetwrn [05

breakpoint }
}

Code breakpoint

Tooltip information

Figure 42: Breakpoint icons

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for
ARM.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage dialog box.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

The C-SPY simulator supports all breakpoint types and you can set an unlimited amount
of breakpoints.

Using breakpoints ___¢

BREAKPOINTS IN THE C-SPY HARDWARE DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system or whether you have enabled software
breakpoints, in which case the number of breakpoints you can set is unlimited.

When software breakpoints are enabled, the debugger will first use any available
hardware breakpoints before using software breakpoints. Exceeding the number of
available hardware breakpoints, when software breakpoints are not enabled, causes the
debugger to single step. This will significantly reduce the execution speed. For this
reason you must be aware of the different breakpoint consumers.

For information about the characteristics of breakpoints for the different target systems,
see the manufacturer’s documentation.
BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage dialog box and in the Breakpoints window,
for example Data @[R] callCount.

C-SPY itself

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

o The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set when the debugger system is
running. This means that they are not visible in the Breakpoints window.

o The Semihosted or the IAR breakpoint option has been selected.

These types of breakpoint consumers are displayed in the Breakpoint Usage dialog
box, for example, C-SPY Terminal I/0 & libsupport module.

Introduction to setting and using breakpoints

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
I Choose Tools>Options>Stack.

2 Deselect the Stack pointer(s) not valid until program reaches: label option.

BREAKPOINTS OPTIONS

For the following hardware debugger systems it is possible to set some driver-specific
breakpoint options before you start C-SPY:

o GDB Server
e J-Link/J-Trace JTAG probes
o Macraigor JTAG probes.

For more information, see Breakpoints options, page 132.

BREAKPOINTS ON EXCEPTION VECTORS

You can set breakpoints on exception vectors for ARM9, Cortex-R4, and Cortex-M3
devices. Use the Vector Catch dialog box to set a breakpoint directly on a vector in the
interrupt vector table, without using a hardware breakpoint. For more information, see
Vector Catch dialog box, page 135.

For the J-Link/J-Trace driver and for RDI drivers, it is also possible to set breakpoints
directly on a vector already in the options dialog box, see Setup options for
J-Link/J-Trace, page 365 and RDI, page 377.

SETTING BREAKPOINTS IN _ RAMFUNC DECLARED
FUNCTIONS

To set a breakpointina __ramfunc declared function, the program execution must have
reached the main function. The system startup code moves all __ramfunc declared
functions from their stored location—normally flash memory—to their RAM location,
which means the __ramfunc declared functions are not in their proper place and
breakpoints cannot be set until you have executed up to the main function. Use the
Restore software breakpoints option to solve this problem, see Restore software
breakpoints at, page 133.

In addition, breakpoints in __ramfunc declared functions added from the editor have
to be disabled prior to invoking C-SPY and prior to exiting a debug session.

C-SPY® Debugging Guide
112 for ARM

Using breakpoints ___¢

For information about the __ramfunc keyword, see the /AR C/C++ Development
Guide for ARM.

Procedures for setting breakpoints

This section gives you step-by-step descriptions about how to set and use breakpoints.
More specifically, you will get information about:

Various ways to set a breakpoint

Toggling a simple code breakpoint

Setting breakpoints using the dialog box

Setting a data breakpoint in the Memory window

Setting breakpoints using system macros

Useful breakpoint hints.

VARIOUS WAYS TO SET A BREAKPOINT
You can set a breakpoint in various ways:

o Using the Toggle Breakpoint command toggles a code breakpoint. This command
is available both from the Tools menu and from the context menus in the editor
window and in the Disassembly window.

o Right-clicking in the left-side margin of the editor window or the Disassembly
window toggles a code breakpoint.

o Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and in
the Disassembly window. The dialog boxes give you access to all breakpoint
options.

e Setting a data breakpoint on a memory area directly in the Memory window.

o Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:
o Double-click in the gray left-side margin of the window

e Place the insertion point in the C source statement or assembler instruction where
!? you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

o Choose Edit>Toggle Breakpoint

113

Procedures for setting breakpoints

114

C-SPY® Debugging Guide
for ARM

o Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

To set a new breakpoint:

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

Choose View>Breakpoints to open the Breakpoints window.

In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

On the submenu, choose the breakpoint type you want to set.
Depending on the C-SPY driver you are using, different breakpoint types are available.
In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

Using breakpoints ___¢

To modify an existing breakpoint:

I In the Breakpoints window, editor window, or in the Disassembly window, select the
breakpoint you want to modify and right-click to open the context menu.

35woid init fib(woid)
36 1
37 imt 1 = 45;
38 root[0] = root[l] = 1:

: 39

S 40 for | 1287 i<MAY FIB ; i++)
LA
L J az —

LAz)

Laan
45
il Complete
47 fnrt
48 4/ Match Brackets
49 unsi Insert Template 3
B Open HeaderfSource File
51 ii 1B |
52 Go ko definition of rook
& Toggle Breakpoint {Code)
54) i
55 el Toggle Breakpoint {Log)
56 | Enable/disable Ereakpaint
57 Set Data Breakpoint For 'root[i]'
53) Edit Code Breakpoint at column 15
:3 1 cek Next Statement Edit Log Breakpoint at column 7

Figure 43: Modifying breakpoints via the context menu

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.
3 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window; instead, you can see, edit, and
remove it using the Breakpoints window, which is available from the View menu. The
breakpoints you set in the Memory window will be triggered for both read and write

accesses. All breakpoints defined in this window are preserved between debug sessions.

115

Procedures for setting breakpoints

116

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints not only in the breakpoint dialog box but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session

will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when
you exit the debug session.

These breakpoint macros are available:

IAR
Mac- GDB ST TI TI
C-SPY macro for breakpoints Simulator }-Link JTAGjet RDI Angel ROM-
raigor Server LINK Stellaris XDS100)
monitor
__setCodeBreak Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
__setDataBreak Yes No No No No No No No No No No
__setLogBreak Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
__setSimBreak Yes No No No No No No No No No No
__setTraceStartBreak Yes No No No No No No No No No No
__setTraceStopBreak Yes No No No No No No No No No No
__clearBreak Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 10: C-SPY macros for breakpoints

C-SPY® Debugging Guide
for ARM

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 281.

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Registering and executing using setup macros and setup files,
page 272.

Using breakpoints ___¢

SETTING A BREAKPOINT ON AN EXCEPTION VECTOR
This procedure applies to J-Link/J-Trace and Macraigor.

To set a breakpoint on an exception vector:

Select the correct device. Before starting C-SPY, choose Project>Options and select
the General Options category. Choose the appropriate core or device from one of the
Processor variant drop-down lists available on the Target page.

Start C-SPY.

Choose J-Link>Vector Catch. By default, vectors are selected according to your
settings on the Breakpoints options page, see Breakpoints options, page 132.

In the Vector Catch dialog box, select the vector you want to set a breakpoint on, and
click OK. The breakpoint will only be triggered at the beginning of the exception.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

e Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

® You can use the assert macro in your problematic function, for example:

int MyFunction (int * MyPtr)
{

assert (MyPtr != 0); /* Assert macro added to your source

code. */

/* Here comes the rest of your function. */
}
The execution will break whenever the condition is true. The advantage is that the
execution speed is only very slightly affected, but the drawback is that you will get a
small extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

e Instead of using the assert macro, you can modify your function like this:

int MyFunction (int * MyPtr)
{
if (MyPtr == 0)

17

Reference information on breakpoints

118

MyDummyStatement; /* Dummy statement where you set a
breakpoint. */
/* Here comes the rest of your function. */

}

You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count ()

{
my_counter += 1;
return O;

}

To use this function as a condition for the breakpoint, type count () in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

Reference information on breakpoints

C-SPY® Debugging Guide
for ARM

This section gives reference information about these windows and dialog boxes:

® Breakpoints window, page 119
® Breakpoint Usage window, page 121
o Code breakpoints dialog box, page 122

Using breakpoints ___¢

JTAG Watchpoints dialog box, page 124
Log breakpoints dialog box, page 127
Data breakpoints dialog box, page 128
Data Log breakpoints dialog box, page 130

Immediate breakpoints dialog box, page 134
Vector Catch dialog box, page 135

°
°
°
°
® Breakpoints options, page 132
°
°
® FEnter Location dialog box, page 135
°

Resolve Source Ambiguity dialog box, page 137.
See also:

® Reference information on C-SPY system macros, page 281

® Reference information on trace, page 176.

Breakpoints window

The Breakpoints window is available from the View menu.

Code @ Tutar.c:46.2

Figure 44: Breakpoints window

The Breakpoints window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints; you can also
define new breakpoints and modify existing breakpoints.

19

Reference information on breakpoints

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Context menu

This context menu is available:

G0 to Source
Edit...

Delete
Disable
Enable Al
Disable Al

Mew Breakpoint ¥

Figure 45: Breakpoints window context menu

These commands are available:

Go to Source

Edit

Delete

Enable

Disable

Enable All
Disable All

C-SPY® Debugging Guide
120 for ARM

Moves the insertion point to the location of the breakpoint,
if the breakpoint has a source location. Double-click a
breakpoint in the Breakpoints window to perform the same
command.

Opens the breakpoint dialog box for the breakpoint you
selected.

Deletes the breakpoint. Press the Delete key to perform the
same command.

Enables the breakpoint. The check box at the beginning of
the line will be selected. You can also perform the command
by manually selecting the check box. This command is only
available if the breakpoint is disabled.

Disables the breakpoint. The check box at the beginning of
the line will be deselected. You can also perform this
command by manually deselecting the check box. This
command is only available if the breakpoint is enabled.

Enables all defined breakpoints.

Disables all defined breakpoints.

Using breakpoints ___¢

New Breakpoint Displays a submenu where you can open the breakpoint
dialog box for the available breakpoint types. All
breakpoints you define using this dialog box are preserved

between debug sessions.

Breakpoint Usage window

Display area

The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

| Breakpaint |
+ 1 0=z000001BE [Fetch] Thumb, Hardware
= 1 0xz000001CE [Fetch] Thumb, Hardware

b Code @ main.c:77.3, type: default {(auto)

Figure 46: Breakpoint Usage dialog box

The Breakpoint Usage window lists all breakpoints currently set in the target system,
both the ones you have defined and the ones used internally by C-SPY. The format of
the items in this window depends on the C-SPY driver you are using.

The dialog box gives a low-level view of all breakpoints, related but not identical to the
list of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. If your target system has a limited number of
hardware breakpoints and software breakpoints are not enabled, exceeding the number
of available hardware breakpoints will cause the debugger to single step. This will
significantly reduce the execution speed. Therefore, in a debugger system with a limited
amount of hardware breakpoints, you can use the Breakpoint Usage window for:

o Identifying all breakpoint consumers
o Checking that the number of active breakpoints is supported by the target system

o Configuring the debugger to use the available breakpoints in a better way, if
possible.

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

121

Reference information on breakpoints

122

Code breakpoints dialog box

Break At

Breakpoint type

C-SPY® Debugging Guide
for ARM

The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

& Code |
Break &f:
| Edit...l
— Size
&+ Auta I_I—
 Marual
— Action
Expression: I
Condition:
Expression:
' Condition true Skip count; I il
" Condition changed

Figure 47: Code breakpoints dialog box

Use the Code breakpoints dialog box to set a code breakpoint.

Note: The Code breakpoints dialog box depends on the C-SPY driver you are using.
For information about support for breakpoints in the C-SPY driver you are using, see
Breakpoints in the C-SPY hardware drivers, page 111.

Specify the location of the breakpoint in the text box. Alternatively, click the Edit button
to open the Enter Location dialog box, see Enter Location dialog box, page 135.

Overrides the default breakpoint type. Select the Override default check box and
choose between the Software and Hardware options.

You can specity the breakpoint type for these C-SPY drivers:

o GDB Server
o J-Link/J-Trace JTAG probes
o Macraigor JTAG probes.

Using breakpoints ___¢

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto The size will be set automatically, typically to 1.

Manual Specify the size of the breakpoint range in the text box.

Action

Determines whether there is an action connected to the breakpoint. Specify an
expression, for instance a C-SPY macro function, which is evaluated when the
breakpoint is triggered and the condition is true.

Conditions

Specify simple or complex conditions:

Expression Specify a valid expression conforming to the C-SPY
expression syntax.

Condition true The breakpoint is triggered if the value of the expression is
true.
Condition changed The breakpoint is triggered if the value of the expression has

changed since it was last evaluated.

Skip count The number of times that the breakpoint condition must be
fulfilled before the breakpoint starts triggering. After that,
the breakpoint will trigger every time the condition is
fulfilled.

123

Reference information on breakpoints

JTAG Watchpoints dialog box
The JTAG Watchpoints dialog box is available from the driver-specific menu.

JTAG Watchpoints [x]
Break Condition
& Nommal: ‘Watchpaint 0 OF \Watchpoint 1
" Range: “Watchpoint 0 AMD NOT YWatchpoint 1
€ Chaine Watchpoint 1 AND THEM “watchpaint 0 Cancel |

V' ‘watchpoint 0

— Addre: —dccess Type— —Data Extern [0]; — Mode
Value: [main -] by © AnySize vae [La0000000 |
& OpFech | o C Ay || Ay
Mask IDxFFFFFFFF -] ¢ Read " Halfword Mask IDRDDDDDDDD -|| co ' User
. wiord 1
Address Bus Pattern © wiite Data Bus Pattern ' Mon Lser

IDDDDDD‘I 0000000000000070101100000 C R :

— Addre: —dccess Type— —Data Extern [1]; -~ Mode
Value [0:00000000 ~ & fny ; :”P 52 \ae [D:00000000 <[
I 5 ~
E10pFeich [l k| |Gy
Mask IDxFFFFFFFF VI € Fead pe SHETEE py 2l IDxFFFFFFFF vl 0 (ke
o
Address Bus Pattem)it Diata Bus Pattemn g 1 o ser

IDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD S E IDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Figure 48: JTAG Watchpoints dialog box

Use this dialog box to directly control the two hardware watchpoint units. If the number
of needed watchpoints (including implicit watchpoints used by the breakpoint system)
exceeds two, an error message will be displayed when you click the OK button. This
check is also performed for the C-SPY Go button.

This dialog box is available for:

o The J-Link/J-Trace driver

o The Macraigor driver.

To cause a trigger for accesses in the range 0x20-0xFF:
I Set Break Condition to Range.

2 Set the address value of watchpoint 0 to 0 and the mask to 0xFF.

3 Set the address value of watchpoint 1 to 0 and the mask to 0x1F.

C-SPY® Debugging Guide
124 for ARM

Using breakpoints ___¢

Address

Specify the address to watch for.

Value Specify an address or a C-SPY expression that evaluates to
an address. Alternatively, you can select an address you
have previously watched for from the drop-down list. For
detailed information about C-SPY expressions, see C-SPY
expressions, page 84.

Mask Qualifies each bit in the value. A zero bit in the mask will
cause the corresponding bit in the value to be ignored in the
comparison. To match any address, enter 0. Note that the
mask values are inverted with respect to the notation used in
the ARM hardware manuals.

Address Bus Pattern Shows the bit pattern to be used by the address comparator.
Ignored bits as specified in the mask are shown as x.

Access Type

Selects the access type of the data to watch for:

Any Matches any access type.

OP Fetch Matches an operation code (instruction) fetch.

Read Reads from location.

Write Writes to location.

R/'W Reads from or writes to location.

Data

Specifies the data to watch for. For size, choose between:

Any Size Matches data accesses of any size.
Byte Matches byte size accesses.
Halfword Matches halfword size accesses.
Word Matches word size accesses.

125

Reference information on breakpoints

126

Extern

Mode

Break Condition

C-SPY® Debugging Guide
for ARM

You can specify a value to watch for. Choose between:

Value Specity a value or a C-SPY expression. Alternatively, you
can select a value you have previously watched for from the
drop-down list. For detailed information about C-SPY
expressions, see C-SPY expressions, page 84.

Mask Qualifies each bit in the value. A zero bit in the mask will
cause the corresponding bit in the value to be ignored in the
comparison. To match any address, enter 0. Note that the
mask values are inverted with respect to the notation used in
the ARM hardware manuals.

Data Bus Pattern Shows the bit pattern to be used by the address comparator.
Ignored bits as specified in the mask are shown as x.

Defines the state of the external input. Choose between:

Any Ignores the state.
0 Defines the state as low.
1 Defines the state as high.

Selects which CPU mode that must be active for a match. Choose between:

User Selects the CPU mode USER.

Non User Selects one of the CPU modes SYSTEM SVC, UND,
ABORT, IRQ, or FIQ.

Any Ignores the CPU mode.

Selects how the defined watchpoints will be used. Choose between:

Normal Uses the two watchpoints individually (OR).

Using breakpoints ___¢

Range Combines both watchpoints to cover a range where
watchpoint O defines the start of the range and watchpoint 1
the end of the range. Selectable ranges are restricted to
being powers of 2.

Chain Makes a trigger of watchpoint 1 arm watchpoint 0. A
program break will then occur when watchpoint 0 is
triggered.

Log breakpoints dialog box

The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

B Lo
Break &t

C:htutorsTutor.c.47.3

Meszage: C-Spy macro "'__message' style
"depth ="', call_count

Conditions
Expression:

(%) Condition true
(O Condition changed

Figure 49: Log breakpoints dialog box
Use the Log breakpoints dialog box to set a log breakpoint.

Note: The Log breakpoints dialog box depends on the C-SPY driver you are using.
This figure reflects the C-SPY simulator. For information about support for breakpoints
in the C-SPY driver you are using, see Breakpoints in the C-SPY hardware drivers, page
111.

Break At

Specify the location of the breakpoint. Alternatively, click the Edit button to open the
Enter Location dialog box, see Enter Location dialog box, page 135.

127

Reference information on breakpoints

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
" __message' style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 278.

Conditions

Specify simple or complex conditions:

Expression Specity a valid expression conforming to the C-SPY
expression syntax.

Condition true The breakpoint is triggered if the value of the expression is
true.
Condition changed The breakpoint is triggered if the value of the expression has

changed since it was last evaluated.

Data breakpoints dialog box

The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

’ [rata |

Break &f:

| [

5

—Access Type e
& Readwiite & Auto |1
 Read Manual
= wiite — Action
Expression: I
r— Condition:
Expression:

% Condition true Skip count; I 0

" Condition changed

Figure 50: Data breakpoints dialog box

C-SPY® Debugging Guide
128 for ARM

Using breakpoints ___¢

Use the Data breakpoints dialog box to set a data breakpoint. Data breakpoints never
stop execution within a single instruction. They are recorded and reported after the
instruction is executed.

Note: The Data breakpoints dialog box depends on the C-SPY driver you are using.
For information about support for breakpoints in the C-SPY driver you are using, see
Breakpoints in the C-SPY hardware drivers, page 111.

Break At
Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box, see Enter Location dialog box, page
135.

Access Type

Selects the type of memory access that triggers data breakpoints:

Read/Write Reads from or writes to location.
Read Reads from location.
Write Writes to location.

Trigger range

Shows the requested range and the effective range to be covered by the trace. The range
suggested is either within or exactly the area specified by the Break At and the Size

options.
Extend to cover Extends the breakpoint so that a whole data structure is
requested range covered. For data structures that do not fit the size of the

possible breakpoint ranges supplied by the hardware
breakpoint unit, for example three bytes, the breakpoint
range will not cover the whole data structure. Note that the
breakpoint range will be extended beyond the size of the
data structure, which might cause false triggers at adjacent
data.

129

Reference information on breakpoints

130

Match data

Enables matching of the accessed data. Use the Match data options in combination with
the access types for data. This option can be useful when you want a trigger when a
variable has a certain value.

Value Specify a data value.
Mask Specify which part of the value to match (word, halfword,
or byte).

The Match data options are only available for J-Link/J-Trace and ST-LINK, and when
using an ARM7/9 or a Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two hardware breakpoints.

Data Log breakpoints dialog box

C-SPY® Debugging Guide
for ARM

The Data Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Edit Breakpoint [%]

’ [rata Log |
Trigger at:
IMyStruct Edit...l
Access type —Size
; & Ao [20)
o I‘I
Readfwiite Manual
" Read -
 wirite — Trigger range
Fequested:
IDx2DDDD488 - 020000478
Effective:

IDx2DDDD488 - 0x2000046F

™ Estend to cover requested range

()3 I Cancel

Figure 51: Data Log breakpoints dialog box

Trigger at

Access Type

Size

Using breakpoints ___¢

Data Log breakpoints are triggered when data is accessed at the specified location. If
you have set a log breakpoint on a specific address or arange, a log message is displayed
in the SWO Trace window for each access to that location. A log message can also be
displayed in the Data Log window, if that window is enabled. Data logs can also be
displayed on the Data Log graph in the Timeline window, if that window is enabled.
However, these log messages require that you have set up trace data in the SWO
Configuration dialog box, see SWO Configuration dialog box, page 181.

Note: Setting Data Log breakpoints is possible only for Cortex-M with SWO using the
J-Link debug probe.

Specify the location for the breakpoint in the Trigger at text box. Alternatively, click
the Edit button to open the Enter Location dialog box; see Enter Location dialog box,
page 135.

Selects the type of memory access that triggers data breakpoints:

Read/Write Reads from or writes to location.
Read Reads from location; for Cortex-M3, revision 2 devices only.
Write Writes to location; for Cortex-M3, revision 2 devices only.

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. For data breakpoints, this can be useful if you want the breakpoint to be
triggered on accesses to data structures, such as arrays, structs, and unions. Select
between two different ways to specify the size:

Auto The size will automatically be based on the type of
expression the breakpoint is set on. This can be useful if
Trigger at contains a variable.

Manual Specify the size of the breakpoint range in the text box.

131

Reference information on breakpoints

Trigger range
Shows the requested range and the effective range to be covered by the trace. The range
suggested is either within or exactly the area specified by the Trigger at and the Size

options.
Extend to cover Extends the breakpoint so that a whole data structure is
requested range covered. For data structures that do not fit the size of the

possible breakpoint ranges supplied by the hardware
breakpoint unit, for example three bytes, the breakpoint range
will not cover the whole data structure. Note that the
breakpoint range will be extended beyond the size of the data
structure, which might cause false triggers at adjacent data.

Breakpoints options
The Breakpoints option page is available in the Options dialog box. Choose
Project>Options, select the category specific to the debugger system you are using, and
click the Breakpoints tab.

Breakpoints
o ™ Restore software breakpoints at
s ,7
~
Catch exceptions
I~ I~ [~ CORERESET [~ STATERR
I~ I~ [~ MMERR [~ BUSERR
I~ I~ [~ MOCPERR [~ INTERR
I~ [~ CHRERR I~ HARDERR

Figure 52: Breakpoints options
For the following hardware debugger systems it is possible to set some driver-specific
breakpoint options before you start C-SPY:

e GDB Server

e J-Link/J-Trace JTAG probes

® Macraigor JTAG probes.

C-SPY® Debugging Guide
132 for ARM

Using breakpoints ___¢

Default breakpoint type

Selects the type of breakpoint resource to be used when setting a breakpoint. Choose
between:

Auto Uses a software breakpoint. If this is not possible, a
hardware breakpoint will be used. The debugger will use
read/write sequences to test for RAM; in that case, a
software breakpoint will be used. The Auto option works
for most applications. However, there are cases when the
performed read/write sequence will make the flash memory
malfunction. In that case, use the Hardware option.

Hardware Uses hardware breakpoints. If it is not possible, no
breakpoint will be set.

Software Uses software breakpoints. If it is not possible, no
breakpoint will be set.

Restore software breakpoints at
Automatically restores any breakpoints that were destroyed during system startup.
This can be useful if you have an application that is copied to RAM during startup and
is then executing in RAM. This can, for example, be the case if youuse the initialize

by copy linker directive for code in the linker configuration file or if you have any
__ramfunc declared functions in your application.

In this case, all breakpoints will be destroyed during the RAM copying when the C-SPY
debugger starts. By using the Restore software breakpoints at option, C-SPY will
restore the destroyed breakpoints.

Use the text field to specify the location in your application at which point you want
C-SPY to restore the breakpoints. The default location is the label -call_main.

Catch exceptions

Sets a breakpoint directly on a vector in the interrupt vector table, without using a
hardware breakpoint. This option is available for ARM9, Cortex-R4, and Cortex-M3
devices. The settings you make will work as default settings for the project. However,
you can override these default settings during the debug session by using the Vector
Catch dialog box, see Breakpoints on exception vectors, page 112.

The settings you make will be preserved during debug sessions.

This option is supported by the C-SPY J-Link/J-Trace driver only.

133

Reference information on breakpoints

Immediate breakpoints dialog box

The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

’ Immediate |

Break &f:

| [

Accesz Type Action
’7 Expression:

% Read
 Wiite

Figure 53: Immediate breakpoints dialog box

In the C-SPY simulator, use the Immediate breakpoints dialog box to set an immediate
breakpoint. Immediate breakpoints do not stop execution at all; they only suspend it

temporarily.
Break At
Specify the location for the breakpoint in the Break At text box. Alternatively, click the
Edit button to open the Enter Location dialog box; see Enter Location dialog box, page
135.
Access Type
Selects the type of memory access that triggers immediate breakpoints:
Read Reads from location.
Write Writes to location.
Action

Determines whether there is an action connected to the breakpoint. Specify an
expression, for instance a C-SPY macro function, which is evaluated when the
breakpoint is triggered and the condition is true.

C-SPY® Debugging Guide
134 for ARM

Using breakpoints ___¢

Vector Catch dialog box
The Vector Catch dialog box is available from the J-Link menu for J-Link/J-Trace and

Macraigor.
Vector Catch B
— e B — Stop at beginning of exception: ———————
Stop at beginning of exception:
I Reset I~ CORERESET - Reset Yector

I~ MMERR - Memory Management Fault Cancel
I Undef Cancel | _ Cacel |

[~ MOCPERR - Coprocessor Access Enor

™ 5wl
[~ CHRERR - Checking Erar
™ Prefetch Abort
r [~ STATERR - State Erior
Data Abart [~ BUSERR - Bus Erar
I_ IRQ [~ INTERR - Interupt Service Emars
" Fa [~ HARDERR - Hard Fault

Figure 54: The Vector Catch dialog box—for ARM9/Cortex-R4 versus for Cortex-M3

Use this dialog box to set a breakpoint directly on a vector in the interrupt vector table,
without using a hardware breakpoint. You can set breakpoints on vectors for ARM9,
Cortex-R4, and Cortex-M3 devices. Note that the settings you make here will not be
preserved between debug sessions.

Note: For the J-Link/J-Trace driver and for RDI drivers, it is also possible to set
breakpoints directly on a vector already in the options dialog box, see Setup options for
J-Link/J-Trace, page 365 and RDI, page 377.

Enter Location dialog box

The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Enter Location E
Type————— Expression:
' Expression I

7 Absolute address

 Souree location

()3 I Cancel

Figure 55: Enter Location dialog box

135

Reference information on breakpoints

136

Type

C-SPY® Debugging Guide
for ARM

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Selects the type of location to be used for the breakpoint:

Expression

Absolute address

Source location

A C-SPY expression, whose value evaluates to a valid
address, such as a function or variable name.

Code breakpoints are set on functions, for example main.
Data breakpoints are set on variable names. For example,
my_var refers to the location of the variable my_var, and
arr [3] refers to the location of the third element of the
array arr.

For static variables declared with the same name in several
functions, use the syntax
my_func::my_static_variable to refer to a specific
variable.

For more information about C-SPY expressions, see C-SPY
expressions, page 84.

An absolute location on the form zone: hexaddress or
simply hexaddress (for example Memory: 0x42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A location in your C source code using the syntax:
{filename} .row.column.

filename specifies the filename and full path.

row specifies the row in which you want the breakpoint.

column specifies the column in which you want the
breakpoint.

For example, {C:\src\prog.c}.22.3
sets a breakpoint on the third character position on line 22 in
the source file utilities.c.

Note that the Source location type is usually meaningful
only for code breakpoints.

Resolve Source Ambiguity dialog box

Using breakpoints ___¢

The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on inline functions or templates, and the source location corresponds to more

than one function.

Resolve Source Ambiguity

The zource location coresponds to multiple functions.
‘which onefz] do you mean?

woid foo(T, T #|[with T=unsigned long]
woid foo(T, T #|[with T=double]

™ Automatically choose all

If you check. this item, the dialog will not be shown again
unless you re-enable it in the Tools->Dptions dialog, on
the Debugger page.

All

=

Cancel

Figure 56: Resolve Source Ambiguity dialog box

To resolve a source ambiguity, perform one of these actions:

e In the text box, select one or several of the listed locations and click Selected.

The breakpoint will be set on the source locations that you have selected in the text box.

o Click AllL
All

The breakpoint will be set on all listed locations.
Selected
Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one

function, all locations will be used.

137

Reference information on breakpoints

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for ARM.

C-SPY® Debugging Guide
138 for ARM

Monitoring memory and
registers

This chapter describes how to use the features available in C-SPY® for
examining memory and registers. More specifically, this means information

about:
e Introduction to monitoring memory and registers

e Reference information on memory and registers.

Introduction to monitoring memory and registers
This section covers these topics:

e Briefly about monitoring memory and registers
o C-SPY memory zones

e Stack display

e Memory access checking.

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, each of them
available from the View menu:

o The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Different colors are used for indicating data coverage along with
execution of your application. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

o The Symbolic memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

139

Introduction to monitoring memory and registers

140

C-SPY® Debugging Guide
for ARM

o The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, some integrity checks of the stack can be performed to detect
and warn about problems with stack overflow. For example, the Stack window is
useful for determining the optimal size of the stack. You can open up to two instances
of this window, each showing different stacks or different display modes of the same
stack.

o The Register window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Except for the hardwired group of CPU registers, additional
registers are defined in the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral units
on the ARM devices.

Due to the large amount of registers, it is inconvenient to show all registers
concurrently in the Register window. Instead you can divide registers into register
groups. The device description file defines one group for each peripheral unit in the
device. You can also define your own groups by choosing Tools>Options>Register
Filter. You can open several instances of this window, each showing a different
register group.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Register window containing
any such registers is closed when debugging a running application.

Monitoring memory and registers ___¢

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. The ARM
architecture has only one zone, Memory, which covers the whole ARM memory range.

0x00000000

OxXFFFFFFFF

Default zone Memory
Figure 57: Zones in C-SPY

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows. Use the Zone box in these windows to choose which memory
zone to display.

These zones are available depending on the device description file you are using:
Memory, Memory8, Memoryl6, Memory32, and Memory64 .

For normal memory, the default zone Memory can be used, but certain I/O registers
might require to be accessed as 8, 16, 32, or 64 bits to give correct results. By using
different memory zones, you can control the access width used for reading and writing
in, for example, the Memory window.

STACK DISPLAY

The Stack window displays the contents of the stack, overflow warnings, and it has a
graphical stack bar. These can be useful in many contexts. Some examples are:

e Investigating the stack usage when assembler modules are called from C modules
and vice versa

Investigating whether the correct elements are located on the stack

Investigating whether the stack is restored properly

Determining the optimal stack size

Detecting stack overflows.

141

Introduction to monitoring memory and registers

For cores with multiple stacks, you can select which stack to view.

Stack usage

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.
Whenever execution stops, the stack memory is searched from the end of the stack until
a byte with a value different from 0xcD is found, which is assumed to be how far the
stack has been used. Although this is a reasonably reliable way to track stack usage,
there is no guarantee that a stack overflow is detected. For example, a stack can
incorrectly grow outside its bounds, and even modify memory outside the stack area,
without actually modifying any of the bytes near the stack range. Likewise, your
application might modify memory within the stack area by mistake.

@ The Stack window cannot detect a stack overflow when it happens, but can only detect
the signs it leaves behind. However, when the graphical stack bar is enabled, the
functionality needed to detect and warn about stack overflows is also enabled.

Note: The size and location of the stack is retrieved from the definition of the section
holding the stack, made in the linker configuration file. If you, for some reason, modify
the stack initialization made in the system startup code, cstartup, you should also
change the section definition in the linker configuration file accordingly; otherwise the
Stack window cannot track the stack usage. For more information about this, see the /AR
C/C++ Development Guide for ARM.

MEMORY ACCESS CHECKING

The C-SPY simulator can simulate various memory access types of the target hardware
and detect illegal accesses, for example aread access to write-only memory. If a memory
access occurs that does not agree with the access type specified for the specific memory
area, C-SPY will regard this as an illegal access. Also, a memory access to memory
which is not defined is regarded as an illegal access. The purpose of memory access
checking is to help you to identify any memory access violations.

The memory areas can either be the zones predefined in the device description file, or
memory areas based on the section information available in the debug file. In addition
to these, you can define your own memory areas. The access type can be read and write,
read-only, or write-only. You cannot map two different access types to the same memory
area. You can check for access type violation and accesses to unspecified ranges. Any
violations are logged in the Debug Log window. You can also choose to have the
execution halted.

C-SPY® Debugging Guide
142 for ARM

Monitoring memory and registers ___¢

Reference information on memory and registers
This section gives reference information about these windows and dialog boxes:

Memory window, page 143

Memory Save dialog box, page 147
Memory Restore dialog box, page 148

Fill dialog box, page 148

Symbolic Memory window, page 150

Stack window, page 152

Register window, page 155

Memory Access Setup dialog box, page 157

Edit Memory Access dialog box, page 159.

Memory window

The Memory window is available from the View menu.

Memory contents Available zones Context menu button

Go to location — Golo I

OO0Efffe0 00/ 00 0O OO 00 OO0 00 00 ;I
OOOEffe8 00 00 00 00 00 0O 00 0O

Memory addresses—— nopfe£fo0 00 00 00 00 00 00 00 00 Copy
OOOEEEfE 00 00 00 00 00 00 00 00 Paste
00100000 BONEENESIEE EalEENZaNET] .Hello W

E?xrﬁ;’;i?ge 00100008 6f 72 6c &4 00 00 00 00 orld.... Zone »
00100010 00 00 0O 0O 00 00 00 00 —_—
00100018 00 OO0 OO0 OO0 OO0 OO0 00 OO w L Units
00100020 00 00 00 00 00 00 00 00 23 Units
00100028 00 00 00 00 cd cd cd cd 4 Units

‘ v Little Endian

Memory contents in ASCII format Big Endian
v Enable
v Show
I Fill...
Eermory Fil Clear

Memary Save. ..
Memoary Restare, .,

Set Data Breakpoink

Figure 58: Memory window

143

Reference information on memory and registers

144

&

Toolbar

Display area

C-SPY® Debugging Guide
for ARM

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

The toolbar contains:

Go to The location you want to view. This can be a memory address, or
the name of a variable, function, or label.

Zone display Selects a memory zone to display, see C-SPY memory zones,
page 141.

Context menu Displays the context menu, see Context menu, page 145.

button

Update Now Updates the content of the Memory window while your

application is executing. This button is only enabled if the C-SPY
driver you are using has access to the target system memory
while your application is executing.

Live Update Updates the contents of the Memory window regularly while
your application is executing. This button is only enabled if the
C-SPY driver you are using has access to the target system
memory while your application is executing. To set the update
frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to

1x Units—the memory contents in ASCII format. You can edit the contents of the
display area, both in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Yellow Indicates data that has been read.
Blue Indicates data that has been written
Green Indicates data that has been both read and written.

Monitoring memory and registers ___¢

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY Simulator.

Context menu

This context menu is available:

Copy
Paste

Zone 3

v lxUnits
2x Units
4x Units
8x Units

v Little Endian
Big Endian

Data Coverage 3

Find...

Replace...

Mermory Fill...
Memory Save...

Mermory Restore...

Set Data Breakpoint

Figure 59: Memory window context menu

These commands are available:

Copy, Paste Standard editing commands.

Zone Selects a memory zone to display, see C-SPY memory zones,
page 141.

1x Units Displays the memory contents in units of 8 bits.

2x Units Displays the memory contents in units of 16 bits.

4x Units Displays the memory contents in units of 32 bits.

8x Units Displays the memory contents in units of 64 bits.

Little Endian Displays the contents in little-endian byte order.

Big Endian Displays the contents in big-endian byte order.

145

Reference information on memory and registers

Data Coverage Choose between:

Enable toggles data coverage on or off.
Show toggles between showing or hiding data coverage.
Clear clears all data coverage information.

These commands are only available if your C-SPY driver
supports data coverage.

Find Displays a dialog box where you can search for text within the
Memory window; read about the Find dialog box in the /DE
Project Management and Building Guide for ARM.

Replace Displays a dialog box where you can search for a specified
string and replace each occurrence with another string; read
about the Replace dialog box in the IDE Project Management
and Building Guide for ARM.

Memory Fill Displays a dialog box, where you can fill a specified area with
a value, see Fill dialog box, page 148.

Memory Save Displays a dialog box, where you can save the contents of a
specified memory area to a file, see Memory Save dialog box,
page 147.

Memory Restore Displays a dialog box, where you can load the contents of a

file in Intex-hex or Motorola s-record format to a specified
memory zone, see Memory Restore dialog box, page 148.

Set Data Breakpoint Sets breakpoints directly in the Memory window. The
breakpoint is not highlighted; you can see, edit, and remove it
in the Breakpoints dialog box. The breakpoints you set in this
window will be triggered for both read and write access. For
more information, see Setting a data breakpoint in the
Memory window, page 115.

C-SPY® Debugging Guide
146 for ARM

Monitoring memory and registers ___¢

Memory Save dialog box

Zone

Start address

End address

File format

Filename

Save

The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Memory Save rz|

Zone:

| Memary ¥ | [Save]

Start address: End address:
|

[oxs0 | [oxFr

File: Farmat:

| intel-extended v |

Filename:
| Ciiprojectsimemary, hex | E]

Figure 60: Memory Save dialog box

Use this dialog box to save the contents of a specified memory area to a file.

Selects a memory zone.

Specify the start address of the memory range to be saved.

Specify the end address of the memory range to be saved.

Selects the file format to be used, which is Intel-extended by default.

Specify the destination file to be used; a browse button is available for your convenience.

Saves the selected range of the memory zone to the specified file.

147

Reference information on memory and registers

Memory Restore dialog box

The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Memory Restore E

Zone:

frver g
Close |

Filename:

I Ciiprojectsimemary, hex

Figure 61: Memory Restore dialog box

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

Zone

Selects a memory zone.
Filename

Specify the file to be read; a browse button is available for your convenience.
Restore

Loads the contents of the specified file to the selected memory zone.

Fill dialog box

The Fill dialog box is available from the context menu in the Memory window.

Start address: Length: Zone:
101D [0 |Memay x|
Walue: Operation

FF ' Copy AND

" HOR 0OR

()3 I Cancel |

Figure 62: Fill dialog box

Use this dialog box to fill a specified area of memory with a value.

C-SPY® Debugging Guide
148 for ARM

Monitoring memory and registers ___¢

Start address

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Length

Type the length—in binary, octal, decimal, or hexadecimal notation.
Zone

Selects a memory zone.
Value

Type the 8-bit value to be used for filling each memory location.
Operation

These are the available memory fill operations:

Copy Value will be copied to the specified memory area.

AND An AND operation will be performed between Value and the
existing contents of memory before writing the result to
memory.

XOR An XOR operation will be performed between Value and the
existing contents of memory before writing the result to
memory.

OR An OR operation will be performed between Value and the
existing contents of memory before writing the result to
memory.

149

Reference information on memory and registers

150

Symbolic Memory window
The Symbolic Memory window is available from the View menu when the debugger is

Toolbar

C-SPY® Debugging Guide
for ARM

&

running.
Symbolic Memory B
cato | =] [wemory =] previous | _nex_|
Location | Data | ‘ariable | Walue | Size | Tvpe | ;I
0x000. . . 0x00000000 4 -
0x001... Ox00000000 call count 1] 4 int
0x001... 0x00000001 rootfd] 1 4 unsigned int
0x001... 0x00000001 rootf1] 1 4 unsigned int
0x001... 0x00000002 rootf2] 2 4 unsigned int
0x001... 0x00000000 rootf3] 0 4 unsigned int
0x001... 0x00000000 rootf4] 0 4 unsigned int
0x001... 0x00000000 rootff] 0 4 unsigned int
0x001... 0x00000000 rootfR] 0 4 unsigned int
0x001... 0x00000000 rootf7] 0 4 unsigned int
0x001... 0x00000000 rootff] 0 4 unsigned int
0x001... 0x00000000 rootfd] 0 4 unsigned int
0x00L1. .. OxCDCOCDCD 4
0x00L1. .. OxCDCOCDCD 4
0x00L1. .. OxCDCOCDCD 4 |
-
Figure 63: Symbolic Memory window

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being

overwritten.

To view the memory corresponding to a variable, you can select it in the editor window

and drag it to the Symbolic Memory window.

The toolbar contains:

Go to

Zone display

Previous

Next

The memory location or symbol you want to view.

Selects a memory zone to display, see C-SPY memory zones,

page 141.

Highlights the previous symbol in the display area.

Highlights the next symbol in the display area.

Monitoring memory and registers ___¢

Display area

This area contains these columns:

Location The memory address.

Data The memory contents in hexadecimal format. The data is
grouped according to the size of the symbol. This column is
editable.

Variable The variable name; requires that the variable has a fixed memory

location. Local variables are not displayed.
Value The value of the variable. This column is editable.

Type The type of the variable.

There are several different ways to navigate within the memory space:

e Text that is dropped in the window is interpreted as symbols
o The scroll bar at the right-side of the window
e The toolbar buttons Next and Previous

o The toolbar list box Go to can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

Context menu

This context menu is available:

Mext Symbol
Previous Symbaol

1 Units
2x Units
¢ Units

&dd B Watch Windaw

Figure 64: Symbolic Memory window context menu

These commands are available:

Next Symbol Highlights the next symbol in the display area.
Previous Symbol Highlights the previous symbol in the display area.
1x Units Displays the memory contents in units of 8 bits. This

applies only to rows which do not contain a variable.

2x Units Displays the memory contents in units of 16 bits.

151

Reference information on memory and registers

Stack window

Current stack

pointer

C-SPY® Debugging Guide
152 for ARM

4x Units Displays the memory contents in units of 32 bits.

Add to Watch Window Adds the selected symbol to the Watch window.

The Stack window is available from the View menu.

X Current stack
Stack view pointer Used stack memory, Unused stack memory,

in dark gray in light gray

The graphical stack bar
with tooltip information

Location | Data. Yariable Yalue | Frame |

0x08

+1 0x08

+2 0x0000 p.mStatus 0 [1] _exit

+4 Ox4Rh

+5 0x67

+6 OxEOQ

+7 0Ox04

Figure 65: Stack window

This window is a memory window that displays the contents of the stack. In addition,
some integrity checks of the stack can be performed to detect and warn about problems
with stack overflow. For example, the Stack window is useful for determining the
optimal size of the stack.

Overriding the default stack setup

The Stack window retrieves information about the stack size and placement from the
definition of the sections holding the stacks made in the linker configuration file. The
sections are described in the /AR C/C++ Development Guide for ARM.

For applications that set up the stacks using other mechanisms, it is possible to override
the default mechanism. Use one of the C-SPY command line option variants, see
--proc_stack_stack, page 342.

To view the graphical stack bar:
Choose Tools>Options>Stack.
Select the option Enable graphical stack display and stack usage.

You can open up to two Stack windows, each showing a different stack—if several
stacks are available—or the same stack with different display settings.

Monitoring memory and registers ___¢

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 111.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for ARM.

Toolbar

Stack Selects which stack to view. This applies to cores with multiple
stacks.

The graphical stack bar
Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory space reserved for the stack. The graphical stack bar turns red when the
stack usage exceeds a threshold that you can specify.

When the stack bar is enabled, the functionality needed to detect and warn about stack
overflows is also enabled.

@ Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area

This area contains these columns:

Location Displays the location in memory. The addresses are displayed in
increasing order. The address referenced by the stack pointer, in
other words the top of the stack, is highlighted in a green color.

Data Displays the contents of the memory unit at the given location.
From the Stack window context menu, you can select how the
data should be displayed; as a 1-, 2-, or 4-byte group of data.

Variable Displays the name of a variable, if there is a local variable at the
given location. Variables are only displayed if they are declared
locally in a function, and located on the stack and not in registers.

