IAR)-Link and IAR J-Trace
User Guide

JTAG Emulators for
ARM Cores

COPYRIGHT NOTICE
© Copyright 2006-2009 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To Target,
IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced Development Kit,
IAR, and the IAR Systems logotype are trademarks or registered trademarks owned by
IAR Systems AB. J-Link is a trademark licensed to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel and Pentium are registered trademarks and XScale a trademark of Intel
Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Second edition: May 2009
Part number: J-Link/J-TraceARM-2

Internal reference: ISUD

Contents

PrEface ... s 9
ADOUL this SUIAEc..oooiiiiiii ettt ettt a et st sttt ettt eae 9
TypographiC CONVENTIONSc..eocuiiiriiiiiieiieeett ettt ettt e et eee e et e st e saesaeesnesaeeanesneeanennens 9

Literature and FEfErENCESc..coiiiiiiiiiiiii ettt ettt sttt st 9
INEPOAUCTION ... s bbbt 11
Overview about the J-Link product family ... 11
JoLADK ottt ettt bt h e e sttt et ea e ebe e be e en 11

JoTTACR ettt ettt ettt et b et s a et s a e et bttt a e ettt e h e en b eae 11

Common features of the J-Link product family ..., 11
SUPPOFrted ARM COresooooiiiiiiiiiiiieeet ettt sttt ettt sat et sae et st eaesaeen 12
REQUIFEIMENESoooiiiiiiiiii ettt et e b et sttt sttt st e st sbe e b e bt e sbeeas e b enee 12
LICENSING .ot 13
INErOAUCHION ..ottt et e a et a et s bt et e s bt et e ebe et e embeebeeneeeneenes 13
LICENSE CYPES ...t 13
BUIIE-10 TICENSE ..ottt sttt st st sttt eae bt st e saeeaeen 13

KEY-DASEA LICEISE ...ttt ettt ettt et sa e st esbe st e be et e st e ea e e beeatesteebeenbesaeenbeeneas 14
DeVIce-DASEA LICENSEcveeuriiieiiiiieieriteerce ettt ettt sttt st sbe e sae e sae st e e ennes 14

Legal use of original J-Link sOftWareccooiiiiiiiii e 15
PrOAUCES ...ttt ettt ettt ettt e at ettt esa e e bt e b e et s b e ebe bt an et ebeeneeaee 15
JoLANK o s b st e 15

JTTACE ettt ettt et e h e et e s bt et e e bt st e e bt e sa et e bt e eate e bt e e ab e e bt e eabeebeeeatean 16

JELINK OBS oottt sttt et e 16
HIEGAl CHONES ...ttt ettt ettt b et e a et ea e bt e et e sb e e st e st e et e sbeenteabeeseeteeaeeneeenee 16
SEEUP st 17
Installing the J-Link ARM software and documentationc.ccccoceoiiiiininiiiiiinnencceee 17

SELUP PIOCEAUIE ..euviiiiiiiiieitieetieite et ettt e et e st e et e e btesbeebeesateesbeesbbeesbeesaesaseesstesaseenbeesseensseensaensnesnses 17

Setting uUp the USB iNterface ...t st 17
Verifying correct driver INStallationccoceerieriiiiiiieieeieeeieecerie ettt ettt et e e 17
Uninstalling the J-Link USB driver ...ttt sttt 19
J-Link and J-Trace related SOftWare ...t 21
J-LINK related SOFEWAKEoooiiiiiiiieeee ettt et e st e et e sab e e e e sabeebeeesbeebeessseenseenseean 21
J-Link software and documentation packageccccceecueeiiiiiinieiiinieiicee e 21

J-Link software and documentation package in detailcoccoiiiniiiinii 21
J-Link Commander (Command 1iNe tOO])c...ccciiiiiiiieiiieiiie ettt eree e veeere e sre e e e e e seseeeseneeeas 22

J-Link STR91x Commander (Command line to0l)ccccoeieiiiiieiiiieeiiiieiie e e 22

J-Link STM32 Commander (Command 1iNe tOO0])ccccviiiviieeriieeiiieeriieerieeeeree e esreeeereeesereeeas 23

J-Link TCP/IP Server (Remote J-Link / J-TTace USE)cccveieeuiieiiiieeiieecieee et et et eeree e 23

J-MeEm MEMOTY VIEWET ...cc.ooiiiiiiiiiiiiiieieie ettt ettt st e st st e sr e 24

J-Flash ARM (Program flash memory via JTAG)cccoreriiiiniiniiiieencceneeeeeeeee e 24

Using the J-LINKARM.IL ...ttt st st ettt eae s 25

What is the JLINKARMU.AIL? ..c.ooiiiiiiiiiee ettt 25

Updating the DLc..ooiiiieeeee ettt ettt et a et s be et sbe et e e bt et e e s tenteeneeeeenes 25

Determining the version of JLINKARM.AILcoociiiiiiiiiiiiiiieeceeee ettt st 26

J-Link_J-TraceARM-2

Determining which DLL is used by @ PrOZramccoceecierienieiiiienieeieeniee e esieesteeveesieesressaeesineens 27

Working with J-Link and J-Trace ... 29
Connecting the target SYSteMc.coooiiiiiiiiiiii ettt st 29
POWET-01 SEQUEIICE ...ttt e 29
Verifying target deViCe COMMECTIONcoveeruirriierieiiienieeittente et esitesbeesttesteebeesbesbeesaseesseesseesseenseenas 29
PIODIEIIIS ..ttt e eb e st e bt e st e b e e et e st e s b e e eabe s be e saneenee e 29
INAICALONS ..ot 29
MaN INAICALOT ...viviiiiiiiieieiee ettt sttt et e sae et s b saesa ettt saeebesueeuee 29
JTAG INEEITACE ...ttt ettt et ettt et e e st et e et e saeeneeeseentesreenseeseenseseeneeseenes 30
Multiple devices in the SCAN ChAINc.ccoviiriiiiiiiiieieeeeeeee ettt 31
Sample configuration dialog DOXEScc.cecueeiieieriirieiiiieieeiee ettt st 31
Determining values for scan chain configurationcoccoeceevieniinieneiiinienienenreeeeeeeeee e 32

