
The ThreadX C-SPY plugin

Introduction to the ThreadX Debugger Plugin for the IAR Embedded Workbench C-SPY
Debugger

This document describes the IAR C-SPY Debugger plugin for the ThreadX RTOS.

The ThreadX RTOS awareness plugin is delivered and installed as a part of the ARM® IAR Embedded Workbench� IDE. For
instructions on how to install and use the plugin, see the ThreadX documentation. Express Logic, Inc., can be contacted via
www.expresslogic.com.

To be able to use the plugin, you must do this: Start the ARM® IAR Embedded Workbench� and choose Project>Options. Select
the C-SPY Debugger category and choose ThreadX from the RTOS support combo box. Click OK.

Introduction to the plugin

The plugin introduces the following elements in the C-SPY user interface.

In the View menu, it installs a number of entries corresponding to the various types of ThreadX-specific windows that can be opened
by the plugin.

In the Breakpoints dialog box, available by choosing Edit>Breakpoints, a new option is enabled for making standard breakpoints
thread-specific.

It installs a new menu, named ThreadX, with entries for various RTOS-specific commands, in particular thread-related stepping
commands.

It installs a new toolbar with buttons for commands from the ThreadX menu.

Windows

The RTOS plugin introduces seven new debugger windows. You can right-click in most of the windows to display a context menu
where you can change display format (hexadecimal/decimal). If you select the Color changes command, all window updates are
highlighted.

The Thread List Window
This is arguably the single most important window of the RTOS plugin.

This window shows a list of all threads created by the current application (by calls to tx_thread_create) and some items
pertaining to their current state. The currently active thread is indicated by an arrow in the first column (and typically by a state of
RUNNING in the State column). The order of the threads is that of the _tx_thread_created_ptr.

You can examine a particular thread by double-clicking on the corresponding row in the window. All debugger windows (Watch,
Locals, Register, Call Stack, Source, Diassembly etc) will then show the state of the program from the point of view of the thread in
question. A thread selected in this way is indicated in the Thread window by a different color (for the moment, a subdued blue color).

The last row of the Thread window is always NO TASK. Double-clicking on this row makes the debugger show the state of the
program as it currently is (that is, as it would be shown without an RTOS plugin), in effect always following the active task.

Note that if a task has been selected by double-clicking, the debugger will show the state of that particular task until another task (or
NO TASK) is selected, even if execution is performed by or in another task. For example, if task A is currently active (RUNNING) and
you double-click on task B, which is READY, you will see information about the suspended task B. If you now perform a single-step
by pressing F10, the active task (A) will perform a single-step, but since you are focused on task B, not much will actually visibly
change.

Inspector Windows

The seven other windows display RTOS status information of various types. These windows are formatted but passive displays of
various internal RTOS data structures.

Timers

Queues

Semaphores

Mutexes

Event Flag Groups

Byte Pools

It is possible to get a detailed description on a specific byte pool. Right-click on a row and select the Show Details command from the
context menu. The Details window is displayed. You can double-click any other row to select another byte pool while the Details
window is open.

Details Window

Block Pools

Breakpoints
The presence of the RTOS plugin enables a task condition for all standard breakpoints, as shown below:

Clicking the Task� button brings up the following dialog box:

You can make a breakpoint thread-specific by clicking the check-box and selecting a task from the drop-down list.

Note: The drop-down list only shows threads which have been created at the time.

Note also: If the code at the breakpoint is only ever executed by one specific thread, there is no need to make the breakpoint thread-
specific.

Stepping

If more than one task can execute the same code, there is a need both for task-specific breakpoints and for task-specific stepping.

For example, consider some utility function, called by several different tasks. Stepping through such a function to verify its
correctness can be quite confusing without task-specific stepping. Standard stepping usually works as follows (slightly simplified):
When you invoke a step command, the debugger computes one or more locations where that step will end, sets corresponding

temporary breakpoints and simply starts execution. When execution hits one of the breakpoints, they are all removed and the step is
finished.

Now, during that brief (or not so brief) execution, basically anything can happen in an application with multiple tasks. In particular, a
task switch may occur and another task may hit one of the breakpoints before the original task does. It may appear that you have
performed a normal step, but now you are watching another task. The other task could have called the function with another argument
or be in another iteration of a loop, so the values of local variables could be totally different.

Hence, there is a need for task-specific stepping. The step commands on the ThreadX menu and on the corresponding toolbar behave
just like the normal stepping commands, but they will make sure that the step does not finish until the original task reaches the step
destination. This is the ThreadX menu:

And this is the ThreadX toolbar:

Important note: In the standard debugger menu, there are no Instruction Step Over and Instruction Step commands. This is because
the standard Step Over and Step Into commands are context sensitive, stepping by statement and function call when a source
window is active, and stepping by instruction when the Disassembly window is active. The RTOS stepping commands are
unfortunately not context sensitive; you must choose which kind of step to perform.

