
J-Link/J-TraceARM-1

IAR J-Link and IAR J-Trace
User Guide

JTAG Emulators for
ARM Cores

J-Link/J-TraceARM-1

COPYRIGHT NOTICE
© Copyright 2006-2009 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel and Pentium are registered trademarks and XScale a trademark of Intel
Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Second edition: May 2009

Part number: J-Link/J-TraceARM-2

Internal reference: ISUD

Contents
Preface .. 9

About this guide ... 9

Typographic conventions .. 9

Literature and references .. 9

Introduction .. 11

Overview about the J-Link product family .. 11

J-Link .. 11

J-Trace .. 11

Common features of the J-Link product family ... 11

Supported ARM Cores ... 12

Requirements ... 12

Licensing .. 13

Introduction .. 13

License types ... 13

Built-in license .. 13

Key-based license ... 14

Device-based license ... 14

Legal use of original J-Link software ... 15

Products ... 15

J-Link .. 15

J-Trace .. 16

J-Link OBs .. 16

Illegal Clones ... 16

Setup ... 17

Installing the J-Link ARM software and documentation .. 17

Setup procedure .. 17

Setting up the USB interface .. 17

Verifying correct driver installation ... 17

Uninstalling the J-Link USB driver .. 19

J-Link and J-Trace related software ... 21

J-Link related software ... 21

J-Link software and documentation package .. 21

J-Link software and documentation package in detail .. 21

J-Link Commander (Command line tool) ... 22

J-Link STR91x Commander (Command line tool) .. 22

J-Link STM32 Commander (Command line tool) ... 23

J-Link TCP/IP Server (Remote J-Link / J-Trace use) ... 23

J-Mem Memory Viewer .. 24

J-Flash ARM (Program flash memory via JTAG) .. 24

Using the J-LinkARM.dll ... 25

What is the JLinkARM.dll? .. 25

Updating the DLL ... 25

Determining the version of JLinkARM.dll ... 26
J-Link_J-TraceARM-2 3

4

Determining which DLL is used by a program ...27

Working with J-Link and J-Trace .. 29

Connecting the target system ..29

Power-on sequence ..29

Verifying target device connection ...29

Problems ..29

Indicators ...29

Main indicator ...29

JTAG interface ..30

Multiple devices in the scan chain ..31

Sample configuration dialog boxes ...31

Determining values for scan chain configuration ...32

JTAG Speed ..33

SWD interface ..34

SWO ..34

Multi-core debugging ...35

How multi-core debugging works ...35

Using multi-core debugging in detail ..37

Things you should be aware of ...38

Connecting multiple J-Links / J-Traces to your PC ..39

How does it work? ..39

Configuring multiple J-Links / J-Traces ...40

Connecting to a J-Link / J-Trace with non default USB-Address ..41

J-Link control panel ..41

Tabs ...41

Reset strategies ..45

Reset strategies in detail ..45

Cortex-M3 specific reset strategies ...47

Using DCC for memory access ...47

What is required? ..47

Target DCC handler ..48

Target DCC abort handler ...48

Command strings ...48

List of available commands ..48

device ..49

DisableFlashBPs ...49

DisableFlashDL ...49

EnableFlashBPs ...49

EnableFlashDL ..49

map exclude ..49

map indirectread ..50

map ram ...50

map reset ...51

SetAllowSimulation ..51

SetCheckModeAfterRead ...51

SetResetPulseLen ..51

SetResetType ...52

SetRestartOnClose ..52

SetDbgPowerDownOnClose ...52
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Contents
SetSysPowerDownOnIdle ...52

SupplyPower ...53

Using command strings ...53

Switching off CPU clock during debug ...54

Cache handling ...55

Cache coherency ...55

Cache clean area ...55

Cache handling of ARM7 cores ..55

Cache handling of ARM9 cores ..55

Flash download and flash breakpoints .. 57

Introduction ..57

Licensing ...57

Supported devices ...58

Using flash breakpoints ...64

IAR Embedded Workbench ..64

Device specifics ... 65

Analog Devices ...65

ADuC7xxx ..65

ATMEL ...66

AT91SAM7 ...66

AT91SAM9 ...68

Freescale ..68

MAC71x ...69

Luminary Micro ..69

Stellaris LM3S100 Series ...70

Stellaris LM3S300 Series ...70

Stellaris LM3S600 Series ...70

Stellaris LM3S800 Series ...70

Stellaris LM3S2000 Series ...70

Stellaris LM3S6100 Series ...70

Stellaris LM3S6400 Series ...70

Stellaris LM3S6700 Series ...70

Stellaris LM3S6900 Series ...71

NXP ...71

LPC ...71

OKI ..72

ML67Q40x ..73

ST Microelectronics ..73

STR 71x ..74

STR 73x ..74

STR 75x ..74

STR91x ...74

STM32 ..74

Texas Instruments ...75

TMS470 ..75

Hardware ... 77

20-pin JTAG/SWD connector ...77

Pinout for JTAG ..77
5J-Link_J-TraceARM-2

6

Pinout for SWD ...79

38-pin Mictor JTAG and Trace connector ...80

Connecting the target board ..81

Pinout ..82

Assignment of trace information pins between ETM architecture versions ...83

Trace signals ..83

19-pin JTAG/SWD and Trace connector ...84

Target power supply ..85

RESET, nTRST ..85

Adapters ...86

5 Volt adapter ..86

J-Link / J-Trace models ... 87

Introduction ...87

J-Link ARM ...87

Additional features ..87

Specifications* ..87

Download speed ..88

Hardware versions ...88

J-Trace ARM ..90

Additional features ..90

Specifications for J-Trace ...90

Download speed ..90

Hardware versions ...90

J-Trace for Cortex-M3 ...91

Additional features ..91

Download speed ..91

Background information ... 93

JTAG ..93

Test access port (TAP) ..93

Data registers ...93

Instruction register ..93

The TAP controller ...94

The ARM core ...95

Processor modes ..95

Registers of the CPU core ...96

ARM / Thumb instruction set ...96

EmbeddedICE ...96

Breakpoints and watchpoints ..97

The ICE registers ...97

Embedded Trace Macrocell (ETM) ...98

Trigger condition ...98

Code tracing and data tracing ..98

J-Trace integration example ..98

Embedded Trace Buffer (ETB) ...102

Flash programming ..102

How does flash programming via J-Link / J-Trace work? ..102

Data download to RAM ..102

Data download via DCC ...102
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Contents
J-Link / J-Trace firmware ..103

Firmware update ...103

Invalidating the firmware ..103

Designing the target board for trace .. 105

Overview of high-speed board design ...105

Avoiding stubs ..105

Minimizing Signal Skew (Balancing PCB Track Lengths) ..105

Minimizing Crosstalk ..105

Using impedance matching and termination ...105

Terminating the trace signal ...105

Rules for series terminators ..106

Signal requirements ..106

Support and FAQs .. 107

Measuring download speed ..107

Test environment ..107

Troubleshooting ...107

General procedure ...107

Typical problem scenarios ..108

Signal analysis ...108

Start sequence ...109

Troubleshooting ..109

Contacting support ..109

Frequently Asked Questions ...110

Glossary ... 113
7J-Link_J-TraceARM-2

8

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Preface
Welcome to the IAR J-Link and IAR J-Trace User Guide for JTAG Emulators for ARM Cores.

About this guide
This guide provides an overview over the major features of J-Link and J-Trace, gives you some background information
about JTAG, ARM and Tracing in general and describes J-Link and J-Trace related software packages. Finally, the
chapter Support and FAQs on page 107 helps to troubleshoot common problems.

For simplicity, we will refer to J-Link ARM as J-Link in this manual.

For simplicity, we will refer to J-Link ARM Pro as J-Link Pro in this manual.

TYPOGRAPHIC CONVENTIONS
This manual uses the following typographic conventions:

Literature and references
To gain deeper understanding of technical details, see:

Style Used for

Body Body text.

Keyword Text that you enter at the command-prompt or that appears on the display (that is system functions,
file- or pathnames).

Reference Reference to chapters, tables and figures or other documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Table 1: Typographic conventions

Reference Title Comments

[ETM] Embedded Trace Macrocell™ Architecture
Specification, ARM IHI 0014J

This document defines the ETM standard, including signal
protocol and physical interface.
It is publicly available from ARM (www.arm.com).

Table 2: Literature and references
J-Link_J-TraceARM-2 9

10

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Introduction
This chapter gives a short overview about J-Link and J-Trace.

Overview about the J-Link product family
The J-Link product family includes different variations of J-Link, designed for different purposes / target devices. This
section gives a short overview about the different products which are part of the J-Link product family.

J-LINK
J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running Microsoft Windows 2000,
Windows XP, Windows 2003 or Windows Vista. J-Link has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM.

J-TRACE
J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support. It connects via USB to a PC
running Microsoft Windows 2000, Windows XP, Windows 2003 or Windows Vista. J-Trace has a built-in 20-pin JTAG
connector and a built in 38-pin JTAG+Trace connector, which is compatible with the standard 20-pin connector and
38-pin connector defined by ARM.

Common features of the J-Link product family
● USB 2.0 interface

● Any ARM7/ARM9 and Cortex-M3 core supported, including thumb mode

● Automatic core recognition

● Maximum JTAG speed 12 MHz

● Seamless integration into the IAR Embedded Workbench® IDE

● No power supply required, powered through USB

● Support for adaptive clocking

● All JTAG signals can be monitored, target voltage can be measured

● Support for multiple devices

● Fully plug and play compatible

● Standard 20-pin JTAG connector, standard 38-pin JTAG+Trace connector

● USB and 20-pin ribbon cable included

● Memory viewer (J-Mem) included

● TCP/IP server included, which allows using J-Trace via TCP/IP networks

● Flash programming software (J-Flash) available

● Full integration with the IAR C-SPY® debugger; advanced debugging features available from IAR C-SPY
debugger.

● Adapter for 5V JTAG targets available

● Target power supply via pin 19 of the JTAG/SWD interface (up to 300 mA to target with overload protection)
Part1. Using the compilerJ-Link_J-TraceARM-2 11

12
Supported ARM Cores
J-Link / J-Trace has been tested with the following cores, but should work with any ARM7/ARM9 and Cortex-M3
core.

● ARM7TDMI (Rev 1)

● ARM7TDMI (Rev 3)

● ARM7TDMI-S (Rev 4)

● ARM720T

● ARM920T

● ARM922T

● ARM926EJ-S

● ARM946E-S

● ARM966E-S

● Cortex-M3

Requirements
Host System

To use J-Link or J-Trace you need a host system running Windows 2000, Windows XP, Windows 2003, or Windows
Vista.

Target System

An ARM7/ARM9/ARM11 or Cortex-M3 target system is required. The system should have a standardized 20-pin
connector as defined by ARM Ltd. for a simple JTAG connection. The individual pins are described in section 20-pin
JTAG/SWD connector on page 77.

To use tracing with J-Trace, you need a 38-pin connector on your target board as defined by ARM Ltd. and described
under 38-pin Mictor JTAG and Trace connector on page 80. The individual pins are described in section Pinout on
page 82.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Licensing
This chapter describes the different license types of J-Link related software and the legal use of the J-Link software.

Introduction
J-Link functionality can be enhanced by flash breakpoints (FlashBP). This feature do not come with J-Link and need
additional licenses. This chapter describes the licensing options.

License types
FlashBP requires an additional license, there are three types of licenses:

Built-in License

This type of license is easiest to use because you do not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). This is the type of license you get if you order J-
Link and the license at the same time, typically in a bundle.

Key-based license

This type of license is used if you already have a J-Link probe, but want to enhance its functionality by using J-Link
FlashBP. In addition to that, the key-based license is used for trial licenses. To enable this type of license you need to
obtain a license key. This license key has to be added to the J-Link license management. How to enter a license key is
described in detail in Licensing on page 57. Every license can be used on different PCs, but only with the J-Link the
license is for. This means that if you want to use J-Link ARM FlashBP with other J-Links, every J-Link needs a license.

Device-based license

The device-based license comes with the J-Link software and is available for some devices. For a complete list of
devices which have built-in licenses, please refer to Device list on page 14. The device-based license has to be activated
via the debugger. How to activate a device-based license is described in detail in the section Activating a device-based
license on page 14.

BUILT-IN LICENSE
This type of license is easiest to use. The customer does not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). To check what licenses the used J-Link have, simply
open the J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-Link’s licenses
automatically, as can be seen in the screenshot below.
J-Link_J-TraceARM-2 13

14
KEY-BASED LICENSE
When using a key-based license, a license key is required in order to enable the J-Link features J-Link FlashBP.
License keys can be added via the license manager. How to enter a license via the license manager is described in
Licensing on page 57. Like the built-in license, the key-based license is only valid for one J-Link, so if another J-Link
is used it needs a separate license.

DEVICE-BASED LICENSE
The device-based license is a free license, available for some devices. It’s already included in J-Link, so no keys are
necessary to enable this license type. To activate a device based license, the debugger needs to select a supported
device.

Activating a device-based license
In order to activate a device-based license, the debugger needs to select a supported device. To check if the debugger
has selected the right device, simply open the J-Link control panel and check the device section in the General tab.

Device list

The following list contains all devices which are supported by the device-based license

Manufacturer Name Licenses

NXP LPC2101 J-Link ARM FlashBP

NXP LPC2102 J-Link ARM FlashBP

NXP LPC2103 J-Link ARM FlashBP

NXP LPC2104 J-Link ARM FlashBP

NXP LPC2105 J-Link ARM FlashBP

NXP LPC2106 J-Link ARM FlashBP

NXP LPC2109 J-Link ARM FlashBP

NXP LPC2114 J-Link ARM FlashBP

NXP LPC2119 J-Link ARM FlashBP

NXP LPC2124 J-Link ARM FlashBP

NXP LPC2129 J-Link ARM FlashBP

NXP LPC2131 J-Link ARM FlashBP

NXP LPC2132 J-Link ARM FlashBP

NXP LPC2134 J-Link ARM FlashBP

NXP LPC2136 J-Link ARM FlashBP

NXP LPC2138 J-Link ARM FlashBP

NXP LPC2141 J-Link ARM FlashBP

NXP LPC2142 J-Link ARM FlashBP

Table 3: Device list
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Licensing
Legal use of original J-Link software
The software consists of proprietary programs of SEGGER, protected under copyright and trade secret laws. All rights,
title and interest in the software are and shall remain with SEGGER. For details, please refer to the license agreement
which needs to be accepted when installing the software. The text of the license agreement is also available as entry in
the start menu after installing the software.

Use of software

J-Link software may only be used with original J-Link products. The use of the licensed software to operate product
clones is prohibited and illegal.

Products
The following products are original products for which the use of the J-Link software is allowed:

J-LINK
J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running
Microsoft Windows 2000, Windows XP, Windows 2003 or Windows Vista. J-Link has a built-
in 20-pin JTAG connector, which is compatible with the standard 20-pin connector defined by
ARM.

Licenses

Comes with built-in licenses for J-Link ARM FlashBP for some devices. For a complete list
of devices which are supported by the built-in licenses, please refer to Device list on page 14.

NXP LPC2144 J-Link ARM FlashBP

NXP LPC2146 J-Link ARM FlashBP

NXP LPC2148 J-Link ARM FlashBP

NXP LPC2194 J-Link ARM FlashBP

NXP LPC2212 J-Link ARM FlashBP

NXP LPC2214 J-Link ARM FlashBP

NXP LPC2292 J-Link ARM FlashBP

NXP LPC2294 J-Link ARM FlashBP

NXP LPC2364 J-Link ARM FlashBP

NXP LPC2366 J-Link ARM FlashBP

NXP LPC2368 J-Link ARM FlashBP

NXP LPC2378 J-Link ARM FlashBP

NXP LPC2468 J-Link ARM FlashBP

NXP LPC2478 J-Link ARM FlashBP

Manufacturer Name Licenses

Table 3: Device list (Continued)
15J-Link_J-TraceARM-2

16
J-TRACE
J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support. It
connects via USB to a PC running Microsoft Windows 2000, Windows XP, Windows 2003 or
Windows Vista. J-Trace has a built-in 20-pin JTAG connector and a built in 38-pin
JTAG+Trace connector, which is compatible with the standard 20-pin connector and 38-pin
connector defined by ARM.

J-Link OBs
J-Link OBs (J-Link On Board) are single chip versions of J-Link which are used on various evaluation boards.

Illegal Clones
Clones are copies of original products which use the copyrighted original Firmware without a license. It is strictly
prohibited to use original J-Link software with illegal clones. Manufacturing and selling these clones is an illegal act
for various reasons, amongst them trademark, copyright and unfair business practise issues.

The use of illegal J-Link clones with this software is a violation of US, European and other international laws and is
prohibited.

If you are in doubt if your unit may be legally used with original J-Link software, please get in touch with us.

End users may be liable for illegal use of J-Link software with clones.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Setup
This chapter describes the setup procedure required in order to work with J-Link / J-Trace. Primarily this includes
the installation of the J-Link software and documentation package, which also includes a kernel mode J-Link USB
driver in your host system.

Installing the J-Link ARM software and documentation
J-Link is shipped with a bundle of applications, corresponding manuals and some example projects, and the kernel
mode J-Link USB driver. Some of the applications require an additional license.

Refer to chapter J-Link and J-Trace related software on page 21 for an overview about the J-Link software and
documentation pack.

SETUP PROCEDURE
To install the J-Link software and documentation, follow this procedure:

Note:Check for J-Link related downloads on our website:

http://www.iar.com/jlinkarm

1 Connect your computer and the J-Link debug probe using the USB cable. Do not connect the J-Link debug probe to
the evaluation board, yet. The green LED on the front panel of the J-Link debug probe will blink for a few moments
while Windows searches for a USB driver.

2 When you do this for the first time, Windows will start the Install wizard. Choose Install from a specific location.

3 When asked to locate the USB drivers, click the browse button and navigate to the directory Program Files\IAR
Systems\Embedded Workbench 5.0\Kickstart\arm\drivers\JLink. This assumes that you already have
installed the IAR Embedded Workbench IDE. If not, make sure to intall it.

Note that Windows XP might display a warning that the driver is not certified by Microsoft. Ignore this warning and
click Continue.

4 Click Finish. The green LED on the J-Link debug probe stops blinking. The installation is now ready.

5 Remove the USB cable that connects the computer and your J-Link.

Setting up the USB interface
After installing the J-Link ARM software and documentation package it should not be necessary to perform any
additional setup sequences in order to configure the USB interface of J-Link.

VERIFYING CORRECT DRIVER INSTALLATION
To verify the correct installation of the driver, disconnect and reconnect J-Link / J-Trace to the USB port. During the
enumeration process which takes about 2 seconds, the LED on J-Link / J-Trace is flashing. After successful
enumeration, the LED stays on permanently.
J-Link_J-TraceARM-2 17

18
Start the provided sample application JLink.exe available in the arm\bin directory in your product installation,
which should display the compilation time of the J-Link firmware, the serial number, a target voltage of 0.000V, a
complementary error message, which says that the supply voltage is too low if no target is connected to J-Link / J-
Trace, and the speed selection. The screenshot below shows an example.

In addition you can verify the driver installation by consulting the Windows device manager. If the driver is installed
and your J-Link / J-Trace is connected to your computer, the device manager should list the J-Link USB driver as a
node below "Universal Serial Bus controllers" as shown in the following screenshot:
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Setup
Right-click on the driver to open a context menu which contains the command Properties. If you select this command,
a J-Link driver Properties dialog box is opened and should report: This device is working properly.

If you experience problems, refer to the chapter Support and FAQs on page 107 for help. You can select the Driver tab
for detailed information about driver provider, version, date and digital signer.

Uninstalling the J-Link USB driver
If J-Link / J-Trace is not properly recognized by Windows and therefore does not enumerate, it make sense to uninstall
the J-Link USB driver.

This might be the case when:

● The LED on the J-Link / J-Trace is rapidly flashing.