JTAG SPEEA ettt ettt ettt ettt b e sae sttt ettt et eb e bt ebeeae e 33

SWD NEEITACE ...t ettt ettt e et e e e tte e e e te e e etbeeeetreeeeasaeeeasaeeetseeessesensseeessseeans 34
SWO ettt ettt sttt h e bbb a et ettt ettt et eae b e 34
Multi-core debuggIng ...ttt 35
How multi-core debugging WOTKScooiriiriiiiiriiniiiereeeneeese ettt et 35

Using multi-core debugging in detailcccoiiiiiiiiiiiiiiiiiiicee e e 37
Things you should be aWare Ofccccooiiiiriiiiiiiie ettt 38
Connecting multiple J-Links / J-Traces to your PC ..., 39
HOW d0€S 1t WOTK? ..ottt s et eae e 39
Configuring multiple J-Links / J-TTACEScc.eeciiriiiiiiiiiiiriieieeeeceeeceeesee e e 40
Connecting to a J-Link / J-Trace with non default USB-Addresscccceceveevenieninienencencneenenneen 41
J-LINK coNtrol PAn@lc.coooiiiiiii ettt ettt 41
TADS <. e 41
RESEL SEFAtEGIES ...ttt h ettt e et h ettt e s et e st e e bt et e s bt e st e bt en e et e en e ne s 45
Reset strate@ies i detailccooiiiiiiiiiiie e e e e 45
Cortex-M3 SPECIfIC TESEL STTALEZICS ...eervervremreriierieiiieierteete et ete et et e ete et e steetesbeestesbeestesbeeseebeeneeneeseeeneen 47
Using DCC fOr MEMOKY @CCESSooiiiiiiiiiiiiiiciieeit ettt ettt ettt et sttt et eaeeneeeee 47
WRHAL 1S TEQUITEAT ..entiiiiiieiieieeteee ettt ettt et st eb et et b e eb et eae e et sbeeaesaeenaeeueen 47
Target DCC handler ..ottt et 48
Target DCC abort RANAIETcc.ooiiiiiiiiniiieneeeee et sttt sttt e s 48
ComMMAN SEFINGS ..ot e 48
List of available commandsccccoieiiiiiiiiiiiiiii 48
QEVICE ettt ettt ettt et e et e e e et et e bt e bt e a e e bt s et e bt e et e sb e ee e e bt ea e e b e eh b e bt ententeehe e bt saeenbeeaean 49
DisableFIashBPSc..cooiiiiiiiiiiii e 49
DiSabIEFIASNDILL ...ttt ettt ettt ea b et b e eh et eae et et e naeeaeenaeeaean 49
EnableFIashBPSccccooiiiiiiii e 49
ENabIEFIasShDLLouiiiiiiiie et ettt ettt e a et s a et st eh et e b ettt eat e bt et saeeaean 49

TNAP EXCIUAE ettt ettt et e st s bt e bt e s bt e btesabeeabeesabeeabeesbaessbesnbeesabeensaenas 49

MAP INAITECLIEAAeutieiiiieeieit ettt ettt et e s et s a e e bt s et e st e eb e e beebeenbeeb e e teeaeenteseeeeesaeenaeennes 50

TIIAD TATIL uveeuvieureenteeniteeteesstesuteessaesseestaesaseesseessseenseensaesaseensaesaseensaesssesnseesssesnseenstesnseenseesssesnsesnseesnsesnseens 50

TTIAP TESEL euveeuieeeutiettenite et eette et e s bt e sut e e bt eeute et e eabbesub e e bt e eab e e bt e sbb e e bt e bee s bt e bt e sab e e bt ebae e beeeabe s beeeneeneeeas 51
SEtAIIOWSIMUIATION ...oviiiiiiiiiiiiiciiiei e ettt s ea e s 51
SetCheckMOdeATIETREAAcc.eeiuiiiieieeieee ettt sb et 51
SEtRESEIPUISELENceoviiiiiiiiiiiiciccc e 51
SEURESEITYPE ..ttt ettt ettt st s bt esbe e e bt e s bt e s bt e sbeesabeesbeesaaesanee e 52
SEtRESTATTONCIOSEoouiiiiiiiiiiiiiiiiiiieie e e s 52
SetDbEPOWEIDOWNONCIOSEeeiiuiieiieiieiieieee ettt ettt st e st bt eae et e eseenae et eneeeaean 52

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Contents

SetSYSPOWEIDOWNONIALEc..coviiiiiiiiieiie ittt ettt ettt st e saee st esbeebeesaeeas 52
SUPPLYPOWET ..ttt sttt et st e bt e sbt e e be e sbe e sateebeenaee s 53

USING COMMEANG SIIINES ...veruvieiieriiieiiieeieeteesteeteesiteebeestteseteesseesstessbeesabesateesaseensaenseesaseesseesnsesnseenseesnses 53
Switching off CPU clock during debug ... 54
Cache handling ...ttt 55
CACNE CONETEINICY ..vviiuiieiieiiieiie ettt ettt et s bt e b e st e e bt e s bt e ebe e bbesabe e sbesabeesatesatesabeensaenasesnses 55

CACRE CIEAN AICAvievieiiiiiiecie et e ettt e ete et et e e teesteeesbeessbeesbeesseeesseenseesasaansaessseanseasseessseenssensseenses 55

Cache handling Of ARMT7 COTESeevuiiruiiiiierieiiieiitieitee sttt estte st esiteste e beesabeebeesabeebeesatesbeesaesaseenses 55

Cache handling 0f ARMO COTESccoeiriririininienieieieteteitee sttt sttt ettt s st 55