Value Displays the value of the variable that is displayed in the
Variable column.

Frame Displays the name of the function that the call frame corresponds
to.

153

Reference information on memory and registers

Context menu

C-SPY® Debugging Guide

This context menu is available:

v Show Variables
Show Offsets
1x Units
2x Units

v dxUnits

Default Format
Binary Format

Octal Format
Decimal Format
Hexadecimal Format

Char Format

Options...

Figure 66: Stack window context menu

These commands are available:

Show variables

Show offsets

1x Units
2x Units
4x Units

Default Format,
Binary Format,
Octal Format,
Decimal Format,
Hexadecimal Format,
Char Format

Options

Displays separate columns named Variables, Value, and
Frame in the Stack window. Variables located at memory
addresses listed in the Stack window are displayed in these
columns.

Displays locations in the Location column as offsets from
the stack pointer. When deselected, locations are displayed
as absolute addresses.

Displays data in the Data column as single bytes.
Displays data in the Data column as 2-byte groups.
Displays data in the Data column as 4-byte groups.

Changes the display format of expressions. The display
format setting affects different types of expressions in
different ways, see Table 8, Effects of display format setting
on different types of expressions. Your selection of display
format is saved between debug sessions. These commands
are available if a selected line in the Stack window contains
a variable.

Opens the IDE Options dialog box where you can set
options specific to the Stack window, see the IDE Project
Management and Building Guide for ARM.

Monitoring memory and registers ___¢

Register window

The Register window is available from the View menu.

IUAHT vl

TARTRERTHR = 0=02
TARTDLL = 0=02
TARTRER = 0=02
TARTTHR = 0=02
TARTIER = 0=01
TARTDLH = 0=01

[TARTFCRIIR = 0x=00
TARTFCR = 0=00
TARTIIR = 0=00
TARTLCR = 0=03
ARTHCR = 0=00
TARTLSR = 0=00
TARTHSR = 0=00
TARTSCR = 0=00

Figure 67: Register window

This window gives an up-to-date display of the contents of the processor registers and
special function registers, and allows you to edit their contents. Optionally, you can
choose to load either predefined register groups or to define your own
application-specific groups

You can open several instances of this window, which is very convenient if you want to
keep track of different register groups.
To enable predefined register groups:

I Select a device description file that suits your device, see Selecting a device description
file, page 47.

2 The register groups appear in the Register window, provided that they are defined in
the device description file. Note that the available register groups are also listed on the
Register Filter page.

To define application-specific register groups, read about register filter options in the
IDE Project Management and Building Guide for ARM.

155

Reference information on memory and registers

156

Toolbar

Display area

C-SPY® Debugging Guide
for ARM

Drop-down list Selects which register group to display, by default CPU
Registers. By default, there are two register groups in the
debugger:

Current CPU Registers contains the registers that are
available in the current processor mode.

CPU Registers contains both the current registers and their
banked counterparts available in other processor modes.

Additional register groups are predefined in the device
description files—available in the arm\config
directory—that make all SFR registers available in the
register window. The device description file contains a
section that defines the special function registers and their
groups.

Displays registers and their values. Every time C-SPY stops, a value that has changed
since the last stop is highlighted. To edit the contents of a register, click it, and modify
the value.

Some registers are expandable, which means that the register contains interesting bits or
subgroups of bits.

To change the display format, change the Base setting on the Register Filter
page—available by choosing Tools>Options.

Monitoring memory and registers ___¢

Memory Access Setup dialog box

The Memory Access Setup dialog box is available from the Simulator menu.

Memory Access Setup

™ Use ranges based on

% Deyvice description file

| Debug file segment information [anly shovwn while debugging) Cancel
Zone | Start Addr | End Addr | Accesz Type |
Memory 0x0 0x1FF R

Memory 0200 0x9FF R
Memory 01000 0«10FF R
Memory 0x1100 0«FFFF R

™ Use manual ranges
Zone | Start Addr| End Addr| Accesz Type | e

Exdit....

Delete

[elete &l

i

Memony aczess checking
Check far: Schor:
¥ Access bype violation € Log violations
¥ Access tounspeciied ranges % [Log and stop execution

Figure 68: Memory Access Setup dialog box

This dialog box lists all defined memory areas, where each column in the list specifies
the properties of the area. In other words, the dialog box displays the memory access
setup that will be used during the simulation.

Note: If you enable both the Use ranges based on and the Use manual ranges option,
memory accesses are checked for all defined ranges.

For information about the columns and the properties displayed, see Edit Memory
Access dialog box, page 159.

Use ranges based on

Selects any of the predefined alternatives for the memory access setup. Choose between:

Device description file Loads properties from the device description file.

157

Reference information on memory and registers

Debug file segment Properties are based on the section information available in

information the debug file. This information is only available while
debugging. The advantage of using this option, is that the
simulator can catch memory accesses outside the linked
application.

Use manual ranges

Specify your own ranges manually via the Edit Memory Access dialog box. To open
this dialog box, choose New to specify a new memory range, or select a memory zone
and choose Edit to modity it. For more information, see Edit Memory Access dialog
box, page 159.

The ranges you define manually are saved between debug sessions.

Memory access checking

Check for determines what to check for;

® Access type violation

® Access to unspecified ranges.
Action selects the action to be performed if an access violation occurs; choose between:

e Log violations

e Log and stop execution.

Any violations are logged in the Debug Log window.

Buttons

These buttons are available:

New Opens the Edit Memory Access dialog box, where you can
specify a new memory range and attach an access type to it, see
Edit Memory Access dialog box, page 159.

Edit Opens the Edit Memory Access dialog box, where you can edit
the selected memory area. See Edit Memory Access dialog box,
page 159.

Delete Deletes the selected memory area definition.

Delete All Deletes all defined memory area definitions.

Note: Except for the OK and Cancel buttons, buttons are only available when the
option Use manual ranges is selected.

C-SPY® Debugging Guide
158 for ARM

Edit Memory Access dialog box

Monitoring memory and registers ___¢

The Edit Memory Access dialog box is available from the Memory Access Setup

dialog box.
Zone:
I Memory - l Cancel |
Start address: End address:
Jo [1FFF
—Access lype

 Fead and write
' Fead only
© Wfrite anly

Figure 69: Edit Memory Access dialog box

Use this dialog box to specify the memory ranges, and assign an access type to each
memory range, for which you want to detect illegal accesses during the simulation.

Memory range

Defines the memory area for which you want to check the memory accesses:
Zone Selects a memory zone, see C-SPY memory zones, page 141.

Start address Specify the start address for the address range, in hexadecimal

notation.

End address Specify the end address for the address range, in hexadecimal

notation.

Access type

Selects an access type to the memory range; choose between:

e Read and write
e Read only
e Write only.

159

Reference information on memory and registers

C-SPY® Debugging Guide
160 for ARM

Collecting and using trace
data in the JTAGjet driver

This chapter gives you information about using the JTAGjet trace.

Using JTAGjet trace

This section gives information about collecting and using trace data. More specifically,
you will get information about:

Briefly about using JTAGjet trace, page 161

The JTAGjet Trace window, page 162

Trace view field configuration dialog box, page 164

Trace search query dialog box, page 165

ETM Control dialog box, page 167

ETM Configuration dialog box, page 168.

BRIEFLY ABOUT USING JTAGJET TRACE

The trace buffer contains a chronologically ordered collection of processor state
“snapshots” from the past. In its most common form, it is a contiguous collection of
processor bus cycles. It might, however, consist of multiple snippets as short as a single
sample taken over a longer period of time. The trace buffer width (the number of bits of
information contained in every sample) and depth (the number of samples that can be
stored in the buffer) vary with different targets. For example, some emulators have trace
buffers 120 bits wide and 32K samples deep. The Trace window allows you to use this
information, by providing you with powerful customization, filtration and search
capabilities.

Only if the target features a trace buffer, such as that found in in-circuit emulators, or it
has a trace FIFO, will the window appear. The Trace window provides access to the
execution trace buffer on the target board.

The right side of the status bar at the bottom of the window shows the Trace Clock
frequency.

The JTAGjet-Trace hardware measures the frequency of the trace clock even when the
trace is not being collected. Trace Clock with a value of 0 indicates that the trace clock
is not available. Re-enable the trace by clicking the Enable button, as instructed by the
Trace window.

161

Using JTAGjet trace

162

The JTAGjet Trace window
The JTAGjet Trace window is available from the JTAGjet menu.

C-SPY® Debugging Guide
for ARM

Trace

Enablel Start | Hesumel Clear | ﬂlﬂuer}l vlj N Query...l [~ Filter... | Save...l ¥ Sunc
PC | Disas | Source | TStamp [abs] [cyc] | CpuMode ||£I
#36 00002008 EL TIHM Counte. .. 173954270 Thumb
#39 00002004 WSTZ.8 1D18[4].D1. .. 173954276 Thumb
#40 0000200C HOWS R1. #128 TIM ClearFlag(... 173954280 Thumb
#41 0000200E LSLS k1. R1. #7 173954302 Thumb
#44 00002008 EL TIM Counte. .. 173954314 Thumb
#45 00002004 WSTZ.8 1D18[4].D1. .. 173954320 Thumb
#46 0000200C HOWS R1. #128 TIM ClearFlag(... 173954324 Thumb
#47 0000200E LSLS k1. R1. #7 173954346 Thumb
#50 00002008 EL TIM Counte. .. 173954358 Thumb
#51 00002004 WST2.8 1D18[4].D1. .. 173954364 Thumb
#52 0000200C HOWS R1. #128 TIM ClearFlag(... 173954368 Thumb
#53 0000200E LSLS k1. R1. #7 173954390 Thumb
#56 00002008 EL TIM Counte. .. 173954402 Thumb
#57 00002004 WSTZ.8 1D18[4].D1. .. 173954408 Thumb
#58 0000200C HOWS R1. #128 TIM ClearFlag(... 173954412 Thumb
#59 0000200E LSLS k1. R1. #7 173954434 Thumb
#6862 00002008 EL TIM Counte. .. 173954446 Thumb
#63 00002004 WSTZ.8 1D18[4].D1. .. 173954452 Thumb LI
Skatus; Mokactive, Full Trace Full {100%:) Trace Clock: 48.01MHz

Figure 70: The JTAGjet Trace window

Field format selection

You can control the format in which each individual column in the Trace window is
displayed. To do so, click on the header of the column you would like to change and
select a format from the menu. For numerical fields, the display formats define the radix
used for displaying the value. For timestamp fields, a number of other options described
below are available.

Timestamp display

Some target systems, such as in-circuit emulators, are capable of inserting a timestamp
in each trace sample. The timestamp can be used to determine the exact duration of
certain events and to analyze the dynamics of the system’s behavior. The Trace window
offers several display formats to aid you in timing analysis. From the column’s
drop-down menu, select the units in which you want to measure time, such as seconds,
milliseconds, microseconds or nanoseconds. Time intervals can be displayed as
Absolute (the time contained in the sample is displayed as is), Relative (the time of a
sample determined after subtracting the ‘base’ time from each sample), or Delta (the
timestamp difference between two consecutive samples).

Collecting and using trace data in the JTAGjet driver °

Trace filtration

The trace window allows you to filter the trace buffer to show only samples of interest.
The trace filtration process is very similar to the search process, except that a trace query
is not used to find a sample, but to decide whether to display it or not. The trace filter is
configured using a trace query specification identical to the one used for trace searching.
For more information, see Trace search query dialog box, page 165.

Once a filter query has been defined, you can turn filtration on and off by clicking on the
Filter button on the trace window toolbar. When a trace filter is active (ON), only
samples satisfying the filter query are displayed. The positions of samples that were
filtered out are indicated by dashed red lines in the trace window.

Saving trace

The Save button, as well as the corresponding context menu command, allows you to
save the trace to a file in one of these formats:

Format Description
==> Add selected field on end of visible fields
Csv Can be opened in Microsoft Excel or a text editor. Cannot be opened

in the Trace window.

TID Text Trace Test Data file that is reloadable. Can be opened in a text
editor or used by external programs.

TDF Binary Trace Data File. Not supported.

Table 11: JTAGjet trace save formats

You can choose to save:

Visible records Saves only samples shown on the screen.

All records Caution is advised: The option might create very large files.

Range of records Saves the samples between the selected starting and ending
samples.

Saving the trace as a text file preserves only the fields actually displayed on the screen.
The Field option allows you to exclude certain fields.

The save operation takes into account the current filtering settings; only those samples
that meet the filtering conditions are saved.

163

Using JTAGjet trace

Trace view field configuration dialog box

The Trace window allows you to select and rearrange the fields of the collected trace
information. To configure these fields, click the Fields button on the Trace window
toolbar. The system will display the Trace view field configuration dialog box.

Trace view field configuration

Available trace fields: Wisible trace fields:

#

PC

Eucpt
Disas
Source
TStamp
CycleCnt
Memaddr
Rdwir
MemD ata
Datatcc
SyncCode
ContestlD
Crubdnde

- # Move up
T PC
Disas Move down
Source

= TStamp
>3
Crubtods Delete

0K

LI Cancel

el

Figure 71: Trace view field configuration dialog box

You can display a field in multiple copies or completely remove it. Multiple copies of
the same field might be useful, for example, when you want to see the same information
in different formats, such as hex, decimal and binary, at the same time.

These fields are available:

#

PC

Disas
Source
MemAddr
RdWr
MemData
TStamp
DataAcc

C-SPY® Debugging Guide
164 for ARM

Frame sequence number. The smaller #, the older sample.
Program Counter

Disassembled code (in case there is no source file)
Source code associated with the trace frame

Address of memory variable being read or written

Data memory operation (Rd or Wr)

Variable value being read or written

Timestamp

Type of memory access (Byte, Word, Half)

Collecting and using trace data in the JTAGjet driver °

SyncCode Trace status, one of:

Start, start of trace after CPU stop

Sync, ETM sync frames

On, start of trace after each trigger

FIFO, ETM FIFO had an overflow (loss of trace data)

CpuMode CPU execution mode, one of:

ARM, ARM mode execution
Thumb, Thumb mode execution
NoExec, Instruction fetched but not executed

Note: The available trace fields might be different for some CPUs.

Trace search query dialog box

The JTAGjet Trace window allows you to search the trace buffer using sophisticated
queries.

Trace search query ed e

- Field condition

[any]

Expt: [an]
Dizaz [E] & Don't care
Source: [E] .
CycleCrt: [ary] ' Field == A
';“'de\n:ﬁddfi Eany} ' [Field & Mask] == &
S ary
MemData: [any] 7 [Field & Mask] »= 4 & [Field & Mask] <= B

Datadco: [any]
SyncCode: [any]
ContextlD: [any]
Cputdode: [any] A= I

Mask = I

' Field containz string &

I]
I]

B

()8 I Cancel |

Figure 72: Trace search query dialog box

Trace queries can range from simple, such as “sample with address bus value equal to
0x1234” to very complicated, such as “sample containing a fetch cycle of an instruction
at an odd address in the upper 16 Kbytes of memory whose operand contained the word
bptr”. Both of these queries can be reduced to sets of conditions that each field in a
sample has to satisfy. You can specify the field conditions using the trace search query
dialog box accessed by clicking the Query button on the Trace window toolbar.

165

Using JTAGjet trace

166

C-SPY® Debugging Guide
for ARM

For every field in the trace sample displayed in the list box on the left, you can define a
condition that the field value must satisfy. This condition is specified in the Field
condition section of the dialog box. Choose between these conditions:

Condition Description

Don’t care Any value is acceptable.

Field == The field must have the value specified in text box A.
(Field & Mask) == The field value bitwise AND-ed with the value in the

Mask box must equal to the value specified in text box A.

(Field & Mask) >= A && The field value bitwise AND-ed with the value in the

(Field & Mask) <=B Mask box must be greater then, or equal to, the value
specified in text box A, and less than or equal to the
value specified in text box B.

Field contains string A The textual representation of the field value must contain
the string specified in text box A.

Table 12: JTAGjet trcae searching conditions

Once you have defined a trace query, you can employ it to navigate through the trace
buffer using the Find next and Find prev. buttons on the Trace window toolbar. You
can also tag (highlight) all samples satisfying the current query by clicking the Tag
button. The label of the button indicates if the tag is set (ON) or not (OFF).

Collecting and using trace data in the JTAGjet driver °

ETM Control dialog box

To display the ETM Control dialog box, click the Control button in the left corner of
the Trace window.

ETM Control =

General Contral | ETH Trace Settingsl Statusl

¥ Enable ETHM Configure ETH .. |

~ Stop Trace Capture

' Only 'hen Processor is Stopped
" wihen Trace Bufer is Ful

 After Detecting theTrigger Trigger Mow |

Trigger Settings

Before[%) [0 . : — -
I~ ETit4 Tirigger on &ddress I

I~ | Obsenye Extemnal Trigger Fin

[T Accumulate Trace between Processor RUNz
™ Manual Start/Stop Mode

Start | Stop

QK I Cancel | Apply |

Figure 73: ETM Control dialog box

The General Control tab allows you to control the processes of starting and stopping
trace capture. Clicking the button Configure ETM displays the ETM Configuration
dialog box, see ETM Configuration dialog box, page 168.

The ETM Trace Settings tab lets you decide what will be captured in the trace buffer.

The Status tab shows the JTAGjet-Trace hardware capabilities and the on-chip ETM
resources of the processor in use. These capabilities are determined by the device
manufacturer and the ETM architecture.

167

Using JTAGjet trace

ETM Configuration dialog box

The ETM Configuration dialog box is displayed when you click the Configure ETM
button in the ETM Control dialog box.

x
Board File ISTHS‘I % ETH Initialization [Port 2 and B] j

Trace Paort Size

Trace Port Mode INormaI, no Half-rate clocking j

Board File Commands :
Title=STR31x ETH Initilization [Fort 2 and B]

5D 0x5C002018 = 0x0110DC000 s port clock enable
5D 0x5C002020 = 0x0110DC0O00 S port rezet clear
5D 0x5C00204C = 0=0000FFFF SOUT2[7.0] are all
5D 0x5C00205C = 0=00003000 SOUTEE alt 3 funct
5D 0x5C00207C = 0=00004000 SIMEF alt 1 functio

Create Mew Board File | Restore Defaults |
el _|

Figure 74: ETM Configuration dialog box

Select an appropriate board file from the Board File drop-down list.

C-SPY® Debugging Guide
168 for ARM

Collecting and using trace
data

This chapter gives you information about collecting and using trace data in
C-SPY®. More specifically, this means:

e Introduction to using trace
e Procedures for using trace

o Reference information on trace.

Introduction to using trace

This section introduces trace.
These topics are covered:

o Reasons for using trace

e Briefly about trace

o Requirements for using trace.

See also

o Getting started using data logging, page 89

® Debugging in the power domain, page 225

o Getting started using interrupt logging using C-SPY hardware drivers, page 253
o Using the profiler, page 213.

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

Reasons for using the trace triggers and trace filters

By using trace trigger and trace filter conditions, you can select the interesting parts of
your source code and use the trace buffer in the J-Trace probe more efficiently. Trace

169

Introduction to using trace

170

C-SPY® Debugging Guide
for ARM

triggers—Trace Start and Trace Stop breakpoints—specify for example a code section
for which you want to collect trace data. A trace filter specifies conditions that, when
fulfilled, activate the trace data collection during execution.

For ARM7/9 devices, you can specify up to 16 trace triggers and trace filters in total, of
which 8 can be trace filters.

For Cortex-M devices, you can specify up to 4 trace triggers and trace filters in total.

BRIEFLY ABOUT TRACE

Your target system must be able to generate trace data. Once generated, C-SPY can
collect it and you can visualize and analyze the data in various windows and dialog
boxes.

C-SPY supports collecting trace data from these target systems:

e Devices with support for ETM (Embedded Trace Macrocell) —ETM trace

o Devices with support for the SWD (Serial Wire Debug) interface using the SWO
(Serial Wire Output) communication channel—SWO trace

o The C-SPY simulator.

Depending on your target system, different types of trace data can be generated.

ETM trace

ETM trace (also known as full trace) is a continuously collected sequence of every
executed instruction for a selected portion of the execution. It is only possible to collect
as much data as the buffer can hold.

The debug probe contains a trace buffer that collects trace data in real time, but the data
is not displayed in the C-SPY windows until after the execution has stopped.

SWO trace

SWO trace is a sequence of events of various kinds, generated by the on-chip debug
hardware. The events are transmitted in real time from the target system over the SWO
communication channel. This means that the C-SPY windows are continuously updated
while the target system is executing. The most important events are:

o PC sampling

The hardware can sample and transmit the value of the program counter at regular
intervals. This is not a continuous sequence of executed instructions (like ETM
trace), but a sparse regular sampling of the pc. A modern ARM CPU typically
executes millions of instructions per second, while the PC sampling rate is usually
counted in thousands per second.

Collecting and using trace data ___¢

e Interrupt logs

The hardware can generate and transmit data related to the execution of interrupts,
generating events when entering and leaving an interrupt handler routine.

e Data logs

Using Data Log breakpoints, the hardware can be configured to generate and
transmit events whenever a certain variable, or simply an address range, is accessed
by the CPU.

The SWO channel has limited throughput, so it is usually not possible to use all the
above features at the same time, at least not if either the frequency of PC sampling, of
interrupts, or of accesses to the designated variables is high.

Trace features in C-SPY

In C-SPY, you can use the trace-related windows Trace, Function Trace, Timeline, and
Find in Trace. In the C-SPY simulator, you can also use the Trace Expressions window.
Depending on your C-SPY driver, you can set various types of trace breakpoints and
triggers to control the collection of trace data.

If you use the C-SPY J-Link/J-Trace driver or the ST-LINK driver, you have access to
windows such as the Interrupt Log, Interrupt Log Summary, Data Log, and Data Log
Summary windows.

When you are debugging, two buttons labeled ETM and SWO, respectively, are visible
on the IDE main window toolbar. If any of these buttons is green, it means that the
corresponding trace hardware is generating trace data. Just point at the button with the
mouse pointer to get detailed tooltip information about which C-SPY features that have
requested trace data generation. This is useful, for example, if your SWO
communication channel often overflows because too many of the C-SPY features are
currently using trace data. Clicking on the buttons opens the corresponding setup dialog
boxes.

In addition, several other features in C-SPY also use trace data, features such as the
Profiler, Code coverage, and Instruction profiling.
REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality, and there are no specific
requirements.

To use trace-related functionality in you hardware debugger system, you need debug
components (hardware, a debug probe, and a C-SPY driver) that all support trace.

Note: The specific set of debug components you are using determine which trace
features in C-SPY that are supported.

171

Procedures for using trace

172

Requirements for using ETM trace
ETM trace is available for some ARM devices.
To use ETM trace you need one of these combinations:

o A J-Trace debug probe and a device that supports ETM. Make sure to use the
C-SPY J-Link/J-Trace driver.

o A J-Link debug probe and a device that supports ETM via ETB (Embedded Trace
Buffer). The J-Link probe reads ETM data from the ETB buffer. Make sure to use
the C-SPY J-Link/J-Trace driver.

Requirements for using SWO trace

To use SWO trace you need a J-Link, J-Trace, or ST-LINK debug probe that supports
the SWO communication channel and a device that supports the SWD/SWO interface.

Requirements for using the trace triggers and trace filters

The trace triggering and trace filtering features are available only for J-Trace and when
using an ARM7/9 or Cortex-M device.

Procedures for using trace

C-SPY® Debugging Guide
for ARM

This section gives you step-by-step descriptions about how to collect and use trace data.
More specifically, you will get information about:

Getting started with trace in the C-SPY simulator

Getting started with ETM trace

Trace data collection using breakpoints

Searching in trace data

Browsing through trace data.

GETTING STARTED WITH TRACE IN THE C-SPY SIMULATOR

To collect trace data using the C-SPY simulator, no specific build settings are required.

To get started using trace:

After you have built your application and started C-SPY, choose Simulator>Trace to
open the Trace window, and click the Activate button to enable collecting trace data.

Start the execution. When the execution stops, for instance because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 184.

Collecting and using trace data ___¢

GETTING STARTED WITH ETM TRACE

To get started using ETM trace:
Before you start C-SPY:

o For J-Trace no specific settings are required before starting C-SPY

e For your device, the trace port must be set up. For some devices this is done
automatically when the trace logic is enabled. However, for some devices, typically
Atmel and ST devices based on ARM 7 or ARM 9, you need to set up the trace port
explicitly. You do this by means of a C-SPY macro file. You can find examples of
such files (ETM_init*.mac) in the example projects. To use a macro file, choose
Project>Options>Debugger>Setup>Use macro files. Specify your macro file; a
browse button is available for your convenience.

Note that the pins used on the hardware for the trace signals cannot be used by your
application.

After you have started C-SPY, choose Trace Settings from the C-SPY driver menu. In
the Trace Settings dialog box that appears, check if you need to change any of the
default settings. For more information, see ETM Trace Settings dialog box, page 177.

Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable trace data collection.

Start the execution. When the execution stops, for instance because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information about the
window, see Trace window, page 184.

GETTING STARTED WITH SWO TRACE

To get started using SWO trace:

Before you start C-SPY, choose Project>Options>J-Link/J-Trace for J-Link/J-Trace
or Project>Options>ST-Link for ST-LINK, respectively. Click the Connection tab
and choose Interface>SWD.

After you have started C-SPY, choose SWO Trace Windows Settings from the
J-Link menu or the ST-LINK menu. In the SWO Trace Windows Settings dialog
box that appears, make your settings for controlling the output in the Trace window. To
see statistical trace data, select the option Force>PC samples, see SWO Trace Window
Settings dialog box, page 179.

To configure the hardware’s generation of trace data, click the SWO Configuration
button available in the SWO Configuration dialog box. For more information, see
SWO Configuration dialog box, page 181.

173

Procedures for using trace

174

C-SPY® Debugging Guide
for ARM

Note specifically these settings:

o The value of the CPU clock option must reflect the frequency of the CPU clock
speed at which the application executes. Note also that the settings you make are
preserved between debug sessions.

o To decrease the amount of transmissions on the communication channel, you can
disable the Timestamp option. Alternatively, set a lower rate for PC Sampling or
use a higher SWO clock frequency.

Open the SWO Trace window—available from the J-Link/J-Trace menu or the
ST-LINK menu, respectively—and click the Activate button to enable trace data
collection.

Start the execution. The Trace window is continuously updated with trace data. For
more information about this window, see Trace window, page 184.

SETTING UP CONCURRENT USE OF ETM AND SWO

If you have a J-Trace debug probe for Cortex-M3, you can use ETM trace and SWO
trace concurrently.

In this case, if you activate the ETM trace and the SWO trace, SWO trace data will also
be collected in the ETM trace buffer, instead of being streamed via the SWO channel.
This means that the SWO trace data will not be displayed until the execution has
stopped, instead of being continuously updated live in the SWO Trace window.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints. Choose between these alternatives:

e In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start or Trace Stop breakpoint from the context menu.

o In the Breakpoints window, choose Trace Start, Trace Stop, or Trace Filter.

o The C-SPY system macros __setTraceStartBreak and

__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start breakpoints dialog box
(simulator), page 198 and Trace Stop breakpoints dialog box (simulator), page 199,
respectively.

Using the trace triggers and trace filters:
Use the Trace Start dialog box to set a start condition—a start trigger—to start
collecting trace data.

Use the Trace Stop dialog box to set a stop condition—a stop trigger—to stop
collecting trace data.

N O 1 b

Collecting and using trace data ___¢

Optionally, set additional conditions for the trace data collection to continue. Then set
one or more trace filters, using the Trace Filter dialog box.

If needed, set additional trace start or trace stop conditions.
Enable the Trace window and start the execution.
Stop the execution.

You can view the trace data in the Trace window and in browse mode also in the
Disassembly window, where also the trace marks for your trace triggers and trace
filters are visible.

If you have set a trace filter, the trace data collection is performed while the condition
is true plus some further instructions. When viewing the trace data and looking for a
certain data access, remember that the access took place one instruction earlier.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in
the Find in Trace window.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:

In the Trace window toolbar, click the Find button.
In the Find in Trace dialog box, specify your search criteria.
Typically, you can choose to search for:

e A specific piece of text, for which you can apply further search criteria
o An address range
o A combination of these, like a specific piece of text within a specific address range.

For more information about the different options, see Find in Trace dialog box, page
209.

When you have specified your search criteria, click Find. The Find in Trace window is
displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 210.

175

Reference information on trace

176

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.

Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse

toolbar button.

The selected item turns yellow and the source and disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking; the source and Disassembly windows

will be updated to show the corresponding location. This is like stepping backward and

forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace

C-SPY® Debugging Guide
for ARM

This section gives reference information about these windows and dialog boxes:

ETM Trace Settings dialog box, page 177

SWO Trace Window Settings dialog box, page 179

SWO Configuration dialog box, page 181

Trace window, page 184

Trace Save dialog box, page 188

Function Trace window, page 189

Timeline window, page 190

Power Log window, page 236

Trace Start breakpoints dialog box (simulator), page 198
Trace Stop breakpoints dialog box (simulator), page 199
Trace Start breakpoints dialog box, page 200

Trace Stop breakpoints dialog box, page 203

Trace Filter breakpoints dialog box, page 205

Trace Expressions window, page 208

Find in Trace dialog box, page 209

Find in Trace window, page 210.

ETM Trace Settings dialog box
The ETM Trace Settings dialog box is available from the C-SPY driver menu.

Trace port width

Trace port mode

ETM Trace Settings E

Trace port width

1 Bit [stall processor on FIFO Ful

C zEits ¥ | Broadeast all branch addresses

&+ 4 Eits Cancel |
r Cycle accurate bracing

| & Bits

= 16 Eits

™| St timestamp
Trace port {CPU core) speed

| 1000000 Hz

Trace port mode

=

INormaIJ half-rate clocking

Trace buffer size

I 000100000

Collecting and using trace data ___¢

Figure 75: ETM Trace Settings dialog box

This dialog box is available for the:

o J-Link/J-Trace driver

Use this dialog box to configure ETM trace generation and collection.

See also:

® Requirements for using ETM trace, page 172
o Getting started with ETM trace, page 173.

Specifies the trace bus width, which can be set to 1, 2,

4, 8, or 16 bits. The value must

correspond with what is supported by the hardware and the debug probe. For
Cortex-M3, 1, 2, and 4 bits are supported by the J-Trace debug probe. For ARM7/9, only

4 bits are supported by the J-Trace debug probe.

Specifies the used trace clock rate:

Normal, full-rate clocking
Normal, half-rate clocking
Multiplexed
Demultiplexed

Demultiplexed, half-rate clocking.

177

Reference information on trace

178

Trace buffer size

Note: For RDI drivers, only the two first alternatives are available. For the J-Trace
driver, the available alternatives depend on the device you are using.

Specify the size of the trace buffer. By default, the number of trace frames is OxFFFF.
For ARM7/9 the maximum number is 0xFFFFF, and for Cortex-M3 the maximum
number is 0x3FFFFF.

For ARM7/9, one trace frame corresponds to 2 bytes of the physical J-Trace buffer size.
For Cortex-M3, one trace frame corresponds to approximately 1 byte of the buffer size.

Note: The Trace buffer size option is only available for the J-Trace driver.

Cycle accurate tracing

Emits trace frames synchronous to the processor clock even when no trace data is
available. This makes it possible to use the trace data for real-time timing calculations.
However, if you select this option, the risk for FIFO buffer overflow increases.

Note: This option is only available for ARM7/9 devices.

Broadcast all branches

Makes the processor send more detailed address trace information. However, if you
select this option, the risk for FIFO buffer overflow increases.

Note: This option is only available for ARM7/9 devices. For Cortex, this option is
always enabled.

Stall processor on FIFO full

Show timestamp

C-SPY® Debugging Guide
for ARM

Stalls the processor in case the FIFO buffer fills up. The trace FIFO buffer might in some
situations become full—FIFO buffer overflow—which means trace data will be lost.

Makes the Trace window display seconds instead of cycles in the Index column. To
make this possible you must also specify the appropriate speed for your CPU in the
Trace port (CPU core) speed text box.

Note: This option is only available when you use the J-Trace driver with ARM7/9
devices.

Collecting and using trace data ___¢

SWO Trace Window Settings dialog box

The SWO Trace Window Settings dialog box is available from the J-Link menu or the
ST-LINK menu, respectively, alternatively from the SWO Trace window toolbar.

SWO Trace Window Settings

Generate: Force:
CPL (Cydes per instruction) [Time Stamps
ancel

[JExc (Exception overhead)
[CsLEER (Sleep cydes) [Jinterrupt Logs
sy (Load store unit cydes)

[CJFoLD (Folded instructions) [SWO Configuration...

Figure 76: SWO Trace Window Settings dialog box
Use this dialog box to specity what to display in the SWO Trace window.

Note that you also need to configure the generation of trace data, click SWO
Configuration. For more information, see SWO Configuration dialog box, page 181.

Force

Enables data generation, if it is not already enabled by other features using SWO trace
data. The Trace window displays all generated SWO data. Other features in C-SPY, for
example Profiling, can also enable SWO trace data generation. If no other feature has
enabled the generation, use the Force options to generate SWO trace data.

The generated data will be displayed in the Trace window. Choose between:

Time Stamps Enables timestamps for various SWO trace packets, that is
sent over the SWO communication channel. Use the
resolution drop-down list to choose the resolution of the
timestamp value. For example, 1 to count every cycle, or 16
to count every 16th cycle. Note that the lowest resolution is
only useful if the time between each event packet is long
enough. 16 is useful if using a low SWO clock frequency.

PC samples Enables sampling the program counter register, PC, at
regular intervals. To choose the sampling rate, see PC
Sampling, page 181.

Interrupt Logs Enables generation of interrupt logs. For information about
other C-SPY features that also use trace data for interrupts,
see Interrupts, page 245.

179

Reference information on trace

180

Generate

Enables trace data generation for these events. The generated data will be displayed in
the Trace window. The value of the counters are displayed in the Comment column in
the SWO Trace window. Choose between:

CPI Enables generation of trace data for the CPI counter.
EXC Enables generation of trace data for the EXC counter.
SLEEP Enables generation of trace data for the SLEEP counter.
LSU Enables generation of trace data for the LSU counter.
FOLD Enables generation of trace data for the FOLD counter.

SWO Configuration

C-SPY® Debugging Guide
for ARM

Displays the SWO Configuration dialog box where you can configure the hardware’s
generation of trace data. See SWO Configuration dialog box, page 181.

Collecting and using trace data ___¢

SWO Configuration dialog box

The SWO Configuration dialog box is available from the J-Link menu or the

ST-LINK menu, respectively, alternatively from the SWO Trace Window Settings
dialog box.

SWO Configuration

FL Sampling [rata Log Events Interupt Log
In uze by: In uze by: In uze by:
0OM: PC S ampling for Power Logs <none <none
0OM: PC S ampling-bazed profiling
OFF: Timeline “Window Data Graph OFF: Timeline ‘Window |nterupt Graph
OFF: S%0 Trace Window Forced PC Sampling OFF: Data Log OFF: Interrupt Log
OFF: Code Coverage OFF: Data Log Summary OFF: Interrupt Log Summary

OFF: Instruction Profiling

O PC only
() PC + data value + baze addr
(O Data value + exact addr

Bate [zamples/s]:

Clock Setup Timestamps
[] Owerride project default iesatioplizEl
CPU clock: l:l MHz ITH Stimulus Parts
) Enabled ports: £l 24 23 16 15 87 0
el G ITTTTTTI T T T I T T I T I T TTITTITT]
5w elack 3 24 23 16 15 8 7 0
wWanted: ToTeminall/OWindow: [TTTTTTTIITTTTTITTICTTTITTITTICTTITTITOIT]
B l:l kHz ol il il 24 23 16 15 8 7 0
Actual 5000 KHz - ITTTTTTI T T T I T T I T I T TTITTITT]

$PROJ_DIR$AITM.log | ()

[Ok] [Cancel]

Figure 77: SWO Configuration dialog box

Use this dialog box to configure the serial-wire output communication channel and the
hardware’s generation of trace data.

See also Getting started with SWO trace, page 173.

PC Sampling
Controls the behavior of the sampling of the program counter. You can specify:
In use by Lists the features in C-SPY that can use trace data for PC

Sampling. ON indicates features currently using trace data.
OFF indicates features currently not using trace data.

181

Reference information on trace

182

Data Log Events

Interrupt Log

Rate Use the drop-down list to choose the sampling rate, that is, the
number of samples per second. The highest possible sampling
rate depends on the SWO clock value and on how much other
data that is sent over the SWO communication channel. The
higher values in the list will not work if the SWO
communication channel is not fast enough to handle that much
data.

Specifies what to log when a Data Log breakpoint is triggered. These items are
available:

In use by Lists the features in C-SPY hat can use trace data for Data Log
Events. On indicates features currently using trace data. OFF
indicates features currently not using trace data.

PC only Logs the value of the program counter.

PC + data value + Logs the value of the program counter, the value of the data
base addr object, and its base address.

Data value + exact Logs the value of the data object and the exact address of the
addr data object that was accessed.

Lists the features in C-SPY that can use trace data for Interrupt Logs. ON indicates
features currently using trace data. OFF indicates features currently not using trace data.

For more information about interrupt logging, see Interrupts, page 245.

Override project default

CPU clock

C-SPY® Debugging Guide
for ARM

Overrides the CPU clock and the SWO clock default values on the
Project>Options>J-Link/J-Trace>Setup page for J-Link/J-Trace or on the
Project>Options>ST-Link>Setup page for ST-LINK, respectively.

Specify the exact clock frequency used by the internal processor clock, HCLK, in MHz.
The value can have decimals.

This value is used for configuring the SWO communication speed and for calculating
timestamps.

Collecting and using trace data ___¢

SWO clock

Specify the clock frequency of the SWO communication channel in kHz. Choose

between:

Autodetect Automatically uses the highest possible frequency that the J-Link
debug probe can handle. When it is selected, the Wanted text box
displays that frequency.

Wanted Manually selects the frequency to be used, if Autodetect is not
selected. The value can have decimals. Use this option if data
packets are lost during transmission.

Actual Displays the frequency that is actually used. This can differ a little

from the wanted frequency.

Timestamps
Selects the resolution of the timestamp value. For example, 1 to count every cycle, or 16

to count every 16th cycle. Note that the lowest resolution is only useful if the time
between each event packet is long enough.

ITM Stimulus Ports

Selects which ports you want to redirect and to where. The ITM Stimulus Ports are used
for sending data from your application to the debugger host without stopping the
program execution. There are 32 such ports. Choose between:

Enabled ports Enables the ports to be used. Only enabled ports will actually send
any data over the SWO communication channel to the debugger.

Port 0 is used by the terminal I/O library functions.
Ports 1-4 are used by the ITM macros for the Event Log window.
Port 5 is used for an optional PC value added to the ITM macro.

To Terminal I/O Specifies the ports to use for routing data to the Terminal I/O
window window.

To Log File Specifies the ports to use for routing data to a log file. To use a
different log file than the default one, use the browse button.

@ The stdout and stderr of your application can be routed via SWO to the C-SPY
Terminal I/O window, instead of via semihosting. To achieve this, choose
Project>Options>General Options>Library Configuration>Library low-level
interface implementation>stdout/stderr>Via SWO. This will significantly improve
the performance of stdout/stderr, compared to when semihosting is used.

183

Reference information on trace

184

Trace window

C-SPY® Debugging Guide
for ARM

This can be disabled if you deselect the port settings in the Enabled ports and To

Terminal

1/0 options.

The Trace window is available from the C-SPY driver menu.

Trace =]
OXIEB2SYHE M
| Trace | call_count |:|
Z61 00000234 MOV 0x0002, R2
Z62 0000023C ER §+0x1E

=]
Z63 000o0o0z5a CHMP Ox0004, R2
Z64 00000zZ5C BLT §-0x1E
Z65 00000Z3E MOV Rz, Rl -
Z66 00000z40 JARL get £ih, LP soo T LI
Function Trace Trace ITrace Expressions =

Figure 78: The Trace window in the simulator

Note: There are three different Trace windows—ETM Trace, SWO Trace, and just
Trace for the C-SPY simulator. The windows look slightly different.

This window displays the collected trace data, where the content differs depending on
the C-SPY driver you are using and the trace support of your debug probe:

C-SPY simulator

ETM trace

The window displays a collected sequence of executed
machine instructions. In addition, the window can display
trace data for expressions.

The window displays the sequence of executed
instructions—optionally with embedded source—which has
been continuously collected during application execution,
that is full trace. The data has been collected in the ETM
trace buffer. The collected data is displayed after the
execution has stopped.

For information about the requirements for using ETM
trace, see Requirements for using ETM trace, page 172.

Collecting and using trace data ___¢

SWO trace The window displays all events transmitted on the SWO
channel. The data is streamed from the target system, via the
SWO communication channel, and continuously updated
live in the Trace window. Note that if you use the SWO
communication channel on a trace probe, the data will be
collected in the trace buffer and displayed after the execution
has stopped.

For information about the requirements for using SWO trace,
see Requirements for using SWO trace, page 172.

Trace toolbar

The toolbar in the Trace window and in the Function trace window contains:

m Enable/Disable Enables and disables collecting and viewing trace data in
this window. This button is not available in the Function
trace window.

x Clear trace data Clears the trace buffer. Both the Trace window and the
Function trace window are cleared.

E Toggle source Toggles the Trace column between showing only

disassembly or disassembly together with the corresponding
source code.

Browse Toggles browse mode on or off for a selected item in the
Trace window, see Browsing through trace data, page 176.

Jo)

Find Displays a dialog box where you can perform a search, see
Find in Trace dialog box, page 209.

«

= Save In the ETM Trace and SWO Trace windows this button
displays the Trace Save dialog box, see Trace Save dialog
box, page 188. In the C-SPY simulator this button displays
a standard Save As dialog box where you can save the
collected trace data to a text file, with tab-separated
columns.

185

Reference information on trace

« Edit Settings In the ETM Trace window this button displays the Trace
g g play
Settings dialog box, see ETM Trace Settings dialog box,
page 177.

In the SWO Trace window this buttons displays the SWO
Trace Window Settings dialog box, see SWO Trace
Window Settings dialog box, page 179.

In the C-SPY simulator, this button is not enabled.

Edit Expressions Opens the Trace Expressions window, see Trace
F (C-SPY simulator only) Expressions window, page 208.

Display area (in the C-SPY simulator)

This area contains these columns for the C-SPY simulator:

A serial number for each row in the trace buffer. Simplifies
the navigation within the buffer.

Cycles The number of cycles elapsed to this point.

Trace The collected sequence of executed machine instructions.
Optionally, the corresponding source code can also be
displayed.

Expression Each expression you have defined to be displayed appears in

a separate column. Each entry in the expression column
displays the value after executing the instruction on the
same row. You specify the expressions for which you want
to collect trace data in the Trace Expressions window, see
Trace Expressions window, page 208.

Display area (for ETM trace)

This area contains these columns for ETM trace:

Index A number that corresponds to each packet. Examples of
packets are instructions, synchronization points, and
exception markers.

C-SPY® Debugging Guide
186 for ARM

Frame|Time

Address
Opcode

Trace

Comment

Collecting and using trace data ___¢

When collecting trace data in cycle-accurate mode (requires
ARM7/9)—enable Cycle accurate tracing in the ETM
Trace Settings dialog box—the value corresponds to the
number of elapsed cycles since the start of the execution.
This column is only available for the J-Link/J-Trace driver.

When collecting trace data in non-cycle-accurate mode, the
value corresponds to an approximate amount of cycles. For
Cortex-M devices, the value is repeatedly calibrated with
the actual number of cycles.

When the Show timestamp option is selected in the ETM
Trace Settings dialog box, the value displays the time
instead of cycles. To display the value as time requires
collecting data in cycle-accurate mode, see Cycle accurate
tracing, page 178, and the J-Link/J-Trace driver.

The address of the executed instruction.
The operation code of the executed instruction.

The collected sequence of executed machine instructions.
Optionally, the corresponding source code can also be
displayed.

This column is only available for the J-Link/J-Trace driver.

Note: For RDI drivers, this window looks slightly different.