● The J-Link / J-Trace is recognized as Unknown Device by Windows.

To have a clean system and help Windows to reinstall the J-Link driver, follow this procedure:

1 Disconnect J-Link / J-Trace from your PC.
19J-Link_J-TraceARM-2

20
2 Open the Add/Remove Programs dialog (Start > Settings > Control Panel > Add/Remove Programs)
and select Windows Driver Package - Segger (jlink) USB and click the Change/Remove button.

3 Confirm the uninstallation process.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link and J-Trace related software
This chapter describes J-Link / J-Trace related software.

J-Link related software

J-LINK SOFTWARE AND DOCUMENTATION PACKAGE
IAR Embedded Workbench is bundled with applications for J-Link. Some of the applications require an additional
license.

J-Link software and documentation package in detail
The J-Link / J-Trace software documentation supplied with IAR Embedded Workbench.

Software Description

JLinkARM.dll DLL for using J-Link / J-Trace.

JLink.exe Free command-line tool with basic functionality for target analysis.

JLinkSTR91x Free command-line tool to configure the ST STR91x cores. For more information please refer
to J-Link STR91x Commander (Command line tool) on page 22

JLinkSTM32 Free command-line tool for STM32 devices. Can be used to disable the hardware watchdog
and to unsecure STM32 devices (override read-protection).

J-Link TCP/IP Server Free utility which provides the possibility to use J-Link / J-Trace remotely via TCP/IP.

J-Mem memory viewer Free target memory viewer. Shows the memory content of a running target and allows editing
as well.

J-Flash Stand-alone flash programming application. This requires an additional license.

Flash breakpoints Flash breakpoints provide the ability to set an unlimited number of software breakpoints in
flash memory areas. This requires an additional license.

Table 4: J-Link / J-Trace related software
J-Link_J-TraceARM-2 21

22
J-LINK COMMANDER (COMMAND LINE TOOL)
J-Link Commander (JLink.exe) is a tool that can be used for verifying proper installation of the USB driver and to
verify the connection to the ARM device, as well as for simple analysis of the target system. It permits some simple
commands, such as memory dump, halt, step, go and ID-check, as well as some more in-depths analysis of the state of
the ARM core and the ICE breaker module.

J-LINK STR91X COMMANDER (COMMAND LINE TOOL)
J-Link STR91x Commander (JLinkSTR91x.exe) is a tool that can be used to configure STR91x cores. It permits
some STR9 specific commands like:

● Set the configuration register to boot from bank 0 or 1

● Erase flash sectors

● Read and write the OTP sector of the flash

● Write-protect single flash sectors by setting the sector protection bits

● Prevent flash from communicate via JTAG by setting the security bit

All of the actions performed by the commands, excluding writing the OTP sector and erasing the flash, can be undone.
This tool can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall.

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The IOs are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link and J-Trace related software
Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

J-LINK STM32 COMMANDER (COMMAND LINE TOOL)
J-Link STM32 Commander (JLinkSTM32.exe) is a free command line tool which can be used to disable the hardware
watchdog of STM32 devices which can be activated by programming the option bytes. Moreover the J-Link STM32
Commander unsecures a read-protected STM32 device by re-programming the option bytes.

Note:Unprotecting a secured device or will cause a mass erase of the flash memory.

J-LINK TCP/IP SERVER (REMOTE J-LINK / J-TRACE USE)
The J-Link TCP/IP Server allows using J-Link / J-Trace remotely via TCP/IP. This enables you to connect to and fully
use a J-Link / J-Trace from another computer. Performance is just slightly (about 10%) lower than with direct USB
connection.

The J-Link TCP/IP Server also accepts commands which are passed to the J-Link TCP/IP Server via the command line.

List of available commands

The table below lists the commands accepted by the J-Link TCP/IP Server

Command Description

port Selects the IP port on which the J-Link TCP/IP Server is listening.

usb Selects a usb port for communication with J-Link.

Table 5: Available commands
23J-Link_J-TraceARM-2

24
port

Syntax
-port <Portno.>

Example

To start the J-Link TCP/IP Server listening on port 19021 the command should look as follows:

-port 19021

usb

Syntax
-usb <USBIndex>

Example

Currently usb 0-3 are supported, so if the J-Link TCP/IP Server should connect to the J-Link on usb port 2 the
command should look as follows:

-usb 2

J-MEM MEMORY VIEWER
J-Mem displays memory contents of ARM-systems and allows modifications of RAM and SFRs (Special Function
Registers) while the target is running. This makes it possible to look into the memory of an ARM chip at run-time;
RAM can be modified and SFRs can be written. You can choose between 8/16/32-bit size for read and write accesses.
J-Mem works nicely when modifying SFRs, especially because it writes the SFR only after the complete value has
been entered.

J-FLASH ARM (PROGRAM FLASH MEMORY VIA JTAG)
J-Flash ARM is a software running on Windows 2000, Windows XP, Windows 2003 or Windows Vista systems and
enables you to program your flash EEPROM devices via the JTAG connector on your target system.

J-Flash ARM works with any ARM7/9 system and supports all common external flashes, as well as the programming
of internal flash of ARM microcontrollers. It allows you to erase, fill, program, blank check, upload flash content, and
view memory functions of the software with your flash devices.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link and J-Trace related software
J-Flash requires a additional license. Even without a license key you can still use J-Flash ARM to open project files,
read from connected devices, blank check target memory, verify data files and so on. However, to actually program
devices via J-Flash ARM and J-Link / J-Trace you are required to obtain a license key.

Features
● Works with any ARM7/ARM9 chip

● ARM microcontrollers (internal flash) supported

● Most external flash chips can be programmed

● High-speed programming: up to 300 Kbytes/second (depends on flash device)

● Very high-speed blank check: Up to 16 Mbytes/sec (depends on target)

● Smart read-back: Only non-blank portions of flash transferred and saved

● Easy to use, comes with projects for standard eval boards.

Using the J-LinkARM.dll

WHAT IS THE JLINKARM.DLL?
The J-LinkARM.dll is a standard Windows DLL typically used from C or C++, but also Visual Basic or Delphi
projects. It makes the entire functionality of the J-Link / J-Trace available through the exported functions.

The functionality includes things such as halting/stepping the ARM core, reading/writing CPU and ICE registers and
reading/writing memory. Therefore, it can be used in any kind of application accessing an ARM core.

UPDATING THE DLL
The IAR C-SPY® debugger is shipped with the JLinkARM.dll already installed. Anyhow it may make sense to
replace the included DLL with the latest one available, to take advantage of improvements in the newer version.

Updating the JLinkARM.dll in the IAR Embedded Workbench (EWARM)
It’s recommended to use the J-Link DLL updater to update the JLinkARM.dll in the IAR Embedded Workbench. The
IAR Embedded Workbench IDE is a high-performance integrated development environment with an editor, compiler,
linker, debugger. The compiler generates very efficient code and is widely used. It comes with the J-LinkARM.dll in
the arm\bin subdirectory of the installation directory. To update this DLL, you should backup your original DLL and
then replace it with the new one.

Typically, the DLL is located in C:\Program Files\IAR Systems\Embedded Workbench 5.0\arm\bin\.
25J-Link_J-TraceARM-2

26
After updating the DLL, it is recommended to verify that the new DLL is loaded as described in Determining which
DLL is used by a program on page 27.

J-Link DLL updater

The J-Link DLL updater is a tool which comes with the J-Link software and makes it possible to update the
JLinkARM.dll in all installations of IAR Embedded Workbench, in an easy way. The updater is automatically started
after the installation of a J-Link software version and asks for updating old DLLs used by IAR Embedded Workbench.
The J-Link DLL updater can also be started manually. Simply enable the checkbox left to the IAR installation which
has been found. Click Ok in order to update the JLinkARM.dll used by the IAR installation.

DETERMINING THE VERSION OF JLINKARM.DLL
To determine which version of the JLinkARM.dll you are facing, the DLL version can be viewed by right clicking the
DLL in Windows Explorer and choosing Properties from the context menu. Click the Version tab to display
information about the product version.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link and J-Trace related software
DETERMINING WHICH DLL IS USED BY A PROGRAM
To verify that the program you are working with is using the DLL you expect it to use, you can investigate which DLLs
are loaded by your program with tools like Sysinternals’ Process Explorer. It shows you details about the DLLs, used
by your program, such as manufacturer and version.

Process Explorer is - at the time of writing - a free utility which can be downloaded from www.sysinternals.com.
27J-Link_J-TraceARM-2

28

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
This chapter describes functionality and how to use J-Link and J-Trace.

Connecting the target system

POWER-ON SEQUENCE
In general, J-Link / J-Trace should be powered on before connecting it with the target device. That means you should
first connect J-Link / J-Trace with the host system via USB and then connect J-Link / J-Trace with the target device via
JTAG. Power-on the device after you connected J-Link / J-Trace to it.

VERIFYING TARGET DEVICE CONNECTION
If the USB driver is working properly and your J-Link / J-Trace is connected with the host system, you may connect J-
Link / J-Trace to your target hardware. Then start JLink.exe which should now display the normal J-Link / J-Trace
related information and in addition to that it should report that it found a JTAG target and the target’s core ID. The
screenshot below shows the output of JLink.exe. As can be seen, it reports a J-Link with one JTAG device connected.

PROBLEMS
If you experience problems with any of the steps described above, read the chapter Support and FAQs on page 107 for
troubleshooting tips. If you still do not find appropriate help there and your J-Link / J-Trace is an original IAR System
product, you can contact support via e-mail. Provide the necessary information about your target processor, board etc.
and we will try to solve your problem. A checklist of the required information together with the contact information
can be found in chapter Support and FAQs on page 107 as well.

Indicators
J-Link uses indicators (LEDs) to give the user some information about the current status of the connected J-Link. All
J-Links feature the main indicator. Some newer J-Links such as the J-Link PRO come with additional input/output
Indicators. In the following, the meaning of these indicators will be explained.

MAIN INDICATOR
For J-Links up to V7, the main indicator is single color (Green). J-Link V8 comes with a bi-color indicator (Green &
Red LED), which can show multiple colors: green, red and orange.
J-Link_J-TraceARM-2 29

30
Single color indicator (J-Link V7 and earlier)

Bi-color indicator (J-Link V8)

JTAG interface
By default, only one ARM device is assumed to be in the JTAG scan chain. If you have multiple devices in the scan
chain, you must properly configure it. To do so, you have to specify the exact position of the ARM device that should
be addressed. Configuration of the scan is done by the IAR C-SPY® debugger, which offers a dialog box for this
purpose.

Indicator status Meaning

GREEN, flashing at 10 Hz Emulator enumerates.

GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is
switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, flashing at 1 Hz Emulator has a fatal error. This should not normally happen.

Table 6: J-Link single color main indicator

Indicator status Meaning

GREEN, flashing at 10 Hz Emulator enumerates.

GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is
switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

ORANGE Reset is active on target.

RED, flashing at 1 Hz Emulator has a fatal error. This should not normally happen.

Table 7: J-Link single color LED main color indicator
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
MULTIPLE DEVICES IN THE SCAN CHAIN
J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hardware where multiple chips are
connected to the same JTAG connector. As can be seen in the following figure, the TCK and TMS lines of all JTAG
device are connected, while the TDI and TDO lines form a bus.

Currently, up to 8 devices in the scan chain are supported. One or more of these devices can be ARM cores; the other
devices can be of any other type but need to comply with the JTAG standard.

Configuration
The configuration of the scan chain depends on the application used. Read JTAG interface on page 30 for further
instructions and configuration examples.

SAMPLE CONFIGURATION DIALOG BOXES
As explained before, it is responsibility of the application to allow the user to configure the scan chain. This is typically
done in a dialog box; some sample dialog boxes are shown below.

Device 1 Device 0TDI TDITDO TDO

TDI TDO

JTAG

T
R

S
T

T
C

K

T
M

S

T
C

K

T
M

S

T
R

S
T

T
C

K

T
M

S

T
R

S
T

31J-Link_J-TraceARM-2

32
IAR J-Link configuration dialog box

This dialog box can be found under Project|Options.

DETERMINING VALUES FOR SCAN CHAIN CONFIGURATION

When do I need to configure the scan chain?

If only one device is connected to the scan chain, the default configuration can be used. In other cases, J-Link / J-Trace
may succeed in automatically recognizing the devices on the scan chain, but whether this is possible depends on the
devices present on the scan chain.

How do I configure the scan chain?

2 values need to be known:

● The position of the target device in the scan chain

● The total number of bits in the instruction registers of the devices before the target device (IR len).

The position can usually be seen in the schematic; the IR len can be found in the manual supplied by the manufacturers
of the others devices.

ARM7/ARM9 have an IR len of four.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Sample configurations

The diagram below shows a scan chain configuration sample with 2 devices connected to the JTAG port.

Examples

The following table shows a few sample configurations with 1,2 and 3 devices in different configurations.

The target device is marked in blue.

JTAG SPEED
There are basically three types of speed settings:

● Fixed JTAG speed

● Automatic JTAG speed

● Adaptive clocking.

These are explained below.

Fixed JTAG speed
The target is clocked at a fixed clock speed. The maximum JTAG speed the target can handle depends on the target
itself. In general ARM cores without JTAG synchronization logic (such as ARM7-TDMI) can handle JTAG speeds up
to the CPU speed, ARM cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S, ARM966EJ-
S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

Device 0

Chip(IR len)

Device 1

Chip(IR len)

Device 2

Chip(IR len)
Position IR len

ARM(4) - - 0 0

ARM(4) Xilinx(8) - 0 0

Xilinx(8) ARM(4) - 1 8

Xilinx(8) Xilinx(8) ARM(4) 2 16

ARM(4) Xilinx(8) ARM(4) 0 0

ARM(4) Xilinx(8) ARM(4) 2 12

Xilinx(8) ARM(4) Xilinx(8) 1 8

Table 8: Example scan chain configurations

Device 1 Device 0TDI TDITDO TDO

TDI TDO

JTAG
T

R
S

T

T
C

K

T
M

S

T
C

K

T
M

S

T
R

S
T

T
C

K

T
M

S

T
R

S
T

33J-Link_J-TraceARM-2

34
Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

Note:On ARM cores without synchronization logic, this may not work reliably, because the CPU core may be clocked
slower than the maximum JTAG speed.

Adaptive clocking

If the target provides the RTCK signal, select the adaptive clocking function to synchronize the clock to the processor
clock outside the core. This ensures there are no synchronization problems over the JTAG interface.

If you use the adaptive clocking feature, transmission delays, gate delays, and synchronization requirements result in
a lower maximum clock frequency than with non-adaptive clocking.

SWD interface
The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port with a clock (SWDCLK)
and a single bi-directional data pin (SWDIO), providing all the normal JTAG debug and test functionality. SWDIO and
SWCLK are overlaid on the TMS and TCK pins. In order to communicate with a SWD device, J-Link sends out data
on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one bit of data is transmitted or received
on the SWDIO.

SWO
Serial Wire Output (SWO) support means support for a single pin output signal from the core. The Instrumentation
Trace Macrocell (ITM) and Serial Wire Output (SWO) can be used to form a Serial Wire Viewer (SWV). The Serial
Wire Viewer provides a low cost method of obtaining information from inside the MCU.

Usually it should not be necessary to configure the SWO speed because this is usually done by the debugger.

Max. SWO speeds

The supported SWO speeds depend on the connected emulator. They can be retrieved

from the emulator. Currently, the following are supported:

Configuring SWO speeds

The max. SWO speed in practice is the max. speed which both, target and J-Link can handle. J-Link can handle the
frequencies described in SWO on page 34 whereas the max. deviation between the target and the J-Link speed is about
3%.

The computation of possible SWO speeds is typically done in the debugger. The SWO output speed of the CPU is
determined by TRACECLKIN, which is normally the same as the CPU clock.

Example1

Target CPU running at 72 MHz. n is be between 1 and 8192.

Possible SWO output speeds are:

72MHz, 36MHz, 24MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:

6MHz, 3MHz, 2MHz, 1.5MHz, ...

Emulator Speed formula Resulting max. speed

J-Link V6 6MHz/n, n >= 12 500kHz

J-Link V7/V8 6MHz/n, n >= 1 6MHz

Table 9: J-Link supported SWO input speeds
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Permitted combinations are:

Example 2

Target CPU running at 10 MHz.

Possible SWO output speeds are:

10MHz, 5MHz, 3.33MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:

6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

Multi-core debugging
J-Link / J-Trace is able to debug multiple cores on one target system connected to the same scan chain. Configuring
and using this feature is described in this section.

HOW MULTI-CORE DEBUGGING WORKS
Multi-core debugging requires multiple debuggers or multiple instances of the same debugger. Two or more debuggers
can use the same J-Link / J-Trace simultaneously. Configuring a debugger to work with a core in a multi-core
environment does not require special settings. All that is required is proper setup of the scan chain for each debugger.
This enables J-Link / J-Trace to debug more than one core on a target at the same time.

SWO output SWO input Deviation percent

 6MHz, n = 12 6MHz, n = 1 0

3MHz, n = 24 3MHz, n = 2 0

... ... <= 3

2MHz, n = 36 2MHz, n = 3 0

...

Table 10: Permitted SWO speed combinations

SWO output SWO input Deviation percent

 2MHz, n = 5 2MHz, n = 3 0

1MHz, n = 10 1MHz, n = 6 0

769kHz, n = 13 750kHz, n = 8 2.53

...

Table 11: Permitted SWO speed combinations
35J-Link_J-TraceARM-2

36
The following figure shows a host, debugging two ARM cores with two instances of the same debugger.

Both debuggers share the same physical connection. The core to debug is selected through the JTAG-settings as
described below.

Host (PC)

Target hardware ARM2

Debugger
Instance 2

Debugger
Instance 1

USB

JTAG

ARM1

J-Link
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
USING MULTI-CORE DEBUGGING IN DETAIL
1 Connect your target to J-Link / J-Trace.

2 Start your debugger in the IAR Embedded Workbench IDE for ARM.

3 Choose Project|Options and configure your scan chain. The picture below shows the configuration for the first ARM
core in the scan chain.

4 Start debugging the first core.

5 Start another debugger, for example another instance of IAR Embedded Workbench for ARM.
37J-Link_J-TraceARM-2

38
6 Choose Project|Options and configure your second scan chain. The following dialog box shows the configuration
for the second ARM core on your target.

7 Start debugging your second core.

Example:

Cores to debug are marked in blue.

THINGS YOU SHOULD BE AWARE OF
Multi-core debugging is more difficult than single-core debugging. You should be aware of the pitfalls related to JTAG
speed and resetting the target.

JTAG speed

Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores in the same chain is the minimum
of the maximum JTAG speeds.

For example:

Core #1: 2MHz maximum JTAG speed

Core #2: 4MHz maximum JTAG speed

Scan chain: 2MHz maximum JTAG speed

Core #1 Core #2 Core #3
TAP number

debugger #1

TAP number

debugger #2

ARM7TDMI ARM7TDMI-S ARM7TDMI 0 1

ARM7TDMI ARM7TDMI ARM7TDMI 0 2

ARM7TDMI-S ARM7TDMI-S ARM7TDMI-S 1 2

Table 12: Multicore debugging
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Resetting the target
All cores share the same RESET line. You should be aware that resetting one core through the RESET line means
resetting all cores which have their RESET pins connected to the RESET line on the target.

Connecting multiple J-Links / J-Traces to your PC
You can connect up to 4 J-Links / J-Traces to your PC. In this case, all J-Links / J-Traces must have different USB-
addresses. The default USB-address is 0.

In order to do this, 3 J-Links / J-Traces must be configured as described below. Every J-Link / J-Trace need its own J-
Link USB driver.

This feature is supported by J-Link Rev. 5.0 and up and by J-Trace.

HOW DOES IT WORK?
USB devices are identified by the OS by their product id, vendor id and serial number. The serial number reported by
J-Links / J-Traces is always the same. The product id depends on the configured USB-address.