Flash download and flash breakpoints ... 57
INEFOAUCEION ..ot ettt et e e te e e be s baesabeeabaesabeesseessbeeseaasseesbeessseensseasseenseensses 57
LECENSING ..ottt ettt et b e et s b et s bt et e bt et ebe et sbeenbesbeeaesaeen 57
SUPPOFLEd dEVICES ...ttt st b et e e bt et e eb et e eae et e saeebe st enbeeneas 58
Using flash breakpoints ..o e 64
TAR Embedded WOTKDENCHcccuiiiiiiiieiiiciteic ettt ettt sttt esabeesbeessaesnseenes 64
DEVICE SPECIfICS ...t 65
ANAIOG DIEVICES ...ttt b ettt et a et s h et a et e s bt e bt e at et e bt et n e b e en e s nes 65
ADUCTXXX 1tteeetiieiittieeittieeeetteesotteeasteeesssseeasseeesssesassssesasseeassseesssesessssessssseesssseesssssessssesenssesessseesansssesnsses 65
ATIMEL ottt et h et b et e h e s e h et h et e h e et s h et b e bt ea bbb ea e b nee 66
ATOLSAMYT ettt ettt et et e bt s bt et e e bt e be e et en b e e st e bt eat et e eatenbesateabesbeentenneans 66
ATOLISAMO ettt ettt et sttt s b et bttt b e bt at et bt e bt sae et e sbe et nbeens 68
Y T ot | SRR 68
IMACTIX ettt ettt et ettt bt e st e st et e s et e e sbt e s bt e bt e s aseenbeesateenstesabeenbeesabeenseesabeenbeensseansaenaseenses 69
LUMINArY MICIO ..ottt ettt s st sttt 69
Stellaris LIM3S 100 SETIES ...ccccveeereiiieeiieeiiieeeeiieeeiteeestteeeereesssreeessseeasssasessseeasssesssssssessseeesssssesssseessssees 70
Stellaris LIM3S300 SETIESeccveerrieiieerieerieeieereesteesteenstesteessessseesseessseesseesssesssesssessssesssesssseessesssesssen 70
Stellaris LIM3SO000 SETIEScccveeereiiieeieeeiiieeeiieeeieeesteeeeereesssreeessseeasssaeessseeasssesssssssessseesassssesssseessssees 70
Stellaris LIM3SB00 SETIEScccveervieiireriienieetiereeeteesteestteseteeseessseesseessseesseesssesssesssessssessseesssesssessseessees 70
Stellaris LIM3S2000 SEIIESveeerevirireiieeiitieeeitieeiieeesteeesereeessseaesseeesssseessseesssseessssessssseeesssesesssessssseeens 70
Stellaris LIM3SO100 SEIIES ...veeeveeeiierieeieeitieeieesttesteerteesieeeteesteesteesseesseessseesssesseesssessseesseesssesssesssees 70
Stellaris LIM3SO400 SEIIESeeeeeviiiriieeieiiieeiiteesieeesteeesteeessseeesseeessseessseeassseessssessssseeesssesesssesesseeens 70
Stellaris LIM3SO700 SEIIES ...c.eeeveeeiierieeiieeitieeieeritesteeteeseesteesseesseesseesssesseesssessseesssesssessseessesssesssees 70
Stellaris LIM3S60900 SEIIESeeeeeviiiriiiieiitiieeiiieeiieeesteeesteeessaeeesseeesseeessseeassseessssessssseessssesesssesessseeens 71

NP ettt ettt e et h et e bt et e bt et s a e bt e bt e bt et e bt e et h et sbe et s bt eaeeueen 71
) = SRRSO 71

O et b et e h et b et s h e se e s bt et s bt e s bt e bt e bt e bt e bt eh e et e ebe et ebe et saeenaeebeen 72
IMLOTQADX .ttt ettt ettt ettt ea et e a et e e et e e bt e tesbeea e e eb e e beebeen b e bt et e eae et e eate bt saeenbeebtebeeaten 73

ST MICKO@IECLIONICScoeeiiiiiiiiieeeeee ettt ettt et e st e et e e bt e st e e bt e sabeesbeesateenbaenanesnses 73
STR TLIX ettt ettt st b ettt et eb e bt e ae e sb e bt e s bt et sbe e st e s bt et e sbe e bt e bt et e ebe e e eaee 74

R - <SPS 74

STR 75X ettt ettt st b bbbt at et eh e bt e at e sa e bt b e et s bt e st bt et bt e et e bt ebe et eaee 74

I I ST S 74
STIMB2 ettt ettt b e et s h bbbt e a e bttt e h et e b et bt e bt e bbbttt e beea s b nee 74
TeXAS INSEFUMIENLSoiiiiiiiiiie ettt ettt e et e e et e e et e e e sbaeesbeeeassseessnseeessaaeansaeeassseessseeesseeennns 75
TIMISATO ettt bt et s h et b et bt e bt e b e bt bt e bt e b e bt e bt bt e st sbe et e b e et e b ens 75
HAFAWAIE ...t 77
20-pPin JTAG/SWD CONNECLOFocooouiiiiiiiiieietee ettt ettt ettt b e et e sttt e saeeeesaeeeesaeeaeeaean 77
5 03T 1R (o) o 12 USSR 77

J-Link_J-TraceARM-2

—e

PINOUL FOI SWDD ..ottt e e e e e e e e ette e e e e eeetaaeeeeentareeeeeentareeeseennres 79

38-pin Mictor JTAG and Trace CONNECLOYcooiiiiiiiiiiiiiiiieeeeee ettt st ene 80
Connecting the target DOArdccccocoriiiiiniiiinie et e 81
PINOUL <ottt s ettt b 82
Assignment of trace information pins between ETM architecture Versionsc..cecceeeeceenceneenneenne. 83
TLACE SIZNALS ..c.evitieiieieetit ettt ettt sttt sttt sb e e s bt et eb e et sae e et sbeetesbeenbeeneen 83

19-pin JTAG/SWD and Trace CONNECLOFccocccciiiiiiiiiiiiiiiieceeeneete e 84
Target POWET SUPPLY ..ccueruiiiiiiiiiiiicictce et 85