Display area (for SWO trace)

This area contains these columns for SWO trace:

Index

SWO Packet

Cycles

An index number for each row in the trace buffer. Simplifies
the navigation within the buffer.

The contents of the captured SWO packet.

The approximate number of cycles from the start of the
execution until the event.

187

Reference information on trace

&

Trace Save dialog box

Index Range

C-SPY® Debugging Guide
188 for ARM

Event

Value

Trace

Comment

The event type of the captured SWO packet. If the column
displays overf1low, the data packet could not be sent,
because too many SWO features use the SWO channel at the
same time. To decrease the amount of transmissions on the
communication channel, point at the SWO button—on the
IDE main window toolbar—with the mouse pointer to get
detailed tooltip information about which C-SPY features
that have requested trace data generation. Disable some of
the features.

The event value, if any.

If the event is a sampled PC value, the instruction is
displayed in this column. Optionally, the corresponding
source code can also be displayed.

Additional information. This includes the values of the
selected Trace Events counters, or the number of the
comparator (hardware breakpoint) used for the Data Log
breakpoint.

If the display area seems to show garbage, make sure you specified a correct value for
the CPU clock in the SWO Configuration dialog box.

The Trace Save dialog box is available from the driver-specific menu, and from the
Trace window and the SWO Trace window.

Start: ID

End: |?535

Cancel |
™ Append ta file

™ Use tab-separated format

File: ITraceIog.txt

—

Figure 79: Trace Save dialog box

Saves a range of frames to a file. Specify a start index and an end index (as numbered in
the index column in the Trace window).

Collecting and using trace data ___¢

Append to file

Appends the trace data to an existing file.

Use tab-separated format

Saves the content in columns that are tab-separated, instead of separated by white
spaces.

File
Specify a file for the trace data.

Function Trace window
The Function Trace window is available from the C-SPY driver menu during a debug

session.

Function Trace =]
XASYHE A

| Trace | call_count |;|
2699 Memory: 0x002D4: put f£ib + 50 2

2711 Memory:0x00114: ?C PUTCHAR 2

2713 Memory:0x00313: put f£ib + 107 2

2717 Memory:0x00214: do foreground process... 2

27158 Memory:0x0023E: main + 41 2

2721 Memory:0x00145: 251 CHMP LOZ 2

2735 Memory:0x00247: main + 50 2

2737 Memory:0x00205: do foreground process 2

2738 Memory: 0x00200: next counter 2 j
Function Trace ITrace | Trace Expressions =

Figure 80: Function Trace window
This window is available for the:
o C-SPY simulator

o J-Trace driver

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window only shows trace data corresponding
to calls to and returns from functions.

Toolbar

For information about the toolbar, see Trace toolbar, page 185.

189

Reference information on trace

Display area
For information about the columns in the display area, see:

e Display area (in the C-SPY simulator), page 186
e Display area (for ETM trace), page 186.

Timeline window

The Timeline window is available from the C-SPY driver menu during a debug session.

Limits An active Data Log

interrupt Overflow Graph Solid Data

Log Graph

Data
Log
Graph

Interrupt
Log
Graph

[{¢ [putchar i
intpTHandler |
|__dwrite 1

[_write’ 1
[putchar 1
do_oreqround_process | [dc\fbreground_process
main 26}

Prracsf 3 7 L

Call
Stack
Graph

0.000267s 0.000268s 0.000269%s 0.000270s , 0.000271s 0.000272s 0.000273s 0 Dﬁizns 0.000275s 0.000276s 0.000277s 0.000278s 0.000279s 0.000230
>

|Resay \ M

Common Selection
time axis election for

current graph

Figure 81: Timeline window

This window is available for the:
o C-SPY simulator

o J-Link/J-Trace driver

o ST-LINK driver.

This window displays trace data (for interrupt logs, data logs, event logs, and for the call
stack) as well as logged power values, as graphs in relation to a common time axis.

C-SPY® Debugging Guide
190 for ARM

Collecting and using trace data ___¢

To display a graph:

I Choose C-SPYdriver>SWO Configuration to open the SWO Configuration dialog
box. Make sure the CPU clock option is set to the same value as the CPU clock value
set by your application. This is necessary to set the SWO clock and to obtain a correct
data transfer to the debug probe.

If you are using the C-SPY simulator you can ignore this step.
2 Choose Timeline from the C-SPY driver menu to open the Timeline window.

3 In the Timeline window, click in the graph area and choose Enable from the context
menu to enable a specific graph.

4 For the Data Log Graph, you need to set a Data Log breakpoint for each variable you
want a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 130.

5 For the Event Log Graph, you must add a preprocessor macro to your application
source code where you want event logs to be generated. See Getting started using event
logging, page 90.

6 Click Go on the toolbar to start executing your application. The graph appears.

To navigate in the graph, use any of these alternatives:

e Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and - keys. The graph zooms in or out depending on which
command you used.

e Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys: arrow keys, Home, End, and Ctrl+End.

o Double-click on a sample of interest and the corresponding source code is
highlighted in the editor window and in the Disassembly window.

o Click on the graph and drag to select a time interval. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.

@ Point in the graph with the mouse pointer to get detailed tooltip information for that
location.
Display area

Depending on the C-SPY driver you are using, the display area can be populated with

different graphs:
Graphs C-SPY simulator }-Link driver J-Trace driver ST-LINK driver
Interrupt Log Graph X X X X

Table 13: Supported graphs in the Timeline window

191

Reference information on trace

192

C-SPY® Debugging Guide
for ARM

Graphs C-SPY simulator }-Link driver J-Trace driver ST-LINK driver
Data Log Graph - X X! X
Event Log Graph - X X X
Call Stack Graph X - X -
Power Log Graph - X - -

Table 13: Supported graphs in the Timeline window (Continued)
| Only available when ETM trace is disabled.

If a specific graph is available or not depends on abilities in hardware, debugger probe,
and the C-SPY driver. See Table 3, Driver differences, J-Link/J-Trace and ST-LINK on
page page 38, and Requirements for using trace, page 171.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Interrupt Log Graph

The Interrupt Log Graph displays interrupts reported by SWO trace or by the C-SPY
simulator. In other words, the graph provides a graphical view of the interrupt events
during the execution of your application, where:

o The label area at the left end of the graph shows the names of the interrupts.

o The graph itself shows active interrupts as a thick green horizontal bar. This graph is
a graphical representation of the information in the Interrupt Log window, see
Interrupt Log window, page 260.

Data Log Graph

The Data Log Graph displays the data logs generated by SWO trace, for up to four
different variables or address ranges specified as Data Log breakpoints, where:

e Each graph is labeled with—in the left-side area—the variable name or address for
which you have specified the Data Log breakpoint.

o The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the
context menu to change these limits. The graph can be displayed either as a thin line
or as a color-filled solid graph. The graph is a graphical representation of the
information in the Data Log window, see Event Log window, page 104.

o A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system.

Collecting and using trace data ___¢

Event Log Graph

The Event Log Graph displays the event logs produced when the execution passes
specific positions in your application code, where:
e Each graph is labeled—in the left-side area— with the name of the channel.

o For each channel, there will be a vertical line that indicates when the event occurred.
Optionally, you can choose to display the event value that was passed with the
event.

Call Stack Graph

The Call Stack Graph displays the sequence of calls and returns collected by ETM trace.

At the bottom of the graph you will usually find main, and above it, the functions called

frommain, and so on. The horizontal bars, which represent invocations of functions, use

four different colors:

o Medium green for normal C functions with debug information

o Light green for functions known to the debugger only through an assembler label

o Medium or light yellow for interrupt handlers, with the same distinctions as for
green.

The numbers represent the number of cycles spent in, or between, the function
invocations.

Power Log Graph

The Power Log Graph displays power measurement samples generated by the debug
probe or associated hardware.

193

Reference information on trace

194

Selection and navigation

Context menu

C-SPY® Debugging Guide
for ARM

Click and drag to select. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. You can navigate backward and
forward in the selected graph using the left and right arrow keys. Use the Home and End
keys to move to the first or last relevant point, respectively. Use the navigation keys in
combination with the Shift key to extend the selection.

This context menu is available:

Mavigate 3
v Auto Scroll

Zoom 3
v Enable

Go To Source

Select Graphs »
Time Axis Unit »

Figure 82: Timeline window context menu for the Call Stack Graph

Note: The context menu contains some commands that are common to all graphs and
some commands that are specific to each graph. The figure reflects the context menu for
the Call Stack Graph, which means that the menu looks slightly different for the other
graphs.

These commands are available:

Navigate All graphs Commands for navigating over the graph(s);
choose between:

Next moves the selection to the next relevant
point in the graph. Shortcut key: right arrow.

Previous moves the selection backward to the
previous relevant point in the graph.
Shortcut key: left arrow.

First moves the selection to the first data entry
in the graph. Shortcut key: Home.

Last moves the selection to the last data entry in
the graph. Shortcut key: End.

End moves the selection to the last data in any
displayed graph, in other words the end of
the time axis. Shortcut key: Ctrl+End.

Collecting and using trace data ___¢

Auto Scroll All graphs Toggles auto scrolling on or off. When on, the
most recent collected data is automatically
displayed.

Zoom All graphs Commands for zooming the window, in other
words, changing the time scale; choose
between:

Zoom to Selection makes the current selection
fit the window. Shortcut key: Return.

Zoom In zooms in on the time scale. Shortcut
key: +.

Zoom Out zooms out on the time scale.
Shortcut key: -.

10ns, 100ns, 1us, etc makes an interval of 10
nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1
millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or
1 hour, respectively, fit the window.

Data Log Data Log Graph A heading that shows that the Data Log-specific
commands below are available.

Power Log Power Log A heading that shows that the Power

Graph Log-specific commands below are available.
Call Stack Call Stack A heading that shows that the Call

Graph stack-specific commands below are available.
Interrupt Interrupt Log A heading that shows that the Interrupt

Graph Log-specific commands below are available.
Enable All graphs Toggles the display of the graph on or off. If you

disable a graph, that graph will be indicated as
OFF in the Timeline window. If no trace data has
been collected for a graph, no data will appear
instead of the graph.

195

Reference information on trace

196

C-SPY® Debugging Guide
for ARM

Variable

Solid Graph
Viewing Range
Size

Show Numerical
Value

Go To Source
Select Graphs

Time Axis Unit

Profile Selection

Data Log Graph

Data Log Graph

Data and Power
Log Graph

Data and Power
Log Graph

Data and Power
Log Graph
Common
Common

Common

Common

The name of the variable for which the Data
Log-specific commands below apply. This
menu command is context-sensitive, which
means it reflects the Data Log Graph you
selected in the Timeline window (one of up to
four).

Displays the graph as a color-filled solid graph
instead of as a thin line.

Displays a dialog box, see Viewing Range
dialog box, page 197.

Determines the vertical size of the graph;
choose between Small, Medium, and Large.

Shows the numerical value of the variable, in
addition to the graph.

Displays the corresponding source code in an
editor window, if applicable.

Selects which graphs to be displayed in the
Timeline window.

Selects the unit used in the time axis; choose
between Seconds and Cycles.

Enables profiling time intervals in the Function
Profiler window. Note that this command is
only available if the C-SPY driver supports PC
Sampling.

Viewing Range dialog box

Collecting and using trace data ___¢

The Viewing Range dialog box is available from the context menu that appears when
you right-click in the Power Log Graph or the Data Log Graph in the Timeline window.

Viewing Range

Range for power:

(& Auto
O Factory
O Custom

Lowest value:

{currently 0 - 70)
(5 - 200)

Scale:

O Linear

X

Highest value:

(%) Logarithmic

ok | [Cancel

Figure 83: Viewing Range dialog box

Use this dialog box to specify the value range, that is, the range for the Y-axis for the

graph.

Range for xxxx

Selects the viewing range for the displayed values:

Auto

Factory

Custom

Uses the range according to the range of the values that are
actually collected, continuously keeping track of minimum
or maximum values. The currently computed range, if any, is
displayed in parentheses. The range is rounded to reasonably
even limits.

For the Data Log Graph: Uses the range according to the
value range of the variable, for example 0-65535 for an
unsigned 16-bit integer.

For the Power Log Graph: Uses the range according to the
properties of the measuring hardware.

Use the text boxes to specify an explicit range.

197

Reference information on trace

198

Scale

Selects the scale type of the Y-axis:

e Linear

o Logarithmic.

Trace Start breakpoints dialog box (simulator)

C-SPY® Debugging Guide
for ARM

The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

New Breakpoint PZ|
9 Trace Start l

Trigger At:

| Ed,.

(] 8 | Cancel |

Figure 84: Trace Start breakpoints dialog box

This dialog box is available for the C-SPY simulator. See also Trace Start breakpoints
dialog box, page 200.

To set a Trace Start breakpoint:

In the editor or Disassembly window, right-click and choose Trace Start from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
In the Breakpoints window, right-click and choose New Breakpoint>Trace Start.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

When the breakpoint is triggered, the trace data collection starts.

Collecting and using trace data ___¢

Trigger At

Specify the location for the breakpoint in the text box. Alternatively, click the Edit
browse button to open the Enter Location dialog box, see Enter Location dialog box,
page 135.

Trace Stop breakpoints dialog box (simulator)

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window.

x
& Trace Stop |

Trigger At:

| Edit.. |

()8 I Cancel |

Figure 85: Trace Stop breakpoints dialog box

This dialog box is available for the C-SPY simulator. See also Trace Stop breakpoints
dialog box, page 203.

To set a Trace Stop breakpoint:

I In the editor or Disassembly window, right-click and choose Trace Stop from the
context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.
2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Trigger At text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.

199

Reference information on trace

Trigger At

Specify the location for the breakpoint in the text box. Alternatively, click the Edit
browse button to open the Enter Location dialog box, see Enter Location dialog box,
page 135.

Trace Start breakpoints dialog box

The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Start).

New Breakpoint [%]

3 Trace Start |
Trigger at:
|uxusuucsos Edit |
—Access lype —Size
; &~ Auta[1)
L [
Readfwiite Mamsl
 Fead -
 Wite ~ Trigger range
' OP-Fetch Fequested:
" Cycle IDHDSDDEBDB - 0x0800CEDE

—Match data Effective:

I Encble IDRDSDDEBDB - 0x0300CEDE

Walue: IUHUUUUDDDD [~ Extend to cover requested range
Link condition

Mask: IDxFFFFFFFF C AND
[Inverse

& R
()8 I Cancel |

Figure 86: Trace Start breakpoints dialog box (J-Link/J-Trace)

Use this dialog box to set the conditions that determine when to start collecting trace
data. When the trace condition is triggered, the trace data collection is started.

This dialog box is available for the C-SPY J-Link/J-Trace driver.

Trigger at

Specify the starting point of the code section for which you want to collect trace data.
You can specify a variable name, an address, or a cycle counter value.

C-SPY® Debugging Guide
200 for ARM

Collecting and using trace data ___¢

Size

Controls the size of the address range, that when reached, will trigger the start of the
trace data collection. Choose between:

Auto Sets the size automatically. This can be useful if Trigger at
contains a variable.

Manual Specify the size of the breakpoint range manually.

Trigger range

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover Extends the range so that a whole data structure is covered.

requested range For data structures that do not fit the size of the possible
ranges supplied by the hardware breakpoint unit, for
example three bytes, the range will not cover the whole data
structure. Note that the range will be extended beyond the
size of the data structure, which might cause false triggers at
adjacent data.

This option is not enabled for ARM7/9 devices because the
range for such devices will always cover the whole data
structure.

Access type

Specifies the type of memory access that triggers the trace data collection. Choose

between:

Read/Write Read from or write to location.

Read Read from location.

Write Write to location.

OP-fetch At execution address

Cycle The number of counter cycles at a specific point in time,

counted from where the execution started. This option is only
available for Cortex-M devices.

201

Reference information on trace

202

Match data

Link condition

C-SPY® Debugging Guide
for ARM

Enables matching of the accessed data. Use the Match data options in combination with
the Read/Write, Read, or Write access types for data. This option can be useful when
you want a trigger when a variable has a certain value.

Value Specify a data value.
Mask Specify which part of the value to match (word, halfword,
or byte).

The Match data options are only available for J-Link/J-Trace and when using a
Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two breakpoint resources.

Specifies how trace conditions are combined, using AND and OR. When combining a
condition that has the link condition AND with a condition that has the link condition
OR, AND has precedence. The option Inverse inverts the trace condition and is
individual for each trace filter condition. If one trace start or stop condition is inverted,
all others will be too. An inverted trace start or stop condition means that the trace data
collection is performed everywhere except for this section of the application code.

For ARM7/9 devices, trace filters are combined using the OR algorithm. Use the
Inverse option to invert the trace filter; all trace filters are affected. The trace filter will
be combined with the start and stop triggers, if any, using the AND algorithm.

Collecting and using trace data ___¢

Trace Stop breakpoints dialog box

Trigger at

Size

The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Stop).

2 Trace Stop |
Trigger at:
[0:0800CEED Edit |
—Access ype — Size
; & Auto[1]
L [
‘s EZZSM[“E Manual
 Wite ~ Trigger range
' OP-Fetch Fequested:
" Cycle IDHDSDDEBED - 0x0800CEED
— Match data Effective:
] Bl IDRDSDDEBED - 0x0800CEED
Wl 0%00000000 ™ Extend to cover requested range
alue: I
Link. condition
Mask: IDxFFFFFFFF i AND
rverse & on
Ok I Cancel |

Figure 87: Trace Stop breakpoints dialog box (J-Link/J-Trace)

When the trace condition is triggered, the trace data collection is performed for some
further instructions, and then the collection is stopped.

This dialog box is available for the C-SPY J-Link/J-Trace driver.

Specify the stopping point of the code section for which you want to collect trace data.
You can specify a variable name, an address, or a cycle counter value.

Controls the size of the address range, that when reached, will trigger the stop of the
trace data collection. Choose between:

Auto Sets the size automatically. This can be useful if Trigger at

contains a variable.

Manual Specify the size of the breakpoint range manually.

203

Reference information on trace

204

Trigger range

Access type

Match data

C-SPY® Debugging Guide
for ARM

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover Extends the range so that a whole data structure is covered.

requested range For data structures that do not fit the size of the possible
ranges supplied by the hardware breakpoint unit, for
example three bytes, the range will not cover the whole data
structure. Note that the range will be extended beyond the
size of the data structure, which might cause false triggers at
adjacent data.

This option is not enabled for ARM7/9 devices because the
range for such devices will always cover the whole data
structure.

Specifies the type of memory access that triggers the trace data collection. Choose
between:

Read/Write Read from or write to location.

Read Read from location.

Write Write to location.

OP-fetch At execution address

Cycle The number of counter cycles at a specific point in time,

counted from where the execution started. This option is only
available for Cortex-M devices.

Enables matching of the accessed data. Use the Match data options in combination with
the Read/Write, Read, or Write access types for data. This option can be useful when
you want a trigger when a variable has a certain value.

Value Specity a data value.
Mask Specity which part of the value to match (word, halfword,
or byte).

Collecting and using trace data ___¢

The Match data options are only available for J-Link/J-Trace and when using a
Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two breakpoint resources.

Link condition

Specifies how trace conditions are combined, using AND and OR. When combining a
condition that has the link condition AND with a condition that has the link condition
OR, AND has precedence. The option Inverse inverts the trace condition and is
individual for each trace filter condition. If one trace start or stop condition is inverted,
all others will be too. An inverted trace start or stop condition means that the trace data
collection is performed everywhere except for this section of the application code.

For ARM7/9 devices, trace filters are combined using the OR algorithm. Use the
Inverse option to invert the trace filter; all trace filters are affected. The trace filter will
be combined with the start and stop triggers, if any, using the AND algorithm.

Trace Filter breakpoints dialog box
The Trace Filter dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Filter).

2 Trace Filer |
Trigger at:
IEriticaISecEntr Edit |
—Access lype —Size
: & futn (4]
o [+
‘s EZZSMNE Manual
 Wite ~ Trigger range
~ DP-Fetch Requested:
" Cycle IUM2DDDD450 - 020000453
— Match data Effective:
I Enable IDx2DDDD450 - 020000453
Wl IDHDDDUUUUD [Extend to cover requested range
alue:
Link. condition
Mask: IDxFFFFFFFF i AND
rverse & 0R
0K I Cancel |

Figure 88: Trace Filter breakpoints dialog box

This dialog box is available for the J-Trace driver.

205

Reference information on trace

When the trace condition is triggered, the trace data collection is performed for some
further instructions, and then the collection is stopped.

Trigger at

Specify the code section for which you want to collect trace data. You can specify a
variable name, an address, or a cycle counter value.

Size

Controls the size of the address range where filtered trace is active. Choose between:

Auto Sets the size automatically. This can be useful if Trigger at
contains a variable.

Manual Specity the size of the range manually.

Trigger range

Shows the requested range and the effective range to be covered by the filtered trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover Extends the range so that a whole data structure is covered.

requested range For data structures that do not fit the size of the possible
ranges supplied by the hardware breakpoint unit, for
example three bytes, the range will not cover the whole data
structure. Note that the range will be extended beyond the
size of the data structure, which might cause false triggers at
adjacent data.

This option is not enabled for ARM7/9 devices because the
range for such devices will always cover the whole data
structure.

Access type

Specifies the type of memory access that activates the trace data collection. Choose

between:

Read/Write Read from or write to location.
Read Read from location.

Write Write to location.

C-SPY® Debugging Guide
206 for ARM

Collecting and using trace data ___¢

OP-fetch At execution address

Cycle The number of counter cycles at a specific point in time,
counted from where the execution started. This option is only
available for Cortex-M devices.

Match data

Enables matching of the accessed data. Use the Match data options in combination with
the Read/Write, Read, or Write access types for data. This option can be useful when
you want a trigger when a variable has a certain value.

Value Specity a data value.
Mask Specity which part of the value to match (word, halfword,
or byte).

The Match data options are only available for J-Link/J-Trace and when using a
Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two breakpoint resources.

Link condition

Specifies how trace conditions are combined, using AND and OR. When combining a
condition that has the link condition AND with a condition that has the link condition
OR, AND has precedence. The option Inverse inverts the trace condition and is
individual for each trace filter condition. If one trace start or stop condition is inverted,
all others will be too. An inverted trace start or stop condition means that the trace data
collection is performed everywhere except for this section of the application code.

For ARM7/9 devices, trace filters are combined using the OR algorithm. Use the
Inverse option to invert the trace filter; all trace filters are affected. The trace filter will
be combined with the start and stop triggers, if any, using the AND algorithm.

207

Reference information on trace

Trace Expressions window

The Trace Expressions window is available from the Trace window toolbar.

Trace Expressions B
+ 3

Expression | Format

i Default

; ~ Trace Expression: g

Figure 89: Trace Expressions window
This dialog box is available for the C-SPY simulator.
Use this window to specify, for example, a specific variable (or an expression) for which

you want to collect trace data.

Toolbar

The toolbar buttons change the order between the expressions:

Arrow up Moves the selected row up.

Arrow down Moves the selected row down.

Display area

Use the display area to specify expressions for which you want to collect trace data:

Expression Specify any expression that you want to collect data from.
You can specify any expression that can be evaluated, such
as variables and registers.

Format Shows which display format that is used for each
expression. Note that you can change display format via the
context menu.

Each row in this area will appear as an extra column in the Trace window.

C-SPY® Debugging Guide
208 for ARM

Collecting and using trace data ___¢

Find in Trace dialog box
The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

W' Text search
| =l
Cancel

[~ Match case
I Match whale word

™ only search in one colurnn

| I

™ Address range

Figure 90: Find in Trace dialog box
This dialog box is available for the:

o C-SPY simulator
o J-Link/J-Trace driver
o ST-LINK driver, when SWO is enabled.

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available by choosing the
View>Messages command, see Find in Trace window, page 210.

See also Searching in trace data, page 175.

Text search

Specify the string you want to search for. To specify the search criteria, choose between:

Match Case Searches only for occurrences that exactly match the case of the
specified text. Otherwise int will also find INT and Int and so
on.

Match whole word Searches only for the string when it occurs as a separate word.
Otherwise int will also find print, sprintf and so on.

209

Reference information on trace

210

Address Range

Find in Trace window

C-SPY® Debugging Guide
for ARM

Only search in one Searches only in the column you selected from the drop-down
column list.

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you also have specified a text string in the Text search
field, the text string is searched for within the address range.

The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

Find In Trace B
T -

Find In Trace

Figure 91: Find in Trace window

This dialog box is available for the:
o C-SPY simulator

e J-Link/J-Trace driver

o ST-LINK driver, when SWO is enabled.

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 209.

For more information, see Searching in trace data, page 175.

Collecting and using trace data ___¢

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

211

Reference information on trace

C-SPY® Debugging Guide
212 for ARM

Using the profiler

This chapter describes how to use the profiler in C-SPY®. More specifically,
this means:

e Introduction to the profiler
e Procedures for using the profiler

e Reference information on the profiler.

Introduction to the profiler

This section introduces the profiler.
These topics are covered:

o Reasons for using the profiler
e Briefly about the profiler

o Requirements for using the profiler.

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization.

To profile only a specific part of your code, you can select a time interval—using the
Timeline window—for which C-SPY produces profiling information. Alternatively, you
can use filtered profiling, which means that you can exclude, for example, individual
functions from being profiled.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

213

Introduction to the profiler

214

C-SPY® Debugging Guide
for ARM

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available hardware features, one or more of the sources can be used
for profiling:

o Trace (calls)

The full instruction trace (ETM trace) is analyzed to determine all function calls and
returns. When the collected instruction sequence is incomplete or discontinuous, as
sometimes happens when using ETM trace, the profiling information is less accurate.

e Trace (flat) / Sampling

Each instruction in the full instruction trace (ETM trace) or each PC Sample (from
SWO trace) is assigned to a corresponding function or code fragment, without regard
to function calls or returns. This is most useful when the application does not exhibit
normal call/return sequences, such as when you are using an RTOS, or when you are
profiling code which does not have full debug information.

o Breakpoints

The profiler sets a breakpoint on every function entry point. During execution, the
profiler collects information about function calls and returns as each breakpoint is
hit. This assumes that the hardware supports a large number of breakpoints, and it
has a huge impact on execution performance.

Power sampling

Some debug probes support regular sampling of the power consumption of the
development board, or components on the board. Each sample is also associated with a
PC sample and represents the power consumption (actually, the electrical current) for a
small time interval preceding the time of the sample. When the profiler is set to use
Power Sampling, additional columns are displayed in the Profiler window. Each power
sample is associated with a function or code fragment, just as with regular PC Sampling.
Note that this does not imply that all the energy corresponding to a sample can be
attributed to that function or code fragment. The time scales of power samples and
instruction execution are vastly different; during one power measurement, the CPU has
typically executed many thousands of instructions. Power Sampling is a statistics tool.

Using the profiler __o

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator supports the profiler, and there are no specific requirements for
using the profiler.

To use the profiler in your hardware debugger system, you need one of these setups:

® A J-Link, a J-Trace, ST-LINK debug probe with an SWD/SWO interface between
the probe and the target system, which must be based on a Cortex-M device

o A J-Trace debug probe and an ARM7/9 device with ETM trace.

o A J-Link or J-Trace Ultra probe.

This table lists the C-SPY driver profiling support:

C-SPY driver Trace (calls) Trace (flat) Sampling Power
C-SPY simulator X X - -
J-Link - - X -
J-Link Ultra - - X X
J-Trace X X X -
JTAGjet - - - -
RDI - - - -

Macraigor - - - -
GDB Server - - - --
ST-LINK - - X -
Tl Stellaris - - - --
TI XDS100 - - - -
Angel -- - - -
IAR ROM-monitor - - - --
Table 14: C-SPY driver profiling support

* Only for Cortex-M devices.

Procedures for using the profiler

This section gives you step-by-step descriptions about how to use the profiler.
More specifically, you will get information about:

o Getting started using the profiler on function level
o Getting started using the profiler on instruction level

e Selecting a time interval for profiling information.

215

Procedures for using the profiler

216

C-SPY® Debugging Guide
for ARM

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler
window:

Make sure you build your application using these options:

Category Setting
C/C++ Compiler Output>Generate debug information
Linker Output>Include debug information in output

Tuble 15: Project options for enabling the profiler

To set up the profiler for function profiling:

o If youuse ETM trace, make sure that the Cycle accurate tracing option is selected
in the Trace Settings dialog box.

o If you use the SWD/SWO interface, no specific settings are required.

When you have built your application and started C-SPY, choose J-Link>Function
Profiler to open the Function Profiler window, and click the Enable button to turn on
the profiler. Alternatively, choose Enable from the context menu that is available when
you right-click in the Function Profiler window.

Start executing your application to collect the profiling information.

Profiling information is displayed in the Function Profiler window. To sort, click on the
relevant column header.

When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:

When you have built your application and started C-SPY, choose View>Disassembly
to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

Make sure that the Show command on the context menu is selected, to display the
profiling information.

Start executing your application to collect the profiling information.

Using the profiler __o

4 When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

BO&2 SUB
£320 Dly = {Int32Uiarg;
08005F94 EO0S B ??D1ly100us_0
for{wolatile int i = LOOP_DLY 100US: i: i—=1:
PD1lwl00us_1:
08005F96 9900 LLR R1. [SF]
08005F98 1E49 SUES R1. R1. #0=l
08005F94 9100 STR R1. [5SF]
for{volatile int i = LOOF_DLY 100US; i i—};
'Dlyl00us 2.
08005F9C 9900 LLR R1. [SFP]
0800SF9E 2900 CHP R1. #0=0
08005FAD DI1F9 BHE ??D1lyl00us_1
while(Dly——}
?Dlyl00us 0:
08005FA2 0001 HOVS R1. RO
08005FA4 1E48 SUES RO, R1. #0xl _ILI
»

Figure 92: Instruction count in Disassembly window

SP. SP. #0=8

For each instruction, the number of times it has been executed is displayed.

Instruction profiling attempts to use the same source as the function profiler. If the
function profiler is not on, the instruction profiler will try to use first trace and then
sampling as source. You can change the source to be used from the context menu that is
available in the Function Profiler window.

SELECTING A TIME INTERVAL FOR PROFILING
INFORMATION

Normally, the profiler computes its information from all PC samples it receives,
accumulating more and more information until you explicitly clear the profiling
information. However, you can choose a time interval for which the profiler computes
the PC samples. This function is supported by the J-Link probe, the J-Trace probe and
the ST-LINK probe.

To select a time interval, follow these steps:
I Choose Function Profiler from the J-Link menu.

2 In the Function Profiler window, right-click and choose Source: Sampling from the
context menu.

Execute your application to collect samples.

4 Choose View>Timeline.

217

Reference information on the profiler

5 In the Timeline window, click and drag to select a time interval.

A selected time interval

Interrupts OFF

Linear 300

- ‘ HH “ ‘) H H ‘ ‘ ‘ ‘ ‘H
100 RTTTLT ||m|||||||||| ‘ H H"H HH H HH ‘ ‘ H H
Os 0.2s 0 ds 0. 6s 0. 8s 1.0s 1.2s 1.4s

Figure 93: Power Graph with a selected time interval

6 In the selected time interval, right-click and choose Profile Selection from the context
menu.

The Function Profiler window now displays profiling information for the selected time
interval.

o | | E| [l 160000.000us - 704000.000us

Function FC Samples FC Samples (%) Fower Samples Energy (%) A
GetButtons() 791 33.10 9 30.82 19
Dyl D0usfvoic %) 463 19.37 7 15.38 12
GLCD_SPI_TranserByte(lntd.. 353 14 .77 4 3.3z 1z
memcrmp 325 13.60 4 14 .64 21
3
= GLCD_Backlight(IntdLh 108 4.52 2 677 19
= GLCD_SendCmd(GLCD_Cm.. 43 1.80 i 0.a0 -
& GLCD_SPI_SendBlockiplntd... 19 0.79 2 4.00 11
5 GLCD_SetWindow(lnt32L, Int.. 0 0.00 1] 0.00 -
E GLCD_SetReset(Boolean) 0 0.00 0 0.00 -
'S

Figure 94: Function Profiler window in time-interval mode

7 Click the Full/Time-interval profiling button to toggle the Full profiling view.

Reference information on the profiler

This section gives reference information about these windows and dialog boxes:

® Function Profiler window, page 219

C-SPY® Debugging Guide
218 for ARM

Using the profiler __o

e Disassembly window, page 71
See also:
® ETM Trace Settings dialog box, page 177

® SWO Trace Window Settings dialog box, page 179
® SWO Configuration dialog box, page 181.

Function Profiler window

The Function Profiler window is available from the J-Link menu or the ST-LINK
menu, respectively.

Function Profiler =]

Function FCSamp... PCSamples .. i
DoForegroundProcess()
GetFibiint

InitFikl)

MextCounter()
FutFib{unsigned int)
__crain, Ymain

_ dwrite

m

FEEEEEE
O 0000 O0oOOo
|

Figure 95: Function Profiler window

This window is available in the:

e C-SPY simulator
o J-Link/J-Trace driver

e ST-LINK driver.
This window displays function profiling information.

When Trace(flat) or Sampling is selected, a checkbox appears on each line in the
left-side margin of the window. Use these checkboxes to include or exclude lines from
the profiling. Excluded lines are dimmed but not removed.

Toolbar

The toolbar contains:

¢1}| Enable/Disable Enables or disables the profiler.
‘El Clear Clears all profiling data.

219

Reference information on the profiler

I Save

El Graphical view

Progress bar

[Time-interval mode

Status field

Display area

Opens a standard Save As dialog box where you can save
the contents of the window to a file, with tab-separated
columns. Only non-expanded rows are included in the list
file.

Overlays the values in the percentage columns with a
graphical bar.

Displays a backlog of profiling data that is still being
processed. If the rate of incoming data is higher than the rate
of the profiler processing the data, a backlog is accumulated.
The progress bar indicates that the profiler is still processing
data, but also approximately how far the profiler has come
in the process. Note that because the profiler consumes data
at a certain rate and the target system supplies data at
another rate, the amount of data remaining to be processed
can both increase and decrease. The progress bar can grow
and shrink accordingly.

Toggles between profiling a selected time interval or full
profiling. This toolbar button is only available if PC
Sampling is supported by the debug probe.

For information about which views that are supported in the
C-SPY driver you are using, see Requirements for using the
profiler, page 215.

Displays the range of the selected time interval, in other
words, the profiled selection. This field is yellow when
Time-interval profiling mode is enabled. This field is only
available if PC Sampling is supported by the debug probe
(SWO trace).

For information about which views that are supported in the
C-SPY driver you are using, see Requirements for using the
profiler, page 215.

The content in the display area depends on which source that is used for the profiling

information:

e For the Breakpoints and Trace (calls) sources, the display area contains one line for
each function compiled with debug information enabled. When some profiling
information has been collected, it is possible to expand rows of functions that have

C-SPY® Debugging Guide
220 for ARM

Using the profiler __o

called other functions. The child items for a given function list all the functions that
have been called by the parent function and the corresponding statistics.

o For the Sampling and Trace (flat) sources, the display area contains one line for
each C function of your application, but also lines for sections of code from the
runtime library or from other code without debug information, denoted only by the
corresponding assembler labels. Each executed pcC address from trace data is treated
as a separate sample and is associated with the corresponding line in the Profiling
window. Each line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 215.

More specifically, the display area provides information in these columns:

Function

Calls

Flat time

Flat time (%)

Acc. time

Acc. time (%)

PC Samples

PC Samples (%)

Power Samples

All sources

Breakpoints and
Trace (calls)

Breakpoints and
Trace (calls)

Breakpoints and
Trace (calls)

Breakpoints and
Trace (calls)

Breakpoints and
Trace (calls)

Trace (flat) and
Sampling

Trace (flat) and
Sampling

Power Sampling

The name of the profiled C function.

For Sampling source, also sections of code
from the runtime library or from other code
without debug information, denoted only by
the corresponding assembler labels, is
displayed.

The number of times the function has been
called.

The time in cycles spent inside the function.

Flat time expressed as a percentage of the total
time.

The time in cycles spent in this function and
everything called by this function.

Accumulated time expressed as a percentage
of the total time.

The number of PC samples associated with the
function.

The number of PC samples associated with the
function as a percentage of the total number of
samples.

The number of power samples associated with
that function.

221

Reference information on the profiler

222

Context menu

C-SPY® Debugging Guide
for ARM

Energy (%)

Avg Current [mA]

Min Current [mA]

Max Current [mA]

Power Sampling The accumulated value of all measurements

associated with that function, expressed as a
percentage of all measurements.

Power Sampling The average measured value for all samples

associated with that function.

Power Sampling The minimum measured value for all samples

associated with that function.

Power Sampling The maximum measured value for all samples

associated with that function.

This context menu is available:

v Enable
Clear

Source: Trace (calls)
Source: Trace (flat)
v Source: Sampling

v Power Sampling

Figure 96: Function Profiler window context menu

These commands are available:

Enable

Clear

Filtering

Enables the profiler. The system will collect information
also when the window is closed.

Clears all profiling data.
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.

Uncheck All—Includes all lines in the profiling.

Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can
be useful if you are a group of engineers and want to
share sets of exclusions.

These commands are only available when using one of the
modes Trace(flat) or Sampling.

Using the profiler __o

Source” Selects which source to be used for the profiling
information. Choose between:

Sampling—the instruction count for instruction profiling
represents the number of samples for each instruction.

Trace (calls)—the instruction count for instruction
profiling is only as complete as the collected trace data.

Trace (flat)—the instruction count for instruction profiling
is only as complete as the collected trace data.

Power Sampling Toggles power sampling information on or off. This
command is supported by the J-Link and J-Trace Ultra
debug probes.

* The available sources depend on the C-SPY driver you are using.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 215.

223

Reference information on the profiler

C-SPY® Debugging Guide
224 for ARM

Debugging in the power
domain

This chapter describes techniques for power debugging and how you can use
C-SPY® to find source code constructions that result in unexpected power
consumption. More specifically, this means:

e Introduction to power debugging
e Optimizing your source code for power consumption
e Procedures for power debugging

e Reference information on power debugging.

Introduction to power debugging

This section covers these topics:

e Reasons for using power debugging
e Briefly about power debugging

o Requirements for power debugging.

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment: medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 227.
BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

225

Introduction to power debugging

226

C-SPY® Debugging Guide
for ARM

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can get insight into how the software affects the power consumption, and thus how it can
be minimized.

Measuring power consumption

The power consumption is measured by the debug probe: The J-Link/J-Trace Ultra
debug probe measures the voltage drop across a small resistor in series with the supply
power to the device. The voltage drop is measured by a differential amplifier and then
sampled by an AD converter.

® You can specify a threshold and an appropriate action to be executed when the
threshold value is reached. This means that you can enable or disable the power
measurement or you can stop the application’s execution and determine the cause of
unexpected power values.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

o The Power Setup window is where you can specify a threshold and an action to be
executed when the threshold is reached.

o The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with
the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

o The Timeline window displays power values on a time scale. This provides a
convenient way of viewing the power consumption in relation to the other
information displayed in the window. The Timeline window is correlated to both the
Power Log window, the source code window, and the Disassembly window, which
means you are just a double-click away from the source code that corresponds to the
values you see on the timeline.

o The Function Profiler window combines the function profiling with the power
logging to display the power consumption per function—power profiling. You will
get a list of values per function and also the average values together with max and
min values. Thus, you will find the regions in the application that you should focus
when optimizing for power consumption.

Debugging in the power domain °

REQUIREMENTS FOR POWER DEBUGGING

To use the features in C-SPY for power debugging, you need:

o A Cortex-M3 device with SWO

o A J-Link debug probe or a J-Link Ultra debug probe. Note that the J-Link probe has
very limited accuracy and a low resolution.

Optimizing your source code for power consumption

This section gives some examples where power debugging can be useful and thus
hopefully help you identify source code constructions that can be optimized for low
power consumption.

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED) ;
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY) ;

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS

A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i != 0);

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

227

Optimizing your source code for power consumption

228

C-SPY® Debugging Guide
for ARM

DMA VERSUS POLLED 1/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what
effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to happen:
receiving data on a serial port, watching an I/O pin change state, or waiting for a time
delay to expire. If the processor is still running at full speed when it is idle, battery life
is consumed while very little is being accomplished. So in many applications, the
microprocessor is only active during a very small amount of the total time, and by
placing it in a low-power mode during the idle time, the battery life can be extended
considerably.

A good approach is to have a task-oriented design and to use an RTOS. In a task-oriented
design, a task can be defined with the lowest priority, and it will only execute when there
is no other task that needs to be executed. This idle task is the perfect place to implement
power management. In practice, every time the idle task is activated, it sets the
microprocessor into a low-power mode. Many microprocessors and other silicon
devices have a number of different low-power modes, in which different parts of the
microprocessor can be turned off when they are not needed. The oscillator can for
example either be turned off or switched to a lower frequency. In addition, individual
peripheral units, timers, and the CPU can be stopped. The different low-power modes
have different power consumption based on which peripherals are left turned on. A
power debugging tool can be very useful when experimenting with different low-level
modes.

You can use the Function profiler in C-SPY to compare power measurements for the task
or function that sets the system in a low-power mode when different low-power modes
are used. Both the mean value and the percentage of the total power consumption can be
useful in the comparison.

CPU FREQUENCY
Power consumption in a CMOS MCU is theoretically given by the formula:
p=f*U? *k

where £ is the clock frequency, U is the supply voltage, and k is a constant.

Debugging in the power domain °

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 50 MHz is expected to
spend 50% of the time in sleep mode when running at 100 MHz. You can use the power
data collected in C-SPY to verify the expected behavior and if there is unlinear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on; it can be a careful and correct design
decision, or it can be an inadequate design or just a mistake. If not the first case, then
more power than expected will be consumed by your application. This will be easily
revealed by the Power graph in the Timeline window. Double-clicking in the Timeline
window where the power consumption is unexpectedly high will take you to the
corresponding source code and disassembly code. In many cases, it is enough to disable
the peripheral unit when it is inactive, for example by turning off its clock which in most
cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power
even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

229

Optimizing your source code for power consumption

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t; is in an inactive mode and the current is
Iof

Power consumption

Time

v

% I 5 4
Figure 97: Power consumption in an event-driven system

Atty, the system is activated whereby the current rises to I; which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I. At t,, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I, between t, and t; where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But also in the power domain, more optimizations can be made.
The shadowed area represents the energy that could have been saved if the peripheral
devices that are not used between t, and t; had been turned off, or if the priorities of the
two tasks had been changed.

C-SPY® Debugging Guide
230 for ARM

Debugging in the power domain °

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power Graph in the
Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power Graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.

ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design
requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements. Performing a lot of I/O activity at the same time as
sampling analog signals causes many digital lines to toggle state at the same time, which
might introduce extra noise into the AD converter.

Figure 98: A noise spike recorded by an oscilloscope

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated. All data presented in the Timeline window
is correlated to the executed code. Simply double-clicking on a suspicious power value
will bring up the corresponding C source code.

231

Procedures for power debugging

232

Procedures for power debugging

C-SPY® Debugging Guide
for ARM

This section gives you step-by-step descriptions of how to use features related to power
debugging.

More specifically, you will get information about:

e Displaying the application’s power profile and analyzing the result

o Detecting unexpected power usage during application execution.
See also:

o Timeline window, page 190

o Selecting a time interval for profiling information, page 217.

DISPLAYING THE APPLICATION’S POWER PROFILE AND
ANALYZING THE RESULT

To view the power profile:

Choose driver-menu>SWO Configuration to open the SWO Configuration dialog
box. Make sure the CPU clock option is set to the same value as the CPU clock value
set by your application. This is necessary to set the SWO clock and to obtain a correct
data transfer to the debug probe.

Choose C-SPY driver>Timeline to open the Timeline window.

Right-click in the graph area and choose Enable from the context menu to enable the
Power graph.

Choose C-SPY driver>Power Log to open the Power Log window.

Optionally, if you want to correlate power values to specific interrupts or variables,
right-click in the Interrupts or Data Logs graph area, respectively, and choose Enable
from the context menu.

For variables, you also need to set a Data Log breakpoint for each variable you want a
graphical representation of in the Timeline window. See Data Log breakpoints dialog
box, page 130.

Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the graph. See Viewing Range dialog box, page 197.

Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values, and of the data and interrupt logs if you enabled
these graphs. For information about how to navigate on the graph, see Timeline
window, page 190.

Debugging in the power domain °

To analyze power consumption:

o Double-click on an interesting power value to highlight the corresponding source
code is highlighted in the editor window and in the Disassembly window. The
corresponding log is highlighted in the Power Log window. For examples of when
this can be useful, see Optimizing your source code for power consumption, page
227.

e You can identify peripheral units that can be disabled when not used. You can detect
this by analyzing the Power graph in combination with the other graphs in the
Timeline window. See also Detecting mistakenly unattended peripherals, page 229.

e For a specific interrupt, you can see whether the power consumption is changed in
an unexpected way after the interrupt exits, for example, if the interrupt enables a
power-intensive unit and does not turn it off before exit.

e For function profiling, see Selecting a time interval for profiling information, page
217.

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION
To detect unexpected power consumption:

Choose C-SPY driver>SWO Configuration to open the SWO Configuration dialog
box. Make sure the CPU clock option is set to the same value as the CPU clock value
set by your application. This is necessary to set the SWO clock and to obtain a correct
data transfer to the debug probe.

Choose C-SPY driver>Power Setup to open the Power Setup window.

In the Power Setup window, specify a threshold value and the appropriate action, for
example Log All and Halt CPU Above Threshold.

Choose C-SPY driver>Power Log to open the Power Log window. If you continuously
want to save the power values to a file, choose Choose Live Log File from the context
menu. In this case you also need to choose Enable Live Logging to.

Start the execution.

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.

233

Reference information on power debugging

234

Reference information on power debugging

Power Setup window

Display area

C-SPY® Debugging Guide
for ARM

This section gives reference information for windows and dialog boxes related to power
debugging:

® Power Setup window, page 234
® Power Log window, page 236.
See also:

o Trace window, page 184

o Timeline window, page 190

e Viewing Range dialog box, page 197
°

Function Profiler window, page 219.

The Power Setup window is available from the C-SPY driver menu during a debug
session.

Sampling Frequency Max [Hz]: 10000 Wanted [Hz]: I 10000 j Actual [Hz]: 10000
D | Name | Shunt[Ohm]| Threshold| Unit | Action
10 10 — a A Log All

Figure 99: Power Setup window
This window is available for the J-Link driver.
Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power
Log window or from the context menu in the Power Log Graph in the Timeline window.

This area contains these columns:

ID A unique string that identifies the measurement channel in
the probe. Use the check box to activate the channel. If the
check box is deselected, logs will not be generated for that
channel.

Context menu

Debugging in the power domain °

Name Specify a user-defined name.

Shunt [Ohm] This column always contains --.

Threshold Specify a threshold value in the selected unit. The action you
specity will be executed when the threshold value is
reached.

Unit Selects the unit for power display. Choose between: nA, uA,
or mA.

Action Displays which action has been selected for the

measurement channel. Choose between: Log All, Log
Above Threshold, Log Below Threshold, Log All and
Halt CPU Above Threshold, and Log All and Halt CPU
Below Threshold.

This context menu is available:

nA
uA
W mA

Log All
Log Above Threshold
Log Below Threshold
v Log All and Halt CPU Above Threshold
Log All and Halt CPU Below Threshold
Figure 100: Power Setup window context menu

These commands are available:

nA, uA, mA Selects the unit for the power display. These alternatives are
available for channels that measure current.

Log All Logs all values.
Log Above Threshold Logs all values above the threshold.
Log Below Threshold Logs all values below the threshold.

Log All and Halt CPU Logs all values. If a logged value is above the threshold,
Above Threshold execution is stopped.

Log All and Halt CPU Logs all values. If a logged value is below the threshold,
Below Threshold execution is stopped

235

Reference information on power debugging

Power Log window

The Power Log window is available from the C-SPY driver menu during a debug
session.

Time | Program Counter Current [ma)] 5
S 157w 0=08004404 1218
SRS &F5ns 0x08009654 103
FadEF FFFes 0=0800437E 122
SEFET S 0=0800434C 122
s14F5 SR 0=0800436C 122
FESFS F3Fws 0=0800434E 122
FIgEd SdSws 0=08004360 135
FEFFES g8 Fes 0x08004358 122
SEEIE 25 5es 0x08004356 122

v

Figure 101: Power Log window
This window is available for the J-Link driver.
This window displays collected power values.

A row with only the Time/Cycles and Program Counter displayed in grey denotes a
logged power value for a channel that was active during the actual collection of data but
currently is disabled in the Power Setup window.

Note: There is a limit in the number of logged power values. When this limit is
exceeded, the entries in the beginning of the buffer are erased.
Display area

This area contains these columns:

Time The time from the application reset until the event, based on
the clock frequency specified in the SWO Configuration
dialog box.

If the time is displayed in italics, the target system could not
collect a correct time, but instead had to approximate it.

This column is available when you have selected Show
Time from the context menu.

C-SPY® Debugging Guide
236 for ARM

Cycles

Program Counter

Name [unit]

Context menu

Debugging in the power domain °

The number of cycles from the application reset until the
event. This information is cleared at reset.

If a cycle is displayed in italics, the target system could not
collect a correct time, but instead had to approximate it.

This column is available when you have selected Show
Cycles from the context menu.

Displays one of these:

An address, which is the content of the pc, that is, the
address of an instruction in close to the point where the
power value was collected.

---, the target system failed to provide the debugger with
any information.

overflow in red, the communication channel failed to
transmit all data from the target system.

Idle, the power value is logged during idle mode.

The power measurement value expressed in the unit you
specified in the Power Setup window.

This context menu is available:

Enable
Clear
Save to Log File. ..

Choose Live Log File...

v Enable Live Logging to 'PowerLogLive.log'

Clear 'PowerLogLive.log'

Show Time
v Show Cydes

Figure 102: Power Log window context menu

These commands are available:

Enable

Enables the logging system, which means power values are
saved internally within the IDE. The values are displayed in
the Power Log window and in the Power Graph in the
Timeline window (if enabled). The system will log
information also when the window is closed.

237

Reference information on power debugging

238

Clear

Save to Log File

Choose Live Log File

Enable Live Logging to

Clear log file

Show Time

Show Cycles

The format of the log file

C-SPY® Debugging Guide
for ARM

Clears the power values saved internally within the IDE.
The values will also be cleared when you reset the debugger,
or if you change the execution frequency in the SWO Setup
dialog box.

Displays a standard file selection dialog box where you can
choose the destination file for the logged power values. This
command then saves the current content of the internal log
buffer.

For information about the file, see The format of the log file,
page 238.

Displays a standard file selection dialog box where you can
choose a destination file for the logged power values. The
power values are continuously saved to that file during
execution. The content of the live log file is never
automatically cleared, the logged values are simply
appended at the end of the file.

For information about the file, see The format of the log file,
page 238.

Toggles live logging on or off. The logs are saved in a to the
specified file.

Clears the content of the live log file.

Displays the Time column in the Power Log window. This
choice is also reflected in the log files.

Displays the Cycles column in the Power Log window. This
choice is also reflected in the log files.

The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:

Time/Cycles

Approx

PC

The time from the application reset until the power value
was logged.

An x in the column indicates that the power value has an
approximative value for time/cycle.

The value of the program counter close to the point where
the power value was logged.

Debugging in the power domain °

Namelunit| The corresponding value from the Power Log window,
where Name and unit are according to your settings in the
Power Setup window.

239

Reference information on power debugging

C-SPY® Debugging Guide
240 for ARM

Code coverage

This chapter describes the code coverage functionality in C-SPY®, which helps
you verify whether all parts of your code have been executed. More
specifically, this means:

e Introduction to code coverage

e Reference information on code coverage.

Introduction to code coverage

This section covers these topics:

o Reasons for using code coverage
e Briefly about code coverage

o Requirements for using code coverage.

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis. For
every program, module, and function, the analysis shows the percentage of code that has
been executed since code coverage was turned on up to the point where the application
has stopped. In addition, all statements that have not been executed are listed. The
analysis will continue until turned off.

REQUIREMENTS FOR USING CODE COVERAGE

Code coverage is not supported by all C-SPY drivers. For information about the driver
you are using, see Differences between the C-SPY drivers, page 38. Code coverage is
supported by the C-SPY Simulator.

241

Reference information on code coverage

Reference information on code coverage

This section gives reference information about these windows and dialog boxes:
o Code Coverage window, page 242.
See also Single stepping, page 66.

Code Coverage window

The Code Coverage window is available from the View menu.

Code Coverage 5]

[0 5l[C][C &4
=% project] 91.18%
=@ Tutor 100.00%
¢ DoFaregroundProcess 100.00%
¢ NextCounter 100.00%
% main 100.00%
=% Utilities 86.96%
=@ GetFib 66.67%
< 5-13:54 addr((xDE)
4 InitFib 100.00%
=@ PutFib 84.62%
< 5-17:65 addr(IxEB)
< 5-11:66 addr(0xF0)

Figure 103: Code Coverage window

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

An asterisk (*) in the title bar indicates that C-SPY has continued to execute, and that
the Code Coverage window must be refreshed because the displayed information is no
longer up to date. To update the information, use the Refresh command.

To get started using code coverage:

I Before using the code coverage functionality you must build your application using
these options:

Category Setting

C/C++ Compiler Output>Generate debug information

Table 16: Project options for enabling code coverage

C-SPY® Debugging Guide
242 for ARM

Code coverage ___4

Category Setting
Linker Output>Include debug information in output
Debugger Plugins>Code Coverage

Table 16: Project options for enabling code coverage

2 After you have built your application and started C-SPY, choose View>Code
Coverage to open the Code Coverage window.

m 3 Click the Activate button, alternatively choose Activate from the context menu, to
J switch on code coverage.

c‘l 4 Start the execution. When the execution stops, for instance because the program exit is
reached or a breakpoint is triggered, click the Refresh button to view the code
coverage information.

Display area

The code coverage information is displayed in a tree structure, showing the program,
module, function, and statement levels. The window displays only source code that was
compiled with debug information. Thus, startup code, exit code, and library code is not
displayed in the window. Furthermore, coverage information for statements in inlined
functions is not displayed. Only the statement containing the inlined function call is
marked as executed. The plus sign and minus sign icons allow you to expand and
collapse the structure.

These icons give you an overview of the current status on all levels:

Red diamond Signifies that 0% of the modules or functions has been
executed.

Green diamond Signifies that 100% of the modules or functions has been
executed.

Red and green diamond ~ Signifies that some of the modules or functions have been
executed.

Yellow diamond Signifies a statement that has not been executed.

The percentage displayed at the end of every program, module, and function line shows
the amount of statements that has been covered so far, that is, the number of executed
statements divided with the total number of statements.

For statements that have not been executed (yellow diamond), the information displayed
is the column number range and the row number of the statement in the source window,
followed by the address of the step point:

<column_start>-<column_end>:row address.

243

Reference information on code coverage

244

Context menu

A statement is considered to be executed when one of its instructions has been executed.
When a statement has been executed, it is removed from the window and the percentage
is increased correspondingly.

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the source window, which becomes the
active window. Double-clicking a module on the program level expands or collapses the
tree structure.

This context menu is available:

v Activate
Clear
Refresh
Auko-refresh

Save As...

Figure 104: Code coverage window context menu

These commands are available:

Activate Switches code coverage on and off during execution.

Clear Clears the code coverage information. All step points are marked as not
executed.

Refresh Updates the code coverage information and refreshes the window. All

step points that have been executed since the last refresh are removed
from the tree.

QI Auto-refresh Toggles the automatic reload of code coverage information on and off.

When turned on, the code coverage information is reloaded
automatically when C-SPY stops at a breakpoint, at a step point, and at
program exit.

Save As Saves the current code coverage result in a text file.

ﬁ ‘Save session Saves your code coverage session data to a * . dat file. This is useful if

you for some reason must abort your debug session, but want to
continue the session later on. This command is available on the toolbar.

ﬁ Restore session Restores previously saved code coverage session data. This is useful if

C-SPY® Debugging Guide
for ARM

you for some reason must abort your debug session, but want to
continue the session later on. This command is available on the toolbar.

Interrupts

This chapter describes how C-SPY® can help you test the logic of your
interrupt service routines and debug the interrupt handling in the target
system. Interrupt logging provides you with comprehensive information about
the interrupt events. More specifically, this chapter gives:

e Introduction to interrupts
e Procedures for interrupts

e Reference information on interrupts.

Introduction to interrupts

This section introduces you to interrupt logging and to interrupt simulation.
This section covers these topics:

Briefly about the interrupt simulation system
Interrupt characteristics

Interrupt simulation states

C-SPY system macros for interrupt simulation

Target-adapting the interrupt simulation system

Briefly about interrupt logging.
See also:

® Reference information on C-SPY system macros, page 281
o Using breakpoints, page 107
® The /AR C/C++ Development Guide for ARM.

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and

debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

245

Introduction to interrupts

246

C-SPY® Debugging Guide
for ARM

The C-SPY Simulator includes an interrupt simulation system where you can simulate
the execution of interrupts during debugging. You can configure the interrupt simulation
system so that it resembles your hardware interrupt system.

The interrupt system has the following features:

Simulated interrupt support for the ARM core

Single-occasion or periodical interrupts based on the cycle counter
Predefined interrupts for various devices

Configuration of hold time, probability, and timing variation

State information for locating timing problems

Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

o A log window that continuously displays events for each defined interrupt.
o A status window that shows the current interrupt activities.
All interrupts you define using the Interrupt Setup dialog box are preserved between

debug sessions, unless you remove them. A forced interrupt, on the other hand, exists
only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Setup dialog box or a system macro.

Interrupts °

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

H H H
Activation | |_‘ |_|—| | | |
signal } I | I I
F‘meI] | | | l |
cycles
B Ton ot wt it
A A+R A+2R A+3R

*If probability is less than 100%, some interrupts may be omitted.

A = Activation time
R = Repeat interval
H =Hold time

Y =Variance

Figure 105: Simulated interrupt configuration

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between
instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options
probability—the probability, in percent, that the interrupt will actually appear in a
period—and variance—a time variation range as a percentage of the repeat interval.
These options make it possible to randomize the interrupt simulation. You can also
specify a hold time which describes how long the interrupt remains pending until
removed if it has not been processed. If the hold time is set to infinite, the corresponding
pending bit will be set until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the available
status information. For an interrupt, these states can be displayed: /dle, Pending,
Executing, or Suspended.

247

Introduction to interrupts

248

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Hold time
- -
|
Interrupt A 8 : < D! E
activation !
signal : :
e

| .
Execution time for

interrupt handler

Figure 106: Simulation states - example 1

T
Fol H
|
| - -
|
I
Time Status
A Idle
B Pending
D Executing
E Idle
F Pending
G, H Executing

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks

like this:
Hold time
-«

T T

| |
Interrupt A By C D E F G
activation — : ! L ___
signal I _ i_ __________

|

Execution time for
interrupt invocation (1)

Figure 107: Simulation states - example 2

C-SPY® Debugging Guide
for ARM

Execution time for
interrupt invocation (2)

Time Status
A Idle
B Pending
CDE Executing
FG 1st interrupt: Suspended
2nd interrupt: Executing

Interrupts °

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

The C-SPY Simulator provides these predefined system macros related to interrupts:
__enablelInterrupts

__disableInterrupts

__orderInterrupt

__cancelInterrupt

__cancelAllInterrupts

__popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupts dialog box.

For more information about each macro, see Reference information on C-SPY system
macros, page 281.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To perform these actions for various devices, the interrupt system must have detailed
information about each available interrupt. Except for default settings, this information
is provided in the device description files. The default settings are used if no device
description file has been specified.

For information about device description files, see Selecting a device description file,
page 47.

249

Procedures for interrupts

250

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. You
can also log internal interrupt status information, such as triggered, expired, etc. The
logs are displayed in the Interrupt Log window and a summary is available in the
Interrupt Log Summary window. The Interrupt Graph in the Timeline window provides
a graphical view of the interrupt events during the execution of your application
program.

Requirements for interrupt logging

To use interrupt logging you need:

o A J-Link debug probe or an ST-LINK debug probe
o An SWD interface between the debug probe and the target system

o To enable interrupt logging from the Interrupt Log window, the Interrupt Log
Summary window, or the Timeline window.

Interrupt logging is also supported by the C-SPY simulator.

Procedures for interrupts

C-SPY® Debugging Guide
for ARM

This section gives you step-by-step descriptions about interrupts.
More specifically, you will get information about:

e Simulating a simple interrupt
o Simulating an interrupt in a multi-task system

o Getting started using interrupt logging using C-SPY hardware drivers.
See also:

® Registering and executing using setup macros and setup files, page 272 for details
about how to use a setup file to define simulated interrupts at C-SPY startup

o The tutorial Simulating an interrupt in the Information Center.

Interrupts °

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt for OKI
ML674001. However, the procedure can also be used for other types of interrupts.

To simulate and debug an interrupt:

I Assume this simple application which contains an IRQ handler routine that handles
system timer interrupts. It increments a tick variable. The main function sets the
necessary status registers. The application exits when 100 interrupts have been
generated.

/* Enables use of extended keywords */
#pragma language=extended

#include <intrinsics.h>
#include <oki/ioml1674001.h>
#include <stdio.h>

unsigned int ticks = 0;

/* IRQ handler */
_irg __arm void IRQ_Handler (void)

/* We use only system timer interrupts, so we do not need
to check the interrupt source. */

ticks += 1;

TMOVFR_bit.OVF = 1; /* Clear system timer overflow flag */

int main(void)

{
__enable_interrupt();
/* Timer setup code */

ILCO_bit.ILRO = 4; /* System timer interrupt priority */
TMRLR_bit.TMRLR = 1E5; /* System timer reload value */
TMEN_bit.TCEN = 1; /* Enable system timer */

while (ticks < 100);
printf ("Done\n") ;

}

2 Add your interrupt service routine to your application source code and add the file to
your project.

3 Build your project and start the simulator.

251

Procedures for interrupts

252

C-SPY® Debugging Guide
for ARM

Choose Simulator>Interrupt Setup to open the Interrupts Setup dialog box. Select
the Enable interrupt simulation option to enable interrupt simulation. Click New to
open the Edit Interrupt dialog box. For the Timer example, verify these settings:

Option Settings
Interrupt IRQ
First activation 4000
Repeat interval 2000
Hold time 10
Probability (%) 100
Variance (%) 0

Table 17: Timer interrupt settings
Click OK.

Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

o Generate an interrupt when the cycle counter has passed 4000
o Continuously repeat the interrupt after approximately 2000 cycles.

To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window, page 190.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Setup dialog box might not look as you expect. If too
many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:

Set a code breakpoint on the instruction that returns from the interrupt function.

Specifty the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

Interrupts °

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING USING
C-SPY HARDWARE DRIVERS

Interrupt logging is supported by the J-Link/J-Trace and ST-LINK drivers.

I To set up for interrupt logging, choose C-SPY driver>SWO Configuration. In the
dialog box, set up the serial-wire output communication channel for trace data. Note
specifically the CPU clock option. The CPU clock can also be set up on the
Project>Options>ST-LINK page.

2 Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

o C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

o C-SPY driver>Timeline to open the Timeline window and view the Interrupt graph.

3 From the context menu in the Interrupt Log window, choose Enable to enable the
logging.

In the SWO Configuration dialog box, you can see in the Interrupt Log Events area
that interrupt logs are enabled.

4 Start executing your application program to collect the log information.

To view the interrupt log information, look in any of the Interrupt Log, Interrupt Log
Summary, or the Interrupt graph in the Timeline window.

6 1If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

7 To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts

This section gives reference information about these windows and dialog boxes:

Interrupt Setup dialog box, page 254
Edit Interrupt dialog box, page 256
Forced Interrupt window, page 257
Interrupt Status window, page 258

Interrupt Log window, page 260

253

Reference information on interrupts

o [nterrupt Log Summary window, page 264.

Interrupt Setup dialog box

The Interrupt Setup dialog box is available by choosing Simulator>Interrupt Setup.

r

Interrupt Setup

Enable interrupt simulation

Intermupt [} Type Timing [cycles] 0K
MM 2 Fepeat 0+ n*2000

Delete

% 4

Figure 108: Interrupt Setup dialog box

This dialog box lists all defined interrupts. Use this dialog box to enable or disable the
interrupt simulation system, as well as to enable or disable individual interrupts.

Enable interrupt simulation

Enables or disables interrupt simulation. If the interrupt simulation is disabled, the
definitions remain but no interrupts are generated. Note that you can also enable and
disable installed interrupts individually by using the check box to the left of the interrupt
name in the list of installed interrupts.

Display area

This area contains these columns:

Interrupt Lists all interrupts. Use the checkbox to enable or disable the
interrupt.
ID A unique interrupt identifier.

C-SPY® Debugging Guide
254 for ARM

Interrupts °

Type Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced
Interrupt Window.

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional
part (macro) is added, for example: Repeat (macro).

Timing The timing of the interrupt. For a Single and Forced interrupt,
the activation time is displayed. For a Repeat interrupt, the
information has the form: Activation Time + n*Repeat
Time. For example, 2000 + n*2345. This means that the first
time this interrupt is triggered, is at 2000 cycles and after that with
an interval of 2345 cycles.

Buttons

These buttons are available:

New Opens the Edit Interrupt dialog box, see Edit Interrupt dialog
box, page 256.

Edit Opens the Edit Interrupt dialog box, see Edit Interrupt dialog
box, page 256.

Delete Removes the selected interrupt.

Delete All Removes all interrupts.

255

Reference information on interrupts

256

Edit Interrupt dialog box

Interrupt

Description

C-SPY® Debugging Guide
for ARM

The Edit Interrupt dialog box is available from the Interrupt Setup dialog box.

Edit Interrupt g|
Interrupt:
UBRT v

Drescription:

1 0x40 UART.INTEN UART INTPEND

First activatior:

4000 Hold tirne
(&) Infinite
Fiepeat interval:
2000 o
Wariance [%]: Probability [%]:
a v 100 .

Figure 109: Edit Interrupt dialog box

Use this dialog box to interactively fine-tune the interrupt parameters. You can add the
parameters and quickly test that the interrupt is generated according to your needs.

Note: You can only edit or remove non-forced interrupts.

Selects the interrupt that you want to edit. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. For Cortex-M
devices, the list is populated with entries from the device description file that you have
selected. For other devices, only two interrupts are available: IRQ and FIQ.

A description of the selected interrupt, if available. The description is retrieved from the
selected device description file and consists of a string describing the priority, vector
offset, enable bit, and pending bit, separated by space characters. The enable bit and
pending bit are optional. It is possible to have none, only the enable bit, or both.

For Cortex-M devices, the description is retrieved from the selected device description
file and is editable. Enable bit and pending bit are not available from the ddf file; they
must be manually edited if wanted. The priority is as in the hardware: the lower the
number, the higher the priority. NMI and HardFault are special, and their descriptions
should not be edited. Cortex-M interrupts are also affected by the PRIMASK,
FAULTMASK, and BASEPRI registers, as described in the ARM documentation.

For other devices, the description strings for IRQ and FIQ are hardcoded and cannot be
edited. In those descriptions, a higher priority number means a higher priority.

Interrupts °

For interrupts specified using the system macro __orderInterrupt, the Description
box is empty.

First activation

Specify the value of the cycle counter after which the specified type of interrupt will be
generated.

Repeat interval

Specify the periodicity of the interrupt in cycles.

Variance %

Selects a timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and the
variance 5%, the interrupt might occur anywhere between T=95 and T=105, to simulate
a variation in the timing.

Hold time

Specify how long, in cycles, the interrupt remains pending until removed if it has not
been processed. If you select Infinite, the corresponding pending bit will be set until the
interrupt is acknowledged or removed.

Probability %

Selects the probability, in percent, that the interrupt will actually occur within the
specified period.

Forced Interrupt window

The Forced Interrupt window is available from the Simulator menu.

Forced Interrupt @
Interrupt Description i
IRQ7 10x5C
IRQE 1 0xB0
IRQ9 1 0x64
IRQ10 1 0xB8
IRQT1 1 0x6C
IRQ12 10x70 L
IRQ13 10x74 i
IRQ14 10x78
IRQ15 10x7C -

Figure 110: Forced Interrupt window

257

Reference information on interrupts

258

Display area

Context menu

Use this window to force an interrupt instantly. This is useful when you want to check
your interrupt logistics and interrupt routines.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To force an interrupt:
Enable the interrupt simulation system, see Interrupt Setup dialog box, page 254.

Double-click the interrupt in the Forced Interrupt window, or activate by using the
Force command available on the context menu.

This area lists all available interrupts and their definitions. The information is retrieved
from the selected device description file. See this file for a detailed description.

This context menu is available:

Force

Figure 111: Forced Interrupt window context menu

This command is available:

Force Triggers the interrupt you selected in the display area.

Interrupt Status window

C-SPY® Debugging Guide
for ARM

The Interrupt Status window is available from the Simulator menu.

Interrupt Status @
Interrupt D Type Status Mext Time Timing [cycles]
[R1]] 0 Forced Pending -- --
IRQ0 1 Forced Pending -- --

Figure 112: Interrupt Status window

Display area

Interrupts °

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

This area contains these columns:

Interrupt

ID

Type

Status

Next Time

Lists all interrupts.
A unique interrupt identifier.
The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Forced
Interrupt window.

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the
additional part (macro) is added, for example:
Repeat (macro).

The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

Pending, the interrupt activation signal is active, but the
interrupt has not been yet acknowledged by the interrupt
handler.

Executing, the interrupt is currently being serviced, that is
the interrupt handler function is executing.

Suspended, the interrupt is currently suspended due to
execution of an interrupt with a higher priority.

(deleted) is added to Executing and Suspended if you have
deleted a currently active interrupt. (deleted) is removed
when the interrupt has finished executing.

The next time an idle interrupt is triggered. Once a
repeatable interrupt stats executing, a copy of the interrupt
will appear with the state Idle and the next time set. For
interrupts that do not have a next time—that is pending,
executing, or suspended—the column will show --.

259

Reference information on interrupts

260

Interrupt Log window

C-SPY® Debugging Guide
for ARM

Timing The timing of the interrupt. For a Single and Forced
interrupt, the activation time is displayed. For a Repeat
interrupt, the information has the form: Activation Time
+n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000
cycles and after that with an interval of 2345 cycles.

The Interrupt Log window is available from the J-Link menu, or the ST-LINK menu,
respectively.

Interrupt that occurs

within another interrupt
Interrupt Log @

Cycles | Interrupt Status Frogram Countgt Execution Cycles e
3012 IRQO Triggered 0=DAd
3012 IRQO Enter 0=DA4
3081 MM Triggered 0=D36
3081 MM Enter 0=D36
3767 MM Leawve 0=ES84 686
4505 IRQ0O Leawve 0=EEQ 1493
5020 IRQO Triggered 0=11E4
5oz20 IRQO Enter 0=x11EA
5826 IRQO Leawve 0=EEQ 806
5854 IRQ0 Forced 0x10BA
5855 IRQO Enter 0=EE0
6661 IRQO Leawve 0=EEQ 806
BE64 MM Forced 0x10BE
B6EES MM Enter 0=ES4
7030 IRQO Triggered 0=11EE
7042 IRQ0O Expired 0=10Ch b
White rows Grey rows indicate
indicate entrances exits from interrupts

to interrupts

Figure 113: Interrupt Log window

To use the Interrupt Log window, you need one of these alternatives:

e A J-Link debug probe or an ST-LINK debug probe and an SWD interface between
the debug probe and the target system.

o The C-SPY simulator.

This window logs entrances to and exits from interrupts. The C-SPY simulator also logs
internal state changes.

Interrupts °

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
entries in the beginning of the buffer are erased.

For more information, see Getting started using interrupt logging using C-SPY
hardware drivers, page 253.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 190.

Display area for the C-SPY }-Link driver and the ST-LINK driver

This area contains these columns:

Time

Cycles

Interrupt

Status

Program Counter*

The time for the interrupt entrance, based on the CPU clock
frequency specified in the SWO Configuration dialog box.

If a time is displayed in italics, the target system has not
been able to collect a correct time, but instead had to
approximate it.

This column is available when you have selected Show
Time from the context menu.

The number of cycles from the start of the execution until
the event.

A cycle count displayed in italics indicates an approximative
value. Italics is used when the target system has not been
able to collect a correct value, but instead had to
approximate it.

This column is available when you have selected Show
Cycles from the context menu.

The name of the interrupt source where the interrupt
occurred. If the column displays Overflow in red, the
communication channel failed to transmit all interrupt logs
from the target system.

The event status of the interrupt:

Enter, the interrupt is currently executing.
Leave, the interrupt has finished executing.

The address of the interrupt handler.

261

Reference information on interrupts

Execution Time/Cycles The time spent in the interrupt, calculated using the Enter
and Leave timestamps. This includes time spent in any
subroutines or other interrupts that occurred in the specific
interrupt.

* You can double-click an address. If it is available in the source code, the editor window displays
the corresponding source code, for example for the interrupt handler (this does not include
library source code).

Display area for the C-SPY simulator

This area contains these columns:

Time The time for the interrupt entrance, based on an internally
specified clock frequency.

This column is available when you have selected Show Time
from the context menu.

Cycles The number of cycles from the start of the execution until the
event.

This column is available when you have selected Show Cycles
from the context menu.

Interrupt The interrupt as defined in the device description file.
Status Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from
the Forced Interrupt window.

Enter, the interrupt is currently executing.

Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt
being executed.

Rejected, the interrupt has been rejected because the necessary
interrupt registers were not set up to accept the interrupt.

Program Counter The value of the program counter when the event occurred.

Execution The time spent in the interrupt, calculated using the Enter and
Time/Cycles Leave timestamps. This includes time spent in any subroutines or
other interrupts that occurred in the specific interrupt.

C-SPY® Debugging Guide
262 for ARM

Interrupts °

Interrupt Log window context menu

This context menu is available in the Interrupt Log window and in the Interrupt Log
Summary window:

v Enable
Clear
Save to Log File. ..

Show Time
v Show Cydes

Figure 114: Interrupt Log window context menu

Note: The commands are the same in each window, but they only operate on the
specific window.

These commands are available:

Enable Enables the logging system. The system will log
information also when the window is closed.

Clear Deletes the log information. Note that this will happen also
when you reset the debugger.

Save to log file Displays a standard file selection dialog box where you can
select the destination file for the log information. The entries
in the log file are separated by TAB and LF. An X in the
Approx column indicates that the timestamp is an
approximation.

Show Time Displays the Time column in the Data Log window and in
the Interrupt Log window, respectively.

Show Cycles Displays the Cycles column in the Data Log window and in
the Interrupt Log window, respectively.

263

Reference information on interrupts

Interrupt Log Summary window

The Interrupt Log Summary window is available from the J-Link menu, or the
ST-LINK menu, respectively.

Interrupt Count| FirstTime | Tatal Time Fastest Slowest| Minnterval | MaxIntersal |
RTC 5 25.560us 95 .400us 16.320us 30.120us 192 640us 1284 100us
ADC 4 41 700us 55.200us 13 .800us 13.800us 27 .0p0us 2687 420us

Approximative time count. 1
Cwerflow count. 1
Currenttime: 3350.080us

Figure 115: Interrupt Log Summary window

To use the Interrupt Log Summary window, you need one of these alternatives:

o A J-Link debug probe or an ST-LINK debug probe and an SWD interface between
the debug probe and the target system.

o The C-SPY simulator.
This window displays a summary of logs of entrances to and exits from interrupts.

For more information, see Getting started using interrupt logging using C-SPY
hardware drivers, page 253.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window, page 190.

Display area for the C-SPY simulator

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt* The type of interrupt that occurred.

Count The number of times the interrupt occurred.

First time The first time the interrupt was executed.

Total time** The accumulated time spent in the interrupt.

Fastest** The fastest execution of a single interrupt of this type.
Slowest** The slowest execution of a single interrupt of this type.
Max intervalf The longest time between two interrupts of this type.

* At the bottom of the column, the current time or cycles is displayed—the number of cycles or

C-SPY® Debugging Guide
264 for ARM

Interrupts °

the execution time since the start of execution. Overflow count and approximative time count is
always zero.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log window.

T The interval is specified as the time interval between the entry time for two consecutive
interrupts.

Context menu

See Interrupt Log window context menu, page 263.

265

Reference information on interrupts

C-SPY® Debugging Guide
266 for ARM

Using C-SPY macros

C-SPY® includes a comprehensive macro language which allows you to
automate the debugging process and to simulate peripheral devices.

This chapter describes the C-SPY macro language, its features, for what
purpose these features can be used, and how to use them. More specifically,
this means:

e Introduction to C-SPY macros

e Procedures for using C-SPY macros

e Reference information on the macro language

e Reference information on reserved setup macro function names

e Reference information on C-SPY system macros.

Introduction to C-SPY macros

This section covers these topics:

o Reasons for using C-SPY macros

e Briefly about using C-SPY macros

e Briefly about setup macro functions and files
e Briefly about the macro language.

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

o Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.
e Hardware configuring, such as initializing hardware registers.

e Feeding your application with simulated data during runtime.

267

Introduction to C-SPY macros

268

C-SPY® Debugging Guide
for ARM

e Simulating peripheral devices, see the chapter Interrupts. This only applies if you
are using the simulator driver.

o Developing small debug utility functions, for instance calculating the stack depth,
see the provided example stack.mac located in the directory \arm\src\sim\.

BRIEFLY ABOUT USING C-SPY MACROS

To use C-SPY macros, you should:

o Write your macro variables and functions and collect them in in one or several
macro files

e Register your macros

e Execute your macros.

For registering and executing macros, there are several methods to choose between.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

o Once after communication with the target system has been established but before
downloading the application software

o Once after your application software has been downloaded
o FEach time the reset command is issued

o Once when the debug session ends.

To define a macro function to be called at a specific stage, you should define and register
a macro function with one of the reserved names. For instance, if you want to clear a
specific memory area before you load your application software, the macro setup
function execUserPreload should be used. This function is also suitable if you want
to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 280.

Using C-SPY macros ___¢

Remapping memory

A common feature of many ARM-based processors is the ability to remap memory.
After a reset, the memory controller typically maps address zero to non-volatile
memory, such as flash. By configuring the memory controller, the system memory can
be remapped to place RAM at zero and non-volatile memory higher up in the address
map. By doing this, the exception table will reside in RAM and can be easily modified
when you download code to the target hardware. To handle this in C-SPY, the setup
macro function execUserPreload () is suitable. For an example, see Remapping
memory, page 62.

BRIEFLY ABOUT THE MACRO LANGUAGE
The syntax of the macro language is very similar to the C language. There are:

® Macro statements, which are similar to C statements.

Macro functions, which you can define with or without parameters and return
values.

o Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

® Macro variables, which can be global or local, and can be used in C-SPY
expressions.

® Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 275.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldval;
CheckLatest (val)
{
if (oldval !'= wval)
{
__message "Message: Changed from ", oldval, " to ", wval, "\n";
oldval = val;
}
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

269

Procedures for using C-SPY macros

270

Procedures for using C-SPY macros

C-SPY® Debugging Guide
for ARM

This section gives you step-by-step descriptions about how to register and execute
C-SPY macros.

More specifically, you will get information about:

Registering C-SPY macros—an overview

Executing C-SPY macros—an overview

Using the Macro Configuration dialog box

Registering and executing using setup macros and setup files

Executing macros using Quick Watch

Executing a macro by connecting it to a breakpoint.
For more examples using C-SPY macros, see:

o The tutorial Simulating an interrupt in the Information Center

o [nitializing target hardware before C-SPY starts, page 51.

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and thus you
must register your macros. There are various ways to register macro functions:

® You can register macros interactively in the Macro Configuration dialog box, see
Using the Macro Configuration dialog box, page 271.

® You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 272.

® You can register a file containing macro function definitions, using the system
macro __ registerMacroFile. This means that you can dynamically select
which macro files to register, depending on the runtime conditions. Using the
system macro also lets you register multiple files at the same moment. For
information about the system macro, see __registerMacroFile, page 304.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.
EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

e You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 272.

Using C-SPY macros ___¢

o The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick

Watch, page 273.

o A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a

breakpoint, page 274.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

USING THE MACRO CONFIGURATION DIALOG BOX

The Macro Configuration dialog box is available by choosing Debug>Macros.

Macro Configuration

Loak in: I) tutor

x| « & ek E-

1 Debug

[settings

""" Setupadvanced. mac
SetupSimple. mac

File name: ISetupSimpIe.mac

Files of type: IMacro Filez [*.mac]

Selected Macro Files:

Add

C:hprojectshtutorS etupSimple. mac

— Registered Macro
(o] User € System

Parameters
_canceldlinterrupts]
__cancellnterupt int]
_clearBreak [id)
__clozeFile [file]
__dizablelnterrupts Il
__driverType [ztring]

- Spstem Macro -
- Spstem Macro -
- Spstem Macro -
- Spstem Macro -
- Spstem Macro -
- Spstem Macro -

Add All |
Remove |
Remave Al |

Fiegister |

Cloze |

Help

Figure 116: Macro Configuration dialog box

271

Procedures for using C-SPY macros

272

C-SPY® Debugging Guide
for ARM

Use this dialog box to list, register, and edit your macro files and functions. The dialog
box offers you an interactive interface for registering your macro functions which is
convenient when you develop macro functions and continuously want to load and test
them.

Macro functions that have been registered using the dialog box are deactivated when you
exit the debug session, and will not automatically be registered at the next debug session.

To register a macro file:

Select the macro files you want to register in the file selection list, and click Add or
Add All to add them to the Selected Macro Files list. Conversely, you can remove
files from the Selected Macro Files list using Remove or Remove All.

Click Register to register the macro functions, replacing any previously defined macro
functions or variables. Registered macro functions are displayed in the scroll list under
Registered Macros.

Note: System macros cannot be removed from the list, they are always registered.

To list macro functions:

Select All to display all macro functions, select User to display all user-defined
macros, or select System to display all system macros.

Click either Name or File under Registered Macros to display the column contents
sorted by macro names or by file. Clicking a second time sorts the contents in the
reverse order.

To modify a macro file:

Double-click a user-defined macro function in the Name column to open the file where
the function is defined, allowing you to modify it.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debugger. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

Using C-SPY macros ___¢

To define a setup macro function and load it during C-SPY startup:
Create a new text file where you can define your macro function.

For example:

execUserSetup ()

{

_ _registerMacroFile ("MyMacroUtils.mac") ;
_ _registerMacroFile("MyDeviceSimulation.mac") ;

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

Save the file using the filename extension mac.

Before you start C-SPY, choose Project>Options>Debugger>Setup. Select Use
Setup file and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

Consider this simple macro function that checks the status of a watchdog timer
interrupt enable bit:

WDTstatus ()
{
if (#WD_SR & 0x01 != 0) /* Checks the status of WDOVF */
return "Watchdog triggered"; /* C-SPY macro string used */
else
return "Watchdog not triggered"; /* C-SPY macro string used*/

}
Save the macro function using the filename extension mac.

To register the macro file, choose Debug>Macros. The Macro Configuration dialog
box appears.

Locate the file, click Add and then Register. The macro function appears in the list of
registered macros.

273

Procedures for using C-SPY macros

274

C-SPY® Debugging Guide
for ARM

5 Choose View>Quick Watch to open the Quick Watch window, type the macro call

WDTstatus () in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
wDTstatus (). Right-click, and choose Quick Watch from the context menu that
appears.

Quick Watch B

G e =]

| Expression | Yalue | Location | Type |
WOT status() "Watchdog not triggered” macro string

Figure 117: Quick Watch window
The macro will automatically be displayed in the Quick Watch window.

For more information, see Quick Watch window, page 98.

EXECUTING A MACRO BY CONNECTINGITTO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:

Assume this skeleton of a C function in your application source code:

int fact(int x)
{

}
Create a simple log macro function like this example:

logfact ()
{
__message "fact(" ,x, ")";

Using C-SPY macros ___¢

The __message statement will log messages to the Log window.
Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose Debug>Macros to open the Macro Configuration
dialog box and add your macro file to the list Selected Macro Files. Click Register
and your macro function will appear in the list Registered Macros. Close the dialog
box.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact (), in the Action field and click Apply. Close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Log window.

Note that the expression in the Action field is evaluated only when the breakpoint causes
the execution to really stop. If you want to log a value and then automatically continue
execution, you can either:

o Use a Log breakpoint, see Log breakpoints dialog box, page 127

o Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 118.

7 You can easily enhance the log macro function by, for instance, using the __ fmessage
statement instead, which will print the log information to a file. For information about
the __ fmessage statement, see Formatted output, page 278.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

Reference information on the macro language

This section gives reference information on the macro language:

Macro functions, page 276
Macro variables, page 276
Macro strings, page 277

Macro statements, page 277

Formatted output, page 278.

275

Reference information on the macro language

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{

macroBody

}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 84.

The syntax for defining one or more macro variables is:
__var nameList;
where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

Expression What it means
myvar = 3.5; myvar is now type float, value 3.5.
myvar = (int*)i; myvar is now type pointer to int, and the value is the same as i.

Table 18: Examples of C-SPY macro variables

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

C-SPY® Debugging Guide
276 for ARM

Using C-SPY macros ___¢

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello! ", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get
the length of a string using sizeof (str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char []) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */

str = cstr /* str is now just a pointer to char */

sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */

str([l] /* 101, the ASCII code for 'e' */

str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 278.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

For more information about C-SPY expressions, see C-SPY expressions, page 84.

Conditional statements

if (expression)
statement

277

Reference information on the macro language

if (expression)
statement
else
statement

Loop statements

for (init_expression; cond_expression; update_expression)
statement

while (expression)
statement

do
statement
while (expression);

Return statements
return;
return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks
Statements can be grouped in blocks.

{
statementl
statement2

statementN

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

__message argList; Prints the output to the Debug Log window.
__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

C-SPY® Debugging Guide
278 for ARM

Using C-SPY macros ___¢

where argList is acomma-separated list of C-SPY expressions or strings, and £ileis
the result of the __openFile system macro, see __openkFile, page 300.

To produce messages in the Debug Log window:

varl = 42;
var2 = 37;
__message "This line prints the values ", varl, " and ", var2,

" in the Log window.";
This produces this message in the Log window:
This line prints the values 42 and 37 in the Log window.

To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:
myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

%b for binary scalar arguments

%0 for octal scalar arguments

%d for decimal scalar arguments

X for hexadecimal scalar arguments
%c for character scalar arguments

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed. Another example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:
The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%C;

279

Reference information on reserved setup macro function names

280

would produce:

65 is the numeric value of the character A

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (Ox41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the $x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full

string value.

Reference information on reserved setup macro function names

There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 268.

C-SPY® Debugging Guide
for ARM

This table summarizes the reserved setup macro function names:

Macro

Description

execUserPreload

execUserFlashInit

execUserSetup

execUserFlashReset

execUserPreReset

Called after communication with the target system is established
but before downloading the target application.

Implement this macro to initialize memory locations and/or
registers which are vital for loading data properly.

Called once before the flash loader is downloaded to RAM.
Implement this macro typically for setting up the memory map
required by the flash loader. This macro is only called when you
are programming flash, and it should only be used for flash loader
functionality.

Called once after the target application is downloaded.
Implement this macro to set up the memory map, breakpoints,
interrupts, register macro files, etc.

Called once after the flash loader is downloaded to RAM, but
before execution of the flash loader. This macro is only called
when you are programming flash, and it should only be used for
flash loader functionality.

Called each time just before the reset command is issued.
Implement this macro to set up any required device state.

Table 19: C-SPY setup macros

Macro Description

Using C-SPY macros ___¢

execUserReset Called each time just after the reset command is issued.
Implement this macro to set up and restore data.

execUserExit Called once when the debug session ends.
Implement this macro to save status data etc.

execUserFlashExit Called once when the debug session ends.

Implement this macro to save status data etc. This macro is useful
for flash loader functionality.