● The vendor id (VID) is always 1366

● The product id (PID) for J-Link / J-Trace #1 is 101

● The product id (PID) for J-Link / J-Trace #2 is 102 and so on.

A different PID means that J-Link / J-Trace is identified as a different device, requiring a new driver. The driver for a
new J-Link device will be installed automatically.

The sketch below shows a host, running two application programs. Each application communicates with one ARM core
via a separate J-Link.

Host (PC)

Target hardware 1

ARM2

Application
Instance 2

Application
Instance 1

ARM1

USB

JTAG

J-Link
1

USB

JTAG

J-Link
2

Target hardware 2
39J-Link_J-TraceARM-2

40
CONFIGURING MULTIPLE J-LINKS / J-TRACES
8 Start JLink.exe to view your hardware version. Your J-Link needs to be V5.0 or up to continue. For J-Trace the

Version does not matter.

9 Type usbaddr = 1 to set the J-Link / J-Trace #1.

10 Unplug J-Link / J-Trace and then plug it back in.

11 The system will recognize and automatically install a new J-Link / J-Trace.

12 you can verify the driver installation by consulting the Windows device manager. If the driver is installed and your J-
Link / J-Trace is connected to your computer, the device manager should list the J-Link USB drivers as a node below
"Universal Serial Bus controllers" as shown in the following screenshot:
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
CONNECTING TO A J-LINK / J-TRACE WITH NON DEFAULT USB-
ADDRESS
Restart JLink.exe and type usb 1 to connect to J-Link / J-Trace #1.

You may connect other J-Links / J-Traces to your PC and connect to them as well. To connect to an unconfigured J-
Link / J-Trace (with default address "0"), restart JLink.exe or type usb 0.

J-Link control panel
Since software version V3.86 J-Link the J-Link control panel window allows the user to monitor the J-Link status and
the target status information in real-time. It also allows the user to configure the use of some J-Link features such as J-
Link ARM FlashBP and ARM instruction set simulation. The J-Link control panel window can be accessed via the
J-Link tray icon in the tray icon list. This icon is available when the debug session is started.

To open the status window, simply click on the tray icon.

TABS
The J-Link status window supports different features which are grouped in tabs. The organization of each tab and the
functionality which is behind these groups will be explained in this section

General

In the General section, general information about J-Link and the target hardware are shown. Moreover the following
general settings can be configured:

● Show tray icon: If this checkbox is disabled the tray icon will not show from the next time the DLL is loaded.

● Start minimized: If this checkbox is disabled the J-Link status window will show up automatically each time the
DLL is loaded.

● Always on top: if this checkbox is enabled the J-Link status window is always visible even if other windows will
be opened.

The general information about target hardware and J-Link which are shown in this section, are:
41J-Link_J-TraceARM-2

42
● Process: Shows the path of the file which loaded the DLL.

● J-Link: Shows the name of the connected J-Link, the hardware version and the Serial number. If no J-Link is
connected it shows "not connected" and the color indicator is red.

● Target interface: Shows the selected target interface (JTAG/SWD) and the current JTAG speed. The target current
is also shown. (Only visible if J-Link is connected)

● Endian: Shows the target endianess (Only visible if J-Link is connected)

● Device: Shows the selected device for the current debug session.

● License: Opens the J-Link license manager.

● About: Opens the about dialog.

Settings

In the Settings section project- and debug-specific settings can be set. It allows the configuration of the use of FlashBP
and some other target specific settings which will be explained in this topic. Settings are saved in the configuration file.
This configuration file needs to be set by the debugger. If the debugger does not set it, settings can not be saved. All
settings can only the changed by the user himself. All settings which are modified during the debug session have to be
saved by pressing Save settings, otherwise they are lost when the debug session is closed.

Section: Flash breakpoints:

In this section, settings for the use of the FlashBP feature and related settings can be configured. When a license for
FlashBP is found, the color indicator is green and "License found" appears right to the FlashBP usage settings.

● Auto: This is the default setting of FlashBP usage. If a license has been found the FlashBP feature will be
enabled. Otherwise FlashBP will be disabled internally.

● On: Enables the FlashBP feature. If no license has been found an error message appears.

● Off: Disables the FlashBP feature.

● Show window during program: When this checkbox is enabled the "Programming flash" window is shown when
flash is re-programmed in order to set/clear flash breakpoints.

FlashBP independent settings

These settings do not belong to the FlashBP settings section. They can be configured without any license needed.

● Override device selection: If this checkbox is enabled, a dropdown list appears, which allows the user to set a
device manually. This especially makes sense when J-Link can not identify the device name given by the debugger
or if a particular device is not yet known to the debugger, but to the J-Link software.

● Allow caching of flash contents: If this checkbox is enabled, the flash contents are cached by J-Link to avoid
reading data twice. This speeds up the transfer between debugger and target.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
● Allow instruction set simulation: If this checkbox is enabled, ARM instructions will be simulated as far as
possible. This speeds up single stepping, especially when FlashBPs are used.

● Save settings: When this button is pushed, the current settings in the Settings tab will be saved in a configuration
file. This file is created by J-Link and will be created for each project and each project configuration (e.g.
Debug_RAM, Debug_Flash).

● Location of config file: Shows the path where the configuration file is placed. This configuration file contains all
the settings which can be configured in the Settings tab.

Break/Watch

In the Break/Watch section all breakpoints and watchpoints which are in the DLL internal breakpoint and watchpoint
list are shown.

Section: Breakpoints

Lists all breakpoints which are in the DLL internal breakpoint list are shown.

● Handle: Shows the handle of the breakpoint.

● Address: Shows the address where the breakpoint is set.

● Mode: Describes the breakpoint type (ARM/THUMB)

● Permission: Describes the breakpoint implementation flags.

● Implementation: Describes the breakpoint implementation type. The breakpoint types are: RAM, Flash, Hard. An
additional TBC (to be cleared) or TBS (to be set) gives information about if the breakpoint is (still) written to the
target or if it’s just in the breakpoint list to be written/cleared.

Note:It is possible for the debugger to bypass the breakpoint functionality of the J-Link software by writing to the debug
registers directly. This means for ARM7/ARM9 cores write accesses to the ICE registers, for Cortex-M3 devices write
accesses to the memory mapped flash breakpoint registers and in general simple write accesses for software breakpoints
(if the program is located in RAM). In these cases, the J-Link software can not determine the breakpoints set and the
list is empty.

Section: Watchpoints

In this section, all watchpoints which are listed in the DLL internal breakpoint list are shown.

● Handle: Shows the handle of the watchpoint.

● Address: Shows the address where the watchpoint is set.

● AddrMask: Specifies which bits of Address are disregarded during the comparison for a watchpoint match.

● Data: Shows on which data to be monitored at the address where the watchpoint is set.

● Data Mask: Specifies which bits of Data are disregarded during the comparison

● for a watchpoint match.

● Ctrl: Specifies the access type of the watchpoint (read/write).

● CtrlMask: Specifies which bits of Ctrl are disregarded during the comparison for a watchpoint match.
43J-Link_J-TraceARM-2

44
Log
In this section the log output of the DLL is shown. The user can determine which function calls should be shown in the
log window.

Available function calls to log: Register read/write, Memory read/write, set/clear breakpoint, step, go, halt, is halted.

CPU Regs

In this section the name and the value of the CPU registers are shown.

Target Power
In this section currently just the power consumption of the target hardware is shown.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
SWV
In this section SWV information are shown.

● Status: Shows the encoding and the baudrate of the SWV data received by the target (Manchester/UART, currently
J-Link only supports UART encoding).

● Bytes in buffer: Shows how many bytes are in the DLL SWV data buffer.

● Bytes transferred: Shows how many bytes have been transferred via SWV, since the debug session has been
started.

● Refresh counter: Shows how often the SWV information in this section has been updated since the debug session
has been started.

● Host buffer: Shows the reserved buffer size for SWV data, on the host side.

● Emulator buffer: Shows the reserved buffer size for SWV data, on the emulator side.

Reset strategies
J-Link / J-Trace supports different reset strategies. This is necessary because there is no single way of resetting and
halting an ARM core before it starts to execute instructions.

What is the problem if the core executes some instructions after RESET?

The instructions executed can cause various problems. Some cores can be completely "confused", which means they
can not be switched into debug mode (CPU can not be halted). In other cases, the CPU may already have initialized
some hardware components, causing unexpected interrupts or worse, the hardware may have been initialized with
illegal values. In some of these cases, such as illegal PLL settings, the CPU may be operated beyond specification,
possibly locking the CPU.

RESET STRATEGIES IN DETAIL

Type 0: Hardware, halt after reset (normal)
The hardware reset pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU. This
typically halts the CPU shortly after reset release; the CPU can in most systems execute some instructions before it is
halted. The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the
faster the CPU can be halted.

Some CPUs can actually be halted before executing any instruction, because the start of the CPU is delayed after reset
release. If a pause has been specified, J-Link waits for the specified time before trying to halt the CPU. This can be
useful if a bootloader which resides in flash or ROM needs to be started after reset.

This reset strategy is typically used if nRESET and nTRST are coupled. If nRESET and nTRST are coupled, either on
the board or the CPU itself, reset clears the breakpoint, which means that the CPU can not be stopped after reset with
the BP@0 reset strategy.
45J-Link_J-TraceARM-2

46
Type 1: Hardware, halt with BP@0
The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is programmed to halt program
execution at address 0; effectively, a breakpoint is set at address 0. If this strategy works, the CPU is actually halted
before executing a single instruction.

This reset strategy does not work on all systems for two reasons:

● If nRESET and nTRST are coupled, either on the board or the CPU itself, reset clears the breakpoint, which means
the CPU is not stopped after reset.

● Some MCUs contain a bootloader program (sometimes called kernel), which needs to be executed to enable JTAG
access.

Type 2: Software, for Analog Devices ADuC7xxx MCUs

This reset strategy is a software strategy. The CPU is halted and performs a sequence which causes a peripheral reset.
The following sequence is executed:

● The CPU is halted

● A software reset sequence is downloaded to RAM

● A breakpoint at address 0 is set

● The software reset sequence is executed.

This sequence performs a reset of CPU and peripherals and halts the CPU before executing instructions of the user
program. It is the recommended reset sequence for Analog Devices ADuC7xxx MCUs and works with these chips
only.

Type 3: No reset
No reset is performed. Nothing happens.

Type 4: Hardware, halt with WP
The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
a watchpoint. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release

Type 5: Hardware, halt with DBGRQ

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
the DBGRQ. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release.

Type 6: Software
This reset strategy is only a software reset. "Software reset" means basically no reset, just changing the CPU registers
such as PC and CPSR. This reset strategy sets the CPU registers to their after-Reset values:

● PC = 0

● CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)

● All SPSR registers = 0x10

● All other registers (which are unpredictable after reset) are set to 0.

● The hardware RESET pin is not affected.

Type 7: Reserved

Reserved reset type.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Type 8: Software, for ATMEL AT91SAM7 MCUs
The reset pin of the device is disabled by default. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work by default. For this reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the RSTC_CR
register. Resetting the peripherals puts all peripherals in the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect by writing 0x4
to the RSTC_CR register located at address 0xfffffd00.

Type 9: Hardware, for NXP LPC MCUs

After reset a bootloader is mapped at address 0 on ARM 7 LPC devices. This reset strategy performs a reset via reset
strategy Type 1 in order to reset the CPU. It also ensures that flash is mapped to address 0 by writing the MEMMAP
register of the LPC. This reset strategy is the recommended one for all ARM 7 LPC devices.

CORTEX-M3 SPECIFIC RESET STRATEGIES
J-Link supports different specific reset strategies for the Cortex-M3 core. All of the following reset strategies are
available in JTAG and in SWD mode. All three reset strategies halt the CPU after the reset.

Type 0: Normal

This reset strategy is the default strategy and should usually be used to reset the target. When using this strategy, J-Link
sets the VC_CORERESET bit before reset, which causes the CPU to halt before execution of the first instruction. In
addition to that the SYSRESETREQ bit and the VECTRESET bit are also set in order to guarantee that the core and
the peripherals are reset even on targets where the CPU RESET pin is not connected to Pin 15 (RESET) of the JTAG/
SWD connector.

Type 1: Core
Only the core is reset via the VECTRESET bit. The peripherals are not affected. After setting the VECTRESET bit, J-
Link waits for the S_RESET_ST bit in the Debug Halting Control and Status Register (DHCSR) to first become high
and then low afterwards. The CPU does not start execution of the program because J-Link sets the VC_CORERESET
bit before reset, which causes the CPU to halt before execution of the first instruction.

Type 2: ResetPin
J-Link pulls its RESET pin low to reset the core and the peripherals. This normally causes the CPU RESET pin of the
target device to go low as well, resulting in a reset of both CPU and peripherals. This reset strategy will fail if the
RESET pin of the target device is not pulled low. The CPU does not start execution of the program because J-Link sets
the VC_CORERESET bit before reset, which causes the CPU to halt before execution of the first instruction.

Using DCC for memory access
The ARM7/9 architecture requires cooperation of the CPU to access memory when the CPU is running (not in debug
mode). This means that memory can not normally be accessed while the CPU is executing the application program.
The normal way to read or write memory is to halt the CPU (put it into debug mode) before accessing memory. Even
if the CPU is restarted after the memory access, the real time behavior is significantly affected; halting and restarting
the CPU costs typically multiple milliseconds. For this reason, most debuggers do not even allow memory access if the
CPU is running.
Fortunately, there is one other option: DCC (Direct communication channel) can be used to communicate with the CPU
while it is executing the application program. All that is required is that the application program calls a DCC handler
from time to time. This DCC handler typically requires less than 1 µs per call.

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link software and can be found in the
Program Files\IAR Systems\Embedded Workbench 5.0\arm\src\debugger\dcc\ directory of the
package.

WHAT IS REQUIRED?
● An application program on the host (typically a debugger) that uses DCC, in this case C-SPY
47J-Link_J-TraceARM-2

48
● A target application program that regularly calls the DCC handler

● The supplied abort handler should be installed (optional)

Another application program that uses DCC is JLink.exe.

TARGET DCC HANDLER
The target DCC handler is a simple C-file taking care of the communication. The function DCC_Process() needs to
be called regularly from the application program or from an interrupt handler. If a RTOS is used, a good place to call
the DCC handler is from the timer tick interrupt. In general, the more often the DCC handler is called, the faster
memory can be accessed. On most devices, it is also possible to let the DCC generate an interrupt which can be used
to call the DCC handler.

TARGET DCC ABORT HANDLER
An optional DCC abort handler (a simple assembly file) can be included in the application. The DCC abort handler
allows data aborts caused by memory reads/writes via DCC to be handled gracefully. If the data abort has been caused
by the DCC communication, it returns to the instruction right after the one causing the abort, allowing the application
program to continue to run. In addition to that, it allows the host to detect if a data abort occurred.

To use the DCC abort handler, 3 things need to be done:

● Place a branch to DCC_Abort at address 0x10 ("vector" used for data aborts)

● Initialize the Abort-mode stack pointer to an area of at least 8 bytes of stack memory required by the handler

● Add the DCC abort handler assembly file to the application

Command strings
The behavior of J-Link can be customized via command strings passed to the JLinkARM.dll which controls J-Link.
Applications such as the J-Link Commander, but also the C-SPY debugger which is part of the IAR Embedded
Workbench, allow passing one or more command strings. Command line strings can be used for passing commands to
J-Link (such as switching on target power supply), as well as customize the behavior (by defining memory regions and
other things) of J-Link. The use of command strings enables options which can not be set with the configuration dialog
box provided by C-SPY.

LIST OF AVAILABLE COMMANDS
The table below lists and describes the available command strings.

Command Description

device Selects the target device.

DisableFlashBPs Disables the FlashPB feature.

DisableFlashDL Disables the J-Link ARM FlashDL feature.

EnableFlashBPs Enables the FlashPB feature.

EnableFlashDL Enables the J-Link ARM FlashDL feature.

map exclude Ignore all memory accesses to specified area.

map indirectread Specifies an area which should be read indirect.

map ram Specifies location of target RAM.

map reset Restores the default mapping, which means all memory accesses are permitted.

SetAllowSimulation Enable/Disable instruction set simulation.

SetCheckModeAfterRead Enable/Disable CPSR check after read operations.

SetResetPulseLen Defines the length of the RESET pulse in milliseconds.

SetResetType Selects the reset strategy

SetRestartOnClose Specifies restart behavior on close.

Table 13: Available command line options
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
device
This command selects the target device.

Syntax
device = <DeviceID>

DeviceID has to be a valid device identifier. For a list of all available device identifiers please refer to chapter
Supported devices on page 58.

Example

device = AT91SAM7S256

DisableFlashBPs
This command disables the FlashBP feature.

Syntax
DisableFlashBPs

DisableFlashDL
This command disables the J-Link ARM FlashDL feature.

Syntax
DisableFlashDL

EnableFlashBPs
This command enables the FlashBP feature.

Syntax
EnableFlashBPs

EnableFlashDL
This command enables the J-Link ARM FlashDL feature.

Syntax
EnableFlashDL

map exclude
This command excludes a specified memory region from all memory accesses. All subsequent memory accesses to this
memory region are ignored.

Memory mapping

Some devices do not allow access of the entire 4GB memory area. Ideally, the entire memory can be accessed; if a
memory access fails, the CPU reports this by switching to abort mode. The CPU memory interface allows halting the
CPU via a WAIT signal. On some devices, the WAIT signal stays active when accessing certain unused memory areas.
This halts the CPU indefinitely (until RESET) and will therefore end the debug session. This is exactly what happens
when accessing critical memory areas. Critical memory areas should not be present in a device; they are typically a
hardware design problem. Nevertheless, critical memory areas exist on some devices.

SetDbgPowerDownOnClose Used to power-down the debug unit of the target CPU when the debug session is
closed.

SetSysPowerDownOnIdle Used to power-down the target CPU, when there are no transmissions between
J-Link and target CPU, for a specified timeframe.

SupplyPower Activates/Deactivates power supply over pin 19 of the JTAG connector.

SupplyPowerDefault Activates/Deactivates power supply over pin 19 of the JTAG connector
permanently.

Command Description

Table 13: Available command line options
49J-Link_J-TraceARM-2

50
To avoid stalling the debug session, a critical memory area can be excluded from access: J-Link will not try to read or
write to critical memory areas and instead ignore the access silently. Some debuggers (such as IAR C-SPY) can try to
access memory in such areas by dereferencing non-initialized pointers even if the debugged program (the debuggee)
is working perfectly. In situations like this, defining critical memory areas is a good solution.

Syntax
map exclude <SAddr>-<EAddr>

Example

This is an example for the map exclude command in combination with an NXP LPC2148 MCU.

Memory map

The "problematic" memory areas are:

To exclude these areas from being accessed through J-Link the map exclude command should be used as follows:

map exclude 0x00080000-0x3FFFFFFF
map exclude 0x40008000-0x7FCFFFFF
map exclude 0x7FD02000-0x7FD02000
map exclude 0x80000000-0xDFFFFFFF

map indirectread
This command can be used to read a memory area indirectly. Indirectly reading means that a small code snippet is
downloaded into RAM of the target device, which reads and transfers the data of the specified memory area to the host.
Before map indirectread can be called a RAM area for the indirectly read code snippet has to be defined. Use
therefor the map ram command and define a RAM area with a size of >= 256 byte.

Typical applications

Refer to chapter Fast GPIO bug on page 71 for an example.

Syntax
map indirectread <StartAddressOfArea>-<EndAddress>

Example

map indirectread 0x3fffc000-0x3fffcfff

map ram
This command should be used to define an area in RAM of the target device. The area must be 256-byte aligned. The
data which was located in the defined area will not be corrupted. Data which resides in the defined RAM area is saved
and will be restored if necessary. This command has to be executed before map indirectread will be called.