RESET, NTRST ..ottt e sttt et ettt s b e bbbttt a e ebesae st b e 85

AUAPLELS ...ttt sttt st h e et b e st h e e e b e bttt sae et st eneeaeen 86
5 VOIE AAAPLET ...ttt sttt ettt ebe e s 86

J-Link / J-Trace MOMEIS ... 87

INErOAUCTION ..ottt ettt b sttt ettt e sb e ae 87

JLINKARM Lottt ettt et a bt a e bbbttt ettt ettt et 87
AddItIoNAl FEATUTES ...oviviiiiiiieiiciieieieee e ettt s et eae 87
SPECIHICALIONS® ...ttt et a et et s e e s n e eae e s eaeesaesunen 87
DOWNIOAA SPEEA ..ottt ettt et sttt h et ettt bttt st naeeaten 88
HArAWATe VETSIONSeeiuiiiiiieiiieiieeie ettt sttt sttt sb e st e s bt e st e eabe e s st e sabeesbaeeatesbeesabeebaenas 88

JETrace ARM oottt ettt et e ettt et e e bt et te bt e bt e e be e ateeabeeabeennbeestteebeenaeans 90
AddItioNal FEALUIESc..iiuiiiieiieiieiee et ettt ettt et b e e s bt et e e b e es e be et e bt e st e bt entesaeeneas 90
SPecifications fOI J-TTACEccoiiiiiiiiiiie ettt ettt et ettt e s it e sabe e beesabeesbeessbeebaesas 90
Download SPEEA.cc.oiiiiiii e e e 90
HAardware VEISIONScc.ccuiiiiiiiiiiiiiiitiiciceteeee ettt st s 90

J-Trace for Cortex-M3ttt ettt et et b ettt bttt ettt ene e e 91
AdAIHONAL TEALUTES ...veeiiiiiiiiiieie ettt ettt e sa e e bt e e ate st e e bt e st e e beesabeeabeesbeesbeennaenas 91
DOWNIOAA SPEEA.oneiiiiiieiieit ettt ettt et ettt bttt st enaesaten 91

Background iNfOrMAatioN ... 93

JTAG Lttt ettt bt bt s a e st e et et a bt h e h e e bbbttt st b et ettt et be e 93
TSt ACCESS POTL (TAP) oottt et ettt et e st e s bt e s it e sabeesabeenbeesbeesnbeesaenas 93
DIAtA TEZISTETS .eeviviieieteieteteeett ettt ettt ettt et et st et se et et eatebesbesae s ene e et eneebesresaens 93
INSEIUCHION TEGISTET .uvieutieriieriieiiiienteeittert et et e ete et esiteebeesttesabeesteesabeessaesabeenbtessbessbeessseenseesssesnseensnenas 93
The TAP CONIIOIIET ..uuiiuiiiiieiieiiee ettt ettt ettt et st e e e be e st e bt es et e eae e bt eseetesaeenaesaean 94

The ARM COKE ...ttt 95
ProCESSOI OGRSevuiiiiiiiiiiiti ettt et sttt et et sae b b sae e 95
Registers Of the CPU COTEcocuiiiiiiiiiieiieeeeee ettt e 96
ARM / Thumb INSIIUCLION SELeeuieuiiuiiiiiiiiieieieieiet ettt sttt et et s st besaesaeseeneeneenea 96

EmMbeddedICE ..ottt ettt b bbbttt ettt et 96
Breakpoints and WatChPOINEScooeiiiriiriiieiiiieieeeee ettt sttt s e 97
ThE ICE TEZISLELS ...uvivieiiieiieii ettt ettt et st st s e b et e e n e e e esaeennesaeennes 97

Embedded Trace Macrocell (ETIM) ...ttt 98
TTIZEET CONAITION «..cvuiiiiiiitiiti ettt et sttt ettt eb et sae st besae e e s e e et eneeneeueeneas 98
Code tracing and data tTACINEcevveruveeriierieeiientenieerieesteerteesiteseteesbteesbeebeessbeebeesbeesabeenseesseesasessaenns 98
J-Trace Integration EXAMPLEcccceeriirieiieieieieiteeer ettt ettt st a oot ene bt eueenea 98

Embedded Trace Buffer (ETB)c.ccooiiiiiiiiiiieeeee ettt ettt s 102

FIash Programimingoooiiiiiiiiiii ettt sttt sttt ettt sbe st sae e 102
How does flash programming via J-Link / J-Trace Work?c...ccccoceoiiiininiiniiiiicceneeeeeens 102
Data download t0 RAMcc.ccoiiiiiiiiiiiccec ettt s 102
Data download via DICCcc.coiuiiiiiiieiietet ettt ettt et ettt et st e bt e sane e 102

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Contents

J-LINK/ J-Trace fIFMWANE ..ottt ettt et s b e st st esatesabeesbaesaseenne 103
FIrMWAre UPAALEcouviiiiiieiiiiinieee ettt ettt et sb et s b et bt e e sb e tesbeentenbeeaeen 103

Invalidating the fITMWATEcccoviiiiiiiii et 103

Designing the target board fOr trace ...t 105
Overview of high-speed board designoccooiiiiiiiini e 105
AVOIAING STUDS ..ttt ettt b et sb et sb et bt et e s bt et sbeea et e eatesbeemeenbeebean 105

Minimizing Signal Skew (Balancing PCB Track Lengths)cccoccooiieiiiiiiininiiciiccceeee, 105

Minimizing CTOSSTALKc..coouiriiiiiiiitiiieetee ettt ettt ettt sbt e et eb et e e et sbeenaesaeen 105

Using impedance matching and termMinationccceoeeiieririeiiinienieeeeeeneeie e 105
Terminating the trace signal ... 105

Rules fOr SETIes tEIMINALOTS ..cc..eertieriieeiieniieeieenite ettt e st e e st e e te e bt e st e et e sbteebeesbeesabeeabeenaeeeas 106