Table 19: C-SPY setup macros (Continued)

& If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see Simulating an interrupt in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

Reference information on C-SPY system macros

This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro

Description

__cancelAllInterrupts
__cancelInterrupt
__clearBreak
__closeFile

__delay
__disablelInterrupts
__driverType

__emulatorSpeed

__emulatorStatusCheckOnRead

__enableInterrupts

__evaluate

Cancels all ordered interrupts

Cancels an interrupt

Clears a breakpoint

Closes a file that was opened by __openFile
Delays execution

Disables generation of interrupts

Verifies the driver type

Sets the emulator clock frequency

Enables or disables the verification of the CPSR
register after each read operation

Enables generation of interrupts

Interprets the input string as an expression and
evaluates it.

Table 20: Summary of system macros

281

Reference information on C-SPY system macros

C-SPY® Debugging Guide
282 for ARM

Macro

Description

__gdbserver_exec_command

_hwReset

__hwResetRunToBp

__hwResetWithStrategy

__1isBatchMode

__jlinkExecCommand

_ _JjtagCommand

__JjtagCPl5IsPresent
__JjtagCPl5ReadReg
__JjtagCPl5WriteReg

__Jjtagbata

__JjtagRawRead
_ _JjtagRawSync
__JjtagRawWrite

__JjtagResetTRST

__loadImage

__memoryRestore

_ _memorySave

__openFile

__orderInterrupt

__popSimulatorInterruptExecuti

ngStack
__readFile

__readFileByte

Send strings or commands to the GDB Server.

Performs a hardware reset and halt of the target
CPU

Performs a hardware reset and then executes to
the specified address

Performs a hardware reset and halt with delay of
the target CPU

Checks if C-SPY is running in batch mode or not.

Sends a low-level command to the J-Link/J-Trace
driver.

Sends a low-level command to the JTAG
instruction register

Checks if coprocessor CPI5 is available
Returns the coprocessor CP15 register value
Writes to the coprocessor CP15 register

Sends a low-level data value to the JTAG data
register

Returns the read data from the JTAG interface
Writes accumulated data to the JTAG interface
Accumulates data to be transferred to the |JTAG

Resets the ARM TAP controller via the TRST
JTAG signal

Loads an image.

Restores the contents of a file to a specified
memory zone

Saves the contents of a specified memory area to
a file

Opens a file for I/O operations
Generates an interrupt

Informs the interrupt simulation system that an
interrupt handler has finished executing

Reads from the specified file

Reads one byte from the specified file

Table 20: Summary of system macros (Continued)

Using C-SPY macros ___¢

Macro Description

__readMemory8, Reads one byte from the specified memory

__readMemoryByte location

__readMemoryl6 Reads two bytes from the specified memory
location

__readMemory32 Reads four bytes from the specified memory
location

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__restoreSoftwareBreakpoints

__setCodeBreak
__setDataBreak
__setLogBreak
__setSimBreak
__setTraceStartBreak
__setTraceStopBreak

_sourcePosition

__strFind

__subString

__targetDebuggerVersion

_ _toLower

__toString

__toUpper

__unloadImage
__writeFile

__writeFileByte

Restores any breakpoints that were destroyed
during system startup.

Sets a code breakpoint

Sets a data breakpoint

Sets a log breakpoint

Sets a simulation breakpoint
Sets a trace start breakpoint
Sets a trace stop breakpoint

Returns the file name and source location if the
current execution location corresponds to a
source location

Searches a given string for the occurrence of
another string

Extracts a substring from another string
Returns the version of the target debugger

Returns a copy of the parameter string where all
the characters have been converted to lower
case

Prints strings

Returns a copy of the parameter string where all
the characters have been converted to upper
case

Unloads a debug image.
Writes to the specified file

Writes one byte to the specified file

Table 20: Summary of system macros (Continued)

283

Reference information on C-SPY system macros

Macro Description

__writeMemorys8, Writes one byte to the specified memory
__writeMemoryByte location

__writeMemorylé Writes a two-byte word to the specified

memory location

__writeMemory32 Writes a four-byte word to the specified
memory location

Table 20: Summary of system macros (Continued)

__cancelAlllnterrupts

Syntax __cancelAllInterrupts ()

Return value int 0

Description Cancels all ordered interrupts.

Applicability This system macro is only available in the C-SPY Simulator.
__cancellnterrupt

Syntax __cancelInterrupt (interrupt_id)

Parameter

interrupt_id The value returned by the corresponding
__orderInterrupt macro call (unsigned long)

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 21: __cancellnterrupt return values
Description Cancels the specified interrupt.

Applicability This system macro is only available in the C-SPY Simulator.

C-SPY® Debugging Guide
284 for ARM

Using C-SPY macros ___¢

__clearBreak
Syntax __clearBreak (break_id)
Parameter
break_id The value returned by any of the set breakpoint macros
Return value int 0
Description Clears a user-defined breakpoint.
See also Using breakpoints, page 107.
__closeFile
Syntax __closeFile(fileHandle)
Parameter
fileHandle The macro variable used as filehandle by the _ openFile
macro
Return value int 0
Description Closes a file previously opened by __openFile.
__delay
Syntax __delay(value)
Parameter
value The number of milliseconds to delay execution
Return value int 0
Description Delays execution the specified number of milliseconds.

285

Reference information on C-SPY system macros

__disablelnterrupts

Syntax

Return value

Description

Applicability

__driverType

Syntax

Parameter

Return value

C-SPY® Debugging Guide
286 for ARM

__disableInterrupts/()

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 22: __disablelnterrupts return values
Disables the generation of interrupts.

This system macro is only available in the C-SPY Simulator.

_ _driverType (driver_ id)

driver_id A string corresponding to the driver you want to check for.
Choose one of these:

"angel" corresponds to the Angel driver
"gdbserv" corresponds to the GDB Server driver
"generic" corresponds to third-party drivers
"jlink" corresponds to the J-Link/J-Trace driver
"jtag" corresponds to the Macraigor driver
"lmiftdi" corresponds to the TI Stellaris driver
"xds100" corresponds to the TI XDS100 driver
"rdi" corresponds to the RDI driver

"rom" corresponds to the IAR ROM-monitor driver
"sim" corresponds to the simulator driver
"stlink" corresponds to the ST-LINK driver.

Result Value
Successful 1
Unsuccessful 0

Table 23: __driverType return values

Using C-SPY macros ___¢

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__emulatorSpeed

Syntax __emulatorSpeed (speed)

Parameter
speed The emulator speed in Hz. Use 0 (zero) to make the speed
automatically detected. Use -1 for adaptive speed (only for
emulators supporting adaptive speed).

Return value
Result Value

Successful The previous speed, or 0 (zero) if unknown

Unsuccessful; the speed is not supported by -1
the emulator

Table 24: __emulatorSpeed return values

Description Sets the emulator clock frequency. For JTAG interfaces, this is the JTAG clock
frequency as seen on the TCK signal.

Applicability This system macro is available for the J-Link/J-Trace driver.

Example __emulatorSpeed(0)

Sets the emulator speed to be automatically detected.

__emulatorStatusCheckOnRead

Syntax __emulatorStatusCheckOnRead (status)

Parameter
status Use 0 to enable checks (default). Use 1 to disable checks.

287

Reference information on C-SPY system macros

Return value int 0

Description Enables or disables the driver verification of CPSR (current processor status register)
after each read operation. Typically, this macro can be used for initiating JTAG
connections on some CPUs, like Texas Instruments” TMS470R1B1M.

Note: Enabling this verification can cause problems with some CPUs, for example if
invalid CPSR values are returned. However, if this verification is disabled
(SetCheckModeAfterRead = 0), the success of read operations cannot be verified
and possible data aborts are not detected.

Applicability This system macro is available for the J-Link/J-Trace driver.

Example __emulatorStatusCheckOnRead (1)

Disables the checks for data aborts on memory reads.

__enablelnterrupts

Syntax __enableInterrupts()

Return value

Result Value
Successful int 0
Unsuccessful Non-zero error number

Table 25: __enablelnterrupts return values

Description Enables the generation of interrupts.
Applicability This system macro is only available in the C-SPY Simulator.
__evaluate
Syntax __evaluate(string, valuePtr)
Parameter
string Expression string
valuePtr Pointer to a macro variable storing the result

C-SPY® Debugging Guide
288 for ARM

Return value

Description

Example

Using C-SPY macros ___¢

Result Value
Successful int 0
Unsuccessful int 1

Table 26: __evaluate return values

This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

This example assumes that the variable i is defined and has the value 5:
__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__gdbserver_exec_command

Syntax

Parameter

Description

Applicability

__hwReset

Syntax

Parameter

Return value

_ _gdbserver_exec_command ("string")

"string" String or command sent to the GDB Server; see its
documentation for more information.

Use this option to send strings or commands to the GDB Server.

This system macro is available for the GDB Server driver.

__hwReset (halt_delay)

halt_delay The delay, in microseconds, between the end of the reset pulse
and the halt of the CPU. Use 0 (zero) to make the CPU halt
immediately after reset

Result Value
Successful. The actual delay value implemented by the emulator >=0
Successful. The delay feature is not supported by the emulator -1

Table 27: __hwReset return values

289

Reference information on C-SPY system macros

Result Value

Unsuccessful. Hardware reset is not supported by the emulator -2

Table 27: __hwReset return values (Continued)

Description Performs a hardware reset and halt of the target CPU.
Applicability This system macro is available for all JTAG interfaces.
Example __hwReset (0)

Resets the CPU and immediately halts it.

__hwResetRunToBp
Syntax __hwResetRunToBp (strategy, breakpoint_address, timeout)
Parameter
strategy For information about supported reset strategies, see the /4R
J-Link and IAR J-Trace User Guide for JTAG Emulators for
ARM Cores.

breakpoint_address The address of the breakpoint to execute to, specified as an
integer value (symbols cannot be used).

timeout A time out for the breakpoint, specified in milliseconds. If the
breakpoint is not reached within the specified time, the core
will be halted.

Return value
Value Result
>=0 Successful. The approximate execution time in ms until the breakpoint is
hit.
-2 Unsuccessful. Hardware reset is not supported by the emulator.
-3 Unsuccessful. The reset strategy is not supported by the emulator.

Table 28: __hwResetRunToBp return values

Description Performs a hardware reset, sets a breakpoint at the specified address, executes to the
breakpoint, and then removes it. The breakpoint address should be the start address of
the downloaded image after it has been copied to RAM.

This macro is intended for running a boot loader that copies the application image from
flash to RAM. The macro should be executed after the image has been downloaded to

C-SPY® Debugging Guide
290 for ARM

Using C-SPY macros ___¢

flash, but before the image is verified. The macro can be run in execUserFlashExit
or execUserPreload.

Applicability This system macro is available for the J-Link/J-Trace driver.

Example __hwResetRunToBp (0, 0x400000,10000)
Resets the CPU with the reset strategy 0 and executes to the address 0x400000. If the
breakpoint is not reached within 10 seconds, execution stops in accordance with the
specified time out.

__hwResetWithStrategy
Syntax __hwResetWithStrategy (halt_delay, strategy)
Parameter

Return value

Description
Applicability

Example

halt_delay The delay, in milliseconds, between the end of the reset pulse
and the halt of the CPU. Use 0 (zero) to make the CPU halt
immediately after reset; only when strategy is set to 0.

strategy For information about supported reset strategies, see the JAR
J-Link and IAR J-Trace User Guide for JTAG Emulators for
ARM Cores.

Result Value

Successful. The actual delay in milliseconds, as implemented by the emu->=0

lator

Successful. The delay feature is not supported by the emulator -1
Unsuccessful. Hardware reset is not supported by the emulator -2
Unsuccessful. The reset strategy is not supported by the emulator -3

Table 29: __hwResetWithStrategy return values
Performs a hardware reset and a halt with delay of the target CPU.
This system macro is available for the J-Link/J-Trace driver.

__hwResetWithStrategy (0,1)

Resets the CPU and halts it using a breakpoint at memory address zero.

291

Reference information on C-SPY system macros

__isBatchMode

Syntax

Return value

Description

__jlinkExecCommand

Syntax

Parameter

Return value

Description

Applicability
Example

See also

__jtagCommand

Syntax

C-SPY® Debugging Guide
292 for ARM

_ _isBatchMode ()

Result Value
True int 1
False int 0

Table 30: __isBatchMode return values

This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

__JjlinkExecCommand (cmdstr)

cmdstr J-Link/J-Trace command string

int 0

Sends a low-level command to the J-Link/J-Trace driver. For a list of possible
commands, see the [AR J-Link and IAR J-Trace User Guide for JTAG Emulators for
ARM Cores.

This system macro is available for the J-Link/J-Trace driver.

See the IAR J-Link and IAR J-Trace User Guide for JTAG Emulators for ARM Cores.

--jlink_exec_command, page 338

_ _jtagCommand (ir)

Using C-SPY macros ___¢

Parameter ir can be one of:

2 SCAN_N

4 RESTART

12 INTEST

14 IDCODE

15 BYPASS
Return value int 0
Description Sends a low-level command to the JTAG instruction register IR.
Applicability This system macro is available for the J-Link/J-Trace driver.
Example __jtagCommand (14) ;

Id = __jtagbata(0,32);

Returns the JTAG ID of the ARM target device.

__jtagCPI5IsPresent

Syntax __jtagCPl5IsPresent ()

Return value 1 if CP15 is available, otherwise 0.

Description Checks if the coprocessor CP15 is available.

Applicability This system macro is available for the J-Link/J-Trace driver.
__jtagCPI5ReadReg

Syntax __jtagCPl5ReadReg (CRn, CRm, opl, op2)

Parameter The parameters—registers and operands—of the MRC instruction. For details, see the

ARM Architecture Reference Manual. Note that op1 should always be 0.
Return value The register value.
Description Reads the value of the CP15 register and returns its value.

293

Reference information on C-SPY system macros

Applicability This system macro is available for the J-Link/J-Trace driver.
__jtagCPI5WriteReg

Syntax __JjtagCPl5WriteReg (CRn, CRm, opl, op2, value)

Parameter The parameters—registers and operands—of the MCR instruction. For details, see the

ARM Architecture Reference Manual. Note that op1 should always be 0. valueis the
value to be written.

Description Writes a value to the CP15 register.
Applicability This system macro is available for the J-Link/J-Trace driver.
__jtagData
Syntax __jtagData(dr, bits)
Parameter
dr 32-bit data register value
bits Number of valid bits in dr, both for the macro parameter and

the return value; starting with the least significant bit (1. . . 32)

Return value Returns the result of the operation; the number of bits in the result is given by the bits
parameter.

Description Sends a low-level data value to the JTAG data register DR. The bit shifted out of DR is
returned.

Applicability This system macro is available for the J-Link/J-Trace driver.

Example __jtagCommand (14) ;
Id = __jtagbhata(0,32);

Returns the JTAG ID of the ARM target device.

C-SPY® Debugging Guide
294 for ARM

Using C-SPY macros ___¢

__jtagRawRead

Syntax __jtagRawRead (bitpos, numbits)

Parameter
bitpos The start bit position in the returned JTAG bits to return data

from

numbits The number of bits to read. The maximum value is 32.

Description Returns the data read from the JTAG TDo. Only the least significant bits contain data;
the last bit read is from the least significant bit. This function can be called an arbitrary
number of times to get all bits returned by an operation. This function also makes an
implicit synchronization of any accumulated write bits.

Applicability This system macro is available for the J-Link/J-Trace driver.

Example The following piece of pseudocode illustrates how the data is written to the JTAG (on
the T™Ms and TDI pins) and read (from TDO):
__var Id;
__var BitPos;
/**
*
* ReadId()
*/
ReadId() {
__message "Reading JTAG Id\n";
__jtagRawWrite (0, Ox1f, 6); /* Goto IDLE via RESET state */
__JjtagRawWrite (0, 0x1, 3); /* Enter DR scan chain */
BitPos = __jtagRawWrite (0, 0x80000000, 32); /* Shift 32 bits

into DR. Remember BitPos for Read operation */
__JjtagRawWrite (0, 0x1, 2); /* Goto IDLE */
Id = __jtagRawRead(BitPos, 32); /* Read the Id */
__message "JTAG Id: ", Id:%$x, "\n";
}
__jtagRawSync
Syntax __JjtagRawSync ()
Return value int 0

295

Reference information on C-SPY system macros

Description

Applicability

Example

__jtagRawWrite

Syntax

Parameter

Return value

Description

C-SPY® Debugging Guide
296 for ARM

Sends arbitrary data to the JTAG interface. All accumulated bits using
__jtagRawWrite will be written to the JTAG scan chain. The data is sent
synchronously with TCK and typically sampled by the device on rising edge of TCK.

This system macro is available for the J-Link/J-Trace driver.

The following piece of pseudocode illustrates how the data is written to the JTAG (on
the T™™S and TDI pins) and read (from TDO):
int i;
U32 tdo;
for (1 = 0; 1 < numBits; i++) {
TDI = tdi & 1; /* Set TDI pin */
T™S = tms & 1; /* Set TMS pin */
TCK = 0;
TCK = 1;
tdo <<= 1;
if (TDO) {
tdo | =1;
}
tdi >>= 1;
tms >>= 1;

__JjtagRawWrite(tdi, tms, numbits)

tdi The data output to the TDI pin. This data is sent with the least
significant bit first.
tms The data output to the TMS pin. This data is sent with the least

significant bit first.

numbits The number of bits to transfer. Every bit results in a falling and
rising edge of the JTAG TCK line. The maximum value is 64.

Returns the bit position of the data in the accumulated packet. Typically, this value is
used when reading data from the JTAG.

Accumulates bits to be transferred to the JTAG. If 32 bits are not enough, this function
can be called multiple times. Both data output lines (TMS and TDI) can be controlled
separately.

Applicability

Example

__jtagResetTRST

Syntax

Return value

Description

Applicability

__loadlmage

Syntax

Parameter

Using C-SPY macros ___¢

This system macro is available for the J-Link/J-Trace driver.

/* Send five 1 bits on TMS to go to TAP-RESET state */

__JjtagRawWrite (0Ox1F, 0, 5); /* Store bits in buffer */

__JjtagRawSync(); /* Transfer buffer, writing tms, tdi,
reading tdo */

Returns the JTAG ID of the ARM target device.

__JjtagResetTRST()

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 31: __jtagResetTRST return values
Resets the ARM TAP controller via the TRST JTAG signal.

This system macro is available for the J-Link/J-Trace driver.

__loadImage(path, offset, debugInfoOnly)

path A string that identifies the path to the image to download. The
path must either be absolute or use argument variables. For
information about argument variables, see the /DE Project
Management and Building Guide for ARM.

offset An integer that identifies the offset to the destination address
for the downloaded image.

debugInfoOnly A non-zero integer value if no code or data should be
downloaded to the target system, which means that C-SPY
will only read the debug information from the debug file. Or,
0 (zero) for download.

297

Reference information on C-SPY system macros

Return value
Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 32: __loadlmage return values
Description Loads an image (debug file).

Example | Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage (ROMfile, 0x8000, 1);

This macro call loads the debug information for the ROM library rRoMf£1i1e without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage (ApplicationFile, 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the

application.
See also Images, page 359 and Loading multiple images, page 50.
__memoryRestore
Syntax _ _memoryRestore (zone, filename)
Parameters
zone The memory zone name (string); for a list of available zones, see C-SPY

memory zones, page 141.

C-SPY® Debugging Guide
298 for ARM

Return value
Description
Example

See also

__memorySave

Syntax

Parameters

Return value
Description

Example

See also

filename

int 0

Using C-SPY macros ___¢

A string that specifies the file to be read. The filename must include a
path, which must either be absolute or use argument variables. For
information about argument variables, see the IDE Project Management
and Building Guide for ARM.

Reads the contents of a file and saves it to the specified memory zone.

_memoryRestore ("Memory", "c:\\temp\\saved_memory.hex") ;

Memory Restore dialog box, page 148.

__memorySave (start, stop, format, filename)

start
stop

format

filename

int 0

A string that specifies the first location of the memory area to be saved
A string that specifies the last location of the memory area to be saved

A string that specifies the format to be used for the saved memory.
Choose between:

intel-extended
motorola
motorola-sl9
motorola-s28

motorola-s37.

A string that specifies the file to write to. The filename must include a
path, which must either be absolute or use argument variables. For
information about argument variables, see the IDE Project Management
and Building Guide for ARM.

Saves the contents of a specified memory area to a file.

__memorySave ("Memory:0x00", "Memory:0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex") ;

Memory Save dialog box, page 147.

299

Reference information on C-SPY system macros

300

__openFile

Syntax

Parameters

Return value

Description

C-SPY® Debugging Guide
for ARM

__openFile(filename, access)

The file to be opened. The filename must include a path, which must
either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building
Guide for ARM.

The access type (string).
These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file
"r* read
"w" write

These are optional and mutually exclusive:

"b" binary, opens the file in binary mode
"t ASCII text, opens the file in text mode

This access type is optional:

"+ together with r, w, or a; r+ or w+ is read and write, while a+ is read
and append

Value

The file handle

An invalid file handle, which tests as False

Table 33: __openFile return values

Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (* . ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIRS and $TOOLKIT_DIRS in the path argument.

Example

See also

__orderinterrupt

Syntax

Parameters

Return value

Description

Applicability

Using C-SPY macros ___¢

__var myFileHandle; /* The macro variable to contain */
/* the file handle */

myFileHandle = __openFile("$SPROJ_DIRS\\Debug\\Exe\\test.tst",

I|rl|);

if (myFileHandle)
{

/* successful opening */

For information about argument variables, see the IDE Project Management and
Building Guide for ARM.

__orderInterrupt (specification, first_activation,
repeat_interval, variance, infinite_hold time,
hold_time, probability)

specification The interrupt (string). The specification can either be the full
specification used in the device description file (dd£f) or only
the name. In the latter case the interrupt system will
automatically get the description from the device description
file.

first_activation The first activation time in cycles (integer)

repeat_interval The periodicity in cycles (integer)
variance The timing variation range in percent (integer between 0
and 100)

infinite_hold_time 1 if infinite, otherwise 0.
hold_time The hold time (integer)

probability The probability in percent (integer between 0 and 100)

The macro returns an interrupt identifier (unsigned long).
If the syntax of specification is incorrect, it returns -1.

Generates an interrupt.

This system macro is only available in the C-SPY Simulator.

301

Reference information on C-SPY system macros

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("IRQ", 4000, 2000, O, 1, 0, 100);

__popSimulatorinterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack (void)
Return value This macro has no return value.
Description Informs the interrupt simulation system that an interrupt handler has finished executing,

as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

Applicability This system macro is only available in the C-SPY Simulator.
See also Simulating an interrupt in a multi-task system, page 252.
__readFile
Syntax __readFile(fileHandle, valuePtr)
Parameters
fileHandle A macro variable used as filehandle by the __openFile
macro
valuePtr A pointer to a variable

Return value

Result Value
Successful 0
Unsuccessful Non-zero error number

Table 34: __readFile return values

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

C-SPY® Debugging Guide
302 for ARM

Example

__readFileByte

Syntax

Parameter

Return value
Description

Example

Using C-SPY macros ___¢

__var number;

if (__readFile(myFileHandle, &number) == 0)
{
// Do something with number
}
__readFileByte(fileHandle)
fileHandle A macro variable used as filehandle by the __ openFile

macro

-1 upon error or end-of-file, otherwise a value between 0 and 255.
Reads one byte from a file.

__var byte;
while ((byte = __readFileByte(myFileHandle)) != -1)
{

/* Do something with byte */

__readMemory8, __readMemoryByte

Syntax

Parameters

Return value
Description

Example

__readMemory8 (address, zone)
__readMemoryByte (address, zone)

address The memory address (integer)

zone The memory zone name (string); for more information
about available zones, see C-SPY memory zones, page 141.

The macro returns the value from memory.

Reads one byte from a given memory location.

__readMemory8 (0x0108, "Memory") ;

303

Reference information on C-SPY system macros

304

__readMemoryl 6

Syntax

Parameters

Return value
Description

Example

__readMemory32

__registerMacroFile

Syntax

Parameters

Return value
Description

Example

Syntax

Parameter

C-SPY® Debugging Guide

for ARM

__readMemoryl6 (address, zone)

address The memory address (integer)

zone The memory zone name (string); for more information about
available zones, see C-SPY memory zones, page 141.

The macro returns the value from memory.
Reads a two-byte word from a given memory location.

__readMemoryl6 (0x0108, "Memory") ;

__readMemory32 (address, zone)

address The memory address (integer)

zone The memory zone name (string); for more information
about available zones, see C-SPY memory zones, page 141.

The macro returns the value from memory.
Reads a four-byte word from a given memory location.

__readMemory32 (0x0108, "Memory");

__registerMacroFile (filename)

filename A file containing the macros to be registered (string). The
filename must include a path, which must either be absolute
or use argument variables. For information about argument
variables, see the IDE Project Management and Building
Guide for ARM.

Return value

Description

Example

See also

__resetFile

Syntax

Parameter

Return value

Description

Using C-SPY macros ___¢

int 0

Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

__registerMacroFile("c:\\testdir\\macro.mac") ;

Registering and executing using setup macros and setup files, page 272.

__resetFile(fileHandle)

fileHandle A macro variable used as filehandle by the __openFile
macro

int 0

Rewinds a file previously opened by __openFile.

__restoreSoftwareBreakpoints

Syntax
Return value

Description

Applicability

__restoreSoftwareBreakpoints ()
int 0

Restores automatically any breakpoints that were destroyed during system startup.

This can be useful if you have an application that is copied to RAM during startup and
is then executing in RAM. This can, for example, be the case if youuse the initialize
by copy directive for code in the linker configuration file or if you have any
__ramfunc declared functions in your application. In this case, any breakpoints will be
overwritten during the RAM copying when the application execution starts.

By using the this macro, C-SPY will restore the destroyed breakpoints.

This system macro is available for the J-Link/J-Trace driver, the TI Stellaris driver, and
the Macraigor driver.

305

Reference information on C-SPY system macros

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters
location

count

condition
cond_type

action

Return value
Result

A string with a location description. Choose between:

A C-SPY expression, whose value evaluates to a valid address,
such as a function, for example main. For more
information about C-SPY expressions, see C-SPY
expressions, page 84.

An absolute address, on the form zone: hexaddress or
simply hexaddress (for example Memory:42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A source location in your C source code, using the syntax
{filename} .row.col. For
example{D: \\src\\prog.c}.22.3 sets a breakpoint
on the third character position on row 22 in the source file
prog.c. Note that the Source location type is usually
meaningful only for code breakpoints.

The number of times that a breakpoint condition must be
fulfilled before a break occurs (integer)

The breakpoint condition (string)
The condition type; either "CHANGED" or "TRUE" (string)

An expression, typically a call to a macro, which is evaluated
when the breakpoint is detected

Value

Successful

Unsuccessful

An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

0

Table 35: __setCodeBreak return values

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

C-SPY® Debugging Guide
306 for ARM

Examples

See also

__setDataBreak

Syntax

Parameters

Using C-SPY macros ___¢

__setCodeBreak ("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",

"ActionCode () ") ;

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

Using breakpoints, page 107.

__setDataBreak(location, count, condition, cond_ type, access,

location

count

condition

cond_type

action)

A string with a location description. Choose between:

A C-SPY expression, whose value evaluates to a valid
address, such as a variable name. For example, my_var
refers to the location of the variable my_var, and
arr [3] refers to the location of the third element of
the array arr. For static variables declared with the
same name in several functions, use the syntax
my_func::my_static_variable to referto a
specific variable. For more information about C-SPY
expressions, see C-SPY expressions, page 84.

An absolute address, on the form zone: hexaddress or
simply hexaddress (for example Memory:42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A source location in your C source code, using the syntax
{filename}.row.col. For
example{D: \\src\\prog.c}.22.3 sets a
breakpoint on the third character position on row 22 in
the source file prog. c. Note that the Source location
type is usually meaningful only for code breakpoints.

The number of times that a breakpoint condition must be
fulfilled before a break occurs (integer)

The breakpoint condition (string)

The condition type; either "CHANGED" or "TRUE" (string)

307

Reference information on C-SPY system macros

308

C-SPY® Debugging Guide

for ARM

Return value

Description

Applicability

Example

See also

access The memory access type: "R" for read, "w" for write, or
"RW" for read/write

action An expression, typically a call to a macro, which is
evaluated when the breakpoint is detected

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 36: __setDataBreak return values

Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

This system macro is only available in the C-SPY Simulator.

__var brk;
brk = __setDataBreak ("Memory:0x4710", 3, "d>6", "TRUE",

"W", "ActionData()");

__clearBreak (brk) ;

Using breakpoints, page 107.

Using C-SPY macros ___¢

__setLogBreak
Syntax __setLogBreak (location, message, msg_type, condition,
cond_type)
Parameters
location A string with a location description. Choose between:

A C-SPY expression, whose value evaluates to a valid
address, such as a function, for example main. For
more information about C-SPY expressions, see
C-SPY expressions, page 84.

An absolute address, on the form zone: hexaddress or
simply hexaddress (for example Memory: 42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A source location in your C source code, using the syntax
{filename} .row.col. For
example{D: \\src\\prog.c}.22.3 sets a
breakpoint on the third character position on row 22 in
the source file prog. c. Note that the Source location
type is usually meaningful only for code breakpoints.

message The message text
msg_type The message type; choose between:

TEXT, the message is written word for word.
ARGS, the message is interpreted as a comma-separated list
of C-SPY expressions or strings.

condition The breakpoint condition (string)

cond_type The condition type; either "CHANGED" or "TRUE" (string)
Return value

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same

value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 37: __setLogBreak return values

309

Reference information on C-SPY system macros

310

Description

Example

See also

C-SPY® Debugging Guide
for ARM

Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

__var logBpl;
__var logBp2;

logOn ()
{
logBpl = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
"\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
"Leaving trace zone...", "TEXT", "1", "TRUE");
}
logOff ()
{

__clearBreak(logBpl) ;
__clearBreak (logBp2) ;

Formatted output, page 278 and Using breakpoints, page 107.

Using C-SPY macros ___¢

___setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters
location A string with a location description. Choose between:

A C-SPY expression, whose value evaluates to a valid
address, such as a variable name. For example, my_var
refers to the location of the variable my_var, and
arr [3] refers to the location of the third element of
the array arr. For static variables declared with the
same name in several functions, use the syntax
my_func::my_static_variable to refer to a
specific variable. For more information about C-SPY
expressions, see C-SPY expressions, page 84.

An absolute address, on the form zone: hexaddress or
simply hexaddress (for example Memory: 42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A source location in your C source code, using the syntax
{filename} . row.col. For
example{D: \\src\\prog.c}.22.3 sets a
breakpoint on the third character position on row 22 in
the source file prog. c. Note that the Source location
type is usually meaningful only for code breakpoints.

access The memory access type: "R" for read or "w" for write

action An expression, typically a call to a macro function, which
is evaluated when the breakpoint is detected

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 38: __setSimBreak return values

Reference information on C-SPY system macros

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

Applicability This system macro is only available in the C-SPY Simulator.
__setTraceStartBreak
Syntax __setTraceStartBreak (location)
Parameters
location A string with a location description. Choose between:

A C-SPY expression, whose value evaluates to a valid
address, such as a function, for example main. For
more information about C-SPY expressions, see
C-SPY expressions, page 84.

An absolute address, on the form zone: hexaddress or
simply hexaddress (for example Memory : 42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A source location in your C source code, using the syntax
{filename} . row.col. For
example{D: \\src\\prog.c}.22.3 sets a
breakpoint on the third character position on row 22 in
the source file prog. c. Note that the Source location
type is usually meaningful only for code breakpoints.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 39: __setTraceStartBreak return values

C-SPY® Debugging Guide
312 for ARM

Description

Applicability

Example

See also

Using C-SPY macros ___¢

Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace

system is started.
This system macro is only available in the C-SPY Simulator.

__var startTraceBp;
__var stopTraceBp;

traceOn ()
{
startTraceBp = __setTraceStartBreak
("{C:\\TEMP\\Utilities.c}.23.1");
stopTraceBp = __setTraceStopBreak

("{C:\\temp\\Utilities.c}.30.1");

traceOff ()

{
__clearBreak (startTraceBp) ;
__clearBreak (stopTraceBp) ;

Using breakpoints, page 107.

313

Reference information on C-SPY system macros

__setTraceStopBreak

Syntax __setTraceStopBreak (location)

Parameters
location A string with a location description. Choose between:

A C-SPY expression, whose value evaluates to a valid
address, such as a function, for example main. For
more information about C-SPY expressions, see
C-SPY expressions, page 84.

An absolute address, on the form zone: hexaddress or
simply hexaddress (for example Memory : 42). zone
refers to C-SPY memory zones and specifies in which
memory the address belongs.

A source location in your C source code, using the syntax
{filename}.row.col. For
example{D:\\src\\prog.c}.22.3 sets a
breakpoint on the third character position on row 22 in
the source file prog. c. Note that the Source location
type is usually meaningful only for code breakpoints.

Return value
Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 40: __setTraceStopBreak return values

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

Applicability This system macro is only available in the C-SPY Simulator.
Example See setTraceStartBreak, page 312.
See also Using breakpoints, page 107.

C-SPY® Debugging Guide
314 for ARM

__sourcePosition

Syntax

Parameters

Return value

Description

__strFind

Syntax

Parameters

Return value
Description

Example

See also

Using C-SPY macros ___¢

__sourcePosition(linePtr, colPtr)

linePtr Pointer to the variable storing the line number
colPtr Pointer to the variable storing the column number
Result Value

Successful Filename string

Unsuccessful Empty (" ") string

Table 41: __sourcePosition return values

If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

__strFind(macroString, pattern, position)

macroString The macro string to search in

pattern The string pattern to search for

position The position where to start the search. The first position is
0

The position where the pattern was found or -1 if the string is not found.
This macro searches a given string for the occurrence of another string.

__strFind("Compiler", "pile", 0) =3
__strFind("Compiler", "foo", 0) = -1

Macro strings, page 277.

315

Reference information on C-SPY system macros

__subString

Syntax __subString(macroString, position, length)

Parameters
macroString The macro string from which to extract a substring
position The start position of the substring. The first position is 0.
length The length of the substring

Return value A substring extracted from the given macro string.

Description This macro extracts a substring from another string.

Example __subString("Compiler", 0, 2)
The resulting macro string contains Co.
__subString("Compiler", 3, 4)
The resulting macro string contains pile.

See also Macro strings, page 277.

__targetDebuggerVersion

Syntax __targetDebuggerVersion
Return value A string that represents the version number of the C-SPY debugger processor module.
Description This macro returns the version number of the C-SPY debugger processor module.
Example __var toolVer;

toolVer = __targetDebuggerVersion() ;

__message "The target debugger version is, ", toolVer;

__toLower

Syntax __toLower (macroString)
Parameter

macroString Any macro string

C-SPY® Debugging Guide
316 for ARM

Using C-SPY macros ___¢

Return value The converted macro string.

Description This macro returns a copy of the parameter string where all the characters have been
converted to lower case.

Example __toLower ("IAR")
The resulting macro string contains iar.
__toLower ("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 277.
__toString
Syntax __toString(C_string, maxlength)
Parameter
C_string Any null-terminated C string
maxlength The maximum length of the returned macro string
Return value Macro string.
Description This macro is used for converting C strings (char* or char []) into macro strings.
Example Assuming your application contains this definition:
char const * hptr = "Hello World!";

this macro call:
__toString (hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 277.
__toUpper

Syntax __toUpper (macroString)

Parameter macroString is any macro string.

317

Reference information on C-SPY system macros

Return value

Description

Example

See also

__unloadlmage

Syntax

Parameter

Return value

Description

See also

__writeFile

Syntax

Parameters

Return value

C-SPY® Debugging Guide
318 for ARM

The converted string.

This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

__toUpper ("string")

The resulting macro string contains STRING.

Macro strings, page 277.

__unloadImage (module_id)

module_id An integer which represents a unique module identification, which is
retrieved as a return value from the corresponding __loadImage
C-SPY macro.
Value Result
module_id A unique module identification (the same as the input
parameter).
int 0 The unloading failed.

Table 42: __unloadImage return values
Unloads debug information from an already downloaded image.

Loading multiple images, page 50 and Images, page 359.

__writeFile(fileHandle, value)

fileHandle A macro variable used as filehandle by the __openFile
macro

value An integer

int 0

Using C-SPY macros ___¢

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __ fmessage statement can do the same thing. The __writeFile macrois
provided for symmetry with __readrile.

__writeFileByte
Syntax __writeFileByte(fileHandle, value)
Parameters
fileHandle A macro variable used as filehandle by the __ openFile
macro
value An integer in the range 0-255
Return value int 0
Description Writes one byte to the file £ileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8(value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters
value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for more information about
available zones, see C-SPY memory zones, page 141.
Return value int 0
Description Writes one byte to a given memory location.
Example __writeMemory8 (0x2F, 0x8020, "Memory");

319

Reference information on C-SPY system macros

__writeMemoryl 6

Syntax

Parameters

Return value
Description

Example

__writeMemory32

Syntax

Parameters

Return value
Description

Example

C-SPY® Debugging Guide
320 for ARM

__writeMemoryl6 (value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for more information about

available zones, see C-SPY memory zones, page 141.
int 0
Writes two bytes to a given memory location.

__writeMemoryl6 (0x2FFF, 0x8020, "Memory");

__writeMemory32 (value, address, zone)

value The value to be written (integer)
address The memory address (integer)
zone The memory zone name (string); for more information about

available zones, see C-SPY memory zones, page 141.
int 0
Writes four bytes to a given memory location.

__writeMemory32 (0x5555FFFF, 0x8020, "Memory");

The C-SPY Command
Line Utility—cspybat

This chapter describes how you can execute C-SPY® in batch mode, using the
C-SPY Command Line Utility—cspybat.exe. More specifically, this means:

e Using C-SPY in batch mode
e Summary of C-SPY command line options

e Reference information on C-SPY command line options.

Using C-SPY in batch mode

You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_ DLL driver DLL debug file [cspybat_options]
--backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.
Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file; available in arm\bin.

driver_ DLL The C-SPY driver DLL file; available in arm\bin.
debug_file The object file that you want to debug (filename extension out).

cspybat_options The command line options that you want to pass to cspybat. Note
that these options are optional. For information about each option,
see Reference information on C-SPY command line options, page 327.

Table 43: cspybat parameters

321

Using C-SPY in batch mode

Parameter Description

--backend Marks the beginning of the parameters to the C-SPY driver; all
options that follow will be sent to the driver. Note that this option is
mandatory.

driver_options The command line options that you want to pass to the C-SPY driver.
Note that some of these options are mandatory and some are
optional. For information about each option, see Reference information
on C-SPY command line options, page 327.

Table 43: cspybat parameters (Continued)

Example
This example starts cspybat using the simulator driver:

EW_DIR\common\bin\cspybat EW_DIR\arm\bin\armproc.dll
EW_DIR\arm\bin\armsim.dll PROJ_DIR\myproject.out --plugin
EW_DIR\arm\bin\armbat.dll --backend sim -B --cpu arm -p
EW_DIR\arm\bin\config\devicedescription.ddf

where Ew_DIR is the full path of the directory where you have installed IAR Embedded
Workbench

and where PROJ_DIR is the path of your project directory.

OUTPUT
When you run cspybat, these types of output can be produced:

e Terminal output from cspybat itself

All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

o Terminal output from the application you are debugging
All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 346.

e Error return codes
cspybat return status information to the host operating system that can be tested in

a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

C-SPY® Debugging Guide
322 for ARM

The C-SPY Command Line Utility—cspybat ___4

USING AN AUTOMATICALLY GENERATED BATCH FILE

When you use C-SPY in the IDE, C-SPY generates a batch file

projectname.cspy .bat every time C-SPY is initialized. You can find the file in the
directory $PROJ_DIRS\settings. This batch file contains the same settings as in the
IDE, and with minimal modifications, you can use it from the command line to start
cspybat. The file also contains information about required modifications.

Summary of C-SPY command line options

GENERAL CSPYBAT OPTIONS

--backend

--code_coverage_file

--cycles

--download_only

--flash_loader
--macro
--plugin
--silent

--timeout

Marks the beginning of the parameters to be sent to
the C-SPY driver (mandatory).

Enables the generation of code coverage
information and places it in a specified file.

Specifies the maximum number of cycles to run.

Downloads a code image without starting a debug
session afterwards.

Specifies a flash loader specification XML file.
Specifies a macro file to be used.

Specifies a plugin file to be used.

Onmits the sign-on message.

Limits the maximum allowed execution time.

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

--BES

--BE32

Uses the big-endian format BES8. For reference
information, see the /AR C/C++ Development
Guide for ARM.

Uses the big-endian format BE32. For reference
information, see the /AR C/C++ Development
Guide for ARM.

323

Summary of C-SPY command line options

324

C-SPY® Debugging Guide
for ARM

--cpu

--device

--drv_attach_to_program

--drv_catch_exceptions
--drv_communication
--drv_communication_log

--drv_default_breakpoint

--drv_reset_to_cpu_start

--drv_restore_breakpoints

--drv_suppress_download

--drv_swo_clock_setup

--drv_vector_table_base

--drv_verify_ download

--endian

Specifies a processor variant. For reference
information, see the /AR C/C++ Development
Guide for ARM.

Specifies the name of the device.

Attaches the debugger to a running application at
its current location. For reference information, see
Attach to program, page 357.

Makes the application stop for certain exceptions.
Specifies the communication link to be used.
Creates a log file.

Sets the type of breakpoint resource to be used
when setting breakpoints.

Onmits setting the PC when starting or resetting the
debugger.

Restores automatically any breakpoints that were
destroyed during system startup.

Suppresses download of the executable image. For
reference information, see Suppress download,
page 357.

Specifies the CPU clock and the wanted SWO
speed.

Specifies the location of the Cortex-M reset vector
and the initial stack pointer value.

Verifies the target program. For reference
information, see Verify download, page 357.

Auvailable for Angel, GDB Server, IAR
ROM-monitor, J-Link/J-Trace, JTAGjet,
Macraigor, RDI, ST-LINK, TI Stellaris, and TI
XDS100.

Specifies the byte order of the generated code and
data. For reference information, see the /AR
C/C++ Development Guide for ARM.

The C-SPY Command Line Utility—cspybat ___4

--fpu Selects the type of floating-point unit. For
reference information, see the /AR C/C++
Development Guide for ARM.

-p Specifies the device description file to be used.

--proc_stack_stack Provides information to the C-SPY plugin module
about reserved stacks.

--semihosting Enables semihosted 1/0.
OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

--disable_interrupts Disables the interrupt simulation.
--mapu Activates memory access checking.

OPTIONS AVAILABLE FOR THE C-SPY ANGEL DEBUG
MONITOR DRIVER

--rdi_heartbeat Makes C-SPY poll your target system
periodically. For reference information, see Send
heartbeat, page 362.

--rdi_step_max_one Executes one instruction.

OPTIONS AVAILABLE FOR THE C-SPY GDB SERVER DRIVER
--gdbserv_exec_command Sends a command string to the GDB Server.
OPTIONS AVAILABLE FOR THE C-SPY IAR ROM-MONITOR
DRIVER

There are no additional options specific to the C-SPY IAR ROM-monitor driver.

OPTIONS AVAILABLE FOR THE C-SPY J-LINK/J-TRACE DRIVER

--jlink_device_select Selects a specific device in the JTAG scan chain.

--jlink_exec_command Calls the __j1inkExecCommand macro after
target connection has been established.

--jlink_initial_speed Sets the initial JTAG communication speed in
kHz.

325

Summary of C-SPY command line options

--jlink_interface

--jlink_ir_ length

--jlink_reset_strategy

--jlink_script_file
--jlink_speed

--jlink_trace_source

Specifies the communication between the J-Link
debug probe and the target system.

Sets the number of IR bits before the ARM
device to be debugged.

Selects the reset strategy to be used at debugger
startup.

Specifies the script file for setting up hardware.
Sets the JTAG communication speed in kHz.

Selects either ETB or ETM as the trace source.

OPTIONS AVAILABLE FOR THE C-SPY T1 STELLARIS DRIVER

--1lmiftdi_speed

Sets the JTAG communication speed in kHz.

OPTIONS AVAILABLE FOR THE C-SPY Tl1 XDS100 DRIVER

--xds_rootdir

Specifies the installation directory of the TI
XDS100 driver package.