Typical applications

Refer to chapter Fast GPIO bug on page 71 for an example.

0x00000000-0x0007FFFF On-chip flash memory

0x00080000-0x3FFFFFFF Reserved

0x40000000-0x40007FFF On-chip SRAM

0x40008000-0x7FCFFFFF Reserved

0x7FD00000-0x7FD01FFF On-chip USB DMA RAM

0x7FD02000-0x7FD02000 Reserved

0x7FFFD000-0x7FFFFFFF Boot block (remapped from on-chip flash memory)

0x80000000-0xDFFFFFFF Reserved

0xE0000000-0xEFFFFFFF VPB peripherals

0xF0000000-0xFFFFFFFF AHB peripherals

0x00080000-0x3FFFFFFF Reserved

0x40008000-0x7FCFFFFF Reserved

0x7FD02000-0x7FD02000 Reserved

0x80000000-0xDFFFFFFF Reserved
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Syntax
map ram <StartAddressOfArea>-<EndAddressOfArea>

Example

map ram 0x40000000-0x40003fff;

map reset
This command restores the default memory mapping, which means all memory accesses are permitted.

Typical applications

Used with other "map" commands to return to the default values. The map reset command should be called before any
other "map" command is called.

Syntax
map reset

Example

map reset

SetAllowSimulation
This command can be used to enable or disable the instruction set simulation. By default the instruction set simulation
is enabled.

Syntax
SetAllowSimulation = 0 | 1

Example

SetAllowSimulation 1 // Enables instruction set simulation

SetCheckModeAfterRead
This command is used to enable or disable the verification of the CPSR (current processor status register) after each
read operation. By default this check is enabled. However this can cause problems with some CPUs (e.g. if invalid
CPSR values are returned). Please note that if this check is turned off (SetCheckModeAfterRead = 0), the success of
read operations cannot be verified anymore and possible data aborts are not recognized.

Typical applications

This verification of the CPSR can cause problems with some CPUs (e.g. if invalid CPSR values are returned). Note that
if this check is turned off (SetCheckModeAfterRead = 0), the success of read operations cannot be verified anymore
and possible data aborts are not recognized.

Syntax
SetCheckModeAfterRead = 0 | 1

Example

SetCheckModeAfterRead = 0

SetResetPulseLen
This command defines the length of the RESET pulse in milliseconds. The default for the RESET pulse length is 20
milliseconds.

Syntax
SetResetPulseLen = <value>

Example

SetResetPulseLen = 50
51J-Link_J-TraceARM-2

52
SetResetType
This command changes the reset strategy.

Typical applications

Refer to chapter Reset strategies on page 45 for additional informations about the different reset strategies.

Syntax
SetResetType = <value>

Example

SetResetType = 0

SetRestartOnClose
This command specifies if the J-Link restarts target execution on close. The default is to restart target execution. This
can be disabled by using this command.

Syntax
SetRestartOnClose = 0 | 1

Example

SetRestartOnClose = 1

SetDbgPowerDownOnClose
When using this command, the debug unit of the target CPU is powered-down when the debug session is closed.

Note:This command works only for Cortex-M3 devices

Typical applications

This feature is useful to reduce the power consumption of the CPU when no debug session is active.

Syntax

SetDbgPowerDownOnClose = <value>

Example

SetDbgPowerDownOnClose = 1 // Enables debug power-down on close.
SetDbgPowerDownOnClose = 0 // Disables debug power-down on close.

SetSysPowerDownOnIdle
When using this command, the target CPU is powered-down when no transmission between J-Link and the target CPU
was performed for a specific time. When the next command is given, the CPU is powered-up.

Note:This command works only for Cortex-M3 devices.

Typical applications

This feature is useful to reduce the power consumption of the CPU.

Syntax
SetSysPowerDownOnIdle = <value>

Note:A 0 for <value> disables the power-down on idle functionality.

Value Description

0 Hardware, halt after reset (normal).

1 Hardware, halt with BP@0.

2 Software, for Analog Devices ADuC7xxx MCUs.

Table 14: List of possible value for command SetResetType
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Example

SetSysPowerDownOnIdle = 10; // The target CPU is powered-down when there is no
 // transmission between J-Link and target CPU for at least 10ms

SupplyPower
This command activates power supply over pin 19 of the JTAG connector. J-Link have the V5 supply over pin 19
activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax
SupplyPower = 0 | 1

Example

SupplyPower = 1

SupplyPowerDefault
This command activates power supply over pin 19 of the JTAG connector permanently. J-Link have the V5 supply over
pin 19 activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax
SupplyPowerDefault = 0 | 1

Example

SupplyPowerDefault = 1

USING COMMAND STRINGS

J-Link Commander

The J-Link command strings can be tested with the J-Link Commander. Use the comamand exec supplemented by one
of the command strings.

Example

exec SupplyPower = 1
exec map reset
exec map exclude 0x10000000-0x3FFFFFFF
53J-Link_J-TraceARM-2

54
IAR Embedded Workbench
The J-Link command strings can be supplied using the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog box and select Debugger.

On the Extra Options page, select Use command line options.
Enter --jlink_exec_command "<CommandLineOption>" in the textfield. If more than one command should be
used separate the commands with semicolon.

Switching off CPU clock during debug
We recommend not to switch off CPU clock during debug. However, if you do, you should consider the following:

Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

With these cores, the TAP controller uses the clock signal provided by the emulator, which means the TAP controller
and ICE-Breaker continue to be accessible even if the CPU has no clock.
Therefore, switching off CPU clock during debug is normally possible if the CPU clock is periodically (typically using
a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop at the first
instruction in the ISR (typically at address 0x18).
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace
Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

With these cores, the clock input of the TAP controller is connected to the output of a three-stage synchronizer, which
is fed by clock signal provided by the emulator, which means that the TAP controller and ICE-Breaker are not
accessible if the CPU has no clock.
If the RTCK signal is provided, the adaptive clocking function can be used to synchronize the JTAG clock (provided
by the emulator) to the processor clock. This way, the JTAG clock is stopped if the CPU clock is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possible if the CPU clock is periodically
(typically using a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop
at the first instruction in the ISR (typically at address 0x18).

Cache handling
Most ARM systems with external memory have at least one cache. Typically, ARM7 systems with external memory
come with a unified cache, which is used for both code and data. Most ARM9 systems with external memory come
with separate caches for the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware architecture.

CACHE COHERENCY
When debugging or otherwise working with a system with processor with cache, it is important to maintain the cache(s)
and main memory coherent. This is easy in systems with a unified cache and becomes increasingly difficult in systems
with hardware architecture. A write buffer and a D-Cache configured in write-back mode can further complicate the
problem.

ARM9 chips have no hardware to keep the caches coherent, so that this is the responsibility of the software.

CACHE CLEAN AREA
J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does not have to
download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a cache clean area is not
required.

CACHE HANDLING OF ARM7 CORES
Because ARM7 cores have a unified cache, there is no need to handle the caches during debug.

CACHE HANDLING OF ARM9 CORES
ARM9 cores with cache require J-Link / J-Trace to handle the caches during debug. If the processor enters debug state
with caches enabled, J-Link / J-Trace does the following:

When entering debug state

J-Link / J-Trace performs the following:

● it stores the current write behavior for the D-Cache

● it selects write-through behavior for the D-Cache.

When leaving debug state

J-Link / J-Trace performs the following:

● it restores the stored write behavior for the D-Cache

● it invalidates the D-Cache.

Note:The implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM9 cores.
55J-Link_J-TraceARM-2

56

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Flash download and flash
breakpoints
This chapter describes how flash breakpoints work. In addition, the chapter contains a list of supported
microcontrollers.

Introduction
The JLinkARM.dll is able to use the flash breakpoints features, but it requires an additional license.

Licensing
The standard J-Link does not come with a built-in license. You will need to obtain a license for every J-Link. For more
information about the different license types, please refer to License types on page 13.
For a complete list of devices which are supported by the device-based licenses, please refer to Device list on page 14.

Entering a license

The easiest way to enter a license is the following:

Open the J-Link control panel window, go to the General tab and choose License.

Now the J-Link ARM license manager will open and show all licenses, both key-based and built-in licenses of J-Link.
J-Link_J-TraceARM-2 57

58
Now choose Add license to add one or more new licenses. Enter your license(s) and choose OK. Now the licenses
should have been added.

Supported devices
The following table lists the microcontrollers for which flash breakpoints are available.

Note:Only the devices listed below are currently supported with the flash breakpoint feature. This feature works on the
internal flash of the devices only. You need to make sure that the device you are using is supported.

The device is selected by its device identifier.

Manufacturer Device ID Devices

Analog Devices ADuC7020x62 ADuC7020x62

Analog Devices ADuC7021x32 ADuC7021x32

Analog Devices ADuC7021x62 ADuC7021x62

Analog Devices ADuC7022x32 ADuC7022x32

Analog Devices ADuC7022x62 ADuC7022x62

Analog Devices ADuC7024x62 ADuC7024x62

Analog Devices ADuC7025x32 ADuC7025x32

Analog Devices ADuC7025x62 ADuC7025x62

Analog Devices ADuC7026x62 ADuC7026x62

Analog Devices ADuC7027x62 ADuC7027x62

Analog Devices ADuC7028x62 ADuC7028x62

Analog Devices ADuC7030 ADuC7030

Analog Devices ADuC7031 ADuC7031

Analog Devices ADuC7032 ADuC7032

Analog Devices ADuC7033 ADuC7033

Analog Devices ADuC7038 ADuC7038

Analog Devices ADuC7060 ADuC7060

Analog Devices ADuC7128 ADuC7128

Analog Devices ADuC7129 ADuC7129

Analog Devices ADuC7229x126 ADuC7229x126

Atmel AT91FR40162 AT91FR40162

Atmel AT91SAM7A3 AT91SAM7A3

Atmel AT91SAM7S32 AT91SAM7S32

Atmel AT91SAM7S321 AT91SAM7S321

Atmel AT91SAM7S64 AT91SAM7S64

Atmel AT91SAM7S128 AT91SAM7S128

Table 15: Supported microcontrollers
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Flash download and flash breakpoints
Atmel AT91SAM7S256 AT91SAM7S256

Atmel AT91SAM7S512 AT91SAM7S512

Atmel AT91SAM7SE32 AT91SAM7SE32

Atmel AT91SAM7SE256 AT91SAM7SE256

Atmel AT91SAM7SE512 AT91SAM7SE512

Atmel AT91SAM7X128 AT91SAM7X128

Atmel AT91SAM7X256 AT91SAM7X256

Atmel AT91SAM7X512 AT91SAM7X512

Atmel AT91SAM7XC128 AT91SAM7XC128

Atmel AT91SAM7XC256 AT91SAM7XC256

Atmel AT91SAM7XC512 AT91SAM7XC512

Freescale* MAC7101 MAC7101

Freescale* MAC7106 MAC7106

Freescale* MAC7111 MAC7111

Freescale* MAC7112 MAC7112

Freescale* MAC7116 MAC7116

Freescale* MAC7121 MAC7121

Freescale* MAC7122 MAC7122

Freescale* MAC7126 MAC7126

Freescale* MAC7131 MAC7131

Freescale* MAC7136 MAC7136

Freescale* MAC7141 MAC7141

Freescale* MAC7142 MAC7142

Luminary LM3S101 LM3S101

Luminary LM3S102 LM3S102

Luminary LM3S301 LM3S301

Luminary LM3S310 LM3S310

Luminary LM3S315 LM3S315

Luminary LM3S316 LM3S316

Luminary LM3S317 LM3S317

Luminary LM3S328 LM3S328

Luminary LM3S601 LM3S601

Luminary LM3S610 LM3S610

Luminary LM3S611 LM3S611

Luminary LM3S612 LM3S612

Luminary LM3S613 LM3S613

Luminary LM3S615 LM3S615

Luminary LM3S617 LM3S617

Luminary LM3S618 LM3S618

Luminary LM3S628 LM3S628

Luminary LM3S801 LM3S801

Luminary LM3S811 LM3S811

Luminary LM3S812 LM3S812

Luminary LM3S815 LM3S815

Luminary LM3S817 LM3S817

Luminary LM3S818 LM3S818

Luminary LM3S828 LM3S828

Manufacturer Device ID Devices

Table 15: Supported microcontrollers (Continued)
59J-Link_J-TraceARM-2

60
Luminary LM3S2110 LM3S2110

Luminary LM3S2139 LM3S2139

Luminary LM3S2410 LM3S2410

Luminary LM3S2412 LM3S2412

Luminary LM3S2432 LM3S2432

Luminary LM3S2533 LM3S2533

Luminary LM3S2620 LM3S2620

Luminary LM3S2637 LM3S2637

Luminary LM3S2651 LM3S2651

Luminary LM3S2730 LM3S2730

Luminary LM3S2739 LM3S2739

Luminary LM3S2939 LM3S2939

Luminary LM3S2948 LM3S2948

Luminary LM3S2950 LM3S2950

Luminary LM3S2965 LM3S2965

Luminary LM3S6100 LM3S6100

Luminary LM3S6110 LM3S6110

Luminary LM3S6420 LM3S6420

Luminary LM3S6422 LM3S6422

Luminary LM3S6432 LM3S6432

Luminary LM3S6610 LM3S6610

Luminary LM3S6633 LM3S6633

Luminary LM3S6637 LM3S6637

Luminary LM3S6730 LM3S6730

Luminary LM3S6918 LM3S6918

Luminary LM3S6938 LM3S6938

Luminary LM3S6952 LM3S6952

Luminary LM3S6965 LM3S6965

NXP LPC2101 LPC2101

NXP LPC2102 LPC2102

NXP LPC2103 LPC2103

NXP LPC2104 LPC2104

NXP LPC2105 LPC2105

NXP LPC2106 LPC2106

NXP LPC2109 LPC2109

NXP LPC2114 LPC2114

NXP LPC2119 LPC2119

NXP LPC2124 LPC2124

NXP LPC2129 LPC2129

NXP LPC2131 LPC2131

NXP LPC2132 LPC2132

NXP LPC2134 LPC2134

NXP LPC2136 LPC2136

NXP LPC2138 LPC2138

NXP LPC2141 LPC2141

NXP LPC2142 LPC2142

NXP LPC2144 LPC2144

Manufacturer Device ID Devices

Table 15: Supported microcontrollers (Continued)
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Flash download and flash breakpoints
NXP LPC2146 LPC2146

NXP LPC2148 LPC2148

NXP LPC2194 LPC2194

NXP LPC2212 LPC2212

NXP LPC2214 LPC2214

NXP LPC2292 LPC2292

NXP LPC2294 LPC2294

NXP LPC2364 LPC2364

NXP LPC2366 LPC2366

NXP LPC2368 LPC2368

NXP LPC2378 LPC2378

NXP LPC2387 LPC2387

NXP LPC2388 LPC2388

NXP LPC2468 LPC2468

NXP LPC2478 LPC2478

OKI ML67Q4002 ML67Q4002

OKI ML67Q4003 ML67Q4003

OKI ML67Q4050 ML67Q4050

OKI ML67Q4051 ML67Q4051

OKI ML67Q4060 ML67Q4060

OKI ML67Q4061 ML67Q4061

Samsung* S3F445HX S3F445HX

ST STM32F101C6 STM32F101C6

ST STM32F101C8 STM32F101C8

ST STM32F101CB STM32F101CB

ST STM32F101R6 STM32F101R6

ST STM32F101R8 STM32F101R8

ST STM32F101RB STM32F101RB

ST STM32F101RC STM32F101RC

ST STM32F101RD STM32F101RD

ST STM32F101RE STM32F101RE

ST STM32F101T6 STM32F101T6

ST STM32F101T8 STM32F101T8

ST STM32F101V8 STM32F101V8

ST STM32F101VB STM32F101VB

ST STM32F101VC STM32F101VC

ST STM32F101VD STM32F101VD

ST STM32F101VE STM32F101VE

ST STM32F101ZC STM32F101ZC

ST STM32F101ZD STM32F101ZD

ST STM32F101ZE STM32F101ZE

ST STM32F102C6 STM32F102C6

ST STM32F102C8 STM32F102C8

ST STM32F102CB STM32F102CB

ST STM32F103C6 STM32F103C6

ST STM32F103C8 STM32F103C8

ST STM32F103R6 STM32F103R6

Manufacturer Device ID Devices

Table 15: Supported microcontrollers (Continued)
61J-Link_J-TraceARM-2

62
ST STM32F103R8 STM32F103R8

ST STM32F103RB STM32F103RB

ST STM32F103RC STM32F103RC

ST STM32F103RD STM32F103RD

ST STM32F103RE STM32F103RE

ST STM32F103T6 STM32F103T6

ST STM32F103T8 STM32F103T8

ST STM32F103V8 STM32F103V8

ST STM32F103VB STM32F103VB

ST STM32F103VC STM32F103VC

ST STM32F103VD STM32F103VD

ST STM32F103VE STM32F103VE

ST STM32F103ZC STM32F103ZC

ST STM32F103ZD STM32F103ZD

ST STM32F103ZE STM32F103ZE

ST STR710FZ1 STR710FZ1

ST STR710FZ2 STR710FZ2

ST STR711FR0 STR711FR0

ST STR711FR1 STR711FR1

ST STR711FR2 STR711FR2

ST STR712FR0 STR712FR0

ST STR712FR1 STR712FR1

ST STR712FR2 STR712FR2

ST STR715FR0 STR715FR0

ST STR730FZ1 STR730FZ1

ST STR730FZ2 STR730FZ2

ST STR731FV0 STR731FV0

ST STR731FV1 STR731FV1

ST STR731FV2 STR731FV2

ST STR735FZ1 STR735FZ1

ST STR735FZ2 STR735FZ2

ST STR736FV0 STR736FV0

ST STR736FV1 STR736FV1

ST STR736FV2 STR736FV2

ST STR750FV0 STR750FV0

ST STR750FV1 STR750FV1

ST STR750FV2 STR750FV2

ST STR751FR0 STR751FR0

ST STR751FR1 STR751FR1

ST STR751FR2 STR751FR2

ST STR752FR0 STR752FR0

ST STR752FR1 STR752FR1

ST STR752FR2 STR752FR2

ST STR755FR0 STR755FR0

ST STR755FR1 STR755FR1

ST STR755FR2 STR755FR2

ST STR755FV0 STR755FV0

Manufacturer Device ID Devices

Table 15: Supported microcontrollers (Continued)
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Flash download and flash breakpoints
*Not available for RDI, J-Link GDB Server

ST STR755FV1 STR755FV1

ST STR755FV2 STR755FV2

ST STR910FAM32 STR910FAM32

ST STR910FAW32 STR910FAW32

ST STR910FAZ32 STR910FAZ32

ST STR911FAM42 STR911FAM42

ST STR911FAM44 STR911FAM44

ST STR911FAM46 STR911FAM46

ST STR911FAM47 STR911FAM47

ST STR911FAW42 STR911FAW42

ST STR911FAW44 STR911FAW44

ST STR911FAW46 STR911FAW46

ST STR911FAW47 STR911FAW47

ST STR911FM32 STR911FM32

ST STR911FM42 STR911FM42

ST STR911FM44 STR911FM44

ST STR911FW32 STR911FW32

ST STR911FW42 STR911FW42

ST STR911FW44 STR911FW44

ST STR912FAW32 STR912FAW32

ST STR912FAW42 STR912FAW42

ST STR912FAW44 STR912FAW44

ST STR912FAW46 STR912FAW46

ST STR912FAW47 STR912FAW47

ST STR912FAZ42 STR912FAZ42

ST STR912FAZ44 STR912FAZ44

ST STR912FAZ46 STR912FAZ46

ST STR912FAZ47 STR912FAZ47

ST STR912FM32 STR912FM32

ST STR912FM42 STR912FM42

ST STR912FM44 STR912FM44

ST STR912FW32 STR912FW32

ST STR912FW42 STR912FW42

ST STR912FW44 STR912FW44

TI TMS470R1A64 TMS470R1A64

TI TMS470R1A128 TMS470R1A128

TI TMS470R1A256 TMS470R1A256

TI TMS470R1A288 TMS470R1A288

TI TMS470R1A384 TMS470R1A384

TI TMS470R1B512 TMS470R1B512

TI TMS470R1B768 TMS470R1B768

TI TMS470R1B1M TMS470R1B1M

TI TMS470R1VF288 TMS470R1VF288

TI TMS470R1VF688 TMS470R1VF688

TI TMS470R1VF689 TMS470R1VF689

Manufacturer Device ID Devices

Table 15: Supported microcontrollers (Continued)
63J-Link_J-TraceARM-2

64
Using flash breakpoints
J-Link ARM FlashBP can be used by IAR Embedded Workbench.

IAR EMBEDDED WORKBENCH
To use J-Link FlashBP with IAR Embedded Workbench is quite simple:

First, choose the right device in the project settings if not already done. The device settings can be found at Project-
>Options->General Options->Target.