SIiZNal FEQUIFEMIENTSoiiiiiiiiiii ettt ettt ettt st e e bt eae st e aesaeens 106
SUPPOIt aNd FAQS ... 107
Measuring download SPeed ..ot 107

TSt ENVITOMIMIEIIE ...c.eiiutieiiitieite et ete ettt et et et e e et e eat e et e ente et e eneesatenbesbeembeebeenbeebeenseebeeneenaeeneennesaean 107
TroubIeShOOLINGcoooiiii ettt ettt ettt sbe e naeeaees 107
GENETAL PTOCEAULIEeeiueiiiiiiiieiie ettt ettt ettt sa bttt e s bt e et e e saeesabe e s beessaesate e beesaeeeanee 107

Typical Problem SCENATIOScccueevieriieiiieriiieieente et eerte st estte st e et e s beeteesbaesbeesseesaseeseesusesnbesasesseenes 108

SIGNAl ANANYSES ..ottt et a ettt sheebe et e b eaens 108

SEATE SEQUETICE ..enuveeiiieiieeiieiteeiee sttt et e sttt et e bt e st e bt e sabeeabeesabe e bt esbteebeebeesabeesbeesateebeessaesateenbeesaneenss 109
TTOUDIESNOOTINEeeviiiiiiiiiiieceeeee ettt s 109

CONLACLING SUPPOIL ..ottt ettt sttt sttt ettt b e bt bttt s b et et et et eseeneeaesnens 109
Frequently Asked QUESLIONScocoiiiiiiiiiiiiiii ettt s 110
GIOSSAINY ... 113

J-Link_J-TraceARM-2

—e

8

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-2

Preface

Welcome to the IAR J-Link and IAR J-Trace User Guide for JTAG Emulators for ARM Cores.

About this guide

This guide provides an overview over the major features of J-Link and J-Trace, gives you some background information
about JTAG, ARM and Tracing in general and describes J-Link and J-Trace related software packages. Finally, the
chapter Support and FAQs on page 107 helps to troubleshoot common problems.

For simplicity, we will refer to J-Link ARM as J-Link in this manual.

For simplicity, we will refer to J-Link ARM Pro as J-Link Pro in this manual.

TYPOGRAPHIC CONVENTIONS

This manual uses the following typographic conventions:

Style Used for
Body Body text.
Keyword Text that you enter at the command-prompt or that appears on the display (that is system functions,

file- or pathnames).
Reference Reference to chapters, tables and figures or other documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Table 1: Typographic conventions

Literature and references

To gain deeper understanding of technical details, see:

Reference Title Comments
[ETM] Embedded Trace Macrocell™ Architecture This document defines the ETM standard, including signal
Specification, ARM IHI 0014 protocol and physical interface.

It is publicly available from ARM (www.arm.com).

Table 2: Literature and references

J-Link_J-TraceARM-2

IAR J-Link and IAR }J-Trace
10 User Guide J-Link_J-TraceARM-2

Introduction

This chapter gives a short overview about J-Link and J-Trace.

Overview about the J-Link product family

The J-Link product family includes different variations of J-Link, designed for different purposes / target devices. This
section gives a short overview about the different products which are part of the J-Link product family.

J-LINK

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running Microsoft Windows 2000,
Windows XP, Windows 2003 or Windows Vista. J-Link has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM.

J-TRACE

J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support. It connects via USB to a PC
running Microsoft Windows 2000, Windows XP, Windows 2003 or Windows Vista. J-Trace has a built-in 20-pin JTAG
connector and a built in 38-pin JTAG+Trace connector, which is compatible with the standard 20-pin connector and
38-pin connector defined by ARM.

Common features of the J-Link product family

USB 2.0 interface

Any ARM7/ARM9 and Cortex-M3 core supported, including thumb mode
Automatic core recognition

Maximum JTAG speed 12 MHz

Seamless integration into the IAR Embedded Workbench® IDE

No power supply required, powered through USB

Support for adaptive clocking

All JTAG signals can be monitored, target voltage can be measured
Support for multiple devices

Fully plug and play compatible

Standard 20-pin JTAG connector, standard 38-pin JTAG+Trace connector
USB and 20-pin ribbon cable included

Memory viewer (J-Mem) included

TCP/IP server included, which allows using J-Trace via TCP/IP networks
Flash programming software (J-Flash) available

Full integration with the IAR C-SPY® debugger; advanced debugging features available from IAR C-SPY
debugger.

Adapter for 5V JTAG targets available
e Target power supply via pin 19 of the JTAG/SWD interface (up to 300 mA to target with overload protection)

J-Link_J-TraceARM-2 Partl. Using the compiler

Supported ARM Cores

J-Link / J-Trace has been tested with the following cores, but should work with any ARM7/ARM?9 and Cortex-M3
core.

ARM7TDMI (Rev 1)
ARM7TDMI (Rev 3)
ARM7TDMI-S (Rev 4)
ARM720T

ARM920T

ARM922T
ARM926EJ-S
ARMY46E-S
ARMO966E-S

[J
[J
[J
[J
[J
[J
[J
[J
[J
e Cortex-M3

Requirements
Host System

To use J-Link or J-Trace you need a host system running Windows 2000, Windows XP, Windows 2003, or Windows
Vista.

Target System

An ARM7/ARM9/ARM11 or Cortex-M3 target system is required. The system should have a standardized 20-pin
connector as defined by ARM Ltd. for a simple JTAG connection. The individual pins are described in section 20-pin
JTAG/SWD connector on page 77.

To use tracing with J-Trace, you need a 38-pin connector on your target board as defined by ARM Ltd. and described
under 38-pin Mictor JTAG and Trace connector on page 80. The individual pins are described in section Pinout on
page 82.

IAR J-Link and IAR }J-Trace
12 User Guide J-Link_J-TraceARM-2

Licensing

This chapter describes the different license types of |-Link related software and the legal use of the J-Link software.

Introduction

J-Link functionality can be enhanced by flash breakpoints (FlashBP). This feature do not come with J-Link and need
additional licenses. This chapter describes the licensing options.