OPTIONS AVAILABLE FOR THE C-SPY MACRAIGOR DRIVER

--mac_handler_address

--mac_interface

--mac_jtag_device

--mac_multiple_targets

--mac_reset_pulls_reset

--mac_set_temp_reg_buffer

--mac_speed

C-SPY® Debugging Guide
326 for ARM

Specifies the location of the debug handler used
by Intel XScale devices.

Specifies the communication between the
Macraigor debug probe and the target system.

Selects the device corresponding to the
hardware interface.

Specifies the device to connect to, if there are
more than one device on the JTAG scan chain.

Makes C-SPY generate an initial hardware
reset.

Provides the driver with a physical RAM
address for accessing the coprocessor.

Sets the JTAG speed between the JTAG probe
and the ARM JTAG ICE port.

The C-SPY Command Line Utility—cspybat ___4

--mac_xscale_ir7 Specifies that the XScale ir7 architecture is
used.

OPTIONS AVAILABLE FOR THE C-SPY RDI DRIVER AND THE
JTAGJET DRIVER

--rdi_allow_hardware_reset Performs a hardware reset.
--rdi_driver_dll Specifies the path to the driver DLL file.
--rdi_step_max_one Executes one instruction.

OPTIONS AVAILABLE FOR THE C-SPY ST-LINK DRIVER

--stlink_interface Specifies the communication between the
ST-LINK debug probe and the target system.

--stlink_reset_strategy Specifies the reset strategy to use.

OPTIONS AVAILABLE FOR THE C-SPY THIRD-PARTY DRIVERS

For information about any options specific to the third-party driver you are using, see its
documentation.

Reference information on C-SPY command line options

This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--backend
Syntax --backend {driver options}
Parameters
driver options Any option available to the C-SPY driver you are using.
Applicability Sent to cspybat (mandatory).
Description Use this option to send options to the C-SPY driver. All options that follow --backend

will be passed to the C-SPY driver, and will not be processed by cspybat itself.

327

Reference information on C-SPY command line options

328

--code_coverage _file

Syntax

Parameters

Applicability

Description

See also

--cycles

Syntax

Parameters

Applicability

Description

--device

Syntax

Parameters

C-SPY® Debugging Guide
for ARM

--code_coverage_file file

file The name of the destination file for the code coverage
information.

Sent to cspybat.

Use this option to enable the generation of code coverage information. The code
coverage information will be generated after the execution has completed and you can
find it in the specified file.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

Code coverage, page 241.

--cycles cycles

cycles The number of cycles to run.

Sent to cspybat.

Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

--device=device_name

device_name The name of the device, for example, ADuC7030,

AT91SAM7S256, LPC2378, STR912FM44, or TMS470R1B1M.

The C-SPY Command Line Utility—cspybat ___4

Applicability All C-SPY drivers.
Description Use this option to specify the name of the device.

To set related option, choose:

Project>Options>General Options>Target>Device

--disable_interrupts

Syntax --disable_interrupts
Applicability The C-SPY Simulator driver.
Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Setup and deselect the Enable
interrupt simulation option.

--download_only

Syntax --download_only
Applicability Sent to cspybat.
Description Use this option to download the code image without starting a debug session afterwards.

To set related options, choose:

Project>Download

329

Reference information on C-SPY command line options

--drv_catch_exceptions

Syntax --drv_catch_exceptions=value

Parameters
value A value in the range of 0-0x1FF. Each bit specifies

(for ARM9 and Cortex-R4) which exception to catch:

Bit 0 = Reset
Bit 1 = Undefined instruction
Bit 2 = SWI

Bit 3 = Not used

Bit 4 = Data abort
Bit 5 = Prefetch abort
Bit 6 =IRQ

Bit 7 = FIQ

Bit 8 = Other errors

value A value in the range of 0-0x7FF. Each bit specifies
(for Cortex-M) which exception to catch:

Bit 0 = CORERESET - Reset Vector

Bit 4 = MMERR - Memory Management Fault
Bit 5 = NOCPERR - Coprocessor Access Error
Bit 6 = CHKERR - Checking Error

Bit 7 = STATERR - State Error

Bit 8 = BUSERR - Bus Error

Bit 9 = INTERR - Interrupt Service Errors

Bit 10 = HARDERR - Hard Fault

Applicability The C-SPY Angel debug monitor driver.
The C-SPY J-Link/J-Trace driver
The C-SPY JTAGjet driver
The C-SPY RDI driver.

Description Use this option to make the application stop when a certain exception occurs.

See also Breakpoints on exception vectors, page 112.

For the C-SPY Angel debug monitor driver, use:

Project>Options>Debugger>Extra Options

C-SPY® Debugging Guide
330 for ARM

--drv_communication

Syntax

Parameters

The C-SPY Command Line Utility—cspybat ___4

For the C-SPY J-Link/J-Trace driver, use:

Project>Options>Debugger>J-Link/J-Trace>Catch exceptions

For the C-SPY RDI driver, use:

Project>Options>Debugger>RDI>Catch exceptions

--drv_communication=connection

Where connection is one of these for the C-SPY Angel debug monitor driver:

Via Ethernet

Via serial port

UDP: ip_address

UDP: ip_address, port
UDP: hostname

UDP: hostname, port

port:baud,parity, stop_bit, handshake

port = COM1-coM256 (default COM1)

baud = 9600, 19200, 38400, 57600, or 115200 (default
9600 baud)

parity = N (no parity)

stop_bit = 1 (one stop bit)

handshake = NONE or RTSCTS (default NONE for no
handshaking)

For example, coM1:9600,N, 8, 1, NONE.

Where connection is one of these for the C-SPY GDB Server driver:

Via Ethernet

TCPIP:ip_address
TCPIP: ip_address, port
TCPIP: hostname
TCPIP:hostname, port

Note that if no port is specified, port 3333 is used by default.

331

Reference information on C-SPY command line options

332

C-SPY® Debugging Guide
for ARM

Where connection is one of these for the C-SPY IAR ROM-monitor driver:

Via serial port

port:baud,parity, stop_bit, handshake

port = COM1-coM256 (default com1)

baud = 9600,19200, 38400, 57600, or 115200 (default
9600 baud)

parity = N (no parity)

stop_bit = 1 (one stop bit)

handshake = NONE or RTSCTS (default NONE for no
handshaking)

For example, COM1:9600,N, 8, 1, NONE.

Where connection is one of these for the C-SPY J-Link/J-Trace driver:

Via USB directly to
J-Link

Via J-Link on LAN

USB0-USB3

When using UsB0 and if there are more than one J-Link debug
probes on the USB connection, a dialog box is displayed when
the debug session starts. Use the dialog box to choose which
J-Link debug probe to connect to.

USB: #number, connects to the J-Link with the serial number
number on the USB connection

TCPIP:

When the colon sign is not followed by any address, host
name, or serial number, the J-Link driver searches for all
J-Link debug probes on the local network and displays
them in a dialog box where you can choose which one to
connect to (Auto detect).

TCPIP:ip_address

TCPIP: ip_address, port

TCPIP:hostname

TCPIP:hostname, port

TCPIP: #number, connects to the J-Link with the serial
number number on the local network

Note that if no port is specified, port 19020 is used by default.

The C-SPY Command Line Utility—cspybat ___4

Where connection is one of these for the C-SPY Macraigor driver:

For mpDemon port:baud
port = COM1l-COM4

baud = 9600, 19200, 38400, 57600, or 115200 (default
9600 baud)

For mpDemon TCPIP:ip_address
TCPIP: ip_address, port
TCPIP: hostname
TCPIP:hostname, port

Note that if no port is specified, port 19020 is used by default.

Via USB to usbDemon USB ports = USB0O-USB3
and usb2Demon

Applicability The C-SPY Angel debug monitor driver
The C-SPY GDB Server driver
The C-SPY TAR ROM-monitor driver
The C-SPY J-Link/J-Trace driver
The C-SPY Macraigor driver.

Description Use this option to choose communication link.

Project>Options>Debugger>Angel>Communication

Project>Options>Debugger>GDB Server>TCP/IP address or hostname [,port]
Project>Options>Debugger>IAR ROM-monitor>Communication
Project>Options>Debugger>J-Link/J-Trace>Connection>Communication

To set related options for the C-SPY Macraigor driver, choose:

Project>Options>Debugger>Macraigor

--drv_communication_log

Syntax --drv_communication_log=filename

Parameters
filename The name of the log file.

333

Reference information on C-SPY command line options

Applicability All C-SPY drivers.

Description Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the communication protocol is required.

Project>Options>Debugger>Driver>Log communication

--drv_default_breakpoint

Syntax --drv_default_breakpoint={0|1]|2}
Parameters

0 Auto (default)

1 Hardware

2 Software
Applicability The C-SPY GDB Server driver

The C-SPY J-Link/J-Trace driver
The C-SPY Macraigor driver.

Description Use this option to select the type of breakpoint resource to be used when setting a
breakpoint.
See also Default breakpoint type, page 133.

Project>Options>Debugger>Driver>Breakpoints>Default breakpoint type

--drv_reset_to_cpu_start

Syntax --drv_reset_to_cpu_start

Applicability The C-SPY Angel debug monitor driver
The C-SPY GDB Server driver
The C-SPY J-Link/J-Trace driver
The C-SPY TI Stellaris driver
The C-SPY TI XDS100 driver
The C-SPY Macraigor driver

C-SPY® Debugging Guide
334 for ARM

Description

The C-SPY Command Line Utility—cspybat ___4

The C-SPY JTAG;jet driver
The C-SPY RDI driver
The C-SPY ST-LINK driver.

Use this option to omit setting the PC when starting or resetting the debugger. Instead pC
will have the original value set by the CPU, which is the address of the application entry

point.

To set this option, use Project>Options>Debugger>Extra Options.

--drv_restore_breakpoints

Syntax

Parameters

Applicability

Description

See also

--drv_swo_clock_setup

Syntax

Parameters

--drv_restore_breakpoints=location

location Address or function name label

The C-SPY GDB Server driver
The C-SPY J-Link/J-Trace driver
The C-SPY Macraigor driver.

Use this option to restore automatically any software breakpoints that were overwritten
during system startup.

Restore software breakpoints at, page 133.

Project>Options>Debugger>Driver>Breakpoints>Restore software breakpoints
at

--drv_swo_clock_setup=frequency, autodetect, wanted

frequency The exact clock frequency used by the internal processor
clock, HCLK, in Hz. This value is used for configuring the
SWO communication speed and for calculating timestamps.

335

Reference information on C-SPY command line options

336

Applicability

Description

autodetect 0, Specify the wanted frequency using the parameter wanted.
1, Automatically uses the highest possible frequency that the
J-Link debug probe can handle.

wanted The frequency to be used, if autodetect is 0, in Hz. Use
wanted if data packets are lost during transmission.

The J-Link driver and the ST-LINK driver.

Use this option to set up the CPU clock. If this option is not used, the CPU clock
frequency is by default set to 72 MHz.

J-Link>SWO Configuration>CPU clock

J-Link>SWO Configuration>SWO clock>Autodetect

J-Link>SWO Configuration>SWO clock>Wanted

--drv_vector_table base

Syntax

Parameters

Applicability

Description

C-SPY® Debugging Guide
for ARM

--drv_vector_table_base=expression

expression A label or an address

The C-SPY GDB Server driver

The C-SPY J-Link/J-Trace driver

The C-SPY TI Stellaris driver

The C-SPY TI XDS100 driver

The C-SPY Macraigor driver

The C-SPY JTAG;jet driver

The C-SPY RDI driver

The C-SPY ST-LINK driver

The C-SPY Simulator driver.

Use this option for Cortex-M to specify the location of the reset vector and the initial

stack pointer value. This is useful if you want to override the default __vector_table
label—defined in the system startup code—in the application or if the application lacks

--flash_loader

Syntax

Parameters

Applicability

Description

See also

The C-SPY Command Line Utility—cspybat ___4

this label, which can be the case if you debug code that is built by tools from another
vendor.

To set this option, use Project>Options>Debugger>Extra Options.

--flash_loader filename

filename The flash loader specification XML file.

Sent to cspybat.

Use this option to specify a flash loader specification xml file which contains all relevant
information about the flash loading. There can be more than one such argument, in
which case each argument will be processed in the specified order, resulting in several
flash programming passes.

The IAR Embedded Workbench flash loader User Guide.

--gdbserv_exec_command

Syntax

Parameters

Applicability

Description

--jlink_device_select

Syntax

--gdbserv_exec_command="string"

"string" String or command sent to the GDB Server; see its
documentation for more information.

The C-SPY GDB Server driver.
Use this option to send strings or commands to the GDB Server.

Project>Options>Debugger>Extra Options

--jlink_device_select=tap_number

337

Reference information on C-SPY command line options

Parameters

Applicability

Description

See also

--jlink_exec_command

Syntax

Parameters

Applicability

Description

See also

--jlink_initial_speed

Syntax

Parameters

Applicability

Description

C-SPY® Debugging Guide
338 for ARM

tap_number The TAP position of the device you want to connect to.

The C-SPY J-Link/J-Trace driver.

If there is more than one device on the JTAG scan chain, use this option to select a
specific device.

JTAG scan chain, page 371.

Project>Options>Debugger>J-Link/J-Trace>Connection>JTAG scan chain>TAP
number

--jlink_exec_commmand=cmdstrl,; cmdstr2; cmdstr3 ...

cmdstrn J-Link/J-Trace command string.

The C-SPY J-Link/J-Trace driver.

Use this option to make the debugger call the __j1inkExecCommand macro with one
or several command strings, after target connection has been established.

__jlinkExecCommand, page 292.

Project>Options>Debugger>Extra Options

--jlink_initial_speed=speed

speed The initial communication speed in kHz. If no speed is
specified, 32 kHz will be used as the initial speed.

The C-SPY J-Link/J-Trace driver.

Use this option to set the initial JTAG communication speed in kHz.

See also

--jlink_interface

Syntax

Parameters

Applicability

Description

See also

--jlink_ir_length

Syntax

Parameters

Applicability
Description

See also

The C-SPY Command Line Utility—cspybat ___4

JTAG/SWD speed, page 368.

Project>Options>Debugger>J-Link/J-Trace>Setup>JTAG speed>Fixed

——jlink_interface={JTAG|SWD}

JTAG Uses JTAG communication with the target system (default).

SWD Uses SWD communication with the target system (Cortex-M
only); uses fewer pins than JTAG communication.

The C-SPY J-Link/J-Trace driver.

Use this option to specify the communication channel between the J-Link debug probe
and the target system.

Interface, page 370.

Project>Options>Debugger>J-Link/J-Trace>Connection>Interface

--jlink_ir_length=Iength

length The number of IR bits before the ARM device to be debugged,
for JTAG scan chains that mix ARM devices with other
devices.

The C-SPY J-Link/J-Trace driver.
Use this option to set the number of IR bits before the ARM device to debugged.
JTAG scan chain, page 371.

Project>Options>Debugger>J-Link/J-Trace>Connection>JTAG scan
chain>Preceding bits

339

Reference information on C-SPY command line options

--jlink_reset_strategy

Syntax

Parameters

Applicability
Description

See also

--jlink_script_file
Syntax

Parameters

Applicability

Description

See also

C-SPY® Debugging Guide
340 for ARM

--jlink_reset_strategy=delay, strategy

delay For Cortex-M and ARM 7/9/11 with strategies 1-9, delay
should be 0 (ignored). For ARM 7/9/11 with strategy 0, the
delay should be one of 0-10000.

strategy For information about supported reset strategies, see the JAR
J-Link and IAR J-Trace User Guide for JTAG Emulators for
ARM Cores.

The C-SPY J-Link/J-Trace driver.
Use this option to select the reset strategy to be used at debugger startup.
Reset, page 365.

Project>Options>Debugger>J-Link/J-Trace>Setup>Reset

--jlink_script_file=filename

filename The name of the J-Link script file.

The C-SPY J-Link/J-Trace driver.

Use this option to specify the J-Link script file to be used.

J-Link has a script language that can be used for setting up hardware. For certain targets,
ready-made script files are automatically pointed out by IAR Embedded Workbench. In
command line mode, the script file needs to be manually specified by using this option.

When using a non-predefined script file, this option can be passed to C-SPY on the
Project>Options>Debugger>Extra Options page.

The J-Link/J-Trace ARM User Guide (JLinkARM.pdf, document number UMO08001),
section 5.10, for a detailed description of the script language.

--jlink_speed
Syntax

Parameters

Applicability
Description

See also

--jlink_trace_source

Syntax

Parameters

Applicability

Description

See also

The C-SPY Command Line Utility—cspybat ___4

--jlink_speed={fixed|auto|adaptive}

fixed 1-12000
auto The highest possible frequency for reliable operation (default)
adaptive For ARM devices that have the RTCK JTAG signal available

The C-SPY J-Link/J-Trace driver.
Use this option to set the JTAG communication speed in kHz.
JTAG/SWD speed, page 381.

Project>Options>Debugger>J-Link/J-Trace>Setup>JTAG speed

--jlink_trace_source={ETB|ETM}

ETB Selects ETB trace.

ETM Selects ETM trace.

The C-SPY J-Link/J-Trace driver.

Use this option to select either ETB or ETM as the trace source.

Note: This option applies only to J-Trace.
ETM/ETB, page 369.

Project>Options>Debugger>J-Link/J-Trace>Setup>ETM/ETB

341

Reference information on C-SPY command line options

--Imiftdi_speed

Syntax

Parameters

Applicability
Description

See also

=-=mMacro

Syntax

Parameters

Applicability

Description

See also

--mac_handler_address

Syntax

Parameters

Applicability

Description

C-SPY® Debugging Guide
342 for ARM

--1lmiftdi_speed=frequency

frequency The frequency in kHz.

The C-SPY TI Stellaris driver.
Use this option to set the JTAG communication speed in kHz.
JTAG/SWD speed, page 381.

Project>Options>Debugger>TI Stellaris>Setup>JTAG speed

--macro filename

filename The C-SPY macro file to be used (filename extension mac).

Sent to cspybat.

Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

Briefly about using C-SPY macros, page 268.

--mac_handler_address=address

address The start address of the memory area for the debug handler.

The C-SPY Macraigor driver.

Use this option to specify the location—the memory address—of the debug handler
used by Intel XScale devices.

See also

--mac_interface

Syntax

Parameters

Applicability

Description

--mac_jtag device

Syntax

Parameters

Applicability
Description

See also

The C-SPY Command Line Utility—cspybat ___4

Debug handler address, page 377.

Project>Options>Debugger>Macraigor>Debug handler address

--mac_interface={JTAG|SWD}

JTAG Uses JTAG communication with the target system (default).

SWD Uses SWD communication with the target system (Cortex-M
only); uses fewer pins than JTAG communication.

The C-SPY Macraigor driver.

Use this option to specify the communication channel between the Macraigor debug
probe and the target system.

Project>Options>Debugger>Macraigor>Interface

--mac_jtag_device=device

device The device corresponding to the hardware interface that is
used. Choose between Macraigor mpDemon, usbdemon, and
usb2demon.

The C-SPY Macraigor driver.
Use this option to select the device corresponding to the hardware interface that is used.
OCD interface device, page 375.

Project>Options>Debugger>Macraigor>OCD interface device

343

Reference information on C-SPY command line options

--mac_multiple_targets

Syntax --mac_multiple_targets=<tap-no>@dev0, devl,dev2,dev3, ...

Parameters
tap-no The TAP number of the device to connect to, where 0
connects to the first device, 1 to the second, and so on.

dev0-devn The nearest TDO pin on the Macraigor JTAG probe.
Applicability The C-SPY Macraigor driver.
Description If there is more than one device on the JTAG scan chain, each device must be defined.

Use this option to specify which device you want to connect to.
Example --mac_multiple_targets=0@ARM7TDMI, ARM7TDMI
See also JTAG scan chain with multiple targets, page 376.

Project>Options>Debugger>Macraigor>JTAG scan chain with multiple targets

--mac_reset_pulls_reset

Syntax --mac_reset_pulls_reset=time
Parameters
time 0-2000 which is the delay in milliseconds after reset.
Applicability The C-SPY Macraigor driver.
Description Use this option to make C-SPY perform an initial hardware reset when the debugger is

started, and to specify the delay for the reset.
See also Hardware reset, page 376.

Project>Options>Debugger>Macraigor>Hardware reset

--mac_set_temp_reg buffer

Syntax --mac_set_temp_reg_buffer=address

C-SPY® Debugging Guide
344 for ARM

Parameters

Applicability

Description

--mac_speed

Syntax

Parameters

Applicability

Description

See also

--mac_xscale_ir7

Syntax
Applicability

Description

The C-SPY Command Line Utility—cspybat ___4

address The start address of the RAM area.

The C-SPY Macraigor driver.

Use this option to specify the start address of the RAM area that is used for controlling
the MMU and caching via the CP15 coprocessor.

To set this option, use Project>Options>Debugger>Extra Options.

--mac_speed={ factor}

factor The factor by which the JTAG probe clock is divided when
generating the scan clock. The number must be in the range
1-8 where 1 is the fastest.

The C-SPY Macraigor driver.

Use this option to set the JTAG speed between the JTAG probe and the ARM JTAG ICE
port.

JTAG speed, page 375.

Project>Options>Debugger>Macraigor>JTAG speed

--mac_xscale_ir7
The C-SPY Macraigor driver.

Use this option to specity that the XScale ir7 core is used, instead of XScale ir5. Note
that this option is mandatory when using the XScale ir7 core.
These XScale cores are supported by the C-SPY Macraigor driver:

Intel XScale Core 1 (5-bit instruction register—ir5)

Intel XScale Core 2 (7-bit instruction register—ir7)

345

Reference information on C-SPY command line options

346

--mapu

Syntax
Applicability

Description

See also

Syntax

Parameters

Applicability
Description

See also

--plugin

C-SPY® Debugging Guide

for ARM

Syntax

Parameters

Applicability

To set this option, use Project>Options>Debugger>Extra Options.

--mapu

The C-SPY simulator driver.

Specify this option to use the section information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

Memory access checking, page 142.

To set related options, choose:

Simulator>Memory Access Setup

-p filename

filename The device description file to be used.

All C-SPY drivers.
Use this option to specify the device description file to be used.

Selecting a device description file, page 47.

--plugin filename

filename The plugin file to be used (filename extension d11).

Sent to cspybat.

The C-SPY Command Line Utility—cspybat ___4

Description Certain C/C++ standard library functions, for example print £, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
armbat.dll located in the arm\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

Note: You can use this option to include also other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

--proc_stack_stack
Syntax --proc_stack_stack=startaddress, endaddress
where stack is one of main or proc for Cortex-M and

where stackis one of usr, svc, irqg, fig, und, or abt for other ARM cores

Parameters
startaddress The start address of the stack, specified either as a value or as
an expression.

endaddress The end address of the stack, specified either as a value or as
an expression.

Applicability All C-SPY drivers. Note that this command line option is only available when using
C-SPY from the IDE; not in batch mode using cspybat.

Description Use this option to provide information to the C-SPY stack plugin module about reserved
stacks. By default, C-SPY receives this information from the system startup code, but if
you for some reason want to override the default values, this option can be useful.

Example --proc_stack_irg=0x8000, 0x80FF

To set this option, use Project>Options>Debugger>Extra Options.

--rdi_allow_hardware_reset

Syntax --rdi_allow_hardware_reset

Applicability The C-SPY RDI driver.

347

Reference information on C-SPY command line options

Description Use this option to allow the emulator to perform a hardware reset of the target. Requires
support by the emulator.

See also Allow hardware reset, page 377.

Project>Options>Debugger>RDI>Allow hardware reset

--rdi_driver_dlIl

Syntax --rdi_driver_dll filename
Parameters

filename The file or path to the driver DLL file.
Applicability The C-SPY RDI driver

The C-SPY JTAG et driver.
Description Use this option to specify the path to the driver DLL file provided with the JTAG pod.
See also Manufacturer RDI driver, page 377.

Project>Options>Debugger>RDI>Manufacturer RDI driver

For the JTAGjet driver, this option is not available in the IDE.

--rdi_step_max_one

Syntax --rdi_step_max_one

Applicability The C-SPY Angel debug monitor driver
The C-SPY RDI driver.

Description Use this option to execute only one instruction. The debugger will turn off interrupts
while stepping and, if necessary, simulate the instruction instead of executing it.

To set this option, use Project>Options>Debugger>Extra Options.

C-SPY® Debugging Guide
348 for ARM

--semihosting

Syntax

Parameters

Applicability

Description

See also

--silent

Syntax
Applicability

Description

--stlink_interface

Syntax

Parameters

The C-SPY Command Line Utility—cspybat ___4

--semihosting={none|iar_breakpoint}

No parameter Use standard semihosting.
none Does not use semihosted /0.
iar_breakpoint Uses the IAR proprietary semihosting variant.

All C-SPY drivers.

Use this option to enable semihosted I/O and to choose the kind of semihosting interface
to use. Note that if this option is not used, semihosting will by default be enabled and
C-SPY will try to choose the correct semihosting mode automatically. This means that

normally you do not have to use this option if your application is linked with
semihosting.

To make semihosting work, your application must be linked with a semihosting library.

The IAR C/C++ Development Guide for ARM for more information about linking with
semihosting.

Project>Options>General Options>Library Configuration

--silent
Sent to cspybat.

Use this option to omit the sign-on message.

--stlink_interface={JTAG|SWD}

JTAG Uses JTAG communication with the target system (default).

SWD Uses SWD communication with the target system.

349

Reference information on C-SPY command line options

350

Applicability

Description

See also

--stlink_reset_strategy

Syntax

Parameters

Applicability
Description

See also

--timeout

Syntax

Parameters

C-SPY® Debugging Guide
for ARM

The C-SPY ST-LINK driver.

Use this option to specify the communication channel between the ST-LINK debug
probe and the target system.

Interface, page 379.

Project>Options>Debugger>ST-LINK>ST-LINK>Interface

--stlink_reset_strategy=delay, strategy

delay The delay time measured in milliseconds. delay is ignored
and should be 0.

strategy The reset strategy.

0, (Normal) performs the standard reset procedure.

1, (Reset Pin) uses the reset pin to perform a hardware reset.
Only available for ST-LINK version 2.

2, (Connect during reset) ST-LINK connects to the target
while keeping Reset active (Reset is pulled low and
remains low while connecting to the target). Only
available for ST-LINK version 2.

The C-SPY ST-LINK driver.

Use this option to select the reset strategy to be used at debugger startup.
Reset, page 379

Project>Options>Debugger>ST-LINK>Setup>Reset

--timeout milliseconds

milliseconds The number of milliseconds before the execution stops.

The C-SPY Command Line Utility—cspybat ___4

Applicability Sent to cspybat.
Description Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

--xds_rootdir

Syntax --xds_rootdir=path
Applicability The C-SPY TI XDS100 driver
Description Use this option to specify the path to the directory where the TI XDS100 driver package

is installed.

To set this option, use Project>Options>Debugger>Extra Options.

351

Reference information on C-SPY command line options

C-SPY® Debugging Guide
352 for ARM

Debugger options

This chapter describes the C-SPY® options available in the IAR Embedded
Workbench® IDE. More specifically, this means:

e Setting debugger options
o Reference information on debugger options

e Reference information on C-SPY driver options.

Setting debugger options
Before you start the C-SPY debugger you must set some options—both C-SPY generic
options and options required for the target system (C-SPY driver-specific options). This
section gives detailed information about the options in the Debugger category.
To set debugger options in the IDE:
I Choose Project>Options to display the Options dialog box.

2 Select Debugger in the Category list.
For reference information on the generic options, see:

Setup, page 355
Download, page 357
Extra Options, page 358
Images, page 359

Plugins, page 360.

3 On the Setup page, select the appropriate C-SPY driver from the Driver drop-down
list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different sets of option pages appear.

C-SPY driver Available options pages

C-SPY Angel debug monitor driver Angel, page 361

C-SPY GDB Server driver GDB Server, page 363
Breakpoints options, page 132

Table 44: Options specific to the C-SPY drivers you are using

353

Reference information on debugger options

C-SPY driver Available options pages
C-SPY IAR ROM-monitor driver IAR ROM-monitor, page 364
C-SPY J-Link/}-Trace driver Setup options for J-Link/|-Trace, page 365

Connection options for J-Link/J-Trace, page 369
Breakpoints options, page |32

C-SPY TI Stellaris driver Setup options for Tl Stellaris, page 380
C-SPY T1 XDS100 driver Setup options for TI XDS100, page 381
C-SPY Macraigor driver Macraigor, page 375
C-SPY JTAGjet driver JTAGjet, page 371
RDI Configuration dialog box for |[TAGjet, page 373
RDI driver RDI, page 377
ST-LINK driver STLINK, page 379
Third-party driver Third-Party Driver options, page 382.

Table 44: Options specific to the C-SPY drivers you are using (Continued)
5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

Reference information on debugger options

This section gives reference information on C-SPY debugger options.

C-SPY® Debugging Guide
354 for ARM

Setup

Driver

Debugger options °

The Setup options select the C-SPY driver, the setup macro file, and device description

file to use, and specify which default source code location to run to.

Setup

Driver Fun to
main
Setup macros

[Use macro file(s)

Device description file
[F] Overide defautt

Figure 118: Debugger setup options

Selects the C-SPY driver for the target system you have:

Simulator
Angel

GDB Server
IAR ROM-monitor
J-Link/J-Trace
TI Stellaris

TI XDS100
Macraigor
JTAGjet

RDI

ST-LINK

355

Reference information on debugger options

356

Run to

Setup macros

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available for your convenience.

It is possible to specify up to two different macro files.

Device description file

C-SPY® Debugging Guide
for ARM

A default device description file—either an IAR-specific ddf file or a CMSIS System
View Description file—is selected automatically based on your project settings. To
override the default file, select Override default and specify an alternative file. A
browse button is available for your convenience.

For information about the device description file, see Modifying a device description
file, page 51.

IAR-specific device description files for each ARM device are provided in the directory
arm\config and have the filename extension ddf.

Download

Debugger options °

By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download.

Download
[~ Attach to program
[~ Werfy download
™ Suppress download
V' Use flash lnader(s)
[T Overide default board file
I$TDDLKIT_DIF|$\config\flashloader\8T\FIashSTM3 |

Exdit.... |

Figure 119: C-SPY Download options

Attach to program

Verify download

Makes the debugger attach to a running application at its current location, without
resetting or halting (for J-Link only) the target system. To avoid unexpected behavior
when using this option, the Debugger>Setup option Run to should be deselected.

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you want to debug an application that already resides in target
memory.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

Note: Itis important that the image that resides in target memory is linked consistently
with how you use C-SPY for debugging. This applies, for example, if you first link your
application using an output format without debug information, such as Intel-hex, and
then load the application separately from C-SPY. If you then use C-SPY only for
debugging without downloading, you cannot build the debugged application with any
of the options Semihosted or IAR breakpoint—on the General Options>Library

357

Reference information on debugger options

Configuration page—as that would add extra code, resulting in two different code
images.

Use flash loader(s)

Use this option to use one or several flash loaders for downloading your application to
flash memory. If a flash loader is available for the selected chip, it is used by default.
Press the Edit button to display the Flash Loader Overview dialog box.

For more information about flash loaders, see Using flash loaders, page 397.

Override default .board file

A default flash loader is selected based on your choice of device on the General
Options>Target page. To override the default flash loader, select Override default
.board file and specify the path to the flash loader you want to use. A browse button is
available for your convenience. Click Edit to display the Flash Loader Overview
dialog box. For more information, see Flash Loader Overview dialog box, page 399.

Extra Options

The Extra Options page provides you with a command line interface to C-SPY.

Extra Dptions |
™ Use command line options
[Eammand line optians: [aneipenline]
=
e

Figure 120: Debugger extra options

Use command line options

Specify additional command line arguments to be passed to C-SPY (not supported by
the GUI).

C-SPY® Debugging Guide
358 for ARM

Debugger options °

Images

The Images options control the use of additional debug files to be downloaded.

Images

[Download extra image

i

[Download extra image

:

[Download extra image

:

Figure 121: Debugger images options

Download extra Images

Controls the use of additional debug files to be downloaded:

Path Specify the debug file to be downloaded. A browse
button is available for your convenience.

Offset Specify an integer that determines the destination
address for the downloaded debug file.

Debug info only Makes the debugger download only debug information,
and not the complete debug file.

If you want to download more than three images, use the related C-SPY macro, see
__loadlmage, page 297.

For more information, see Loading multiple images, page 50.

359

Reference information on debugger options

Plugins

The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Plugins

Select plugins to load:

[CMX

[CICMX TINY=

[#]Code Coverage

[CJORTIRTOS

[¥] Symbols

Description: RTOS awareness for CMX.

Location: C:\Program Files {<86)\JAR Systems"\Embedded Workbench
Criginator: IAR Systems
Version: 16.30.1.52980

Figure 122: Debugger plugin options

Select plugins to load
Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location
Informs about the location of the plugin module.
Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the arm\plugins directory.

Originator
Informs about the originator of the plugin module, which can be modules provided by
IAR Systems or by third-party vendors.

Version

Informs about the version number.

C-SPY® Debugging Guide
360 for ARM

Debugger options °

Reference information on C-SPY driver options

Angel

This section gives reference information on C-SPY driver options.
More specifically, you will get information about:

Angel, page 361

GDB Server, page 363

1AR ROM-monitor, page 364

Setup options for J-Link/J-Trace, page 365
Connection options for J-Link/J-Trace, page 369
JTAGjet, page 371

RDI Configuration dialog box for JTAGjet, page 373
Macraigor, page 375

RDI, page 377

ST-LINK, page 379

Setup options for TI Stellaris, page 380

Setup options for TI XDS100, page 381
Third-Party Driver options, page 382.

The Angel options control the C-SPY Angel debug monitor driver.

Angel |

r— Communication
¥ Send heartbeat = TCPAP

% Serial R5232

= TICRAP
Iaaa.bbb.ccc.ddd

— Serial port settings

Port ICD'\"VI 'l
Baud rate ISBDD VI
™ Log communication

[$TOOLKIT_DIRg espyzommlog J

Figure 123: C-SPY Angel options

361

Reference information on C-SPY driver options

362

Send heartbeat

Makes C-SPY poll the target system periodically while your application is running. That
way, the debugger can detect if the target application is still running or has terminated
abnormally. Enabling the heartbeat will consume some extra CPU cycles from the
running program.

Communication
Selects the Angel communication link. RS232 serial port connection and TCP/IP via an
Ethernet connection are supported.

TCP/IP

Specify the IP address of the target device in the text box.

Serial port settings
Configures the serial port. You can specify

Port Selects which port on the host computer to use as the Angel
communication link.

Baud rate Sets the communication speed.

The initial Angel serial speed is always 9600 baud. After the initial handshake, the link

speed is changed to the specified speed. Communication problems can occur at very

high speeds; some Angel-based evaluation boards will not work above 38,400 baud.
Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, a detailed knowledge of the Angel monitor protocol is required.

C-SPY® Debugging Guide

for ARM

Debugger options °

GDB Server

The GDB Server options control the C-SPY GDB Server for the STR9-comStick
evaluation board.

GDB Server

TCPAP address or hostname [port]
a3a.bbb.coe.ddd

™ Log communication

| o

Figure 124: GDB Server options

TCPI/IP address or hostname

Specify the IP address and port number of a GDB server; by default the port number
3333 is used. The TCP/IP connection is used for connecting to a J-Link server running
on a remote computer.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, a detailed knowledge of the JTAG interface is required.

363

Reference information on C-SPY driver options

IAR ROM-monitor
The IAR ROM-monitor options control the C-SPY IAR ROM-monitor interface.

4R ROM-manitar |

Serial port settings

Port COM1 <
Baud rate |1 9200 - l

" Log communication
|$F'F| 0J_DIR$cspycomm.log J

Figure 125: IAR ROM-monitor options

Serial port settings
Configures the serial port. You can specify

Port Selects which port on the host computer to use as the
ROM-monitor communication link.

Baud rate Sets the communication speed. The serial port
communication link speed must match the speed selected on
the target board.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, a detailed knowledge of the ROM-monitor protocol is required.

C-SPY® Debugging Guide
364 for ARM

Setup options for J-Link/}-Trace

Reset

The Setup options specify the J-Link/J-Trace probe.

Setup |
~ Resat
| Nomal ENE
~JTAG/SWD speed Clock setup
 Auto

Iitial |?2 kHz
" Fixed |?; kHz

' Adaptive

CPU clock: |?2-D MHz

SWO clock: [~ Auto

IZDDD kHz

~ETM/ETB
[~ Prefer ETB

Figure 126: J-Link/J-Trace Setup options

Debugger options °

Selects the reset strategy to be used when the debugger starts. Note that Cortex-M uses
a different set of strategies than other devices. The actual reset strategy type number is

specified for each available choice. Choose between:

Normal (0, default)

Core (1)

Core and peripherals (8) Resets the core and the peripherals.

Reset Pin (2)

Tries to reset the core via the reset strategy Core and
peripherals first. If this fails, the reset strategy Core only is
used. Itis recommended that you use this strategy to reset the

target.

Resets the core via the VECTRESET bit; the peripheral units

are not affected.

J-Link pulls its RESET pin low to reset the core and the
peripheral units. Normally, this causes the CPU RESET pin of
the target device to go low as well, which results in a reset of

both the CPU and the peripheral units.

Connect during reset (3) J-Link connects to the target while keeping Reset active
(reset is pulled low and remains low while connecting to the
target). This is the recommended reset strategy for STM32
devices. This strategy is available for STM32 devices only.

365

Reference information on C-SPY driver options

Halt after bootloader (4 NXP Cortex-MO devices. This is the same strategy as the

or7) Normal strategy, but the target is halted when the
bootloader has finished executing. This is the
recommended reset strategy for LPC11xx and LPC13xx
devices.

Analog Devices Cortex-M3 devices (7), Resets the core and

peripheral units by setting the SYSRESETREQ bit in the
AIRCR. The core is allowed to perform the ADI kernel
(which enables the debug interface), but the core is halted
before the first instruction after the kernel is executed to
guarantee that no user application code is performed
after reset.

Halt before bootloader This is the same strategy as the Normal strategy, but the

(®)] target is halted before the bootloader has started executing.
This strategy is normally not used, except in situations where
the bootloader needs to be debugged. This strategy is
available for LPC11xx and LPC13xx devices only.

Normal, disable First performs a Normal reset, to reset the core and peripheral

watchdog (6,9, or 10) units and halt the CPU immediately after reset. After the
CPU is halted, the watchdog is disabled, because the
watchdog is by default running after reset. If the target
application does not feed the watchdog, J-Link loses
connection to the device because it is permanently reset. This
strategy is available for Freescale Kinetis devices (6), for
NXP LPC 1200 devices (9), and for Samsung S3FN60D
devices (10).

All of these strategies are available for both the JTAG and the SWD interface, and all
strategies halt the CPU after the reset.

For other cores, choose between these strategies:

Hardware, halt after Specify the delay between the hardware reset and the halt of

delay (ms) (0) the processor. This is used for making sure that the chip is in
a fully operational state when C-SPY starts to access it. By
default, the delay is set to zero to halt the processor as
quickly as possible.

This is a hardware reset.

C-SPY® Debugging Guide
366 for ARM

Debugger options °

Hardware, halt using After reset, J-Link continuously tries to halt the CPU using a

Breakpoint (1) breakpoint. Typically, this halts the CPU shortly after reset;
the CPU can in most systems execute some instructions
before it is halted.

This is a hardware reset.

Hardware, halt at 0 (4) Halts the processor by placing a breakpoint at the address
zero. Note that this is not supported by all ARM
microcontrollers.

This is a hardware reset.

Hardware, halt using After reset, J-Link continuously tries to halt the CPU using

DBGRQ (5) DBGRQ. Typically, this halts the CPU shortly after reset; the
CPU can in most systems execute some instructions before it
is halted.

This is a hardware reset.
Software (-) Sets PC to the program entry address.
This is a software reset.

Software, Analog devices Uses a reset sequence specific for the Analog Devices

2) ADuC7xxx family. This strategy is only available if you have
selected such a device from the Device drop-down list on the
General Options>Target page.

This is a software reset.

Hardware, NXP LPC (9)This strategy is only available if you have selected such a
device from the Device drop-down list on the General
Options>Target page.

This is a hardware reset specific to NXP LPC devices.

Hardware, Atmel This strategy is only available if you have selected such a
ATI1ISAMT (8) device from the Device drop-down list on the General
Options>Target page.

This is a hardware reset specific for the Atmel AT91SAM7
family.

For more details about the different reset strategies, see the /AR J-Link and IAR J-Trace
User Guide for JTAG Emulators for ARM Cores available in the arm\doc directory.

A software reset of the target does not change the settings of the target system; it only
resets the program counter and the mode register CPSR to its reset state. Normally, a

367

Reference information on C-SPY driver options

C-SPY reset is a software reset only. If you use the Hardware reset option, C-SPY will
generate an initial hardware reset when the debugger is started. This is performed once
before download, and if the option Use flash loader(s) is selected, also once after flash
download, see Figure 5, Debugger startup when debugging code in flash, and Figure 6,
Debugger startup when debugging code in RAM.

@ Hardware resets can be a problem if the low-level setup of your application is not
complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 52.

JTAG/SWD speed

Specify the JTAG communication speed in kHz. Choose between:

Auto

Fixed

Adaptive

C-SPY® Debugging Guide
368 for ARM

Automatically uses the highest possible frequency for
reliable operation. The initial speed is the fixed frequency
used until the highest possible frequency is found. The
default initial frequency—32 kHz—can normally be used,
but in cases where it is necessary to halt the CPU after the
initial reset, in as short time as possible, the initial frequency
should be increased.

A high initial speed is necessary, for example, when the CPU
starts to execute unwanted instructions—for example power
down instructions—from flash or RAM after a reset. A high
initial speed would in such cases ensure that the debugger
can quickly halt the CPU after the reset.

The initial value must be in the range 1-12000 kHz.

Sets the JTAG communication speed in kHz. The value must
be in the range 1-12000 kHz.

If there are JTAG communication problems or problems in
writing to target memory (for example during program
download), these problems might be avoided if the speed is
set to a lower frequency.

Works only with ARM devices that have the RTCK JTAG
signal available. For more information about adaptive speed,
see the JAR J-Link and IAR J-Trace User Guide for JTAG
Emulators for ARM Cores available in the arm\doc
directory.

Debugger options °

Clock setup
Specifies the CPU clock. Choose between:

CPU clock Specifies the exact clock frequency used by the internal
processor clock, HCLK, in MHz. The value can have
decimals. This value is used for configuring the SWO
communication speed and for calculating timestamps.

SWO clock Specifies the clock frequency of the SWO communication
channel in KHz.

Auto Automatically uses the highest possible frequency that the
J-Link debug probe can handle. If Auto is not selected, the
wanted SWO clock value can be input in the text box. The
value can have decimals. Use this option if data packets are
lost during transmission.

To override the Clock setup options, use the Override project default option in the
SWO Configuration dialog box, see Override project default, page 182.

ETM/ETB
The Prefer ETB option selects ETB trace instead of ETM trace, which is the default.

Note: This option applies only to J-Trace.

Connection options for J-Link/}-Trace
The Connection options specify the connection with the J-Link/J-Trace probe.

Connection

Communication

O UsE:
& ICPAP: Serial number w
Serial no:

Interface JTAG scan chain
[CJUTAG scan chain with multiple targets

[Log communication

Figure 127: J-Link/J-Trace Connection options

369

Reference information on C-SPY driver options

370

Communication

Interface

C-SPY® Debugging Guide
for ARM

Selects the communication channel between C-SPY and the J-Link debug probe.

Choose between:

USB

TCP/IP

Selects the USB connection. If Serial number is selected in
the drop-down list, the J-Link debug probe with the specified
serial number is chosen.

Specify the IP address of a J-Link server. The TCP/IP
connection is used for connecting to a J-Link server running
on a remote computer.

IP address, specify the IP address of a J-Link probe
connected to LAN.

Auto detect, automatically scans the network for J-Link
probes. Use the dialog box to choose among the detected
J-Link probes.

Serial number, connects to the J-Link probe on the network
with the serial number that you specify.