If you use the IAR project for the first time, the use of FlashBPs is set to Auto, which is the default value. For more
information about different configurations for FlashBPs, refer to Settings on page 42.

Now you can start the debug session. If you run this project for the first time a settings file is created in which the
configuration of FlashBPs is saved. This settings file is created for every project configuration (for example,
Debug_RAM, Debug_FLASH), so you can save different J-Link FlashBP configurations for different project
configurations. When the debug session starts, you should see the selected target in the Device tab of the J-Link status
window. When the debug session is running you can modify the settings regarding FlashBPs, in the Settings tab and
save them to the settings file.

Currently changes in this tab, will take effect next time the debug session is started.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics
This chapter gives additional information about specific devices.

Analog Devices
J-Link has been tested with the following MCUs from Analog Devices, but should work with any ARM7/9 and Cortex-
M3 device:

● ADuC7020x62

● ADuC7021x32

● ADuC7021x62

● ADuC7021x62

● ADuC7022x32

● ADuC7022x62

● ADuC7024x62

● ADuC7025x32

● ADuC7025x62

● ADuC7026x62

● ADuC7027x62

● ADuC7030

● ADuC7031

● ADuC7032

● ADuC7033

● ADuC7060

● ADuC7128

● ADuC7129

● ADuC7229x126

ADUC7XXX
All devices of this family are supported by J-Link.

Software reset

A special reset strategy has been made available for Analog Devices ADuC7xxx MCUs. This special reset strategy is
a software reset. "Software reset" means basically no reset, just changing the CPU registers such as PC and CPSR.

The software reset for Analog Devices ADuC7xxxx executes the following sequence:

● The CPU is halted

● A software reset sequence is downloaded to RAM

● A breakpoint at address 0 is set

● The software reset sequence is executed.

It is recommended to use this reset strategy. This sequence performs a reset of CPU and peripherals and halts the CPU
before executing instructions of the user program. It is the recommended reset sequence for Analog Devices
ADuC7xxx MCUs and works with these devices only.

This information is applicable to the following devices:
● Analog ADuC7020x62

● Analog ADuC7021x32
J-Link_J-TraceARM-2 65

66
● Analog ADuC7021x62

● Analog ADuC7022x32

● Analog ADuC7022x62

● Analog ADuC7024x62

● Analog ADuC7025x32

● Analog ADuC7025x62

● Analog ADuC7026x62

● Analog ADuC7027x62

● Analog ADuC7030

● Analog ADuC7031

● Analog ADuC7032

● Analog ADuC7033

● Analog ADuC7128

● Analog ADuC7129

● Analog ADuC7229x126

ATMEL
J-Link has been tested with the following ATMEL devices, but should work with any ARM7/9 and Cortex-M3 device:

● AT91SAM7A3

● AT91SAM7S32

● AT91SAM7S321

● AT91SAM7S64

● AT91SAM7S128

● AT91SAM7S256

● AT91SAM7S512

● AT91SAM7SE32

● AT91SAM7SE256

● AT91SAM7SE512

● AT91SAM7X128

● AT91SAM7X256

● AT91SAM7X512

● AT91SAM7XC128

● AT91SAM7XC256

● AT91SAM7XC512

● AT91RM9200

● AT91SAM9260

● AT91SAM9261

● AT91SAM9262

● AT91SAM9263

AT91SAM7
All devices of this family are supported by J-Link.

Reset strategy

The reset pin of the device is per default disabled. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work per default. For this reason a special reset strategy has been made available.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics
It is recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the RSTC_CR
register. Reseting the peripherals puts all peripherals in the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect by writing 0x4
to the RSTC_CR register located at address 0xfffffd00.

This information is applicable to the following devices:
● AT91SAM7S (all devices)

● AT91SAM7SE (all devices)

● AT91SAM7X (all devices)

● AT91SAM7XC (all devices)

● AT91SAM7A (all devices)

Memory mapping
Either flash or RAM can be mapped to address 0. After reset flash is mapped to address 0. In order to map RAM to
address 0, a 1 can be written to the RSTC_CR register. Unfortunately, this remap register is a toggle register, which
switches between RAM and flash with every time bit zero is written.

To achieve a defined mapping, there are two options:

1 Use the software reset described above.

2 Test if RAM is located at 0 using multiple read/write operations and testing the results.

Clearly 1 is the easiest solution and is recommended.

This information is applicable to the following devices:
● AT91SAM7S (all devices)

● AT91SAM7SE (all devices)

● AT91SAM7X (all devices)

● AT91SAM7XC (all devices)

● AT91SAM7A (all devices)

Recommended init sequence
In order to work with an ATMEL AT91SAM7 device, it has to be initialized. The following paragraph describes the
steps of an initialization sequence.

● Set JTAG speed to 30 kHz

● Reset target

● Perform peripheral reset

● Disable watchdog

● Initialize PLL

● Use full JTAG speed.
67J-Link_J-TraceARM-2

68
Example

/***
*
* _Init()
*/
_Init() {
 __emulatorSpeed(30000); // Set JTAG speed to 30 kHz
 __writeMemory32(0xA5000004,0xFFFFFD00,"Memory"); // Perform peripheral reset
 __sleep(20000);
 __writeMemory32(0x00008000,0xFFFFFD44,"Memory"); // Disable Watchdog
 __sleep(20000);
 __writeMemory32(0x00000601,0xFFFFFC20,"Memory"); // PLL
 __sleep(20000);
 __writeMemory32(0x10191c05,0xFFFFFC2C,"Memory"); // PLL
 __sleep(20000);
 __writeMemory32(0x00000007,0xFFFFFC30,"Memory"); // PLL
 __sleep(20000);
 __writeMemory32(0x002f0100,0xFFFFFF60,"Memory"); // Set 1 wait state for
 __sleep(20000); // flash (2 cycles)
 __emulatorSpeed(12000000); // Use full JTAG speed
}

/***
*
* execUserReset()
*/
execUserReset() {
 __message "execUserReset()";
 _Init();
}

/***
*
* execUserPreload()
*/
execUserPreload() {
 __message "execUserPreload()";
 _Init();
}

AT91SAM9
These devices are based on ARM926EJ-S core. All devices of this family are supported by J-Link.

JTAG settings

We recommend using adaptive clocking.

This information is applicable to the following devices:
● AT91RM9200

● AT91SAM9260

● AT91SAM9261

● AT91SAM9262

● AT91SAM9263

Freescale
J-Link has been tested with the following Freescale devices, but should work with any ARM7/9 and Cortex-M3 device:

● MAC7101

● MAC7106

● MAC7111

● MAC7112

● MAC7116

● MAC7121

● MAC7122
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics
● MAC7126

● MAC7131

● MAC7136

● MAC7141

● MAC7142

MAC71X
All devices of this family are supported by J-Link.

Luminary Micro
J-Link has been tested with the following Luminary Micro devices, but should work with any ARM7/9 and Cortex-M3
device:

● LM3S101

● LM3S102

● LM3S301

● LM3S310

● LM3S315

● LM3S316

● LM3S317

● LM3S328

● LM3S601

● LM3S610

● LM3S611

● LM3S612

● LM3S613

● LM3S615

● LM3S617

● LM3S618

● LM3S628

● LM3S801

● LM3S811

● LM3S812

● LM3S815

● LM3S817

● LM3S818

● LM3S828

● LM3S2110

● LM3S2139

● LM3S2410

● LM3S2412

● LM3S2432

● LM3S2533

● LM3S2620

● LM3S2637

● LM3S2651

● LM3S2730

● LM3S2739
69J-Link_J-TraceARM-2

70
● LM3S2939

● LM3S2948

● LM3S2950

● LM3S2965

● LM3S6100

● LM3S6110

● LM3S6420

● LM3S6422

● LM3S6432

● LM3S6610

● LM3S6633

● LM3S6637

● LM3S6730

● LM3S6938

● LM3S6952

● LM3S6965

STELLARIS LM3S100 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S300 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S600 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S800 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S2000 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6100 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6400 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6700 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics
STELLARIS LM3S6900 SERIES
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

NXP
J-Link has been tested with the following NXP devices, but should work with any ARM7/9 and Cortex-M3 device:

● LPC2101

● LPC2102

● LPC2103

● LPC2104

● LPC2105

● LPC2106

● LPC2109

● LPC2114

● LPC2119

● LPC2124

● LPC2129

● LPC2131

● LPC2132

● LPC2134

● LPC2136

● LPC2138

● LPC2141

● LPC2142

● LPC2144

● LPC2146

● LPC2148

● LPC2194

● LPC2212

● LPC2214

● LPC2292

● LPC2294

● LPC2364

● LPC2366

● LPC2368

● LPC2378

● LPC2468

● LPC2478

● PCF87750

● SJA2010

● SJA2510

LPC

Fast GPIO bug

The values of the fast GPIO registers can not be read direct via JTAG from a debugger. The direct access to the registers
corrupts the returned values. This means that the values in the fast GPIO registers normally can not be checked or
changed from a debugger.
71J-Link_J-TraceARM-2

72
Solution / Workaround

J-Link supports command strings which can be used to read a memory area indirect. Indirectly reading means that a
small code snippet will be written into RAM of the target device, which reads and transfers the data of the specified
memory area to the debugger. Indirectly reading solves the fast GPIO problem, because only direct register access
corrupts the register contents.

Define a 256 byte aligned area in RAM of the LPC target device with the J-Link command map ram and define
afterwards the memory area which should be read indirect with the command map indirectread to use the
indirectly reading feature of J-Link. Note that the data in the defined RAM area is saved and will be restored after using
the RAM area.

This information is applicable to the following devices:
● LPC2101

● LPC2102

● LPC2103

● LPC213x/01

● LPC214x (all devices)

● LPC23xx (all devices)

● LPC24xx (all devices)

Example

J-Link command line options can be used with the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog and select Debugger. Select Use command line options in the Extra Options tap and enter
in the textfield --jlink_exec_command "map ram 0x40000000-0x40003fff; map indirectread
0x3fffc000-0x3fffcfff; map exclude 0x3fffd000-0x3fffffff;" as shown in the screenshot
below.

With these additional commands are the values of the fast GPIO registers in the C-SPY debugger correct and can be
used for debugging. For more information about J-Link command line options, refer to Command strings on page 48.

OKI
J-Link has been tested with the following OKI devices, but should work with any ARM7/9 and Cortex-M3 device:

● ML67Q4002

● ML67Q4003

● ML67Q4050

● ML67Q4051

● ML67Q4060
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics
● ML67Q4061

ML67Q40X
All devices of this family are supported by J-Link.

ST Microelectronics
J-Link has been tested with the following ST Microelectronics devices, but should work with any ARM7/9 and Cortex-
M3 device:

● STR710FZ1

● STR710FZ2

● STR711FR0

● STR711FR1

● STR711FR2

● STR712FR0

● STR712FR1

● STR712FR2

● STR715FR0

● STR730FZ1

● STR730FZ2

● STR731FV0

● STR731FV1

● STR731FV2

● STR735FZ1

● STR735FZ2

● STR736FV0

● STR736FV1

● STR736FV2

● STR750FV0

● STR750FV1

● STR750FV2

● STR751FR0

● STR751FR1

● STR751FR2

● STR752FR0

● STR752FR1

● STR752FR2

● STR755FR0

● STR755FR1

● STR755FR2

● STR755FV0

● STR755FV1

● STR755FV2

● STR911FM32

● STR911FM44

● STR911FW32

● STR911FW44

● STR912FM32
73J-Link_J-TraceARM-2

74
● STR912FM44

● STR912FW32

● STR912FW44

● STM32F101C6

● STM32F101C8

● STM32F101R6

● STM32F101R8

● STM32F101RB

● STM32F101V8

● STM32F101VB

● STM32F103C6

● STM32F103C8

● STM32F103R6

● STM32F103R8

● STM32F103RB

● STM32F103V8

● STM32F103VB

STR 71X
These devices are ARM7TDMI based.
All devices of this family are supported by J-Link.

STR 73X
These devices are ARM7TDMI based.
All devices of this family are supported by J-Link.

STR 75X
These devices are ARM7TDMI-S based.
All devices of this family are supported by J-Link.

STR91X
These device are ARM966E-S based.
All devices of this family are supported by J-Link.

Flash erasing

The devices have 3 TAP controllers built-in. When starting J-Link.exe, it reports 3 JTAG devices. A special tool, J-
Link STR9 Commander (JLinkSTR91x.exe) is available to directly access the flash controller of the device. This
tool can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall.
For more information about the J-Link STR9 Commander, please refer to J-Link STR91x Commander (Command line
tool) on page 22.

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The IOs are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

STM32
These device are Cortex-M3 based.
All devices of this family are supported by J-Link.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics
Option byte programming
we suggest to perform the programming of the option bytes directly from the target application. J-Link (or an additional
software tool like J-Flash) does not support programming of the option bytes.

Read-protection

The user area internal flash of the STM32 devices can be protected against read by untrusted code. In order to unsecure
a read-protected STM32 device, SEGGER offers a free command line tool which overrides the read-protection of a
STM32 device. For more information about the J-Link STM32 Commander, please refer to J-Link STM32 Commander
(Command line tool) on page 23.

Note:J-Flash ARM supports securing and unsecuring a STM32 device, too.

Hardware watchdog

The hardware watchdog of a STM32 device can be enabled by programming the option bytes. If the hardware watchdog
is enabled the device reset periodically if the watchdog timer is not refreshed and reaches 0. If the hardware watchdog
is enabled by an application which is located in flash and which does not refresh the watchdog timer, the device can not
be debugged anymore.

Disabling the hardware watchdog

In order to disable the hardware watchdog the option bytes have to be re-programmed. SEGGER offers a free command
line tool which reprograms the option bytes in order to disable the hardware watchdog. For more information about the
STM32 commander, please refer to J-Link STM32 Commander (Command line tool) on page 23.

Note:In order to re-program the option bytes they have to be erased first. Erasing the option bytes will read-protect the
flash of the STM32. The STM32 commander will also override the read-protection of the STM32 device after disabling
the watchdog. Please also note that unsecuring a read-protected device will cause a mass erase of the flash memory.

Texas Instruments
J-Link has been tested with the following Texas Intruments devices, but should work with any ARM7/9 and Cortex-M3
device:

● TMS470R1A64

● TMS470R1A128

● TMS470R1A256

● TMS470R1A288

● TMS470R1A384

● TMS470R1B512

● TMS470R1B768

● TMS470R1B1M

● TMS470R1VF288

● TMS470R1VF688

● TMS470R1VF689

TMS470
All devices of this family are supported by J-Link.
75J-Link_J-TraceARM-2

76

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Hardware
This chapter gives an overview about J-Link / J-Trace specific hardware details, such as the pinouts and available
adapters.

20-pin JTAG/SWD connector

PINOUT FOR JTAG
J-Link and J-Trace have a JTAG connector compatible to ARM’s Multi-
ICE. The JTAG connector is a 20 way Insulation Displacement Connector
(IDC) keyed box header (2.54mm male) that mates with IDC sockets
mounted on a ribbon cable.

The following table lists the J-Link / J-Trace JTAG pinout.

PIN SIGNAL TYPE Description

 1 VTref Input This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.

 2 Not connectedNC This pin is not connected in J-Link.

 3 nTRST Output JTAG Reset. Output from J-Link to the Reset signal of the target JTAG port. Typically
connected to nTRST of the target CPU. This pin is normally pulled HIGH on the target to
avoid unintentional resets when there is no connection.

 5 TDI Output JTAG data input of the target CPU. It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

 7 TMS Output JTAG mode set input of the target CPU. This pin should be pulled up on the target.
Typically connected to TMS of the target CPU.

 9 TCK Output JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

11 RTCK Input Return test clock signal from the target. Some targets must synchronize the JTAG inputs
to internal clocks. To assist in meeting this requirement, you can use a returned, and
retimed, TCK to dynamically control the TCK rate. J-Link supports adaptive clocking,
which waits for TCK changes to be echoed correctly before making further changes.
Connect to RTCK if available, otherwise to GND.

13 TDO Input JTAG data output from the target CPU. Typically connected to TDO of the target CPU.

15 RESET I/O Target CPU reset signal. Typically connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

17 DBGRQ NC This pin is not connected in J-Link. It is reserved for compatibility with other equipment
to be used as a debug request signal to the target system. Typically connected to DBGRQ
if available, otherwise left open.

19 5V-Supply Output This pin can be used to supply power to the target hardware. Older J-Links may not be
able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page 78.

Table 16: J-Link / J-Trace pinout

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

nTRST
TDI

TMS
TCK

RTCK

TDO
RESET

DBGRQ
5V-Supply

NC

GND

GND
GND

GND

GND
GND

GND
GND

GND
J-Link_J-TraceARM-2 77

78
Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for JTAG on page 77. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

Pull-up/pull-down resistors

Unless otherwise specified by the developer’s manual, pull-ups/pull-downs are recommended to be between 2.2
kOhms and 47 kOhms.

Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5 V, maximum current
is 300 mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to on

power off perm Set target power supply default to off

Table 17: Command List

Typical target connection for JTAG

JTAG connector Target board

nTRST

TDI

TMS

TCK

RTCK

TDO

RESET

CPU

nTRST

TDI

TMS

TCK

RTCK

TDO

nRST GND

Voltage
Regulator VCC

VCC

5V supply

VTref

GND

3*

5

7

9

11*

13

15

* NTRST and RTCK may not be available on some CPUs.
** Optional to supply the target board from J-Link.

1

19**

3

5

7

9

11

13

15

1

19

J-Link

20 20
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Hardware
PINOUT FOR SWD
The J-Link and J-Trace JTAG connector is also compatible to ARM’s
Serial Wire Debug (SWD).

The following table lists the J-Link / J-Trace SWD pinout.

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

PIN SIGNAL TYPE Description

 1 VTref Input This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.

 2 Not connectedNC This pin is not connected in J-Link.

 3 Not Used NC This pin is not used by J-Link. If the device is accessed via JTAG, this pin can be connected
to nTRST, otherwise leave open.

 5 Not used NC This pin is not used by J-Link. If the device is accessed via JTAG, this pin can be connected
to TDI, otherwise leave open.

 7 SWDIO I/O Single bi-directional data pin. A pull-up resistor is required. ARM recommends 100
kOhms.

 9 SWCLK Output Clock signal to target CPU.
It is recommended that this pin is pulled to a defined state on the target board. Typically
connected to TCK of the target CPU.

11 Not used NC This pin is not used by J-Link when operating in SWD mode. If the device is also accessed
via JTAG, this pin can be connected to RTCK, otherwise leave open.

13 SWO Output Serial Wire Output trace port. (Optional, not required for SWD communication.)

15 RESET I/O Target CPU reset signal. Typically, connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

17 Not used NC This pin is not connected in J-Link.

19 5V-Supply Output This pin can be used to supply power to the target hardware. Older J-Links may not be
able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page 80.