License types

FlashBP requires an additional license, there are three types of licenses:
Built-in License

This type of license is easiest to use because you do not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). This is the type of license you get if you order J-
Link and the license at the same time, typically in a bundle.

Key-based license

This type of license is used if you already have a J-Link probe, but want to enhance its functionality by using J-Link
FlashBP. In addition to that, the key-based license is used for trial licenses. To enable this type of license you need to
obtain a license key. This license key has to be added to the J-Link license management. How to enter a license key is
described in detail in Licensing on page 57. Every license can be used on different PCs, but only with the J-Link the
license is for. This means that if you want to use J-Link ARM FlashBP with other J-Links, every J-Link needs a license.

Device-based license

The device-based license comes with the J-Link software and is available for some devices. For a complete list of
devices which have built-in licenses, please refer to Device list on page 14. The device-based license has to be activated
via the debugger. How to activate a device-based license is described in detail in the section Activating a device-based
license on page 14.

BUILT-IN LICENSE

This type of license is easiest to use. The customer does not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). To check what licenses the used J-Link have, simply
open the J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-Link’s licenses
automatically, as can be seen in the screenshot below.

3. 3-Link Commander (0] x]

SEGGER J-Link Commander U3.78d <'7’ for help>
Compiled Jan 16 2888 19:55:4@

DLL version U3.78d. compiled Jan 16 28B88 19:55:31
Firmware: J-Link ARM U6 compiled Jan 21 26088 16:81:17

= RDI. FlashBP, FlashDL
6U

: TotallRLen = 17. IRPrint = BxBB1129
speed: 38 kHz
: CP15.8.8: Bx41259668: ARM. Architecure 5TE
: J-Link: ARM?. 966 core
Found 3 JTAG devices,., Total IRLen = 17:
Id of device #8: BxB4570041
Id of device #1: Bx259660841
Id of device H#2: Bx2457F@41
Found ARM with core Id Bx25966841 (ARM?>
3 EIHkg1.3: 1 pairs addr.comp,. B data comp, 4 MM decs,. 1 counters
—Lin

J-Link_J-TraceARM-2

14

KEY-BASED LICENSE

When using a key-based license, a license key is required in order to enable the J-Link features J-Link FlashBP.
License keys can be added via the license manager. How to enter a license via the license manager is described in
Licensing on page 57. Like the built-in license, the key-based license is only valid for one J-Link, so if another J-Link
is used it needs a separate license.

DEVICE-BASED LICENSE

The device-based license is a free license, available for some devices. It’s already included in J-Link, so no keys are
necessary to enable this license type. To activate a device based license, the debugger needs to select a supported
device.

Activating a device-based license

In order to activate a device-based license, the debugger needs to select a supported device. To check if the debugger
has selected the right device, simply open the J-Link control panel and check the device section in the General tab.

.2, I-Link ARM ¥3.90d Control panel

General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I

¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top

Process IE:\T ool\ChARNARM_VYE20Ncommontbinkl arl deFh. exe

J-Link ISEGGEH J-Link ARM VE.0, SH=1 I

Target interface |JTAG: Adaptive Endian [Litle | 3.2?\!.

|Device [[Pcza78 |

License | About

Ready JLINKARM_ReadMeml)32 (Done) |131 4

Device list

The following list contains all devices which are supported by the device-based license

Manufacturer Name Licenses

NXP LPC210I J-Link ARM FlashBP
NXP LPC2102 J-Link ARM FlashBP
NXP LPC2103 J-Link ARM FlashBP
NXP LPC2104 J-Link ARM FlashBP
NXP LPC2105 J-Link ARM FlashBP
NXP LPC2106 J-Link ARM FlashBP
NXP LPC2109 J-Link ARM FlashBP
NXP LPC2114 J-Link ARM FlashBP
NXP LPC2119 J-Link ARM FlashBP
NXP LPC2124 J-Link ARM FlashBP
NXP LPC2129 J-Link ARM FlashBP
NXP LPC2131 J-Link ARM FlashBP
NXP LPC2132 J-Link ARM FlashBP
NXP LPC2134 J-Link ARM FlashBP
NXP LPC2136 J-Link ARM FlashBP
NXP LPC2138 J-Link ARM FlashBP
NXP LPC214I J-Link ARM FlashBP
NXP LPC2142 J-Link ARM FlashBP

Table 3: Device list

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Licensing

Manufacturer Name Licenses

NXP LPC2144 J-Link ARM FlashBP
NXP LPC2146 J-Link ARM FlashBP
NXP LPC2148 J-Link ARM FlashBP
NXP LPC2194 J-Link ARM FlashBP
NXP LPC2212 J-Link ARM FlashBP
NXP LPC2214 J-Link ARM FlashBP
NXP LPC2292 J-Link ARM FlashBP
NXP LPC2294 J-Link ARM FlashBP
NXP LPC2364 J-Link ARM FlashBP
NXP LPC2366 J-Link ARM FlashBP
NXP LPC2368 J-Link ARM FlashBP
NXP LPC2378 J-Link ARM FlashBP
NXP LPC2468 J-Link ARM FlashBP
NXP LPC2478 J-Link ARM FlashBP

Table 3: Device list (Continued)

Legal use of original J-Link software

The software consists of proprietary programs of SEGGER, protected under copyright and trade secret laws. All rights,
title and interest in the software are and shall remain with SEGGER. For details, please refer to the license agreement
which needs to be accepted when installing the software. The text of the license agreement is also available as entry in
the start menu after installing the software.

Use of software

J-Link software may only be used with original J-Link products. The use of the licensed software to operate product
clones is prohibited and illegal.

Products

The following products are original products for which the use of the J-Link software is allowed:

J-LINK

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running
Microsoft Windows 2000, Windows XP, Windows 2003 or Windows Vista. J-Link has a built-
in 20-pin JTAG connector, which is compatible with the standard 20-pin connector defined by

ARM.