Selects the communication interface between the J-Link debug probe and the target

system. Choose between:

JTAG (default)
SWD

Uses the JTAG interface.

Uses fewer pins than JTAG. Select SWD if you want to use
the serial-wire output (SWO) communication channel. Note
that if you select stdout/stderr via SWO on the General
Options>Library Configuration page, SWD is selected
automatically. For more information about SWO settings,
see SWO Trace Window Settings dialog box, page 179.

Debugger options °

JTAG scan chain
Specifies the JTAG scan chain. Choose between:

JTAG scan chain with Specifies that there is more than one device on the JTAG scan

multiple targets chain.

TAP number Specify the TAP (Test Access Port) position of the device
you want to connect to. The TAP numbers start from zero.

Scan chain contains Enables JTAG scan chains that mix ARM devices with other

non-ARM devices devices like, for example, FPGA.

Preceding bits Specify the number of IR bits before the ARM device to be
debugged.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, a detailed knowledge of the JTAG interface is required.

JTAGjet
The JTAGjet options specify the JTAGjet interface.

ITAGjet |

i~ Probe configuration
[Allow hardware reset .
Configure. .. |

Catch exceptions——————
[T Reset [Daa [FlO
" Undef I Frefetch
Cswl I IRQ

" Log communication
|$F'F| 0J_DIR$cspycomm.log J

Figure 128: JTAGjet options

Allow hardware reset

Allows the emulator to perform a hardware reset of the target.

A software reset of the target does not change the settings of the target system; it only
resets the program counter to its reset state.

371

Reference information on C-SPY driver options

You should only allow hardware resets if the low-level setup of your application is
@ complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 52.

Probe configuration
Click the Configure button to display the RDI Configuration dialog box, see RDI
Configuration dialog box for JTAGjet, page 373.

Catch exceptions

Causes exceptions to be treated as breakpoints. Instead of handling the exception as
defined by the running program, the debugger will stop when the exception occurs.

The ARM core exceptions that can be caught are:

Exception Description

Reset Reset

Undef Undefined instruction

SWI Software interrupt

Data Data abort (data access memory fault)
Prefetch Prefetch abort (instruction fetch memory fault)
IRQ Normal interrupt

FIQ Fast interrupt

Table 45: Catching exceptions

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

C-SPY® Debugging Guide
372 for ARM

RDI Configuration dialog box for JTAGjet

The RDI Configuration dialog box is available by choosing

Project>Options>JTAGjet>Configure.

RDI Configuration

| Connection JTAG | Board I Criver I

— CPU selection

Select a zingle ARM device from the list or specify a
configuration file for the multi-device JTAG chain.

CPU: Specify JTAG configuration file j

File:

—JTAG chain
01 Refresh |
1D | Device | Diescription
UpPsD BvPASS05
¥ AR ARMSIEEE-S
FLASH BvPAS508
I i
DO

Advanced parameters ... |

()8 I Cancel |

Figure 129: The RDI Configuration dialog box

To configure the JTAGjet connection:

Make sure that the Connection tab is selected.

Debugger options °

o To establish a debugger-emulator connection with minimum effort, click the
Connect Automatically button. The connection parameters appear in the Status

box.

e For additional control over the connection, click the Specify Connection button to

set up the communication port and its parameters manually.

2 Once the connection has been established, select the JTAG tab. Choose your target

device from the CPU drop-down list as follows.

e If your JTAG chain contains a single ARM device, select the device from the CPU
drop-down list. The name (ID) and device type, along with a short description, are

displayed in the JTAG Chain group box.

o Use a JTAG configuration file to specify your JTAG chain if your JTAG chain
contains multiple devices. From the CPU drop-down list, select Specify JTAG

373

Reference information on C-SPY driver options

Configuration File. Enter the file path and name in the File text box. Alternatively,
use the file browser button located next to the File text box to navigate to your file.
After the file has been loaded, the chain description is displayed in the JTAG
Chain group box. In the ID column, select the device you want to debug. Note that
you cannot select a bypass device.

o Click the Advanced Parameters button. Select ARM from the Emulation Mode
drop-down list for all but TT ARM925-based devices. For the TT ARM925-based
devices, choose TI Emulation Mode. Leaving the JTAG Clock and JTAG Header
fields empty lets the emulator select those parameters automatically, depending on
the device type. However, when using the JTAG cable labeled TI-14 (formerly
TMS320), TI-14-1SO (formerly ISO-TMS320), or CTI-20, select the TI JTAG
Header option. Otherwise, the emulator might incorrectly report that the device is
held in reset. For the XScale device, set the JTAG Header field to the following:
ARM,TRST:1.

3 Click the Board tab and select the byte order of your target board. In the File field,
enter the name of the startup macro file. If you are using a popular evaluation board,
chances are that an appropriate macro has been provided for you. Otherwise, you might
need to write your own or leave the field blank. The Debug Handler Address field and
the Vector Changes in Runtime field apply to the XScale processor only. It might be
necessary to increase the Sleep After CPU Reset value if the XScale processor cannot
be halted. Select the Flash Write Enable option to load the code to flash memory
using the flash programmer built into the JTAGjet driver.

4 Click the Driver tab to configure driver protocol logs and error reports.

o To display the driver protocol log in the Log window, select Log Enable. If you also
need to store the log in a file, enter the filename in the File text box.

o To enable the driver to generate descriptive error messages, select Show Error
Messages. This option does not affect the way your debugger displays its own error
messages; it is designed simply to augment and clarify those debugger messages
that tend to be cryptic or are limited to error codes only.

5 Click OK. In the Choose Target dialog box, click OK again to accept your settings
and connect to the target device.

C-SPY® Debugging Guide
374 for ARM

Macraigor

The Macraigor options specify the Macraigor interface.

Macraigor |
OCD interface device Interface

Iusb2Dem0n 'l *ITAG

r
[T Hardware resst S
JTAG zpeed

[elay aft t [ms]: I
elay after reset [mz] |2—

[~ JTAG scan chain with multiple targets TERAR
IU@AHM?TDMI Iaaa.bbb.ccc.ddd

Port IUSBU 'l
IDxDDSDDDDD

Baud rate |1152DD VI
™ Log communication

[$TOOLKIT_DIRg espyzommlog J

[ebug handler address

Figure 130: Macraigor options

OCD interface device

Interface

JTAG speed

&

Debugger options °

Selects the device corresponding to the hardware interface you are using. Supported

Macraigor JTAG probes is Macraigor mpDemon.

Selects the communication interface between the J-Link debug probe and the target

system. Choose between:

JTAG (default) Uses the JTAG interface.

SWD Uses fewer pins than JTAG. Select SWD if you want to use
the serial-wire output (SWO) communication channel. Note
that if you select stdout/stderr via SWO on the General
Options>Library Configuration page, SWD is selected
automatically. For more information about SWO settings,
see SWO Trace Window Settings dialog box, page 179.

Specify the speed between the JTAG probe and the ARM JTAG ICE port. The number
must be in the range 1-8 and sets the factor by which the JTAG probe clock is divided

when generating the scan clock.

The mpDemon interface might require a higher setting such as 2 or 3, that is, a lower

speed.

375

Reference information on C-SPY driver options

376

TCP/IP

Port

Baud rate

Hardware reset

&

Specify the IP address of a JTAG probe connected to the Ethernet/LAN port.

Selects which serial port or parallel port on the host computer to use as communication
link. Select the host port to which the JTAG probe is connected.

In the case of parallel ports, you should normally use LPT1 if the computer is equipped
with a single parallel port. Note that a laptop computer might in some cases map its
single parallel port to LPT2 or LPT3. If possible, configure the parallel port in EPP
mode because this mode is fastest; bidirectional and compatible modes will work but are
slower.

Selects the serial communication speed.

Generates an initial hardware reset when the debugger is started. This is performed once
before download, and if the option Use flash loader(s) is selected, also once after flash
download, see Debugger startup when debugging code in flash, page 53, and Figure 6,
Debugger startup when debugging code in RAM.

A software reset of the target does not change the settings of the target system; it only
resets the program counter to its reset state. Normally, a C-SPY reset is a software reset
only.

Hardware resets can be a problem if the low-level setup of your application is not
complete. If low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 52.

JTAG scan chain with multiple targets

C-SPY® Debugging Guide
for ARM

Defines each device on the JTAG scan chain, if there is more than one. Also, you must
state which device you want to connect to. The syntax is:

<0>@dev0,devl,dev2,dev3, ...

where 0 is the TAP number of the device to connect to, and dev0 is the nearest TDO pin
on the Macraigor JTAG probe.

Debugger options °

Debug handler address
Specify the location—the memory address—of the debug handler used by Intel XScale
devices. To save memory space, you should specify an address where a small portion of
cache RAM can be mapped, which means the location should not contain any physical
memory. Preferably, find an unused area in the lower 16-Mbyte memory and place the
handler address there.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, a detailed knowledge of the JTAG interface is required.

RDI

With the RDI options you can use JTAG interfaces compliant with the ARM Ltd. RDI
1.5.1 specification. One example of such an interface is the ARM Real View Multi-ICE

JTAG interface.
RDI
M anufacturer RDI driver
Browse to your RDI driver E]
Mote
[dllow hardware reset Use the RDI menu to specify

additional driver zettings. [Thiz
menu is available after the RDI
driver haz been located)

Catch exceptions

[OBesst [JData [JEIQ
[JUndef] Prefetch
Osw IR

[Log RDI communication

Figure 131: RDI options

Manufacturer RDI driver
Specify the file path to the RDI driver DLL file provided with the JTAG pod.

Allow hardware reset

Allows the emulator to perform a hardware reset of the target.

A software reset of the target does not change the settings of the target system; it only
resets the program counter to its reset state.

377

Reference information on C-SPY driver options

You should only allow hardware resets if the low-level setup of your application is
@ complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset () is suitable. For a similar example where
execUserPreload () is used, see Remapping memory, page 52.

Note: This option requires that hardware resets are supported by the RDI driver you are
using.
Catch exceptions

Causes exceptions to be treated as breakpoints. Instead of handling the exception as
defined by the running program, the debugger will stop.

The ARM core exceptions that can be caught are:

Exception Description

Reset Reset

Undef Undefined instruction

SWiI Software interrupt

Data Data abort (data access memory fault)
Prefetch Prefetch abort (instruction fetch memory fault)
IRQ Normal interrupt

FIQ Fast interrupt

Table 46: Catching exceptions

Log RDI communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the RDI interface is required.

C-SPY® Debugging Guide
378 for ARM

Debugger options °

ST-LINK
The ST-LINK page contains options for the ST-LINK probe.

ST-LIMK
Fieset
Mormal v
Interface Clock setup
@JTAG CPU clock: |70 MHz
QswD 5w clock: []Auto

2000 kHz

Figure 132: ST-LINK Setup options

Reset

Selects the reset strategy to be used when the debugger starts. The actual reset strategy

type number is specified for each available choice. Choose between:

Normal (0) Performs the standard reset procedure.

Reset Pin (1) Uses the reset pin to perform a hardware reset. Only available
for ST-LINK version 2.

Connect during reset (2) ST-LINK connects to the target while keeping the reset pin
active (the reset pin is pulled low and remains low while
connecting to the target). Only available for ST-LINK
version 2.

Interface

Selects the communication interface between the ST-LINK debug probe and the target
system. Choose between:

JTAG (default) Uses the JTAG interface.
SWD Uses fewer pins than JTAG.

379

Reference information on C-SPY driver options

Clock setup

Specifies the CPU clock. Choose between:

CPU clock

SWO clock

Auto

Specifies the exact clock frequency used by the internal
processor clock, HCLK, in MHz. The value can have
decimals. This value is used for configuring the SWO
communication speed and for calculating timestamps.

Specifies the clock frequency of the SWO communication
channel in KHz.

Automatically uses the highest possible frequency that the
J-Link debug probe can handle. If Auto is not selected, the
wanted SWO clock value can be input in the text box. The
value can have decimals. Use this option if data packets are
lost during transmission.

To override the Clock setup options, use the Override project default option in the
SWO Configuration dialog box, see Override project default, page 182.

Setup options for Tl Stellaris

The Setup options specify the TI Stellaris interface.

Setup

~ Interface
o ITAG
& 5wD

—JTAG/SWD speed

500

kHz

" Log communication

[sTOOLKIT_DIR$hcspycommlag

Figure 133: TI Stellaris Setup options

C-SPY® Debugging Guide
380 for ARM

Debugger options °

Interface

Selects the communication interface between the J-Link debug probe and the target
system. Choose between:

JTAG (default) Uses the JTAG interface.

SWD Uses fewer pins than JTAG. Select SWD if you want to use
the serial-wire output (SWO) communication channel. Note
that if you select stdout/stderr via SWO on the General
Options>Library Configuration page, SWD is selected
automatically. For more information about SWO settings,
see SWO Trace Window Settings dialog box, page 179.

JTAG/SWD speed
Specify the JTAG communication speed in kHz.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, a detailed knowledge about the communication protocol is required.

Setup options for TI XDS100

There are no options on this page.

381

Reference information on C-SPY driver options

Third-Party Driver options

The Third-Party Driver options are used for loading any driver plugin provided by a
third-party vendor. These drivers must be compatible with the C-SPY debugger driver
specification.

Third-Party Driver |

&R debugger driver plugin
IBrowse to wour Third party driver J

™ Suppress download
I~ Werify al

" Log communication
[$TOOLKIT_DIRg espyzommlog J

Figure 134: C-SPY Third-Party Driver options

IAR debugger driver plugin

Specify the file path to the third-party driver plugin DLL file. A browse button is
available for your convenience.

Suppress download

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you need to exit C-SPY for a while and then continue the
debug session without downloading code. The implicit RESET performed by C-SPY at
startup is not disabled though.

If this option is combined with Verify all, the debugger will read your application back
from the flash memory and verify that it is identical with the application currently being
debugged.

This option can be used if it is supported by the third-party driver.

Verify all

Verifies that the memory on the target system is writable and mapped in a consistent
way. A warning message will appear if there are any problems during download. Every
byte is checked after it is loaded. This is a slow but complete check of the memory. This
option can be used if is supported by the third-party driver.

C-SPY® Debugging Guide
382 for ARM

Debugger options °

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required. This option can be used if is
supported by the third-party driver.

383

Reference information on C-SPY driver options

C-SPY® Debugging Guide
384 for ARM

Additional information on
C-SPY drivers

This chapter describes the additional menus and features provided by the
C-SPY® drivers. More specifically, this means:

e Reference information on the C-SPY simulator
e The C-SPY GDB Server driver

e The C-SPY J-Link/J-Trace driver

o The C-SPY JTAGjet driver

e The C-SPY Macraigor driver

e The C-SPY RDI driver

e The C-SPY ST-LINK driver

e The C-SPY TI Stellaris driver

e The C-SPY TI XDS100 driver.

Reference information on the C-SPY simulator

This section gives additional reference information the C-SPY simulator, reference
information not provided elsewhere in this documentation.

More specifically, this means:

o Simulator menu, page 386

385

Reference information on the C-SPY simulator

Simulator menu
When you use the simulator driver, the Simulator menu is added to the menu bar.

v Interrupt Setup...
Forced Interrupt
Interrupt Log
Interrupt Log Summary
Memory Access Setup...

Trace
Function Trace
Function Profiler

Timeline

Breakpoint Usage

Figure 135: Simulator menu

These commands are available on the menu:

Interrupt Setup Displays a dialog box where you can configure C-SPY
interrupt simulation, see Interrupt Setup dialog box, page
254.

Forced Interrupts Opens a window from where you can instantly trigger an

interrupt, see Forced Interrupt window, page 257.

Interrupt Log Opens a window which displays the status of all defined
interrupts, see Interrupt Log window, page 260.

Interrupt Log Opens a window which displays a summary of the status of

Summary all defined interrupts, see Interrupt Log Summary window,
page 264.

Memory Access Setup Displays a dialog box to simulate memory access checking
by specifying memory areas with different access types, see
Memory Access Setup dialog box, page 157.

Trace Opens a window which displays the collected trace data, see
Trace window, page 184.

Function Trace Opens a window which displays the trace data for function
calls and function returns, see Function Trace window, page
189.

Function Profiler Opens a window which shows timing information for the

functions, see Function Profiler window, page 219.

Timeline Opens a window which shows trace data for interrupt logs
and for the call stack, see Timeline window, page 190.

C-SPY® Debugging Guide
386 for ARM

Additional information on C-SPY drivers __4

Breakpoint Usage Opens a window which lists all active breakpoints, see
Breakpoint Usage window, page 121.

The C-SPY GDB Server driver

This section gives additional reference information on the C-SPYGDB Server driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

o GDB Server menu, page 387.

GDB Server menu

When you are using the C-SPY GDB Server driver, the GDB Server menu is added to
the menu bar.

Breakpoint Uzage ...
Figure 136: The GDB Server menu

This command is available on the menu:

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

The C-SPY }-Link/J-Trace driver

This section gives additional reference information for the C-SPY J-Link/J-Trace driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

e J-Link menu, page 388.

387

The C-SPY J-Link/J-Trace driver

J-Link menu
When you are using the C-SPY J-Link driver, the J-Link menu is added to the menu bar.

Watchpaints, .,
Vector Catch...
Disable Interrupts When Stepping

ETM Trace Settings...
ETM Trace Save...
ETM Trace

Function Trace

SWO Configuration...

SWO Trace Window Settings...
SWO Trace Save...

SWO Trace

Interrupt Log

Interrupt Log Summary

Data Log

Data Log Summary

Power Log Setup

Power Log

Timeline

Function Profiler

Breakpoint Usage

Figure 137: The J-Link menu

These commands are available on the menu:

Watchpoints Displays a dialog box for setting watchpoints, see Code
breakpoints dialog box, page 122.

Vector Catch Displays a dialog box for setting a breakpoint directly on a
vector in the interrupt vector table, see Breakpoints on
exception vectors, page 112. Note that this command is not
available for all ARM cores.

Disable Interrupts When Ensures that only the stepped instructions will be executed.

Stepping Interrupts will not be executed. This command can be used
when not running at full speed and some interrupts interfere
with the debugging process.

ETM Trace Settings] Displays a dialog box to configure ETM trace data generation
and collection; see ETM Trace Settings dialog box, page 177.

ETM Trace Save' Displays a dialog box to save the collected trace data to a file;
see Trace Save dialog box, page 188.

C-SPY® Debugging Guide
388 for ARM

ETM Trace!

Function Trace!

SWO Conﬁguration2

SWO Trace Window
Settings2

SWO Trace Save?
SWO Trace?

Interrupt Log2

Interrupt Log
Summary’

Data Log2

Data Log Summary2
Power Log Setup
Power Log
Timeline®

Function Profiler

Breakpoint Usage

Additional information on C-SPY drivers __4

Opens the ETM Trace window to display the collected trace
data; see Trace window, page 184.

Opens a window which displays the trace data for function
calls and function returns; see Function Trace window, page
189.

Displays a dialog box; see SWO Configuration dialog box,
page 181.

Displays a dialog box; see SWO Trace Window Settings
dialog box, page 179.

Displays a dialog box to save the collected trace data to a file;
see Trace Save dialog box, page 188.

Opens the SWO Trace window to display the collected trace
data; see Trace window, page 184.

Opens a window; see Interrupt Log window, page 260.

Opens a window; see Interrupt Log Summary window, page
264.

Opens a window; see Event Log window, page 104.

Opens a window; see Data Log Summary window, page 103.

Opens a window; see Power Setup window, page 234.
Opens a window; see Power Log window, page 236.
Opens a window; see Timeline window, page 190.

Opens a window which shows timing information for the
functions; see Function Profiler window, page 219.

Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

I Only available when using either ETM or J-Link with ETB.
2 Only available when the SWD/SWO interface is used.
3 Available when using either ETM or SWD/SWO.

389

The C-SPY J-Link/J-Trace driver

390

C-SPY® Debugging Guide
for ARM

LIVE WATCH AND USE OF DCC

The following possibilities for using live watch apply:

For Cortex-M

Access to memory or setting breakpoints is always possible during execution. The DCC
(Debug Communications Channel) unit is not available.

For ARMxxx-S devices

Setting hardware breakpoints is always possible during execution.

For ARM7/ARM9 devices, including ARMxxx-S

Memory accesses must be made by your application. By adding a small program—a
DCC handler—that communicates with the debugger through the DCC unit to your
application, memory can be read/written during execution. Software breakpoints can
also be set by the DCC handler.

Just add the files JLINKDCC_Process.c and JLINKDCC_HandleDataAbort.s
located in arm\ src\debugger\dcc to your project and call the JLINKDCC_Process
function regularly, for example every millisecond.

In your local copy of the cstartup file, modify the interrupt vector table so that data
aborts will call the JLINKDCC_HandleDataAbort handler.

TERMINAL I/O AND USE OF DCC

The following possibilities for using Terminal I/O apply:

For Cortex-M
See ITM Stimulus Ports, page 183.

For ARM7/ARM9 devices, including ARMxxx-S

DCC can be used for Terminal I/O output by adding the file
arm\src\debugger\dcc\DCC_Write.c to your project. DCC_write.c overrides the
library function write. Functions such as print £ can then be used to output text in real
time to the C-SPY Terminal I/O window.

In this case, you can disable semihosting which means that the breakpoint it uses is freed
for other purposes. To disable semihosting, choose General Options>Library
Configuration>Library low-level interface implementation>None.

Additional information on C-SPY drivers __4

The C-SPY JTAGjet driver

This section gives additional reference information on the C-SPY JTAGjet driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

o JTAGjet menu, page 391.

JTAGjet menu

When you are using the C-SPY JTAGjet driver, the JTAGjet menu is added to the menu
bar.

Trace

Breakpoint Usage. ..
Figure 138: The JTAGjet menu

These commands are available on the menu:

Trace Opens the JTAGjet Trace window; see The JTAGjet Trace
window, page 162.

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

The C-SPY Macraigor driver

This section gives additional reference information on the C-SPY Macraigor driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

® Macraigor JTAG menu, page 392.

391

The C-SPY RDI driver

Macraigor JTAG menu

When you are using the C-SPY Macraigor driver, the JTAG menu is added to the menu
bar.

mas
‘Watchpoints ...
Wector Catch ..,

Breakpoint Usage. ..

Figure 139: The Macraigor JTAG menu

These commands are available on the menu:

Watchpoints Opens a dialog box for setting watchpoints, see Code
breakpoints dialog box, page 122.

Vector Catch Opens a dialog box for setting a breakpoint directly on a
vector in the interrupt vector table, see Breakpoints on
exception vectors, page 112. Note that this command is not
available for all ARM cores.

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

The C-SPY RDI driver

This section gives additional reference information on the C-SPY RDI driver, reference
information not provided elsewhere in this documentation.

More specifically, this means:

o RDI menu, page 392.

RDI menu
When you are using the C-SPY RDI driver, the RDI menu is added to the menu bar.

Configure, .,

ETI Trace Windaw
Trace Sethings.. .
Trace Save. .,

Breakpoint Usage. ..

Figure 140: The RDI menu

C-SPY® Debugging Guide
392 for ARM

Additional information on C-SPY drivers __4

These commands are available on the menu:

Configure Opens a dialog box that originates from the RDI driver
vendor. For information about details in this dialog box, refer
to the driver documentation.

Trace Settings Displays a dialog box to configure the ETM trace; see ETM
Trace Settings dialog box, page 177.

Trace Save Displays a dialog box to save the collected trace data to a file;
see Trace Save dialog box, page 188.

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

Note: To get the default settings in the configuration dialog box, it is for some RDI
drivers necessary to just open and close the dialog box even though you do no need any
specific settings for your project.

The C-SPY ST-LINK driver

This section gives additional reference information on the C-SPY ST-LINK driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

o ST-LINK menu, page 393.

ST-LINK menu

When you are using the C-SPY ST-LINK driver, the ST-LINK menu is added to the
menu bar.

SWO Configuration, ..

SWO Trace Window Settings...
SWO Trace Save...

SWO Trace

Inkerrupk Log

Inkerrupk Log Surmmary

[ata Log

Data Log Surmmary

Timeline

Function Prafiler

Breakpoint Usage. ..

Figure 141: The ST-LINK menu

393

The C-SPY TI Stellaris driver

These commands are available on the menu:

SWO Conﬁgurationl Displays a dialog box; see SWO Configuration dialog box,

page 181.
SWO Trace Window Displays a dialog box; see SWO Trace Window Settings
Settings1 dialog box, page 179.
SWO Trace Save! Displays a dialog box to save the collected trace data to a file;
see Trace Save dialog box, page 188.
SWO Trace! Opens the SWO Trace window to display the collected trace
data; see Trace window, page 184.
Interrupt Logl Opens a window; see Interrupt Log window, page 260.
Interrupt Log Opens a window; see Interrupt Log Summary window, page
Summary1 264.
Data Logl Opens a window; see Event Log window, page 104.

Data Log Summaryl Opens a window; see Data Log Summary window, page 103.
Timeline? Opens a window; see Timeline window, page 190.

Function Profiler Opens a window which shows timing information for the
functions; see Function Profiler window, page 219.

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

I Only available when the SWD/SWO interface is used.
2 Available when using either ETM or SWD/SWO.

The C-SPY TI Stellaris driver

This section gives additional reference information on the C-SPY TI Stellaris driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

o T1 Stellaris menu, page 395.

C-SPY® Debugging Guide
394 for ARM

Additional information on C-SPY drivers __4

TI Stellaris menu

When you are using the C-SPY TI Stellaris driver, the TI Stellaris menu is added to the
menu bar.

Breakpoint Uzage ...
Figure 142: The TI Stellaris menu

This command is available on the menu:

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

The C-SPY T1 XDS100 driver

This section gives additional reference information on the C-SPY TI XDS100 driver,
reference information not provided elsewhere in this documentation.

More specifically, this means:

o T1XDSI100 menu, page 395.

TI1 XDS100 menu

When you are using the C-SPY TI XDS100 driver, the TI XDS100 menu is added to the
menu bar.

Breakpoint Uzage ...
Figure 143: The TI XDS100 menu

This command is available on the menu:

Breakpoint Usage Opens a window which lists all active breakpoints; see
Breakpoint Usage window, page 121.

395

The C-SPY Tl XDS100 driver

C-SPY® Debugging Guide
396 for ARM

Using flash loaders

This chapter describes the flash loader, what it is and how to use it. More
specifically, this means:

e Introduction to the flash loader

e Reference information on the flash loader.

Introduction to the flash loader

This section introduces the flash loader.
This section covers these topics:

e Briefly about the flash loader
e Setting up the flash loader(s)

o The flash loading mechanism.

BRIEFLY ABOUT THE FLASH LOADER

A flash loader is an agent that is downloaded to the target. It fetches your application
from the debugger and programs it into flash memory. The flash loader uses the file I/O
mechanism to read the application program from the host. You can select one or several
flash loaders, where each flash loader loads a selected part of your application. This
means that you can use different flash loaders for loading different parts of your
application.

A set of flash loaders for various microcontrollers is provided with IAR Embedded
Workbench for ARM. In addition to these, more flash loaders are provided by chip
manufacturers and third-party vendors. The flash loader API, documentation, and
several implementation examples are available to make it possible for you to implement
your own flash loader.

SETTING UP THE FLASH LOADER(S)
To use a flash loader for downloading your application:

Choose Project>Options.

2 Choose the Debugger category and click the Download tab.

397

Reference information on the flash loader

vi A W N

Select the Use Flash loader(s) option. A default flash loader configured for the device
you have specified will be used. The configuration is specified in a preconfigured
board file.

To override the default flash loader or to modify the behavior of the default flash loader
to suit your board, select the Override default. board file option, and Edit to open the
Flash Loader Configuration dialog box. A copy of the * . board file will be created

in your project directory and the path to the * . board file will be updated accordingly.

The Flash Loader Overview dialog box lists all currently configured flash loaders, see
Flash Loader Overview dialog box, page 399. You can either select a flash loader or
open the Flash Loader Configuration dialog box.

In the Flash Loader Configuration dialog box, you can configure the download. For
more information about the various flash loader options, see Flash Loader
Configuration dialog box, page 400.

THE FLASH LOADING MECHANISM

When the Use flash loader(s) option is selected and one or several flash loaders have
been configured, the steps below are performed when the debug session starts:

Steps 1 to 4 are performed for each flash loader in the flash loader configuration.
C-SPY downloads the flash loader into target RAM.

Steps 2 to 4 are performed one or more times depending on the size of the RAM and the
size of the application image.

C-SPY writes code/data from the application image inte target RAM (RAM buffer).
C-SPY starts execution of the flash loader.
The flash loader reads data from the RAM buffer and programs the flash memory.

The application image now resides in flash memory and can be started. The flash
loader and the RAM buffer are no longer needed, so RAM is fully available to the
application in the flash memory.

Reference information on the flash loader

C-SPY® Debugging Guide
398 for ARM

This section gives reference information about these windows and dialog boxes:

o Flash Loader Overview dialog box, page 399
o Flash Loader Configuration dialog box, page 400.

Using flash loaders ___4

Flash Loader Overview dialog box
The Flash Loader Overview dialog box is available from the Debugger>Download

page.
Flash Loader Overview Pz|
Range | Offset/Address | Loader Path | Extra Parameters oK |
Cancel
Mew. ..
< 3 _ ook |

Figure 144: Flash Loader Overview dialog box

This dialog box lists all defined flash loaders. If you have selected a device on the
General Options>Target page for which there is a flash loader, this flash loader is by
default listed in the Flash Loader Overview dialog box.

The display area

Each row in the display area shows how you have set up one flash loader for flashing a
specific part of memory:

Range The part of your application to be programmed by the
selected flash loader.

Offset/Address The start of the memory where your application will be
flashed. If the address is preceded with a, the address is
absolute. Otherwise, it is a relative offset to the start of the

memory.

Loader Path The path to the flash loader * . £1ash file to be used (* . out
for old-style flash loaders).

Extra Parameters List of extra parameters that will be passed to the flash
loader.

Click on the column headers to sort the list by range, offset/address, etc.

399

Reference information on the flash loader

Function buttons

These function buttons are available:

OK The selected flash loader(s) will be used for downloading
your application to memory.

Cancel Standard cancel.

New Displays a dialog box where you can specify what flash
loader to use, see Flash Loader Configuration dialog box,
page 400.

Edit Displays a dialog box where you can modify the settings for

the selected flash loader, see Flash Loader Configuration
dialog box, page 400.

Delete Deletes the selected flash loader configuration.

Flash Loader Configuration dialog box

The Flash Loader Configuration dialog box is available from the Flash Loader
Overview dialog box.

Flash Loader, Configuration PZ|
Memary range

Al

@ start; | 0x0 End: | 0xd Cancel

[~ Relacate
& EC
(" ,7

Flash loader path:

|]

Extra parameters:

Parameter descriptions:

Figure 145: Flash Loader Configuration dialog box

C-SPY® Debugging Guide
400 for ARM

Using flash loaders ___4

Use the Flash Loader Configuration dialog box to configure the download to suit your
board. A copy of the default board file will be created in your project directory.

Memory range

Specify the part of your application to be downloaded to flash memory. Choose

between:
All The whole application is downloaded using this flash loader.
Start/End Specify the start and the end of the memory area for which part of

the application will be downloaded.

Relocate

Overrides the default flash base address, that is relocate the location of the application
in memory. This means that you can flash your application to a different location from
where it was linked. Choose between:

Offset A numeric value for a relative offset. This offset will be added to
the addresses in the application file.

Absolute address A numeric value for an absolute base address where the
application will be flashed. The lowest address in the application
will be placed on this address. Note that you can only use one
flash loader for your application when you specify an absolute
address.

You can use these numeric formats:

123456 Decimal numbers.
0x123456 Hexadecimal numbers

0123456 Octal numbers

The default base address used for writing the first byte—the lowest address—to flash is
specified in the linker configuration file used for your application. However, it can
sometimes be necessary to override the flash base address and start at a different location
in the address space. This can, for example, be necessary for devices that remap the
location of the flash memory.

Flash loader path

Use the text box to specify the path to the flash loader file (* . £1ash) to be used by your
board configuration.

401

Reference information on the flash loader

Extra parameters

Some flash loaders define their own set of specific options. Use this text box to specify
options to control the flash loader. For information about available flash loader options,
see the Parameter descriptions field.

Parameter descriptions

The Parameter descriptions field displays a description of the extra parameters
specified in the Extra parameters text box.

C-SPY® Debugging Guide
402 for ARM

A

absolute location, specifying for a breakpoint. 136
Access Type (Data breakpoints option). 125, 129
Access Type (Data Log breakpoints option) 131
Access type (Edit Memory Access option) 159
Access Type (Immediate breakpoints option) 134
Access type (Trace Filteroption) 206
Access type (Trace Start option) 201
Access type (Trace Stopoption) 204
Action (Code breakpoints option). 123
Action (Immediate breakpoints option) 134
Actual (SWO clock setting) 183
Adaptive JTAG/SWD speed setting) 368
Add to Watch Window (Symbolic Memory window context

10731111 [N 152
Add (Watch window contextmenu) 94
Address Bus Pattern (Address setting) 125
Address Range (Find in Trace option) 210
Address (JTAG Watchpoints option). 125
Allow hardware reset JTAGjet option). 371
Allow hardware reset (RDI option). 377
Ambiguous symbol (Resolve Symbol Ambiguity option). 100
Angel (debuggeroption)., 355
Any Size (Data setting).covvvnennnenenen... 125
Any (Access Typesetting)c.oouvuvenenen... 125
Any (EXtern setting)covenennnnnnenen .. 126
Any (Mode setting).coviiii 126
Append to file (Trace Save option) 189
application, built outside the IDE 48
assembler labels, viewing 88
assembler source code, fine-tuning. 213
assembler symbols, using in C-SPY expressions 85
assembler variables, viewing. 88
assumptions, programming experience. 25
Attach to program (debugger option) 357
Auto Scroll (Timeline window context menu) 195
Auto window 92
Auto (Default breakpoint type setting) 133

Index °

Auto (JTAG/SWD speed setting) 368
Auto (Size Setting)o vn i 131
Auto (SWO setting)ovvnnennenenn.. 369, 380
Autodetect (SWO clock setting) 183
Autostep settings dialog box. L. 81
Autostep (Debugmenu) 59
--backend (C-SPY command line option)............. 327
backtrace information

generated by compiler 69

viewing in Call Stack window 75
batch mode, using C-SPY in....................... 321
Baud rate (Macraigoroption) 376
Baud rate (Serial port settings option). 362, 364
--BE32 (C-SPY command line option) 323
--BE8 (C-SPY command line option) 323
Big Endian (Memory window context menu) 145
blocks, in C-SPY macrosc..o.... 278
bold style, inthisguide. 29
Break At (Code breakpoints option) 122
Break At (Data breakpoints option) 129
Break At (Immediate breakpoints option). 134
Break At (Log breakpoints option) 127
Break Condition (JTAG Watchpoints option) 126
Break on Throw (Debug menu). 59
Break on Uncaught Exception (Debug menu). 59
Break (Debugmenu)., 58
breakpoint condition, example 117-118
Breakpoint type (Code breakpoints option). 122
Breakpoint Usage window 121
Breakpoint Usage JTAGjetmenu) 391
Breakpoint Usage (J-Linkmenu) 389
Breakpoint Usage (Macraigor JTAGmenu) 392
Breakpoint Usage (RDImenu) 393
Breakpoint Usage (Simulator menu). 387
Breakpoint Usage (ST-LINK menu) 394
Breakpoint Usage (TI Stellaris menu). 395

403

404

Breakpoint Usage (TI XDS100 menu) 395

breakpoints
code,example 307
connectinga C-SPY macro 274
consumers of L i 111
data 128
example. 308
datalog 130
descriptionof 108
disabling used by Stack window 112
iconsforinthe IDE 110
in Memory window 115
listingall o i 121
log,example. i 310
profilingsource, 214, 220
reasons forusing, 107
setting
inmemory window 115
USiNg SYSteM MACIOS . .« . v v v e e eeeeaene 116
using the dialogbox 114
single-stepping if not available. 47
toggling 113
trace start, example 313
trace stop, example 314
EYPES Of .« o et 108
useful tips.o 117
Breakpoints dialog box
Code .o 122
Data.......c o 128
Datalogooin i 130
Immediate i 134
Log oo 127
Trace Filter J-Link). 205
Trace Start 198, 200
Trace StOp 199
Breakpoints options (C-SPY options). 132
Breakpoints window L. 119
Broadcast all branches (ETM Trace Settings option) 178
Browse (Trace toolbar) 185

C-SPY® Debugging Guide
for ARM

byte order, setting in Memory window 145
Byte (Datasetting)ovininienenennenn.. 125
C function information, in C-SPY.................... 69
C symbols, using in C-SPY expressions 85
C variables, using in C-SPY expressions 85
call chain, displaying in C-SPY 69
Call stack information. 69
Call Stack window i, 75

for backtrace information. 70
Call Stack (Timeline window context menu) 195
__cancelAllInterrupts (C-SPY system macro) 284
__cancellnterrupt (C-SPY system macro). 284
Catch exceptions (Breakpoints option) 133
Catch exceptions JTAGjetoption) 372
Catch exceptions (RDIoption) 378
Chain (Break Condition setting) 127
Clear All (Debug Log window context menu) 79
Clear trace data (Trace toolbar). 185
Clear (Interrupt Log window context menu). 263
Clear (Power Log window context menu). 238
__clearBreak (C-SPY systemmacro) 285
Clock setup (J-Link/J-Trace option) 369
Clock setup (ST-LINK option) 380
__closeFile (C-SPY systemmacro) 285
code breakpoints, OVerview. 108
Code Coverage windowcovvenennn... 242

Code Coverage (Disassembly window context menu)73
--code_coverage_file (C-SPY command line option)328

code, covering execution of, 242
command line Options.t 327

typographic convention 29
command prompt icon, in this guide. 29
communication problem, J-Link.................... 368
Communication (Angel option) 362
Communication (J-Link/J-Trace option). 370
computer style, typographic convention 29

conditional statements, in C-SPY macros............. 277
Conditions (Code breakpoints option) 123
Conditions (Log breakpoints option) 128
Configure (RDImenu) oion... 393
Connect during reset (Reset setting) 365, 379
context menu, in windows., 88
conventions, used inthisguide 28
Copy Window Contents (Disassembly
window context menu)uuiintnannann.. 74
Copy (Debug Log window context menu) 79
copyrightnotice i, 2
Core and peripherals (Reset setting) 365
Core (Resetsetting)c.ouvuininnunenen... 365
CPI (Generate Setting)c...oeuvuernenenen... 180
--cpu (C-SPY command line option). 324
CPU clock (SWO Configuration option). 182
CPU clock (SWO setting) . . .« oo vvveveenenn 369, 380
CSpybat . .. 321
current position, in C-SPY Disassembly window 72
cursor, in C-SPY Disassembly window. 72
Cycle accurate tracing (ETM Trace Settings option). 178
--cycles (C-SPY command line option) 328
C-SPY
batch mode, usingin 321
debugger systems, overview of 35
differences between drivers 38
eNVironment OVeIviewc.ouvuvunnnen.n. 31
plugin modules, loading. 48
SELNG UP .« v vttt 46-47
starting thedebugger 48
C-SPY drivers
OVEIVIBW . ettt ettt e e e eas 37
Specifying 355
C-SPY eXPressionsvvvee et e 84
evaluating. 98
inC-SPYmacros.c.coeininin... 2717
Tooltip watch, using. il 83
Watch window, using 83
C-SPY hardware drivers, hardware installation. 43

Index °

C-SPY macro "__message"

style (Log breakpoints option) 128
C-SPY macros
blocks. 278
conditional statements 277
C-SPY eXpressionsoeevenenenenen.. 277
dialog box,using 271
eXaAmPples 269
checking status of register. 273
checking the status of WDT 273
creatingalogmacro 274
execUserPreload, using. 52
remapping memory before download 52
EXECULING . ¢ v ettt et e e 270
connecting to a breakpoint 274
using Quick Watch 273
using setup macro and setup file. 272
functions, 86, 276
loop statementsc.iiiiiiiien.. 278
Macro Statements 277
setupmacrofile L L 268
EXECULING. . o vttt et e 272
setup macro functions 268
SUMMATY - ¢ ov ettt et et e e e e ees 280
system macros, summary of. 281
USING « . oe et e 267
variables. 86, 276
C-SPY Optionscouuininii ... 353
ExtraOptions.covnin i 358
Images...... ..o 359
Plugins. i 360
SEUP v vttt e 355
C-SPYLinK. .. .oovt i e 37
C++ exceptions
debugging 59
single Stepping. ov it 66
C++terminology. .. .o oot 28

405

406

D

data breakpoints, OVEIrviewvueenen... 109
Data Bus Pattern (Data setting). 126
Data Coverage (Memory window context menu) 146
data coverage, in Memory window 144
data log breakpoints, overview 109
Data Log Events (SWO Configuration option) 182
Data Log Summary window 103
Data Log Summary (J-Link menu) 389
Data Log Summary (ST-LINK menu). 394
Datalogwindow, 101
DataLog (J-Linkmenu) 389
Data Log (ST-LINK menu). 394
Data Log (Timeline window context menu) 195
Data value + exact addr (Data Log Events setting) 182
Data (JTAG Watchpoints option) 125
DCC (Debug Communications Channel) 390
ddf (filename extension), selectingafile............... 47
Debug handler address (Macraigor option). 377
Debug Logwindow. o i 79
Debug Log window contextmenu 79
Debug menu (C-SPY main window). 58
debugger concepts, definitionsof 34
debugger system OVerviewc.coono... 35
debugging projects

externally built applications. 48

loading multiple images. 50
debugging, RTOS awareness.c.c.o... 33
Default breakpoint type (Breakpoints option). 133
__delay (C-SPY systemmacro) 285
Delay (Autostep Settings option) 81
Delete (Breakpoints window context menu) 120
Description (Edit Interrupt option) 256
description (interrupt property).o.... 256
--device (C-SPY command line option) 328
Device description file (debugger option). 356
device descriptionfiles L. 47

definitionof L L i 51

C-SPY® Debugging Guide
for ARM

modifying 51

specifying interruptsc.ii. 301
Disable All (Breakpoints window context menu) 120
Disable Interrupts When Stepping (J-Link menu). 388
Disable (Breakpoints window context menu) 120
__disableInterrupts (C-SPY system macro) 286
--disable_interrupts (C-SPY command line option) 329
Disassemble in ARM mode (Disassembly menu). 60
Disassemble in Auto mode (Disassembly menu) 60
Disassemble in Current processor mode
(Disassembly menu)t 60
Disassemble in Thumb mode (Disassembly menu). 60
Disassembly menu (C-SPY main window)............. 60
Disassembly window 71

CONEXEMENU &« .+ o v v ov et et et et e e eeeeeeeenns 73
disclaimer. i 2
DLIB, documentation.ouuuiiiiinnnn.. 27
do (macro statement), 278
document CONventions.vuvurerennenen.. 28
documentation

overviewof guides. L., 27

overview of thisguide 26

thisguide 25
--download_only (C-SPY command line option) 329
Driver (debugger option). 355
__driverType (C-SPY systemmacro) 286

--drv_attach_to_program (C-SPY command line option) . 324
--drv_catch_exceptions (C-SPY command line option) . .330
--drv_communication (C-SPY command line option). . . .331
--drv_communication_log (C-SPY command line option) 333
--drv_default_breakpoint (C-SPY command line option) . 334
--drv_reset_to_cpu_start (C-SPY command line option) . 334
--drv_restore_breakpoints (C-SPY command line option) 335
--drv_suppress_download (C-SPY command line option) 324
--drv_swo_clock_setup (C-SPY command line option) . .335
--drv_vector_table_base (C-SPY command line option). . 336
--drv_verify_download (C-SPY command line option) ..324