Table 18: J-Link / J-Trace SWD pinout

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

Not used
Not used

SWDIO
SWCLK

Not used

SWO
RESET

Not used
5V-Supply

NC

GND

GND
GND

GND

GND
GND

GND
GND

GND
79J-Link_J-TraceARM-2

80
Target board design
We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for SWD on page 79. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

Pull-up/pull-down resistors
A pull-up resistor is required on SWDIO on the target board. ARM recommends 100 kOhms.
In case of doubt you should follow the recommendations given by the semiconductor manufacturer.

Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

38-pin Mictor JTAG and Trace connector
J-Trace provides a JTAG+Trace connector. This connector is a 38-pin mictor plug. It connects to the target via a 1-1
cable.

The connector on the target board should be "TYCO type 5767054-1" or a compatible receptacle. J-Trace supports 4,
8, and 16-bit data port widths with the high density target connector described below.

Command Description

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to on

power off perm Set target power supply default to off

Table 19: Command List

Typical target connection for SWD

JTAG connector Target board

SWDIO

SWCLK

SWO

RESET

CPU

SWDIO

SWCLK

SWO

nRST
GND

Voltage
Regulator VCC

VCC

5V supply

VTref

GND

7

9

13

15

* Optional to supply the target board from J-Link.

1

19*

7

9

13

15

1

19

J-Link

20 20
1
0
0
 k
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Hardware
Target board trace connector

J-Trace can capture the state of signals PIPESTAT[2:0], TRACESYNC and TRACEPKT[n:0] at each rising
edge of each TRACECLK or on each alternate rising or falling edge.

CONNECTING THE TARGET BOARD
J-Trace connects to the target board via a 38-pin trace cable. This cable has a receptacle on the one side, and a plug on
the other side. Alternatively J-Trace can be connected with a 20-pin JTAG cable.

Warning: Never connect trace cable and JTAG cable at the same time because this
may harm your J-Trace and/or your target.

12

38 37

Target
system

Pin 1
chamfer

J-Trace

JTAG
+

Trace JTAG

Target board
Trace

connector

Target board

ARM

Trace cable

Target board
JTAG

connector

J-Trace

JTAG
+

Trace JTAG

Target board
Trace

connector

Target board

ARM

JTA
G

 cable

Target board
JTAG

connector

J-Trace

JTAG
+

Trace JTAG

Target board
Trace

connector

Target board

ARM

JTA
G

 cable

Target board
JTAG

connector

Trace cable
81J-Link_J-TraceARM-2

82
PINOUT
The following table lists the JTAG+Trace connector pinout. It is compatible to the "Trace Port Physical Interface"
described in [ETM], 8.2.2 "Single target connector pinout".

PIN SIGNAL Description

 1 NC No connected.

 2 NC No connected.

 3 NC No connected.

 4 NC No connected.

 5 GND Signal ground.

 6 TRACECLK Clocks trace data on rising edge or both edges.

 7 DBGRQ Debug request.

 8 DBGACK Debug acknowledge from the test chip, high when in debug state.

 9 RESET Open-collector output from the run control to the target system reset.

10 EXTTRIG Optional external trigger signal to the Embedded trace Macrocell (ETM). Not used.
Leave open on target system.

11 TDO Test data output from target JTAG port.

12 VTRef Signal level reference. It is normally fed from Vdd of the target board and must not
have a series resistor.

13 RTCK Return test clock from the target JTAG port.

14 VSupply Supply voltage. It is normally fed from Vdd of the target board and must not have a
series resistor.

15 TCK Test clock to the run control unit from the JTAG port.

16 Trace signal 12 Trace signal. For more information, refer to Assignment of trace information pins between
ETM architecture versions on page 83.

17 TMS Test mode select from run control to the JTAG port.

18 Trace signal 11 Trace signal. For more information, refer to Assignment of trace information pins between
ETM architecture versions on page 83.

19 TDI Test data input from run control to the JTAG port.

20 Trace signal 10 Trace signal. For more information, refer to Assignment of trace information pins between
ETM architecture versions on page 83.

21 nTRST Active-low JTAG reset

22 Trace signal 9 Trace signals. For more information, refer to Assignment of trace information pins
between ETM architecture versions on page 83.23 Trace signal 20

24 Trace signal 8

25 Trace signal 19

26 Trace signal 7

27 Trace signal 18

28 Trace signal 6

29 Trace signal 17

30 Trace signal 5

31 Trace signal 16

32 Trace signal 4

33 Trace signal 15

34 Trace signal 3

35 Trace signal 14

36 Trace signal 2

37 Trace signal 13

38 Trace signal 1

Table 20: JTAG+Trace connector pinout
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Hardware
ASSIGNMENT OF TRACE INFORMATION PINS BETWEEN ETM
ARCHITECTURE VERSIONS
The following table show different names for the trace signals depending on the ETM architecture version.

TRACE SIGNALS
Data transfer is synchronized by TRACECLK.

Signal levels
The maximum capacitance presented by J-Trace at the trace port connector,

including the connector and interfacing logic, is less than 6pF. The trace port lines have a matched impedance of 50.

The J-Trace unit will operate with a target board that has a supply voltage range of 3.0V-3.6V.

Clock frequency

For capturing trace port signals synchronous to TRACECLK, J-Trace supports

a TRACECLK frequency of up to 200MHz. The following table shows the TRACECLK frequencies and the setup and
hold timing of the trace signals with respect to TRACECLK.

Trace signal ETMv1 ETMv2 ETMv3

Trace signal 1 PIPESTAT[0] PIPESTAT[0] TRACEDATA[0]

Trace signal 2 PIPESTAT[1] PIPESTAT[1] TRACECTL

Trace signal 3 PIPESTAT[2] PIPESTAT[2] Logic 1

Trace signal 4 TRACESYNC PIPESTAT[3] Logic 0

Trace signal 5 TRACEPKT[0] TRACEPKT[0] Logic 0

Trace signal 6 TRACEPKT[1] TRACEPKT[1] TRACEDATA[1]

Trace signal 7 TRACEPKT[2] TRACEPKT[2] TRACEDATA[2]

Trace signal 8 TRACEPKT[3] TRACEPKT[3] TRACEDATA[3]

Trace signal 9 TRACEPKT[4] TRACEPKT[4] TRACEDATA[4]

Trace signal 10 TRACEPKT[5] TRACEPKT[5] TRACEDATA[5]

Trace signal 11 TRACEPKT[6] TRACEPKT[6] TRACEDATA[6]

Trace signal 12 TRACEPKT[7] TRACEPKT[7] TRACEDATA[7]

Trace signal 13 TRACEPKT[8] TRACEPKT[8] TRACEDATA[8]

Trace signal 14 TRACEPKT[9] TRACEPKT[9] TRACEDATA[9]

Trace signal 15 TRACEPKT[10] TRACEPKT[10] TRACEDATA[10]

Trace signal 16 TRACEPKT[11] TRACEPKT[11] TRACEDATA[11]

Trace signal 17 TRACEPKT[12] TRACEPKT[12] TRACEDATA[12]

Trace signal 18 TRACEPKT[13] TRACEPKT[13] TRACEDATA[13]

Trace signal 19 TRACEPKT[14] TRACEPKT[14] TRACEDATA[14]

Trace signal 20 TRACEPKT[15] TRACEPKT[15] TRACEDATA[15]

Table 21: Assignment of trace information pins between ETM architecture versions

Parameter Min. Max. Explanation

Tperiod 5ns 1000ns Clock period

Fmax 1MHz 200MHz Maximum trace frequency

Tch 2.5ns - High pulse width

Tcl 2.5ns - Low pulse width

Tsh 2.5ns - Data setup high

Thh 1.5ns - Data hold high

Tsl 2.5ns - Data setup low

Thl 1.5ns - Data hold low

Table 22: Clock frequency
83J-Link_J-TraceARM-2

84
The diagram below shows the TRACECLK frequencies and the setup and hold timing of the trace signals with respect
to TRACECLK.

Note:J-Trace supports half-rate clocking mode. Data is output on each edge of the TRACECLK signal and
TRACECLK (max) <= 100MHz. For half-rate clocking, the setup and hold times at the JTAG+Trace connector
must be observed.

19-pin JTAG/SWD and Trace connector
J-Trace for Cortex M3 provides a JTAG/SWD+Trace connector. This
connector is a 19-pin connector. It connects to the target via an 1-1 cable.

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

 1 VTref Input This is the target reference voltage. It is used to check if the target has power, to
create the logic-level reference for the input comparators and to control the output
logic levels to the target. It is normally fed from Vdd of the target board and must not
have a series resistor.

 2 SWDIO/TMS I/O /
output

JTAG mode set input of target CPU. This pin should be pulled up on the target.
Typically connected to TMS of the target CPU.

 4 SWCLK/TCK Output JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

 6 SWO/TDO Input JTAG data output from target CPU. Typically connected to TDO of the target CPU.

 --- --- --- This pin (normally pin 7) is not existent on the 19-pin JTAG/SWD and Trace
connector.

8 TDI Output JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

9 NC NC Not connected inside J-Link. Leave open on target hardware.

10 nRESET I/O Target CPU reset signal. Typically connected to the RESET pin of the target CPU,
which is typically called "nRST", "nRESET" or "RESET".

Table 23: 19-pin JTAG/SWD and Trace pinout

Tperiod

Tch Tcl

Tsh Thh Tsl Thl

Full
TRACECLK

Half-rate
TRACECLK

DATA

1 2

3 4
5 6

7 8
9 10

11 12

13 14
15 16

17 18
19 20

VTref

GND
GND

- - -
NC

5V-Supply

5V-Supply
GND

GND
GND

SWDIO/TMS

SWO/TDO

TDI
nRESET

TRACECLK

TRACEDATA[0]
TRACEDATA[1]

TRACEDATA[2]
TRACEDATA[3]

SWCLK/TCK
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Hardware
Pins 3, 5, 15, 17, 19 are GND pins connected to GND in J-Trace CM3. They should also be connected to GND in the
target system.

TARGET POWER SUPPLY
Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

RESET, nTRST
The TAP controller and ICE logic is reset independently from the ARM core with nTRST. For the ARM core to operate
correctly, it is essential that both signals are asserted after power-up.

The advantage of having separate connection to the two reset signals is that it allows the developer performing software
debug to set up breakpoints which are retained by the ICE logic even when the core is reset. (For example, at address
0, to allow the code to be single-stepped as soon as it comes out of reset).

11 5V-Supply Output This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 85.

12 TRACECLK Input Input trace clock. Trace clock = 1/2 CPU clock.

13 5V-Supply Output This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 85.

14 TRACEDATA[0] Input Input Trace data pin 0.

16 TRACEDATA[1] Input Input Trace data pin 0.

18 TRACEDATA[2] Input Input Trace data pin 0.

20 TRACEDATA[3] Input Input Trace data pin 0.

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to on

power off perm Set target power supply default to off

Table 24: Command List

PIN SIGNAL TYPE Description

Table 23: 19-pin JTAG/SWD and Trace pinout (Continued)
85J-Link_J-TraceARM-2

86
Adapters

5 VOLT ADAPTER
The 5V adapter extends the voltage range of J-Link / J-Trace (and other, pin-compatible JTAG probes) to 5V. Most
targets have JTAG signals at voltage levels between 1.2V and 3.3V for J-Link and 3.0V up to 3.6V for J-Trace. These
targets can be used with J-Link / J-Trace without a 5V adapter. Higher voltages are common primarily in the
automotive sector.

Technical data
● 20 pin connector, female (plugs into J-Link / J-Trace)

● 20 pin connector male, for target ribbon cable

● LED shows power status

● Adapter is powered by target

● Power consumption < 20 mA Target supply voltage: 3.3V - 5V

● Maximum JTAG-frequency: 10 MHz

Compatibility note

The J-Link 5V adapter is compatible to J-Link revisions 4 or newer and J-Trace. Using an older revision of J-Link
together with a 5V adapter will not output a reset signal to your target, because older J-Link versions were not able to
drive high level on Reset and TRST to target. To actually determine if your J-Link is compatible to the 5V adapter, you
may check whether J-Link outputs a reset signal (active high) to your target CPU.

Usage
The 5 volt adapter should be plugged directly into J-Link / J-Trace with the 20-pin female connector. The target ribbon
cable is then attached to the 20-pin male connector of the adapter.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link / J-Trace models
This chapter gives an overview about the different J-Link / J-Trace models. In addition to that, it gives information
about the changes between the hardware versions.

Introduction
J-Link / J-Trace is available in different variations, each designed for different purposes / target devices. Currently, the
following models of J-Link / J-Trace are available:

● J-Link ARM

● J-Trace ARM

● J-Trace for Cortex-M3

In the following, the different J-Link / J-Trace models are described and the changes between the different hardware
versions of each model are listed. To determine the hardware version of your J-Link / J-Trace, the first step should be
to look at the label at the bottom side of the unit. J-Links / J-Traces have the hardware version printed on the back label.

If this is not the case with your J-Link / J-Trace, start JLink.exe. As part of the initial message, the hardware version
is displayed.

J-Link ARM
J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running Microsoft Windows 2000,
Windows XP, Windows 2003 or Windows Vista. J-Link has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM.

ADDITIONAL FEATURES
● Serial Wire Debug supported *

● Serial Wire Viewer supported *

● Download speed up to 720 KBytes/second **

● DCC speed up to 800 Kbytes/second **

* = Supported by J-Link hardware version 6

** = Measured with J-Link Rev.5, ARM7 @ 50 MHz, 12MHz JTAG speed.

SPECIFICATIONS*

Power Supply USB powered <50mA if target power is off.

USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)

Serial Transfer Rate between J-Link and Target up to 12 MHz

Supported Target Voltage 1.2 - 3.3 V, 5V tolerant

Table 25: J-Link specifications
J-Link_J-TraceARM-2 87

88
* = J-Link hardware revision 5 and up.

DOWNLOAD SPEED
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

All tests have been performed in the testing environment which is described on Measuring download speed on
page 107.

The actual speed depends on various factors, such as JTAG/SWD, clock speed, host CPU core etc.

HARDWARE VERSIONS

Versions 1-3

These J-Links use a 16-bit CISC CPU. Maximum download speed is approximately 150 Kbytes/second.

JTAG speed

Maximum JTAG frequency is 4 MHz; possible JTAG speeds are:

16 MHz / n, where n is 4,5, ..., resulting in speeds of:
4.000 MHz (n = 4)
3.200 MHz (n = 5)
2.666 MHz (n = 6)
2.285 MHz (n = 7)
2.000 MHz (n = 8)
1.777 MHz (n = 9)
1.600 MHz (n = 10)

Adaptive clocking is not supported.

Target Interface

nTRST is open drain + 4K7 pull up
RESET is open drain

Version 4
Identical to version 3.0 with the following exception:

Target supply voltage 4.5V .. 5V (if powered with 5V on USB)

Target supply current Max. 300mA

Operating Temperature +5°C ... +60°C

Storage Temperature -20°C ... +65 °C

Relative Humidity (non-condensing) <90% rH

Size (without cables) 100mm x 53mm x 27mm

Weight (without cables) 70g

Electromagnetic Compatibility (EMC) EN 55022, EN 55024

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64

Hardware
ARM7

via JTAG

ARM9

via JTAG

Cortex-M3

via SWD

J-Link Rev. 6 — 8 720 Kbytes/s (12MHz JTAG) 550 Kbytes/s
(12MHz JTAG)

180 Kbytes/s
(12 MHz SWD)

Table 26: Download speed differences between hardware revisions

Table 25: J-Link specifications (Continued)
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link / J-Trace models
Target Interface

nTRST is push-pull type
RESET is push-pull type

Version 5.0
Uses a 32-bit RISC CPU.
Maximum download speed (using DCC) is over 700 Kbytes/second.

JTAG speed

Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:

48 MHz / n, where n is 4,5, ..., resulting in speeds of:
12.000 MHz (n = 4)
9.600 MHz (n = 5)
8.000 MHz (n = 6)
6.857 MHz (n = 7)
6.000 MHz (n = 8)
5.333 MHz (n = 9)
4.800 MHz (n = 10)

Adaptive clocking is supported.

Target Interface

nTRST is push-pull type
RESET is push-pull type

Version 5.2
Identical to version 5.0 with the following exception:

Target Interface

nTRST is push-pull type
RESET is open drain

Version 5.3
Identical to version 5.2 with the following exception:

● 5V target supply current limited
5V target supply (pin 19) of Kick-Start versions of J-Link is current monitored and limited. J-Link automatically
switches off 5V supply in case of over-current to protect both J-Link and host computer. Peak current (<= 10 ms)
limit is 1A, operating current limit is 300mA.

Version 5.4

Identical to version 5.3 with the following exception:

● JTAG interface is 5V tolerant.

Version 6.0

Identical to version 5.4 with the following exception:

● Outputs can be tristated (Effectively disabling the JTAG interface)

● J-Link supports SWV (Speed limited to 500 kHz)

Version 7.0
● Uses an additional pin to the UART unit of the target hardware for SWV support (Speed limited to 6 MHz).

Version 8.0

● SWD support for non-3.3V targets.
89J-Link_J-TraceARM-2

90
J-Trace ARM
J-Trace ARM is a JTAG emulator designed for ARM cores which includes trace (ETM) support. J-Trace can also be
used as a J-Link.

ADDITIONAL FEATURES
● Supports tracing on ARM7/9 targets

● Download speed up to 420 Kbytes/second *

● DCC speed up to 600 Kbytes/second *

* = Measured with J-Trace, ARM7 @ 50 MHz, 12MHz JTAG speed.

SPECIFICATIONS FOR J-TRACE

DOWNLOAD SPEED
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

All tests have been performed in the testing environment which is described on Measuring download speed on
page 107.

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

HARDWARE VERSIONS

Version 1
This J-Trace uses a 32-bit RISC CPU. Maximum download speed is approximately 420 KBytes/second (600 KBytes/
second using DCC).

Power Supply USB powered < 300mA

USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)
JTAG+Trace: Mictor, 38-pin

Serial Transfer Rate between J-Trace and Target up to 12 MHz

Supported Target Voltage 3.0 - 3.6 V (5V adapter available)

Operating Temperature +5°C ... +40°C

Storage Temperature -20°C ... +65 °C

Relative Humidity (non-condensing) <90% rH

Size (without cables) 123mm x 68mm x 30mm

Weight (without cables) 120g

Electromagnetic Compatibility (EMC) EN 55022, EN 55024

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64

Table 27: J-Trace specifications

Hardware ARM7 via JTAG ARM9 via JTAG

J-Trace Rev. 1 420.0 Kbytes/s
(12MHz JTAG)

280.0 Kbytes/s
(12MHz JTAG)

Table 28: Download speed differences between hardware revisions
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link / J-Trace models
J-Trace for Cortex-M3
J-Trace for Cortex-M3 is a JTAG emulator designed for Cortex-M3 cores which includes trace (ETM) support. J-Trace
for Cortex-M3 can also be used as a J-Link and it also supports ARM7/9 cores. Tracing on ARM7/9 targets is not
supported.

ADDITIONAL FEATURES
● Has all the J-Link functionality

● Supports tracing on Cortex-M3 targets

DOWNLOAD SPEED
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

Hardware Cortex-M3 via SWD

J-Trace Rev. 1 190 Kbytes/s (12MHz SWD)

Table 29: Download speed differences between hardware revisions
91J-Link_J-TraceARM-2

92

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Background information
This chapter provides background information about JTAG and ARM. The ARM7 and ARM9 architecture is based
on Reduced Instruction Set Computer (RISC) principles. The instruction set and the related decode mechanism are
greatly simplified compared with microprogrammed Complex Instruction Set Computer (CISC).

JTAG
JTAG is the acronym for Joint Test Action Group. In the scope of this document, "the JTAG standard" means
compliance with IEEE Standard 1149.1-2001.