Licenses

Comes with built-in licenses for J-Link ARM FlashBP for some devices. For a complete list -
of devices which are supported by the built-in licenses, please refer to Device list on page 14. M

J-Link_J-TraceARM-2

J-TRACE

J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support. It

connects via USB to a PC running Microsoft Windows 2000, Windows XP, Windows 2003 or

Windows Vista. J-Trace has a built-in 20-pin JTAG connector and a built in 38-pin

JTAG+Trace connector, which is compatible with the standard 20-pin connector and 38-pin

connector defined by ARM. -

J-Link OBs

J-Link OBs (J-Link On Board) are single chip versions of J-Link which are used on various evaluation boards.

lllegal Clones

Clones are copies of original products which use the copyrighted original Firmware without a license. It is strictly
prohibited to use original J-Link software with illegal clones. Manufacturing and selling these clones is an illegal act
for various reasons, amongst them trademark, copyright and unfair business practise issues.

The use of illegal J-Link clones with this software is a violation of US, European and other international laws and is
prohibited.

If you are in doubt if your unit may be legally used with original J-Link software, please get in touch with us.

End users may be liable for illegal use of J-Link software with clones.

IAR J-Link and IAR }J-Trace
16 User Guide J-Link_J-TraceARM-2

Setup

This chapter describes the setup procedure required in order to work with J-Link / |-Trace. Primarily this includes
the installation of the J-Link software and documentation package, which also includes a kernel mode J-Link USB
driver in your host system.

Installing the J-Link ARM software and documentation

J-Link is shipped with a bundle of applications, corresponding manuals and some example projects, and the kernel
mode J-Link USB driver. Some of the applications require an additional license.

Refer to chapter J-Link and J-Trace related software on page 21 for an overview about the J-Link software and
documentation pack.

SETUP PROCEDURE

To install the J-Link software and documentation, follow this procedure:
Note:Check for J-Link related downloads on our website:
http://www.iar.com/jlinkarm

I Connect your computer and the J-Link debug probe using the USB cable. Do not connect the J-Link debug probe to
the evaluation board, yet. The green LED on the front panel of the J-Link debug probe will blink for a few moments
while Windows searches for a USB driver.

2 When you do this for the first time, Windows will start the Install wizard. Choose Install from a specific location.

3 When asked to locate the USB drivers, click the browse button and navigate to the directory Program Files\IAR
Systems\Embedded Workbench 5.0\Kickstart\arm\drivers\JLink. This assumes that you already have
installed the IAR Embedded Workbench IDE. If not, make sure to intall it.

Note that Windows XP might display a warning that the driver is not certified by Microsoft. Ignore this warning and
click Continue.

4 Click Finish. The green LED on the J-Link debug probe stops blinking. The installation is now ready.

5 Remove the USB cable that connects the computer and your J-Link.

Setting up the USB interface

After installing the J-Link ARM software and documentation package it should not be necessary to perform any
additional setup sequences in order to configure the USB interface of J-Link.

VERIFYING CORRECT DRIVER INSTALLATION

To verify the correct installation of the driver, disconnect and reconnect J-Link / J-Trace to the USB port. During the
enumeration process which takes about 2 seconds, the LED on J-Link / J-Trace is flashing. After successful
enumeration, the LED stays on permanently.

J-Link_J-TraceARM-2 17

Start the provided sample application JLink . exe available in the arm\bin directory in your product installation,
which should display the compilation time of the J-Link firmware, the serial number, a target voltage of 0.000V, a
complementary error message, which says that the supply voltage is too low if no target is connected to J-Link / J-
Trace, and the speed selection. The screenshot below shows an example.

SEGGER J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43

DLL version U3.86, compiled Jun 27 26008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51

JTAG speed: 5 kHz
J-LinkZ>

In addition you can verify the driver installation by consulting the Windows device manager. If the driver is installed
and your J-Link / J-Trace is connected to your computer, the device manager should list the J-Link USB driver as a
node below "Universal Serial Bus controllers" as shown in the following screenshot:

Device Manager =1 E3
J Action View |J = =

E|l WMBASIC
D\g Batteries
Computer
D Disk drives

Dizplay adapters

4} DVD/CD-ROM drives
2 Floppy disk controllers
= Floppy disk drives
= IDE ATASATAPI controllers
&2 Keyhoards
% Mice and other pointing devices
B3 Mebwork adapters
5 Ports [COM & LPT)

= Sound, video and game controllers

+ - Systern devices
|- & Uriversal Serial Bus controllers

% Intel 823714B/ER PCl to USBE Universal Host Controller

J-Link, driver
USE Root Hub

IAR J-Link and IAR }J-Trace
18 User Guide J-Link_J-TraceARM-2

Setup

Right-click on the driver to open a context menu which contains the command Properties. If you select this command,

a J-Link driver Properties dialog box is opened and should report: This device is working properly.

J-Link driver Properties EHE

General | Ditiver |

G%b J-Link driver
Device type: Univerzal Serial Bus controllers
Manufacturer: Segger
Location: J-Link
— Device statu:
Thiz device iz working properly. ;I

If you are having problems with this device, click Troubleshooter to
start the troubleshoater.

Device usage:
Use this device [enable) j

If you experience problems, refer to the chapter Support and FAQs on page 107 for help. You can select the Driver tab

for detailed information about driver provider, version, date and digital signer.

J-Link driver Properties EHE

General Driver |

9@ i J-Link driver
Diriver Provider: Segger
Criver Date: 07-01-09

Criver Version: 2650
Digital Signer: Microzoft \Windows Hardware Compatibility Publ
To view details about the driver files loaded for this device, click Driver

Detailz. To uninstall the driver files for this device, click Uningtall. To update
the driver files for this device, click pdate Driver.

Dri i Uningtall | Update Driver... |

()8 | Cancel |

Uninstalling the J-Link USB driver

If J-Link / J-Trace is not properly recognized by Windows and therefore does not enumerate, it make sense to uninstall

the J-Link USB driver.