E

Edit Expressions (Trace toolbar). 186
Edit Interrupt dialog box.ot 256
Edit Memory Access dialogbox.................... 159
Edit Settings (Trace toolbar). 186
Edit (Breakpoints window context menu). 120
edition, of thisguide 2
Embedded C++ Technical Committee 28
EmbeddedICE macrocell 109
__emulatorSpeed (C-SPY system macro)............. 287
__emulatorStatusCheckOnRead (C-SPY system macro) . 287
Enable All (Breakpoints window context menu). 120
Enable interrupt simulation (Interrupt Setup option). 254
Enable Log File (Log File option). 80
Enable (Breakpoints window context menu). 120
Enable (Interrupt Log window context menu). 263
Enable (Power Log window context menu) 237
Enable (Timeline window context menu) 195
Enabled ports ITM Stimulus Ports setting) 183
__enablelnterrupts (C-SPY system macro)............ 288
Enable/Disable Breakpoint (Call Stack window
COMEEXEMENU) . & v o et e et e et et et e et 76
Enable/Disable Breakpoint (Disassembly window context
1073110 [P 74
Enable/Disable (Trace toolbar) 185
End address (Edit Memory Access option). 159
--endian (C-SPY command line option) 324
endianness. See byte order

Enter Location dialogbox. 135
ETM Configuration dialog box. 168
ETM Control dialogboX., 167
ETM Trace Save (J-Linkmenu) 388
ETM Trace Settings (J-Link menu). 388
ETM Trace (J-Link menu) 389
ETM/ETB (J-Link/J-Trace option) 369
__evaluate (C-SPY systemmacro) 288
Event Log Summary window 105
Event Logwindow oiiion... 104

Index °

examples
C-SPY mMacrosvovvie i i 269
INterrupts,timer.ovvne e 251
macros
checking status of register. 273
checking statusof WDT 273
creatingalogmacro 274
using Quick Watch 273
performing tasks and continue execution. 118
tracing incorrect function arguments 117
EXC (Generate setting).cvvvenvnenenennenn.. 180
execUserExit (C-SPY setupmacro) 281
execUserFlashExit (C-SPY setup macro) 281
execUserFlashlnit (C-SPY setup macro). 280
execUserFlashReset (C-SPY setup macro)............ 280
execUserPreload (C-SPY setup macro). 280
execUserPreReset (C-SPY setup macro). 280
execUserReset (C-SPY setupmacro) 281
execUserSetup (C-SPY setup macro) 280
executed code, coveringl 242
execution history, tracing 176
Expression (Access Type setting) 131

expressions. See C-SPY expressions
Extend to cover requested range (Trigger range setting) . . 132
Extend to cover requested

range (Trigger range setting). 129, 201, 204, 206
Extern (JTAG Watchpoints option) 126
Extra Options, for C-SPY 358
File format (Memory Save option) 147
file types

device description, specifyinginIDE 47

1 F2163 ¢ o 47,356
File (Trace Save option)covuenenennnn... 189
filename extensions

ddf, selecting device descriptionfile 47

mac, usingmacrofile. 47

407

408

Filename (Memory Restore option) 148

Filename (Memory Save option). 147
Fill dialog boX. 148
Find in Trace dialogbox 209
Findin Trace window 210
Find (Memory window contextmenu) 146
Find (Trace toolbar) 185
first activation time (interrupt property)
definitionof 247
First activation (Edit Interrupt option). 257
Fixed JTAG/SWD speed setting) 368
flash loader

parameters tocontrol 402

specifying the pathto. 401

USINE .ottt e e e 397
Flash Loader Overview dialogbox.................. 399
flash memory, load library moduleto 298
--flash_loader (C-SPY command line option). 337
FOLD (Generate setting)ouveuenen... 180
for (macro statement) 278
Force (SWO Trace Window Settings option) 179
Forced Interrupt window. 257
Forced Interrupts (Simulatormenu) 386
--fpu (C-SPY command line option). 325
Frequency in Hz (Driverl option). 362, 364-366, 368
Function Profiler window 219
Function Profiler (J-Link menu) 389
Function Profiler (Simulatormenu) 386
Function Profiler (ST-LINK menu). 394
Function Trace window. 189
Function Trace (GDB Servermenu)................. 387
Function Trace (J-Link menu). 389
Function Trace (Simulatormenu) 386
functions, C-SPY running to when starting. 46, 356
GDB Server (C-SPY driver), menu. 387
GDB Server (debuggeroption) 355

C-SPY® Debugging Guide
for ARM

__gdbserver_exec_command (C-SPY system macro). . . . 289
--gdbserv_exec_command (C-SPY command line option) 337
Generate (SWO Trace Window Settings option). 180
Go to Source (Breakpoints window context menu). 120
Go to Source (Call Stack window context menu) 76
Go To Source (Timeline window context menu). 196
Go(Debugmenu)...........c.iiiiiiiin... 58, 68
Halfword (Data setting)covvvnen... 125
Halt after bootloader (Reset setting) 366
Halt before bootloader (Reset setting). 366
Hardware reset (Macraigor option). 376
hardware setup, power consumption because of 231
Hardware (Default breakpoint type setting) 133
Hardware, Atmel AT91SAM?7 (Reset setting). 367
Hardware, halt after delay (ms) (Reset setting)......... 366
Hardware, halt at O (Reset setting) 367
Hardware, halt using Breakpoint (Reset setting). 367
Hardware, halt using DBGRQ (Reset setting). 367
Hardware, NXP LPC (Reset setting). 367
highlighting, in C-SPY 69
Hold time (Edit Interrupt option) 257
hold time (interrupt property), definitionof 247
__hwReset (C-SPY systemmacro). 289
__hwResetRunToBp (C-SPY system macro) 290
__hwResetWithStrategy (C-SPY system macro) 291
IAR debugger driver plugin (debugger option) 382
IAR ROM-monitor (debugger option) 355
icons,inthisguide 29
if else (macro statement). 278
if (macro statement)c.vuinienn... 277
illegal memory accesses, checking for 142
Images Window.ouuiunin i 62
Images, loading multiple. 359

immediate breakpoints, overview 109
In use by (Data Log Events setting) 182
In use by (PC Sampling setting) 181
Include (Log Fileoption), 80
Index Range (Trace Save option) 188
Input Mode dialogbox 78
input, special characters in Terminal /O window 77
installation directoryo 28
Instruction Profiling (Disassembly window context menu). 74
Intel-extended, C-SPY output format 36
Interface (J-Link/J-Trace option) 370
Interface (Macraigor option). 375
Interface (ST-LINK option) 379
Interface (TI Stellaris option) 381
interference, power consumption because of. 231
interrupt handling, power consumption during 230
Interrupt Log Summary window. 264
Interrupt Log Summary (J-Link menu). 389
Interrupt Log Summary (Simulator menu) 386
Interrupt Log Summary (ST-LINK menu) 394
Interrupt Log window oL 260
Interrupt Log (J-Linkmenu) 389
Interrupt Log (Simulatormenu) 386
Interrupt Log (ST-LINK menu). 394
Interrupt Log (SWO Configuration option). 182
Interrupt Logs (Force setting) 179
Interrupt Setup dialogbox 254
Interrupt Setup (Simulatormenu) 386
Interrupt Status window 258
interrupt system, using device description file 249
Interrupt (Edit Interrupt option) 256
Interrupt (Timeline window context menu). 195
interrupts
adapting C-SPY system for target hardware 249
simulated, introductionto 245
timer,example L i 251
USing SYStemM MACIOS v.vvvvieneeaennennnn 249
__isBatchMode (C-SPY system macro) 292
italic style,inthisguide 29

Index °

ITM Stimulus Ports (SWO Configuration option). 183
__jlinkExecCommand (C-SPY system macro)......... 292

--jlink_device_select (C-SPY command line option)337
--jlink_exec_commmand (C-SPY command line option) . 338

--jlink_initial_speed (C-SPY command line option). 338
--jlink_interface (C-SPY command line option) 339
--jlink_ir_length (C-SPY command line option). 339
--jlink_reset_strategy (C-SPY command line option) 340
--jlink_script_file (C-SPY command line option). 340
--jlink_speed (C-SPY command line option) 341
--jlink_trace_source (C-SPY command line option). 341
JTAG interfaces, J-Link 365, 369

JTAG scan chain with multiple targets (Macraigor option)376
JTAG scan chain with multiple targets

(JTAG scan chain setting)coouenenen... 371
JTAG scan chain (J-Link/J-Trace option) 371
JTAG speed (Macraigor option) 375
JTAG Watchpoints dialogbox. 124
JTAG watchpoints, overview 109
JTAG (Interface setting) 370, 375, 379, 381
__jtagCommand (C-SPY system macro) 292
__jtagCP15IsPresent (C-SPY system macro) 293
__jtagCP15ReadReg (C-SPY system macro) 293
__jtagCP15WriteReg (C-SPY system macro). 294
__jtagData (C-SPY system macro) 294
JTAGjet Trace windowcoiienenennen.. 162
JTAGjet (C-SPY driver)

081C) L N 391
JTAGjet (debuggeroption)c.ouvueneun... 355
__jtagRawRead (C-SPY system macro) 295
__jtagRawSync (C-SPY system macro) 295
__jtagRawWrite (C-SPY system macro). 296
__jtagResetTRST (C-SPY system macro) 297
JTAG/SWD speed (J-Link/J-Trace option) 368
JTAG/SWD speed (TI Stellaris option). 381
J-Link communication problem 368

409

410

J-Link JTAG interface. 365, 369

J-Link (C-SPY driver), menu 388
J-Link/J-Trace (debugger option) 355
labels (assembler), viewing.c.uvna... 88
Length (Filloption)., 149
lightbulb icon, in this guide. 29
Link condition (Trace Filter option) 207
Link condition (Trace Start option). 202
Link condition (Trace Stop option). 205
Little Endian (Memory window context menu) 145
Live Watchwindow 94
--Imiftdi_speed (C-SPY command line option). 342
__loadImage (C-SPY systemmacro) 297
loading multiple debug files, list currently loaded. 62
loading multiple imagesoveienenn.. 50
Locals windowcoviuiiniininenenn... 92
log breakpoints, OVerviewcoouvueenen... 108
Log communication (Angel option) 362-363
Log communication (debugger option). 383
Log communication (IAR ROM-monitor option) 364
Log communication (JTAGjet option). 372
Log communication (J-Link/J-Trace option). 371
Log communication (Macraigor option) 377
Log communication (TI Stellaris option) 381
Log File dialogboX.o 80
Log RDI communication (RDI option). 378
Logging>Set Log file (Debugmenu) 60
Logging>Set Terminal I/O Log file (Debug menu). 60
loop statements, in C-SPY macros 278
low-power mode, power consumption during. 228
LSU (Generate Setting)o vvvveeennenenen... 180
mac (filename extension), using amacrofile 47
Macraigor (C-SPY driver), menu 392

C-SPY® Debugging Guide
for ARM

Macraigor (debugger option) 355
--macro (C-SPY command line option) 342
Macro Configuration dialogbox.................... 271
macro files, specifying 417, 356
MACTO SLACMENLS . . . v ottt ettt e e e eeee s 277
macros

EXECULING . o v vttt et e 270

USING «.ov et e 267
Macros (Debugmenu)c.ouvuiinenenon.. 60
--mac_handler_address (C-SPY command line option) . .342
--mac_interface (C-SPY command line option) 343
--mac_jtag_device (C-SPY command line option) 343

--mac_multiple_targets (C-SPY command line option) . .344
--mac_reset_pulls_reset (C-SPY command line option) . . 344
--mac_set_temp_reg_buffer

(C-SPY command line option) 344
--mac_speed (C-SPY command line option). 345
--mac_xscale_ir7 (C-SPY command line option) 345
main function, C-SPY running to when starting 46, 356
Manual (Size setting)ot 131
Manufacturer RDI driver (RDI option). 377
--mapu (C-SPY command line option) 346
Mask (Address setting)c.oveniiin . 125
Mask (Data setting).vitnn i 126
Mask (Match data setting) 130, 202, 204, 207
Match data (Data breakpoints option). 130
Match data (Trace Filteroption) 207
Match data (Trace Startoption) 202
Match data (Trace Stop option).c.ovuvun... 204
memory access checking. L. 142
Memory access checking (Memory Access Setup option) 158
Memory Access Setup dialog box. 157
Memory Access Setup (Simulator menu) 386
memory accesses, illegal., 142
Memory Fill (Memory window context menu). 146
MEMOTY MAP - « « e et et et et e e e et ee e eeenn 157
Memory range (Edit Memory Access option). 159
Memory Restore dialogbox 148
Memory Restore (Memory window context menu). 146
Memory Save dialog box 147

Memory Save (Memory window context menu). 146
Memory window. 143
MEMOTY ZONES. « « ¢ v e voe et eeee et e e e e e e 141
__memoryRestore (C-SPY system macro) 298
__memorySave (C-SPY system macro) 299
Memory>Restore (Debugmenu) 59
Memory>Save (Debugmenu). 59
menu bar, C-SPY-specific.......................... 57
Message (Log breakpoints option) 128
migration, from earlier IAR compilers 27
MISRA C, documentationc.ouuu.o... 27
Mixed Mode (Disassembly window context menu) 75
Mode (JTAG Watchpoints option) 126
Motorola, C-SPY output format 36
Move to PC (Disassembly window context menu) 73

Multi-ICE interface. See Real View Multi-ICE interface

N

NAMING CONVENLIONS . . o\ v v ve et eee e e 29
Navigate (Timeline window context menu) 194
New Breakpoint (Breakpoints window context menu) . .. 121
Next Statement (Debugmenu) 59
Next Symbol (Symbolic Memory window context menu) 151
Non User (Mode setting)covuvuuenen.n. 126
Normal (Break Condition setting). 126
Normal (Resetsetting)vun... 365, 379
Normal, disable watchdog (Reset setting). 366
OCD interface device (Macraigor option). 375
OP Fetch (Access Type setting) 125
__openFile (C-SPY system macro). 300
Operation (Filloption) 149
operators, sizeof in C-SPY 86
optimizations, effects on variables 87
options

intheIDE 353

Index °

onthe commandline 327, 358
Options (Stack window contextmenu) 154
__orderInterrupt (C-SPY system macro). 301
Originator (debuggeroption) 360
Override default .board file (debugger option) 358

Override project default (SWO Configuration option) . .. 182

P

-p (C-SPY command lineoption) 346
parameters

list of passed to the flash loader.................. 399

tracing incorrect valuesof 69

typographic conventionc........ 29
part number, of thisguide 2
PC only (Data Log Events setting) 182
PC samples (Force setting)oovvenennen.n. 179
PC Sampling (SWO Configuration option). 181

PC + data value + base addr (Data Log Events setting). . . 182
peripheral units

detectingunattended 229

device-specific. i i 51
peripheral units, in Register window. 140
Please select one symbol
(Resolve Symbol Ambiguity option) 100
--plugin (C-SPY command line option) 346
plugin modules (C-SPY). 36

loading.voiiii 48
Plugins (C-SPY options).ovviiieneninnn.. 360
__popSimulatorInterruptExecutingStack (C-SPY
SYSEEIM MACTO). « « v v vt vt ettt e e et e e e e e 302
pop-up menu. See context menu
Port (Macraigor option)c.ouiuiuiena.. 376
Port (Serial port settings option) 362, 364
power consumption, Measuring. 214,225
Power Log Setup (J-Link menu). 389
Power Logwindow., 236
Power Log (J-Linkmenu). 389
Power Log (Timeline window context menu) 195

411

412

power sampling. 214

Power Setup window 234
Preceding bits (JTAG scan chain setting) 371
prerequisites, programming experience. 25
Previous Symbol (Symbolic
Memory window contextmenu) 151
probability (interrupt property).c.c.ouo... 257
definitionof L L. 247
Probability % (Edit Interrupt option) 257
Probe configuration JTAGjet option). 372
--proc_stack_xxx (C-SPY command line option) 347
Profile Selection (Timeline window context menu) 196
profiling
onfunctionlevel 216
oninstructionlevel. L L. 216
profiling information, on functions and instructions. 214
profiling sources
breakpoints 214, 220
sampling i 214,221
trace (calls) 214,220
trace(flat), 214,221
program execution, inC-SPY 65
programming eXperience.veueien ettt 25
program, see also application
projects, for debugging externally built applications. 48
publication date, of this guide. 2
Quick Watchwindow 98
executing C-SPY macros. ..., 273
Range for (Viewing Range option) 197
Range (Break Condition setting). 127
Rate (PC Sampling setting). 182
RDI Configuration dialog box for JTAGjet. 373
RDI (C-SPY driver), menu 392

C-SPY® Debugging Guide
for ARM

RDI (debuggeroption)c.covuiniineon. 355
--rdi_allow_hardware_reset
(C-SPY command line option) 347
--rdi_driver_dll (C-SPY command line option). 348
--rdi_heartbeat (C-SPY command line option) 325
--rdi_step_max_one (C-SPY command line option). 348
Read (Access Type setting). cocovovnenn.. 125, 131
__readFile (C-SPY system macro) 302
__readFileByte (C-SPY system macro) 303
reading guidelines. oL 25
__readMemoryByte (C-SPY system macro). 303
__readMemory8 (C-SPY system macro) 303
__readMemory16 (C-SPY system macro) 304
__readMemory32 (C-SPY system macro) 304
RealView Multi-ICE interface 377
reference information, typographic convention. 29
Refresh (Debugmenu) 59
TEISET GTOUPS « . v v et e e e e e et e et 140
predefined, enabling. 155
Registerwindow, 155
registered trademarks L. 2
__registerMacroFile (C-SPY system macro). 304
registers, displayed in Register window 155
Remove (Watch window context menu) 94
Repeat interval (Edit Interrupt option) 257
repeat interval (interrupt property), definition of. 247
Replace (Memory window context menu) 146
Reset Pin (Reset setting)c...... 365, 379
Reset (Debugmenu)......... ..., 58
Reset (J-Link/J-Trace option) 365, 379
__resetFile (C-SPY system macro). 305
Resolve Source Ambiguity dialogbox 137
Restore software breakpoints at (Breakpoints option). . . . 133
Restore (Memory Restore option). 148
__restoreSoftwareBreakpoints (C-SPY system macro). . . 305
return (macro statement)., 278
ROM-monitor, definitionof 36
RTOS awareness debugging 33
RTOS awareness (C-SPY plugin module). 34
Run to Cursor (Call Stack window context menu) 76

Run to Cursor (Debugmenu) 59
Run to Cursor (Disassembly window context menu) 73
Run to Cursor, command for executing. 69
Runto (C-SPYoption)oovuiiiinenenn.. 46
Run to (debuggeroption) 356
R/W (Access Typesetting)o vovevennnenen .. 125
sampling, profiling source. 214,221
Save to log file (Interrupt Log window context menu) . . . 263
Save to log file (Power Log window context menu) 238
Save (Memory Save option)t 147
Save (Tracetoolbar), 185
Scale (Viewing Range option). 198
Scan chain contains non-ARM devices
(JTAG scan chain setting)covuvnenenenn... 371
Select All (Debug Log window context menu) 79
Select Graphs (Timeline window context menu). 196
Select plugins to load (debugger option). 360
Semihosted, SWI (option), using 77
--semihosting (C-SPY command line option) 349
Send heartbeat (Angel option) 362
Serial port settings (Angel option) 362
Serial port settings (IAR ROM-monitor option) 364
Set Data Breakpoint (Memory window context menu) . . . 146
Set Next Statement (Debugmenu) 59
Set Next Statement (Disassembly window context menu) . 74
__setCodeBreak (C-SPY system macro). 306
__setDataBreak (C-SPY system macro) 307
__setLogBreak (C-SPY system macro) 309
__setSimBreak (C-SPY system macro) 311
__setTraceStartBreak (C-SPY system macro). 312
__setTraceStopBreak (C-SPY system macro).......... 314
setup macro functions., 268
reserved NAMES. .« . oo v ettt 280
Setup macros (debuggeroption) 356
Setup (C-SPY options), 355

Index °

SFR

in Register window 156

using as assembler symbols 85
shortcut menu. See context menu
Show all images (Images window context menu) 63
Show Arguments (Call Stack window context menu). 76
Show As (Watch window context menu) 94
Show Cycles (Interrupt Log window context menu). 263
Show Cycles (Power Log window context menu). 238
Show Numerical Value (Timeline window context menu) 196
Show offsets (Stack window context menu) 154
Show only (Image window context menu) 63
Show Time (Interrupt Log window context menu) 263
Show Time (Power Log window context menu) 238
Show timestamp (ETM Trace Settings option) 178
Show variables (Stack window context menu) 154
--silent (C-SPY command line option) 349
simulating interrupts, enabling/disabling 254
simulator driver, selecting. 39
Simulatormenu. L i 386
Simulator (debuggeroption). 355
simulator, introduction 39
Size (Code breakpoints option). 123
Size (Data Log breakpoints option) 131
Size (Timeline window contextmenu) 196
Size (Trace Filteroption) 206
Size (Trace Startoption)oovinenenan... 201
Size (Trace Stopoption)ovvveninenenen .. 203
SIZEOT . ot 86
SLEEP (Generate Setting).cveuenenen... 180
software delay, power consumption during. 227
Software (Default breakpoint type setting) 133
Software (Reset setting)c.covnvnen... 367
Software, Analog devices (Reset setting) 367
Solid Graph (Timeline window context menu) 196
__sourcePosition (C-SPY system macro) 315
special function registers (SFR)

in Register window 156

using as assembler symbols 85

413

414

stack usage, computing. 142
Stack window i 152
stackmac 268
Stall processor on FIFO full
(ETM Trace Settings option) 178
standard C, sizeof operator in C-SPY 86
Start address (Edit Memory Access option) 159
Start address (Filloption) 149
Start address (Memory Save option) 147
Statics Window 95
stdin and stdout, redirecting to C-SPY window 77
Step Into (Debugmenu) 58
Step Into, description 67
Step Out (Debugmenu)ccovuiinenen.n.. 59
Step Out, description., 68
Step Over (Debugmenu)c.coin.... 58
Step Over, description.o, 67
step points, definitionof L L L. 66
--stlink_interface (C-SPY command line option) 349
--stlink_reset_strategy (C-SPY command line option) . . . 350
Stop address (Memory Save option) 147
Stop Debugging (Debug menu). 58
__strFind (C-SPY systemmacro) 315
ST-LINK (C-SPY driver), menu 393
ST-LINK (debuggeroption)c.coouo... 355
__subString (C-SPY system macro) 316
Suppress download (debugger option) 357, 382
SWD interface, information in Trace window. 172
SWD (Interface setting) 370, 375, 379, 381
SWO clock (SWO Configuration option) 183
SWO communication channel
enabling......... 370, 375, 381
for timestamps intrace., 179
SWO Configuration dialog box. 181
SWO Configuration (J-Link menu). 389
SWO Configuration (ST-LINK menu) 394
SWO Trace Save (J-Linkmenu) 389
SWO Trace Save (ST-LINK menu). 394
SWO Trace Settings dialogbox 179
SWO Trace Window Settings (J-Link menu) 389

C-SPY® Debugging Guide
for ARM

SWO Trace Window Settings (ST-LINK menu) 394

SWO Trace (J-Linkmenu) 389
SWO Trace (ST-LINK menu) 394
Symbolic Memory window. 150
Symbols window i 99
symbols, using in C-SPY expressions. 84
TAP number (JTAG scan chain setting) 371
target system, definitionof 35
__targetDebuggerVersion (C-SPY system macro) 316
TCP/IP address or hostname (GDB Server option). 363
TCP/IP Macraigor option)ccoeueuvunn.. 376
TCP/IP (Angeloption)coviiniienennnn. 362
TCP/IP (Communication setting) 370
Terminal 10 Log Files (Terminal IO Log Files option). . . .78
Terminal I/O Log Files dialogbox 78
Terminal /Owindow 70,77
terminology.o v et 28
Text search (Find in Trace option) 209
Third-Party Driver (debugger options) 382
TI Stellaris (C-SPY driver), menu. 395
TI Stellaris (debugger option).ovun... 355
TI XDS100 (C-SPY driver), menu 395
Time Axis Unit (Timeline window context menu) 196
time interval, in Timeline window 217
Time Stamps (Force setting) 179
Timeline windowcoiiininininn.. 190
Timeline (J-Linkmenu) 389
Timeline (Simulatormenu). 386
Timeline (ST-LINKmenu) 394
--timeout (C-SPY command line option) 350
timer interrupt, example oo 251
timestamps in SWO traceoiiui.... 179
Timestamps (SWO Configuration option). 183
To Log File (ITM Stimulus Ports setting) 183

To Terminal I/O window (ITM Stimulus Ports setting). . . 183

Toggle Breakpoint (Code) (Call

Stack window contextmenu)
Toggle Breakpoint (Code) (Disassembly

window contexXt menu)ouvueenueann.nn.
Toggle Breakpoint (Log) (Call

Stack window contextmenu)
Toggle Breakpoint (Log) (Disassembly

WiIindow COntexXt Menu)ooevvneennennnnnnn
Toggle Breakpoint (Trace Start) (Disassembly

window context menu)o.tiuiurann.n.
Toggle Breakpoint (Trace Stop) (Disassembly

window context menu)oueiuurann.nn.
Toggle source (Trace toolbar)
__toLower (C-SPY system macro)
tools icon,inthisguide.
__toString (C-SPY systemmacro)
__toUpper (C-SPY systemmacro)
Trace buffer size (Trace Settings option).
Trace Expressions window
Trace Filter breakpoints dialog box (J-Link)...........
Trace port mode (Trace Settings option).
Trace port width (Trace Settings option).
Trace Save dialog boX.,
Trace Save (RDImenu)
Trace search query dialogbox
Trace Settings dialog box
Trace Settings (RDImenu)
trace start and stop breakpoints, overview.
Trace Start breakpoints dialogbox 198,
Trace Stop breakpoints dialogbox
Trace view field configuration dialog box.............

Tracewindow
trace (calls), profiling source. 214,
trace (flat), profiling source. 214,
Trace JTAGjetmenu).ovvvnnnennenen ..

Trace (Simulatormenu)
trace, in Timeline window.
trademarks
Trigger at (Data Log breakpoints option)
Trigger at (Trace Filteroption)

Index °

Trigger at (Trace Startoption). 200
Trigger at (Trace Stopoption).o, 203
Trigger range (Data breakpoints option) 129
Trigger range (Data Log breakpoints option) 132
Trigger range (Trace Filteroption) 206
Trigger range (Trace Start option). 201
Trigger range (Trace Stop option). 204
Trigger (Forced Interrupt window context menu) 258
typographic conventions 29
Unavailable, C-SPY message 87
__unloadlmage(C-SPY system macro). 318
USB (Communication setting) 370
Use command line options (debugger option). 358
Use Extra Images (debugger option). 359
Use flash loader (debugger option) 358
Use manual ranges (Memory Access Setup option) 158
Use ranges based on (Memory Access Setup option) 157
Use tab-separated format (Trace Save option). 189
user application, definitionof 35
User (Mode setting)vuvininienenennnnn.. 126
Value (Address setting). 125
Value (Data setting)c..coviuiennenaon.. 126
Value (Fill option). 149
Value (Match data setting) 130, 202, 204, 207
variables

effects of optimizations 87

information, limitationon 86

using in C-SPY expressions. 85
variance (interrupt property), definitionof 247
Variance % (Edit Interruptoption) 257
Vector Catch dialogbox 135
Vector Catch (Macraigor JTAGmenu) 392
Verity all (debuggeroption) 382

415

416

Verify download (debugger option). 357

version number, of this guide 2
Viewing Range dialogbox 197
Viewing Range (Timeline window context menu) 196
visualSTATE, C-SPY plugin module for. 37
waiting for device, power consumption during 227
Wanted (SWO clock setting).coinn.. 183
warnings icon, in thisguide 29
Watchwindow 93

USING &« vttt et e e 83
Watchpoints (J-Link menu). 388
Watchpoints (Macraigor JTAG menu). 392
web sites, recommended. oL 28
while (macro statement) 278
windows, specificto C-SPY 61
Word (Data setting). ovove vt e 125
Write (Access Type setting) 125, 131
__writeFile (C-SPY systemmacro) 318
__writeFileByte (C-SPY system macro). 319
__writeMemoryByte (C-SPY system macro) 319
__writeMemory8 (C-SPY system macro)............. 319
__writeMemory16 (C-SPY system macro)............ 320
__writeMemory32 (C-SPY system macro)............ 320
--xds_rootdir (C-SPY command line option) 351
Zone (Edit Memory Accessoption) 159
Zone (Filloption) 149
Zone (Memory Restore option). 148
Zone (Memory Save option)cuvuenenn.. 147
Zone (Memory window context menu). 145
zone, inC-SPY 141

C-SPY® Debugging Guide
for ARM

Zoom (Timeline window context menu).............. 195

Symbols

__cancelAllInterrupts (C-SPY system macro) 284
__cancellnterrupt (C-SPY system macro). 284
__clearBreak (C-SPY systemmacro) 285
__closeFile (C-SPY systemmacro) 285
__delay (C-SPY system macro) 285
__disableInterrupts (C-SPY system macro) 286
__driverType (C-SPY systemmacro) 286
__emulatorSpeed (C-SPY system macro). 287
__emulatorStatusCheckOnRead (C-SPY system macro) . 287
__enablelnterrupts (C-SPY system macro)............ 288
__evaluate (C-SPY systemmacro) 288
__fmessage (C-SPY macro statement) 278
__gdbserver_exec_command (C-SPY system macro). . . . 289
__hwReset (C-SPY system macro). 289
__hwResetRunToBp (C-SPY system macro) 290
__hwResetWithStrategy (C-SPY system macro) 291
__isBatchMode (C-SPY system macro) 292
__jlinkExecCommand (C-SPY system macro)......... 292
__jtagCommand (C-SPY system macro) 292
__jtagCP15IsPresent (C-SPY system macro) 293
__jtagCP15ReadReg (C-SPY system macro) 293
__jtagCP15WriteReg (C-SPY system macro). 294
__jtagData (C-SPY system macro) 294
__jtagRawRead (C-SPY systemmacro) 295
__jtagRawSync (C-SPY system macro) 295
__jtagRawWrite (C-SPY system macro). 296
__jtagResetTRST (C-SPY system macro) 297
__loadImage (C-SPY system macro) 297
__memoryRestore (C-SPY system macro)............ 298
__memorySave (C-SPY system macro) 299
__message (C-SPY macro statement). 278
__openFile (C-SPY systemmacro). 300
__orderInterrupt (C-SPY system macro). 301

__popSimulatorInterruptExecutingStack (C-SPY
SYSLEIM MACTO). « « + v vt vt et e e e et e e e ee e 302

__readFile (C-SPY systemmacro) 302
__readFileByte (C-SPY systemmacro) 303
__readMemoryByte (C-SPY system macro)........... 303
__readMemory8 (C-SPY system macro) 303
__readMemory16 (C-SPY system macro) 304
__readMemory32 (C-SPY system macro) 304
__registerMacroFile (C-SPY system macro). 304
__resetFile (C-SPY system macro). 305
__restoreSoftwareBreakpoints (C-SPY system macro). . . 305
__setCodeBreak (C-SPY system macro). 306
__setDataBreak (C-SPY system macro) 307
__setLogBreak (C-SPY system macro) 309
__setSimBreak (C-SPY system macro) 311
__setTraceStartBreak (C-SPY system macro). 312
__setTraceStopBreak (C-SPY system macro).......... 314
__smessage (C-SPY macro statement) 278
__sourcePosition (C-SPY system macro) 315
__strFind (C-SPY systemmacro) 315
__subString (C-SPY system macro) 316
__targetDebuggerVersion (C-SPY system macro) 316
__toLower (C-SPY system macro) 316
__toString (C-SPY systemmacro) 317
__toUpper (C-SPY systemmacro) 317
__unloadImage (C-SPY system macro) 318
__writeFile (C-SPY system macro) 318
__writeFileByte (C-SPY system macro).............. 319
__writeMemoryByte (C-SPY system macro) 319
__writeMemory8 (C-SPY system macro)............. 319
__writeMemory16 (C-SPY system macro)............ 320
__writeMemory32 (C-SPY system macro)............ 320
-p (C-SPY command line option) 346
--backend (C-SPY command line option) 327
--BE32 (C-SPY command line option) 323
--BES8 (C-SPY command line option) 323
--code_coverage_file (C-SPY command line option)328
--cpu (C-SPY command line option). 324
--cycles (C-SPY command line option) 328
--device (C-SPY command line option) 328
--disable_interrupts (C-SPY command line option) 329

Index °

--download_only (C-SPY command line option)
--drv_attach_to_program

(C-SPY command line option)
--drv_catch_exceptions (C-SPY command line option) . .
--drv_communication (C-SPY command line option). . . .
--drv_communication_log

(C-SPY command line option)
--drv_default_breakpoint (C-SPY command line option) .
--drv_reset_to_cpu_start (C-SPY command line option) .
--drv_restore_breakpoints

(C-SPY command lineoption)
--drv_suppress_download

(C-SPY command lineoption)
--drv_swo_clock_setup

(C-SPY command line option)
--drv_vector_table_base (C-SPY command line option). .
--drv_verify_download (C-SPY command line option) . .
--endian (C-SPY command line option)
--flash_loader (C-SPY command line option).
--fpu (C-SPY command line option).
--gdbserv_exec_command

(C-SPY command line option)
--jlink_device_select (C-SPY command line option)
--jlink_exec_commmand (C-SPY command line option) .
--jlink_initial_speed (C-SPY command line option).
--jlink_interface (C-SPY command line option)
--jlink_ir_length (C-SPY command line option).
--jlink_reset_strategy (C-SPY command line option). . . .
--jlink_script_file (C-SPY command line option).
--jlink_speed (C-SPY command line option)
--jlink_trace_source (C-SPY command line option).
--Imiftdi_speed (C-SPY command line option).
--macro (C-SPY command line option)
--mac_handler_address (C-SPY command line option) . .
--mac_interface (C-SPY command line option)
--mac_jtag_device (C-SPY command line option)
--mac_multiple_targets (C-SPY command line option) . .
--mac_reset_pulls_reset (C-SPY command line option) . .
--mac_set_temp_reg_buffer

(C-SPY command line option)

333
334
334

335

324

335
336
324
324
337
325

337
337
338
338
339
339
340
340
341
341
342
342
342
343
343
344
344

417

--mac_speed (C-SPY command line option).
--mac_xscale_ir7 (C-SPY command line option)
--mapu (C-SPY command line option)
--plugin (C-SPY command line option)
--proc_stack_xxx (C-SPY command line option)
--rdi_allow_hardware_reset

(C-SPY command line option)
--rdi_driver_dll (C-SPY command line option).
--rdi_heartbeat (C-SPY command line option)
--rdi_step_max_one (C-SPY command line option).
--semihosting (C-SPY command line option)
--silent (C-SPY command line option)
--stlink_interface (C-SPY command line option)
--stlink_reset_strategy (C-SPY command line option) . . .
--timeout (C-SPY command line option)
--xds_rootdir (C-SPY command line option)

Numerics

1x Units (Memory window context menu)
1x Units (Stack window context menu)
1x Units (Symbolic Memory window context menu)
2x Units (Memory window context menu)
2x Units (Stack window context menu)
2x Units (Symbolic Memory window context menu)
4x Units (Memory window context menu)
4x Units (Stack window context menu)
4x Units (Symbolic Memory window context menu)
8x Units (Memory window context menu)

C-SPY® Debugging Guide
418 for ARM

145
154
151
145
154
151
145
154
152

	Brief contents
	Contents
	Tables
	Figures
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	Features
	Selecting the simulator driver

	The C-SPY hardware debugger drivers
	Communication overview
	Hardware installation
	USB driver installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting the debugger
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple images

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts
	Remapping memory

	An overview of the debugger startup
	Debugging code in flash
	Debugging code in RAM

	Running example projects
	Running an example project

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Images window
	Get Alternative File dialog box

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	Running the application
	Highlighting
	Call stack information
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Call Stack window
	Terminal I/O window
	Terminal I/O Log File dialog box
	Debug Log window
	Log File dialog box
	Autostep settings dialog box

	Working with variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	Limitations on variable information

	Procedures for working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables
	Getting started using data logging
	Getting started using event logging

	Reference information on working with variables and expressions
	Auto window
	Locals window
	Watch window
	Live Watch window
	Statics window
	Quick Watch window
	Symbols window
	Resolve Symbol Ambiguity dialog box
	Data Log window
	Data Log Summary window
	Event Log window
	Event Log Summary window

	Using breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware drivers
	Breakpoint consumers
	Breakpoints options
	Breakpoints on exception vectors
	Setting breakpoints in __ramfunc declared functions

	Procedures for setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting a breakpoint on an exception vector
	Useful breakpoint hints

	Reference information on breakpoints
	Breakpoints window
	Breakpoint Usage window
	Code breakpoints dialog box
	JTAG Watchpoints dialog box
	Log breakpoints dialog box
	Data breakpoints dialog box
	Data Log breakpoints dialog box
	Breakpoints options
	Immediate breakpoints dialog box
	Vector Catch dialog box
	Enter Location dialog box
	Resolve Source Ambiguity dialog box

	Monitoring memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Stack display
	Memory access checking

	Reference information on memory and registers
	Memory window
	Memory Save dialog box
	Memory Restore dialog box
	Fill dialog box
	Symbolic Memory window
	Stack window
	Register window
	Memory Access Setup dialog box
	Edit Memory Access dialog box

	Collecting and using trace data in the JTAGjet driver
	Using JTAGjet trace
	Briefly about using JTAGjet trace
	The JTAGjet Trace window
	Trace view field configuration dialog box
	Trace search query dialog box
	ETM Control dialog box
	ETM Configuration dialog box

	Collecting and using trace data
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Requirements for using trace

	Procedures for using trace
	Getting started with trace in the C-SPY simulator
	Getting started with ETM trace
	Getting started with SWO trace
	Setting up concurrent use of ETM and SWO
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	ETM Trace Settings dialog box
	SWO Trace Window Settings dialog box
	SWO Configuration dialog box
	Trace window
	Trace Save dialog box
	Function Trace window
	Timeline window
	Viewing Range dialog box
	Trace Start breakpoints dialog box (simulator)
	Trace Stop breakpoints dialog box (simulator)
	Trace Start breakpoints dialog box
	Trace Stop breakpoints dialog box
	Trace Filter breakpoints dialog box
	Trace Expressions window
	Find in Trace dialog box
	Find in Trace window

	Using the profiler
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Requirements for using the profiler

	Procedures for using the profiler
	Getting started using the profiler on function level
	Getting started using the profiler on instruction level
	Selecting a time interval for profiling information

	Reference information on the profiler
	Function Profiler window

	Debugging in the power domain
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Requirements for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	DMA versus polled I/O
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Procedures for power debugging
	Displaying the application’s power profile and analyzing the result
	Detecting unexpected power usage during application execution

	Reference information on power debugging
	Power Setup window
	Power Log window

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements for using code coverage

	Reference information on code coverage
	Code Coverage window

	Interrupts
	Introduction to interrupts
	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system
	Briefly about interrupt logging

	Procedures for interrupts
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging using C-SPY hardware drivers

	Reference information on interrupts
	Interrupt Setup dialog box
	Edit Interrupt dialog box
	Forced Interrupt window
	Interrupt Status window
	Interrupt Log window
	Interrupt Log Summary window

	Using C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language

	Procedures for using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Using the Macro Configuration dialog box
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro strings
	Macro statements
	Formatted output

	Reference information on reserved setup macro function names
	Reference information on C-SPY system macros
	_ _cancelAllInterrupts
	_ _cancelInterrupt
	_ _clearBreak
	_ _closeFile
	_ _delay
	_ _disableInterrupts
	_ _driverType
	_ _emulatorSpeed
	_ _emulatorStatusCheckOnRead
	_ _enableInterrupts
	_ _evaluate
	_ _gdbserver_exec_command
	_ _hwReset
	_ _hwResetRunToBp
	_ _hwResetWithStrategy
	_ _isBatchMode
	_ _jlinkExecCommand
	_ _jtagCommand
	_ _jtagCP15IsPresent
	_ _jtagCP15ReadReg
	_ _jtagCP15WriteReg
	_ _jtagData
	_ _jtagRawRead
	_ _jtagRawSync
	_ _jtagRawWrite
	_ _jtagResetTRST
	_ _loadImage
	_ _memoryRestore
	_ _memorySave
	_ _openFile
	_ _orderInterrupt
	_ _popSimulatorInterruptExecutingStack
	_ _readFile
	_ _readFileByte
	_ _readMemory8, _ _readMemoryByte
	_ _readMemory16
	_ _readMemory32
	_ _registerMacroFile
	_ _resetFile
	_ _restoreSoftwareBreakpoints
	_ _setCodeBreak
	_ _setDataBreak
	_ _setLogBreak
	_ _setSimBreak
	_ _setTraceStartBreak
	_ _setTraceStopBreak
	_ _sourcePosition
	_ _strFind
	_ _subString
	_ _targetDebuggerVersion
	_ _toLower
	_ _toString
	_ _toUpper
	_ _unloadImage
	_ _writeFile
	_ _writeFileByte
	_ _writeMemory8, _ _writeMemoryByte
	_ _writeMemory16
	_ _writeMemory32

	The C-SPY Command Line Utility—cspybat
	Using C-SPY in batch mode
	Invocation syntax
	Output
	Using an automatically generated batch file

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY Angel debug monitor driver
	Options available for the C-SPY GDB Server driver
	Options available for the C-SPY IAR ROM-monitor driver
	Options available for the C-SPY J-Link/J-Trace driver
	Options available for the C-SPY TI Stellaris driver
	Options available for the C-SPY TI XDS100 driver
	Options available for the C-SPY Macraigor driver
	Options available for the C-SPY RDI driver and the JTAGjet driver
	Options available for the C-SPY ST-LINK driver
	Options available for the C-SPY third-party drivers

	Reference information on C-SPY command line options
	--backend
	--code_coverage_file
	--cycles
	--device
	--disable_interrupts
	--download_only
	--drv_catch_exceptions
	--drv_communication
	--drv_communication_log
	--drv_default_breakpoint
	--drv_reset_to_cpu_start
	--drv_restore_breakpoints
	--drv_swo_clock_setup
	--drv_vector_table_base
	--flash_loader
	--gdbserv_exec_command
	--jlink_device_select
	--jlink_exec_command
	--jlink_initial_speed
	--jlink_interface
	--jlink_ir_length
	--jlink_reset_strategy
	--jlink_script_file
	--jlink_speed
	--jlink_trace_source
	--lmiftdi_speed
	--macro
	--mac_handler_address
	--mac_interface
	--mac_jtag_device
	--mac_multiple_targets
	--mac_reset_pulls_reset
	--mac_set_temp_reg_buffer
	--mac_speed
	--mac_xscale_ir7
	--mapu
	-p
	--plugin
	--proc_stack_stack
	--rdi_allow_hardware_reset
	--rdi_driver_dll
	--rdi_step_max_one
	--semihosting
	--silent
	--stlink_interface
	--stlink_reset_strategy
	--timeout
	--xds_rootdir

	Debugger options
	Setting debugger options
	Reference information on debugger options
	Setup
	Download
	Extra Options
	Images
	Plugins

	Reference information on C-SPY driver options
	Angel
	GDB Server
	IAR ROM-monitor
	Setup options for J-Link/J-Trace
	Connection options for J-Link/J-Trace
	JTAGjet
	RDI Configuration dialog box for JTAGjet
	Macraigor
	RDI
	ST-LINK
	Setup options for TI Stellaris
	Setup options for TI XDS100
	Third-Party Driver options

	Additional information on C-SPY drivers
	Reference information on the C-SPY simulator
	Simulator menu

	The C-SPY GDB Server driver
	GDB Server menu

	The C-SPY J-Link/J-Trace driver
	J-Link menu
	Live watch and use of DCC
	Terminal I/O and use of DCC

	The C-SPY JTAGjet driver
	JTAGjet menu

	The C-SPY Macraigor driver
	Macraigor JTAG menu

	The C-SPY RDI driver
	RDI menu

	The C-SPY ST-LINK driver
	ST-LINK menu

	The C-SPY TI Stellaris driver
	TI Stellaris menu

	The C-SPY TI XDS100 driver
	TI XDS100 menu

	Using flash loaders
	Introduction to the flash loader
	Briefly about the flash loader
	Setting up the flash loader(s)
	The flash loading mechanism

	Reference information on the flash loader
	Flash Loader Overview dialog box
	Flash Loader Configuration dialog box

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