TEST ACCESS PORT (TAP)
JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can provide access to many test support
functions built into a component. It is composed as a minimum of the three input connections (TDI, TCK, TMS) and
one output connection (TDO). An optional fourth input connection (nTRST) provides for asynchronous initialization
of the test logic.

DATA REGISTERS
JTAG requires at least two data registers to be present: the bypass and the boundary-scan register. Other registers are
allowed but are not obligatory.

Bypass data register

A single-bit register that passes information from TDI to TDO.

Boundary-scan data register

A test data register which allows the testing of board interconnections, access to input and output of components when
testing their system logic and so on.

INSTRUCTION REGISTER
The instruction register holds the current instruction and its content is used by the TAP controller to decide which test
to perform or which data register to access. It consist of at least two shift-register cells.

PIN Type Explanation

TCK Input The test clock input (TCK) provides the clock for the test logic.

TDI Input Serial test instructions and data are received by the test logic at test data input (TDI).

TMS Input The signal received at test mode select (TMS) is decoded by the TAP controller to
control test operations.

TDO Output Test data output (TDO) is the serial output for test instructions and data from the
test logic.

nTRST Input (optional) The optional test reset (nTRST) input provides for asynchronous initialization of the
TAP controller.

Table 30: Test access port
J-Link_J-TraceARM-2 93

94
THE TAP CONTROLLER
The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK signals of the
TAP and controls the sequence of operations of the circuitry.

TAP controller state diagram

State descriptions

Reset

The test logic is disabled so that normal operation of the chip logic can continue unhindered. No matter in which state
the TAP controller currently is, it can change into Reset state if TMS is high for at least 5 clock cycles. As long as TMS
is high, the TAP controller remains in Reset state.

Idle

Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this state remains active as long as
TMS is low.

DR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the selected data registers is initiated.

IR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the instruction register is initiated.

Capture-DR

Data may be loaded in parallel to the selected test data registers.

Shift-DR

The test data register connected between TDI and TDO shifts data one stage towards the serial output with each clock.

Exit1-DR

Temporary controller state.

Capture-DR

Reset

Update-DR

Exit2-DR

Pause-DR

Exit1-DR

Shift-DR

DR-ScanIdle

Update-IR

Exit2-IR

Pause-IR

Exit1-IR

Shift-IR

Capture-IR

IR-Scan

tms=1

tms=0

tms=1

tms=0

tms=1 tms=1

tms=0 tms=0

tms=0 tms=0

tms=1 tms=1

tms=0 tms=0tms=1 tms=1

tms=0 tms=0
tms=1 tms=1

tms=0 tms=0tms=1 tms=1

tms=1 tms=1

tms=0 tms=0

tms=1 tms=1tms=0 tms=0
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Background information
Pause-DR

The shifting of the test data register between TDI and TDO is temporarily halted.

Exit2-DR

Temporary controller state. Allows to either go back into Shift-DR state or go on to Update-DR.

Update-DR

Data contained in the currently selected data register is loaded into a latched parallel output (for registers that have such
a latch). The parallel latch prevents changes at the parallel output of these registers from occurring during the shifting
process.

Capture-IR

Instructions may be loaded in parallel into the instruction register.

Shift-IR

The instruction register shifts the values in the instruction register towards TDO with each clock.

Exit1-IR

Temporary controller state.

Pause-IR

Wait state that temporarily halts the instruction shifting.

Exit2-IR

Temporary controller state. Allows to either go back into Shift-IR state or go on to Update-IR.

Update-IR

The values contained in the instruction register are loaded into a latched parallel output from the shift-register path.
Once latched, this new instruction becomes the current one. The parallel latch prevents changes at the parallel output
of the instruction register from occurring during the shifting process.

The ARM core
The ARM7 family is a range of low-power 32-bit RISC microprocessor cores. Offering up to 130MIPs (Dhrystone2.1),
the ARM7 family incorporates the Thumb 16-bit instruction set. The family consists of the ARM7TDMI,
ARM7TDMI-S and ARM7EJ-S processor cores and the ARM720T cached processor macrocell.

The ARM9 family is built around the ARM9TDMI processor core and incorporates the 16-bit Thumb instruction set.
The ARM9 Thumb family includes the ARM920T and ARM922T cached processor macrocells.

PROCESSOR MODES
The ARM architecture supports seven processor modes.

Processor mode Description

User usr Normal program execution mode.

System sys Runs privileged operating system tasks.

Supervisor svc A protected mode for the operating system.

Abort abt Implements virtual memory and/or memory protection.

Undefined und Supports software emulation of hardware coprocessors.

Interrupt irq Used for general-purpose interrupt handling.

Fast interrupt fiq Supports a high-speed data transfer or channel process.flash

Table 31: ARM processor modes
95J-Link_J-TraceARM-2

96
REGISTERS OF THE CPU CORE
The CPU core has the following registers:

The ARM core has a total of 37 registers:

● 31 general-purpose registers, including a program counter. These registers are 32 bits wide.

● 6 status registers. These are also 32 bits wide, but only 12 bits are allocated or need to be implemented.

Registers are arranged in partially overlapping banks, with a different register bank for each processor mode. At any
time, 15 general-purpose registers (R0 to R14), one or two status registers, and the program counter are visible.

ARM / THUMB INSTRUCTION SET
An ARM core starts execution in ARM mode after reset or any type of exception. Most (but not all) ARM cores come
with a secondary instruction set, called the Thumb instruction set. The core is said to be in Thumb mode if it is using
the Thumb instruction set. The Thumb instruction set consists of 16-bit instructions, whereas the ARM instruction set
consists of 32-bit instructions. Thumb mode improves code density by approximately 35%, but reduces execution
speed on systems with high memory bandwidth (because more instructions are required). On systems with low
memory bandwidth, Thumb mode can actually be as fast or faster than ARM mode. Mixing ARM and Thumb code
(interworking) is possible.

J-Link / J-Trace fully supports debugging of both modes without any limitations.

EmbeddedICE
EmbeddedICE is a set of registers and comparators used to generate debug exceptions (such as breakpoints).

EmbeddedICE is programmed in a serial fashion using the ARM core controller. It consists of two real-time watchpoint
units, together with a control and status register. You can program one or both watchpoint units to halt the execution
of instructions by ARM core. Two independent registers, debug control and debug status, provide overall control of
EmbeddedICE operation.

User/System Supervisor Abort Undefined Interrupt Fast interrupt

R0

R1

R2

R3

R4

R5

R6

R7

R8 R8_fiq

R9 R9_fiq

R10 R10_fiq

R11 R11_fiq

R12 R12_fiq

R13 R13_svc R13_abt R13_und R13_irq R13_fiq

R14 R14_svc R14_abt R14_und R14_irq R14_fiq

PC

CPSR

SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq

Table 32: Registers of the ARM core

 = indicates that the normal register used by User or System mode has been replaced by an alternative register specific
to the exception mode.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Background information
Execution is halted when a match occurs between the values programmed into EmbeddedICE and the values currently
appearing on the address bus, data bus, and various control signals. Any bit can be masked so that its value does not
affect the comparison.

Either of the two real-time watchpoint units can be configured to be a watchpoint (monitoring data accesses) or a
breakpoint (monitoring instruction fetches). You can make watchpoints and breakpoints data-dependent.

EmbeddedICE is additional debug hardware within the core, therefore the EmbeddedICE debug architecture requires
almost no target resources (for example, memory, access to exception vectors, and time).

BREAKPOINTS AND WATCHPOINTS

Breakpoints

A "breakpoint" stops the core when a selected instruction is executed. It is then possible to examine the contents of both
memory (and variables).

Watchpoints

A "watchpoint" stops the core if a selected memory location is accessed. For a watchpoint (WP), the following
properties can be specified:

● Address (including address mask)

● Type of access (R, R/W, W)

● Data (including data mask).

Software / hardware breakpoints

Hardware breakpoints are "real" breakpoints, using one of the 2 available watchpoint units to breakpoint the instruction
at any given address. Hardware breakpoints can be set in any type of memory (RAM, ROM, or flash) and also work
with self-modifying code. Unfortunately, there is only a limited number of these available (2 in the EmbeddedICE).
When debugging a program located in RAM, another option is to use software breakpoints. With software breakpoints,
the instruction in memory is modified. This does not work when debugging programs located in ROM or flash, but has
one huge advantage: The number of software breakpoints is not limited.

THE ICE REGISTERS
The two watchpoint units are known as watchpoint 0 and watchpoint 1. Each contains three pairs of registers:

● address value and address mask

● data value and data mask

● control value and control mask

The following table shows the function and mapping of EmbeddedICE registers.

Register Width Function

0x00 3 Debug control

0x01 5 Debug status

0x04 6 Debug comms control register

0x05 32 Debug comms data register

0x08 32 Watchpoint 0 address value

0x09 32 Watchpoint 0 address mask

0x0A 32 Watchpoint 0 data value

0x0B 32 Watchpoint 0 data mask

0x0C 9 Watchpoint 0 control value

0x0D 8 Watchpoint 0 control mask

0x10 32 Watchpoint 1 address value

0x11 32 Watchpoint 1 address mask

0x12 32 Watchpoint 1 data value

0x13 32 Watchpoint 1 data mask

Table 33: Function and mapping of EmbeddedICE registers
97J-Link_J-TraceARM-2

98
For more information about EmbeddedICE, see the technical reference manual of your ARM CPU. (www.arm.com)

Embedded Trace Macrocell (ETM)
Embedded Trace Macrocell (ETM) provides comprehensive debug and trace facilities for ARM processors. ETM
allows to capture information on the processor's state without affecting the processor's performance. The trace
information is exported immediately after it has been captured, through a special trace port.

Microcontrollers that include an ETM allow detailed program execution to be recorded and saved in real time. This
information can be used to analyze program flow and execution time, perform profiling and locate software bugs that
are otherwise very hard to locate. A typical situation in which code trace is extremely valuable, is to find out how and
why a "program crash" occurred in case of a runaway program count.

A debugger provides the user interface to J-Trace and the stored trace data. The debugger enables all the ETM facilities
and displays the trace information that has been captured. J-Trace is seamlessly integrated into the IAR Embedded
Workbench® IDE. The advanced trace debugging features is used with the IAR C-SPY debugger.

TRIGGER CONDITION
The ETM can be configured in software to store trace information only after a specific sequence of conditions. When
the trigger condition occurs the trace capture stops after a programmable period.

CODE TRACING AND DATA TRACING

Code trace

Code tracing means that the processor outputs trace data which contain information about the instructions that have
been executed at last.

Data trace

Data tracing means that the processor outputs trace data about memory accesses (read / write access to which address
and which data has been read / stored). In general, J-Trace supports data tracing, but it depends on the debugger if this
option is available or not. Note that when using data trace, the amount of trace data to be captured rises enormously.

J-TRACE INTEGRATION EXAMPLE
In the following a sample integration of J-Trace and the trace functionality on the debugger side is shown.

0x14 9 Watchpoint 1 control value

0x15 8 Watchpoint 1 control mask

Register Width Function

Table 33: Function and mapping of EmbeddedICE registers
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Background information
Code coverage - Disassembly tracing
99J-Link_J-TraceARM-2

100
Code coverage - Source code tracing
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Background information
101J-Link_J-TraceARM-2

102
Embedded Trace Buffer (ETB)
The ETB is a small, circular on-chip memory area where trace information is stored during capture. It contains the data
which is normally exported immediately after it has been captured from the ETM. The buffer can be read out through
the JTAG port of the device once capture has been completed. No additional special trace port is required, so that the
ETB can be read via J-Link. The trace functionality via J-Link is limited by the size of the ETB. While capturing runs,
the trace information in the buffer will be overwritten every time the buffer size has been reached.

The result of the limited buffer size is that not more data can be traced than the buffer can hold. Throu this limitation
is an ETB not in every case an fully-fledged alternative to the direct access to an ETM via J-Trace.

Flash programming
J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities - reading and writing RAM, CPU
registers, starting and stopping the CPU, and setting breakpoints. The standard DLL does not have API functions for
flash programming. However, the functionality offered can be used to program the flash. In that case, a flashloader is
required.

HOW DOES FLASH PROGRAMMING VIA J-LINK / J-TRACE WORK?
This requires extra code. This extra code typically downloads a program into the RAM of the target system, which is
able to erase and program the flash. This program is called RAM code and "knows" how to program the flash; it
contains an implementation of the flash programming algorithm for the particular flash. Different flash chips have
different programming algorithms; the programming algorithm also depends on other things such as endianess of the
target system and organization of the flash memory (for example 1 * 8 bits, 1 * 16 bits, 2 * 16 bits or 32 bits). The
RAM code requires data to be programmed into the flash memory. There are 2 ways of supplying this data: Data
download to RAM or data download via DCC.

DATA DOWNLOAD TO RAM
The data (or part of it) is downloaded to an other part of the RAM of the target system. The Instruction pointer (R15)
of the CPU is then set to the start address of the Ram code, the CPU is started, executing the RAM code. The RAM
code, which contains the programming algorithm for the flash chip, copies the data into the flash chip. The CPU is
stopped after this. This process may have to be repeated until the entire data is programmed into the flash.

DATA DOWNLOAD VIA DCC
In this case, the RAM code is started as described above before downloading any data. The RAM code then
communicates with the host computer (via DCC, JTAG and J-Link / J-Trace), transferring data to the target. The RAM
code then programs the data into flash and waits for new data from the host. The WriteMemory functions of J-Link /
J-Trace are used to transfer the RAM code only, but not to transfer the data. The CPU is started and stopped only once.
Using DCC for communication is typically faster than using WriteMemory for RAM download because the overhead
is lower.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Background information
J-Link / J-Trace firmware
The heart of J-Link / J-Trace is a microcontroller. The firmware is the software executed by the microcontroller inside
of the J-Link / J-Trace. The J-Link / J-Trace firmware sometimes needs to be updated. This firmware update is
performed automatically as necessary by the JLinkARM.dll.

FIRMWARE UPDATE
Every time you connect to J-Link / J-Trace, JLinkARM.dll checks if its embedded firmware is newer than the one used
the J-Link / J-Trace. The DLL will then update the firmware automatically. This process takes less than 3 seconds and
does not require a reboot.

It is recommended that you always use the latest version of JLinkARM.dll.

In the screenshot:

● The red box identifies the new firmware.

● The green box identifies the old firmware which has been replaced.

INVALIDATING THE FIRMWARE
Downdating J-Link / J-Trace is not performed automatically through an old JLinkARM.dll. J-Link / J-Trace will
continue using its current, newer firmware when using older versions of the JLinkARM.dll.

Note:Downdating J-Link / J-Trace is not recommended, you do it at your own risk!

Note:Note also the firmware embedded in older versions of JLinkARM.dll might not execute properly with newer
hardware versions.

To downdate J-Link / J-Trace, you need to invalidate the current J-Link / J-Trace firmware, using the command exec
InvalidateFW.

In the screenshot, the red box contains information about the formerly used J-Link / J-Trace firmware version.
103J-Link_J-TraceARM-2

104
Use an application (for example JLink.exe) which uses the desired version of JLinkARM.dll. This automatically
replaces the invalidated firmware with its embedded firmware.

In the screenshot:

● The red box identifies the new firmware.

● The green box identifies the old firmware which has been replaced.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Designing the target board for trace
This chapter describes the hardware requirements which have to be met by the target board.

Overview of high-speed board design
Failure to observe high-speed design rules when designing a target system containing an ARM Embedded Trace
Macrocell (ETM) trace port can result in incorrect data being captured by J-Trace.You must give serious consideration
to high-speed signals when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall times, even at relatively low
frequencies.

Note:These principles apply to all of the trace port signals (TRACEPKT[0:15], PIPESTAT[0:2], TRACESYNC), but
special care must be taken with TRACECLK.

AVOIDING STUBS
Stubs are short pieces of track that tee off from the main track carrying the signal to, for example, a test point or a
connection to an intermediate device. Stubs cause impedance discontinuities that affect signal quality and must be
avoided.

Special care must therefore be taken when ETM signals are multiplexed with other pin functions and where the PCB
is designed to support both functions with differing tracking requirements.

MINIMIZING SIGNAL SKEW (BALANCING PCB TRACK LENGTHS)
You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK, PIPESTAT, TRACESYNC, and
TRACEPKT from the ASIC to the mictor connector to within approximately 0.5 inches (12.5mm) of each other. Any
greater differences directly impact the setup and hold time requirements.

MINIMIZING CROSSTALK
Normal high-speed design rules must be observed. For example, do not run dynamic signals parallel to each other for
any significant distance, keep them spaced well apart, and use a ground plane and so forth. Particular attention must be
paid to the TRACECLK signal. If in any doubt, place grounds or static signals between the TRACECLK and any other
dynamic signals.

USING IMPEDANCE MATCHING AND TERMINATION
Termination is almost certainly necessary, but there are some circumstances where it is not required. The decision is
related to track length between the ASIC and the JTAG+Trace connector, see Terminating the trace signal, page 105
for further reference.

Terminating the trace signal
To terminate the trace signal, you can choose between three termination options:

● Matched impedance

● Series (source) termination

● DC parallel termination.

Matched impedance

Where available, the best termination scheme is to have the ASIC manufacturer match the output impedance of the
driver to the impedance of the PCB track on your board. This produces the best possible signal.
Part1. Using the compiler1 105

106
Series (source) termination

This method requires a resistor fitted in series with signal. The resistor value plus the output impedance of the driver
must be equal to the PCB track impedance.

DC parallel termination

This requires either a single resistor to ground, or a pull-up/pull-down combination of resistors (Thevenin termination),
fitted at the end of each signal and as close as possible to the JTAG+Trace connector. If a single resistor is used, its
value must be set equal to the PCB track impedance. If the pull-up/pull-down combination is used, their resistance
values must be selected so that their parallel combination equals the PCB track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability from the ASIC than series
termination and so, in practice, DC parallel termination is rarely used.

RULES FOR SERIES TERMINATORS
Series (source) termination is the most commonly used method. The basic rules are:

3 The series resistor must be placed as close as possible to the ASIC pin (less than 0.5 inches).

4 The value of the resistor must equal the impedance of the track minus the output impedance of the output driver. So
for example, a 50 PCB track driven by an output with a 17 impedance, requires a resistor value of 33.

5 A source terminated signal is only valid at the end of the signal path. At any point between the source and the end of
the track, the signal appears distorted because of reflections. Any device connected between the source and the end of
the signal path therefore sees the distorted signal and might not operate correctly. Care must be taken not to connect
devices in this way, unless the distortion does not affect device operation.

Signal requirements
The table below lists the specifications that apply to the signals as seen at the JTAG+Trace connector.

Signal Value

Fmax 200MHz

Ts setup time (min.) 2.0ns

Th hold time (min.) 1.0ns

TRACECLK high pulse width (min.) 1.5ns

TRACECLK high pulse width (min.) 1.5ns

Table 34: Signal requirements
IAR J-Link and IAR J-Trace
User Guide 1

Support and FAQs
This chapter contains troubleshooting tips together with solutions for common problems which might occur
when using J-Link / J-Trace. There are several steps you can take before contacting support. Performing these
steps can solve many problems and often eliminates the need for assistance. This chapter also contains a collection
of frequently asked questions (FAQs) with answers.

Measuring download speed

TEST ENVIRONMENT
JLink.exe has been used for measurement performance. The hardware consisted of:

● PC with 2.6 GHz Pentium 4, running Win2K

● USB 2.0 port

● USB 2.0 hub

● J-Link

● Target with ARM7 running at 50MHz.

Below is a screenshot of JLink.exe after the measurement has been performed.

Troubleshooting

GENERAL PROCEDURE
If you experience problems with J-Link / J-Trace, you should follow the steps below to solve these problems:

6 Close all running applications on your host system.

7 Disconnect the J-Link / J-Trace device from USB.

8 Disable power supply on the target.

9 Re-connect J-Link / J-Trace with the host system (attach USB cable).

10 Enable power supply on the target.
J-Link_J-TraceARM-2 107

108
11 Try your target application again. If the problem remains, with the rest of the procedure.

12 Close all running applications on your host system again.

13 Disconnect the J-Link / J-Trace device from USB.

14 Disable power supply on the target.

15 Re-connect J-Link / J-Trace with the host system (attach the USB cable).

16 Enable power supply on the target.

17 Start JLink.exe.

18 If JLink.exe displays the J-Link / J-Trace serial number and the target processor’s core ID, the J-Link / J-Trace is
working properly and cannot be the cause of your problem.

19 If JLink.exe is unable to read the target processor’s core ID you should analyze the communication between your
target and J-Link / J-Trace with a logic analyzer or oscilloscope. Follow the instructions in section .

TYPICAL PROBLEM SCENARIOS

J-Link / J-Trace LED is off

Meaning:

The USB connection does not work.

Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and reconnecting it. Make sure that
the connectors are firmly attached. Check the cable connections on your J-Link / J-Trace and the host computer. If this
does not solve the problem, check if your cable is defect. If the USB cable is ok, try a different host computer.

J-Link / J-Trace LED is flashing at a high frequency

Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.

Most likely reasons:

a.) Another program is already using J-Link / J-Trace.
b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnecting and reconnecting it.
b.) If the LED blinks permanently, check the correct installation of the J-Link USB driver. Deinstall and reinstall the
driver as shown in chapter Setup on page 17.

J-Link/J-Trace does not get any connection to the target

Most likely reasons:

a.) The JTAG cable is defective.
b.) The target hardware is defective.

Remedy:

Follow the steps described in section General procedure on page 107.

Signal analysis
The following screenshots show the data flow of the startup and ID communication between J-Link / J-Trace and the
target device.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Support and FAQs
START SEQUENCE
This is the signal sequence output by J-Link / J-Trace at start of JLink.exe. It should be used as reference when tracing
potential J-Link / J-Trace related hardware problems.

The sequence consists of the following sections:

● 5 clocks: TDI low, TMS high. Brings TAP controller into RESET state

● 1 clock: TDI low, TMS low: Brings TAP controller into IDLE state

● 2 clocks: TDI low, TMS high: Brings TAP controller into IR-SCAN state

● 2 clocks: TDI low, TMS low: Brings TAP controller into SHIFT-IR state

● 32 clocks: TMS low, TDI: 0x05253000 (lsb first): J-Link Signature as IR data

● 240 clocks: TMS low, last clock high, TDI high: Bypass command

● 1 clock: TDI low, TMS high: Brings TAP controller into UPDATE-IR state.

J-Link / J-Trace checks the output of the device (output on TDO) for the signature to measure the IR length. For ARM7
/ ARM9 chips, the IR length is 4, which means TDO shifts out the data shifted in on TDI with 4 clock cycles delay. If
you compare the screenshot with your own measurements, the signals of TCK, TMS, TDI, and TDO should be
identical.

Note that the TDO signal is undefined for the first 10 clocks, since the output is usually tristated and the signal level
depends on external components connected to TDO, such as pull-up or pull-down.

Zoom-in

The next screenshot shows the first 6 clock cycles of the screenshot above. For the first 5 clock cycles, TMS is high
(Resulting in a TAP reset). TMS changes to low with the falling edge of TCK. At this time the TDI signal is low. Your
signals should be identical. Signal rise and fall times should be shorter than 100ns.

TROUBLESHOOTING
If your measurements of TCK, TMS and TDI (the signals output by J-Link / J-Trace) differ from the results shown,
disconnect your target hardware and test the output of TCK, TMS and TDI without a connection to a target, just
supplying voltage to J-Link’s/J-Trace’s JTAG connector: VCC at pin 1; GND at pin 4.

Contacting support
Before contacting support, make sure you tried to solve your problem by following the steps outlined in section General
procedure on page 107. You may also try your J-Link / J-Trace with another PC and if possible with another target
system to see if it works there. If the device functions correctly, the USB setup on the original machine or your target
hardware is the source of the problem, not J-Link / J-Trace.
109J-Link_J-TraceARM-2

110
If you need to contact support, send the following information to
support@iar.com:

● A detailed description of the problem

● J-Link/J-Trace serial number

● Output of JLink.exe if available

● Your findings of the signal analysis

● Information about your target hardware (processor, board, etc.).

Frequently Asked Questions
Supported CPUs

Q: Which CPUs are supported?
A: J-Link / J-Trace should work with any ARM7/9 and Cortex-M3 core. For a list of supported cores, see sec-

tion Supported ARM Cores on page 12.

Maximum JTAG speed
Q: What is the maximum JTAG speed supported by J-Link / J-Trace?
A: J-Link’s/J-Trace’s maximum supported JTAG speed is 12MHz.

Maximum download speed
Q: What is the maximum download speed?
A: The maximum download speed is currently about 720 Kbytes/second when downloading into RAM; Com-

munication with a RAM-image via DCC can be still faster. However, the actual speed depends on various
factors, such as JTAG, clock speed, host CPU core etc.

ICE register access
Q: Can I access individual ICE registers via J-Link / J-Trace?
A: Yes, you can access all individual ICE registers via J-Link / J-Trace.

Using DCC with J-Link
Q: Can I use J-Link / J-Trace to communicate with a running target via DCC?
A: Yes. The DLL includes functions to communicate via DCC. However, you can also program DCC commu-

nication yourself by accessing the relevant ICE registers through J-Link / J-Trace.

Read status of JTAG pins
Q: Can J-Link / J-Trace read back the status of the JTAG pins?
A: Yes, the status of all pins can be read. This includes the outputs of J-Link / J-Trace as well as the supply

voltage, which can be useful to detect hardware problems on the target system.

Advantage of more expensive JTAG probes
Q: J-Link / J-Trace is quite inexpensive. What is the advantage of some more expensive JTAG probes?
A: Some of the more expensive JTAG probes offered by other manufacturers support higher download speeds

or an ethernet interface. The functionality is similar, there is no real advantage of using more expensive
probes. J-Link / J-Trace is a suitable solution for the majority of development tasks as well as for produc-
tion purposes. Some features that are available for J-Link / J-Trace, such as a DLL, exposing the full func-
tionality of the emulator, flash download and flash breakpoints are not available for most of these
emulators.

J-Link support of ETM
Q: Does J-Link support the Embedded Trace Macrocell (ETM)?
A: No. ETM requires another connection to the ARM chip and a CPU with built-in ETM. Most current

ARM7 / ARM9 devices do not have ETM built-in.

J-Link support of ETB
Q: Does J-Link support the Embedded Trace Buffer (ETB)?
A: Yes. J-Link supports ETB. Most current ARM7 / ARM9 devices do not have ETB built-in.

Q: Why does J-Link / J-Trace - in contrast to most other JTAG emulators for ARM cores - not require the user
to specify a cache clean area?
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Support and FAQs
A: J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does
not have to download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a
cache clean area is not required.

Registers on ARM 7 / ARM 9 targets
Q: I’m running J-Link.exe in parallel to my debugger, on an ARM 7 target. I can read memory okay, but the

processor registers are different. Is this normal?
A: If memory on an ARM 7/9 target is read or written the processor registers are modified. When memory

read or write operations are performed, J-Link preserves the register values before they are modified. The
register values shown in the debugger’s register window are the preserved ones. If now a second instance,
in this case J-Link.exe, reads the processor registers, it reads the values from the hardware, which are the
modified ones. This is why it shows different register values.
111J-Link_J-TraceARM-2

112

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Glossary
This chapter describes important terms used throughout this manual.

Adaptive clocking

A technique in which a clock signal is sent out by J-Link / J-Trace. J-Link / J-Trace waits for the returned clock before
generating the next clock pulse. The technique allows the J-Link / J-Trace interface unit to adapt to differing signal
drive capabilities and differing cable lengths.

Application Program Interface

A specification of a set of procedures, functions, data structures, and constants that are used to interface two or more
software components together.

Big-endian

Memory organization where the least significant byte of a word is at a higher address than the most significant byte.
See Little-endian.

Cache cleaning

The process of writing dirty data in a cache to main memory.

Coprocessor

An additional processor that is used for certain operations, for example, for floating-point math calculations, signal
processing, or memory management.

Dirty data

When referring to a processor data cache, data that has been written to the cache but has not been written to main
memory is referred to as dirty data. Only write-back caches can have dirty data because a write-through cache writes
data to the cache and to main memory simultaneously. See also cache cleaning.

Dynamic Linked Library (DLL)

A collection of programs, any of which can be called when needed by an executing program. A small program that
helps a larger program communicate with a device such as a printer or keyboard is often packaged as a DLL.

Embedded Trace Macrocell (ETM)

ETM is additional hardware provided by debuggable ARM processors to aid debugging with trace functionality.

Embedded Trace Buffer (ETB)

ETB is a small, circular on-chip memory area where trace information is stored during capture.

EmbeddedICE

The additional hardware provided by debuggable ARM processors to aid debugging.

Halfword

A 16-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

Host

A computer which provides data and other services to another computer. Especially, a computer providing debugging
services to a target being debugged.

ICache

Instruction cache.

ICE Extension Unit

A hardware extension to the EmbeddedICE logic that provides more breakpoint units.
J-Link_J-TraceARM-2 113

114
ID

Identifier.

IEEE 1149.1

The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as JTAG.

Image

An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator (ICE)

A device enabling access to and modification of the signals of a circuit while that circuit is operating.

Instruction Register

When referring to a TAP controller, a register that controls the operation of the TAP.

IR

See Instruction Register.

Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.

Little-endian

Memory organization where the least significant byte of a word is at a lower address than the most significant byte.
See also Big-endian.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the value that was most recently written
to that location. Obtaining memory coherency is difficult when there are multiple possible physical locations that are
involved, such as a system that has main memory, a write buffer, and a cache.

Memory management unit (MMU)

Hardware that controls caches and access permissions to blocks of memory, and translates virtual to physical
addresses.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does not translate virtual
addresses to physical addresses.

Multi-ICE

Multi-processor EmbeddedICE interface. ARM registered trademark.

RESET

Abbreviation of System Reset. The electronic signal which causes the target system other than the TAP controller to
be reset. This signal is also known as "nSRST" "nSYSRST", "nRST", or "nRESET" in some other manuals. See also
nTRST.

nTRST

Abbreviation of TAP Reset. The electronic signal that causes the target system TAP controller to be reset. This signal
is known as nICERST in some other manuals. See also nSRST.

Open collector

A signal that may be actively driven LOW by one or more drivers, and is otherwise passively pulled HIGH. Also known
as a "wired AND" signal.

Processor Core

The part of a microprocessor that reads instructions from memory and executes them, including the instruction fetch
unit, arithmetic and logic unit, and the register bank. It excludes optional coprocessors, caches, and the memory
management unit.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Glossary
Program Status Register (PSR)

Contains some information about the current program and some information about the current processor state. Often,
therefore, also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction to the Saved PSR (SPSR). The SPSR holds the
value the PSR had when the current function was called, and which will be restored when control is returned.

Remapping

Changing the address of physical memory or devices after the application has started

executing. This is typically done to make RAM replace ROM once the initialization has been done.

Remote Debug Interface (RDI)

RDI is an open ARM standard procedural interface between a debugger and the debug agent. The widest possible
adoption of this standard is encouraged.

RTCK

Returned TCK. The signal which enables Adaptive Clocking.

RTOS

Real Time Operating System.

Scan Chain

A group of one or more registers from one or more TAP controllers connected between TDI and TDO, through which
test data is shifted.

Semihosting

A mechanism whereby the target communicates I/O requests made in the application code to the host system, rather
than attempting to support the I/O itself.

SWI

Software Interrupt. An instruction that causes the processor to call a programer-specified subroutine. Used by ARM to
handle semihosting.

TAP Controller

Logic on a device which allows access to some or all of that device for test purposes. The circuit functionality is defined
in IEEE1149.1.

Target

The actual processor (real silicon or simulated) on which the application program is running.

TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and TDO.

TDI

The electronic signal input to a TAP controller from the data source (upstream). Usually, this is seen connecting the J-
Link / J-Trace Interface Unit to the first TAP controller.

TDO

The electronic signal output from a TAP controller to the data sink (downstream). Usually, this is seen connecting the
last TAP controller to the J-Link / J-Trace Interface Unit.

Test Access Port (TAP)

The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO, and nTRST (optional).

Transistor-transistor logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or zero. LSI and VLSI logic often
used TTL with HIGH logic level approaching +5V and LOW approaching 0V.
115J-Link_J-TraceARM-2

116
Watchpoint

A location within the image that will be monitored and that will cause execution to stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Index

A
Adaptive clocking .113

Application Program Interface. .113

ARM
Processor modes . 95

Registers. 96

Thumb instruction set. 96

B
Big-endian .113

C
Cache cleaning .113

Coprocessor .113

copyright notice .2

D
Dirty data .113

disclaimer .2
Dynamic Linked Library (DLL) .113

E
Embedded Trace Buffer (ETB) .102, 113

Embedded Trace Macrocell (ETM) 98, 113

EmbeddedICE .96, 113

H
Halfword .113

Host .113

I
ICache .113

ICE Extension Unit .113

ID .114

IEEE 1149.1 .114

Image. .114

Instruction Register .114

In-Circuit Emulator . 114

IR . 114

J
Joint Test Action Group (JTAG) . 114

JTAG . 93

TAP controller. 94

J-Flash ARM . 24

J-Link
Adapters. 86

Supported chips . 57, 85

J-Link Commander . 22

J-Link STR9 Commander . 22

J-Link TCP/IP Server . 23

J-Mem Memory Viewer . 24

L
Little-endian . 114

M
Memory coherency . 114

Memory management unit (MMU) . 114

Memory Protection Unit (MPU) . 114

Multi-ICE . 114

N
nTRST. 77, 114

O
Open collector . 114

P
Processor Core . 114

Program Status Register (PSR) . 115

R
registered trademarks . 2

Remapping . 115

Remote Debug Interface (RDI) . 115

RESET . 114

RTCK . 115

RTOS. 115

S
Scan Chain . 115

Semihosting . 115
117J-Link_J-TraceARM-2

118
SetDbgPowerDownOnClose . 52

SetSysPowerDownOnIdle . 52

Support .107, 113

Supported flash devices .58, 64

SWI .115

T
Tabs .41

TAP Controller .115

Target. .115

TCK. .77, 115

TDI .77, 115

TDO. .77, 115

Test Access Port (TAP) .115

trademarks .2

Transistor-transistor logic (TTL). .115

W
Watchpoint .97, 116

Word .116

Numerics
5 volt adapter . 86
IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

	Contents
	Preface
	About this guide
	Typographic conventions

	Literature and references

	Introduction
	Overview about the J-Link product family
	J-Link
	J-Trace

	Common features of the J-Link product family
	Supported ARM Cores
	Requirements

	Licensing
	Introduction
	License types
	Built-in license
	Key-based license
	Device-based license

	Legal use of original J-Link software
	Products
	J-Link
	J-Trace

	J-Link OBs
	Illegal Clones

	Setup
	Installing the J-Link ARM software and documentation
	Setup procedure

	Setting up the USB interface
	Verifying correct driver installation

	Uninstalling the J-Link USB driver

	J-Link and J-Trace related software
	J-Link related software
	J-Link software and documentation package

	J-Link software and documentation package in detail
	J-Link Commander (Command line tool)
	J-Link STR91x Commander (Command line tool)
	J-Link STM32 Commander (Command line tool)
	J-Link TCP/IP Server (Remote J-Link / J-Trace use)
	J-Mem Memory Viewer
	J-Flash ARM (Program flash memory via JTAG)

	Using the J-LinkARM.dll
	What is the JLinkARM.dll?
	Updating the DLL
	Determining the version of JLinkARM.dll
	Determining which DLL is used by a program

	Working with J-Link and J-Trace
	Connecting the target system
	Power-on sequence
	Verifying target device connection
	Problems

	Indicators
	Main indicator

	JTAG interface
	Multiple devices in the scan chain
	Sample configuration dialog boxes
	Determining values for scan chain configuration
	JTAG Speed

	SWD interface
	SWO

	Multi-core debugging
	How multi-core debugging works
	Using multi-core debugging in detail
	Things you should be aware of

	Connecting multiple J-Links / J-Traces to your PC
	How does it work?
	Configuring multiple J-Links / J-Traces
	Connecting to a J-Link / J-Trace with non default USB- Address

	J-Link control panel
	Tabs

	Reset strategies
	Reset strategies in detail
	Cortex-M3 specific reset strategies

	Using DCC for memory access
	What is required?
	Target DCC handler
	Target DCC abort handler

	Command strings
	List of available commands
	device
	DisableFlashBPs
	DisableFlashDL
	EnableFlashBPs
	EnableFlashDL
	map exclude
	map indirectread
	map ram
	map reset
	SetAllowSimulation
	SetCheckModeAfterRead
	SetResetPulseLen
	SetResetType
	SetRestartOnClose
	SetDbgPowerDownOnClose
	SetSysPowerDownOnIdle
	SupplyPower
	Using command strings

	Switching off CPU clock during debug
	Cache handling
	Cache coherency
	Cache clean area
	Cache handling of ARM7 cores
	Cache handling of ARM9 cores

	Flash download and flash breakpoints
	Introduction
	Licensing
	Supported devices
	Using flash breakpoints
	IAR Embedded Workbench

	Device specifics
	Analog Devices
	ADuC7xxx

	ATMEL
	AT91SAM7
	AT91SAM9

	Freescale
	MAC71x

	Luminary Micro
	Stellaris LM3S100 Series
	Stellaris LM3S300 Series
	Stellaris LM3S600 Series
	Stellaris LM3S800 Series
	Stellaris LM3S2000 Series
	Stellaris LM3S6100 Series
	Stellaris LM3S6400 Series
	Stellaris LM3S6700 Series
	Stellaris LM3S6900 Series

	NXP
	LPC

	OKI
	ML67Q40x

	ST Microelectronics
	STR 71x
	STR 73x
	STR 75x
	STR91x
	STM32

	Texas Instruments
	TMS470

	Hardware
	20-pin JTAG/SWD connector
	Pinout for JTAG
	Pinout for SWD

	38-pin Mictor JTAG and Trace connector
	Connecting the target board
	Pinout
	Assignment of trace information pins between ETM architecture versions
	Trace signals

	19-pin JTAG/SWD and Trace connector
	Target power supply

	RESET, nTRST
	Adapters
	5 Volt adapter

	J-Link / J-Trace models
	Introduction
	J-Link ARM
	Additional features
	Specifications*
	Download speed
	Hardware versions

	J-Trace ARM
	Additional features
	Specifications for J-Trace
	Download speed
	Hardware versions

	J-Trace for Cortex-M3
	Additional features
	Download speed

	Background information
	JTAG
	Test access port (TAP)
	Data registers
	Instruction register
	The TAP controller

	The ARM core
	Processor modes
	Registers of the CPU core
	ARM / Thumb instruction set

	EmbeddedICE
	Breakpoints and watchpoints
	The ICE registers

	Embedded Trace Macrocell (ETM)
	Trigger condition
	Code tracing and data tracing
	J-Trace integration example

	Embedded Trace Buffer (ETB)
	Flash programming
	How does flash programming via J-Link / J-Trace work?
	Data download to RAM
	Data download via DCC

	J-Link / J-Trace firmware
	Firmware update
	Invalidating the firmware

	Designing the target board for trace
	Overview of high-speed board design
	Avoiding stubs
	Minimizing Signal Skew (Balancing PCB Track Lengths)
	Minimizing Crosstalk
	Using impedance matching and termination

	Terminating the trace signal
	Rules for series terminators

	Signal requirements

	Support and FAQs
	Measuring download speed
	Test environment

	Troubleshooting
	General procedure
	Typical problem scenarios

	Signal analysis
	Start sequence
	Troubleshooting

	Contacting support
	Frequently Asked Questions

	Glossary
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Numerics