This might be the case when:

e The LED on the J-Link / J-Trace is rapidly flashing.

e The J-Link / J-Trace is recognized as Unknown Device by Windows.

To have a clean system and help Windows to reinstall the J-Link driver, follow this procedure:

I Disconnect J-Link / J-Trace from your PC.

J-Link_J-TraceARM-2

—e

2 Open the Add/Remove Programs dialog (Start > Settings > Control Panel > Add/Remove Programs)
and select Windows Driver Package - Segger (jlink) USB and click the Change/Remove button.

&R Add/Remove Programs =] 3
Currently installed programs: Sork by:l Mame - I

BN 3-Link ARM V3. 66a =l

lows Driver Package - Segger (jlink) USB
“ {01,09,/2007 2.6.5.0)

Change/Remove

3 Confirm the uninstallation process.

Uninstall Driver Package B

@ All devices uzing this driver will be removed. Do you wish to continue?

IAR J-Link and IAR J-Trace
20 User Guide J-Link_J-TraceARM-2

J-Link and J-Trace related software

This chapter describes J-Link / J-Trace related software.

J-Link related software
J-LINK SOFTWARE AND DOCUMENTATION PACKAGE

IAR Embedded Workbench is bundled with applications for J-Link. Some of the applications require an additional

license.

Software Description

JLinkARM.dII DLL for using J-Link / J-Trace.

JLink.exe Free command-line tool with basic functionality for target analysis.

JLinkSTR9 Ix Free command-line tool to configure the ST STR9Ix cores. For more information please refer
to J-Link STR9 Ix Commander (Command line tool) on page 22

JLinkSTM32 Free command-line tool for STM32 devices. Can be used to disable the hardware watchdog
and to unsecure STM32 devices (override read-protection).

J-Link TCP/IP Server Free utility which provides the possibility to use J-Link / J-Trace remotely via TCP/IP.

J-Mem memory viewer Free target memory viewer. Shows the memory content of a running target and allows editing
as well.

J-Flash Stand-alone flash programming application. This requires an additional license.

Flash breakpoints Flash breakpoints provide the ability to set an unlimited number of software breakpoints in

flash memory areas. This requires an additional license.

Table 4: J-Link / J-Trace related software

J-Link software and documentation package in detail
The J-Link / J-Trace software documentation supplied with AR Embedded Workbench.

J-Link_J-TraceARM-2

21

22

J-LINK COMMANDER (COMMAND LINE TOOL)

J-Link Commander (JLink.exe) is a tool that can be used for verifying proper installation of the USB driver and to
verify the connection to the ARM device, as well as for simple analysis of the target system. It permits some simple
commands, such as memory dump, halt, step, go and ID-check, as well as some more in-depths analysis of the state of
the ARM core and the ICE breaker module.

Compiled Jun 27 2888 19:42:43
DLL version U3.86,. compiled Jun 27 2888 19:42:28
irmuware: J-Link ARM U6 compiled Jun 27 2088 18:35:51

UTarget = 3.274U
JTAG speed: 5 kHz=

Info: TotallRLen = 4, IRPrint = Bx81
Found 1 JTAG device,. Total IRLen = 4:

Id of device H#8: Bx3FBFAFAF
Found ARM with core Id Bx3IFBFBFBF (ARM?7>
J-Link>

J-LINK STR9I X COMMANDER (COMMAND LINE TOOL)

J-Link STR91x Commander (JLinkSTR91x.exe) is a tool that can be used to configure STRI1x cores. It permits
some STRY specific commands like:

Set the configuration register to boot from bank O or 1

Erase flash sectors

Read and write the OTP sector of the flash

Write-protect single flash sectors by setting the sector protection bits

Prevent flash from communicate via JTAG by setting the security bit

All of the actions performed by the commands, excluding writing the OTP sector and erasing the flash, can be undone.
This tool can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall.

kSTRI1x.exe

Set the size of the primary flash manually.
Syntax: fsize Bi11213. vhere B selects a 256 Kbhytes device.
1 a 512 Kbytes device. 2 a 1824 KBytes device
and 3 a 2848 Kbytes device
Show configuration register content and security status
Read memory
Syntax: mem <Addr>. <{NumBytes>
Erase flash sectors QTP can not bhe erased>.
Syntax: erase {SectorMaskL>, <SectorMaskH>
SectorMaskL = Bits B-8 mask sectors B-8 of bank 8
SectorMaskH = Bits B-4 mask sectors B-4 of bank 1

Bit 17 masks the configuration sector

Bit 18 masks the User—Code sector

All other hits are ignored
Erase flash bank 8
Erase flash bank 1
Perform a full chip erase
Boot from flash bank x (B and 1 are available>
Sytax: seth {int>
Blank check all flash sectors
Set the security bit. Protects device from read or debuy access
through the JIAG port <{can only be cleared by a full chip erased.

unsecure Unsecure the device. Content of configuration register iz saved.
protect Protect flash sectors.

Syntax: protect <{BankBSectorMask>. {BanklSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Unprotect flash sectors.
Syntax: unprotect {BankBSectorMask>, {BankiSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Read OTP sectors
Write words to the OTP sectors.
Syntax: writeotp {Wordi>, [{Word2>, ..., <UWord8>]

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The I1Os are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

J-Link and }J-Trace related software —e

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

J-LINK STM32 COMMANDER (COMMAND LINE TOOL)

J-Link STM32 Commander (JLinkSTM32 . exe) is a free command line tool which can be used to disable the hardware
watchdog of STM32 devices which can be activated by programming the option bytes. Moreover the J-Link STM32
Commander unsecures a read-protected STM32 device by re-programming the option bytes.

Note:Unprotecting a secured device or will cause a mass erase of the flash memory.

MWork', JLinkARM'\Dutput'Release’, ILinkSTM32.exe

SEGGER J-Link Unlock tool for STM3I2F18x devices

Compiled Apr 16 2B0A? @7:59:58

{c>» 2887 SEGGER Microcontroller GmbH & Co. KG. www.segger.com
Solutions for real time microcontroller applications

Connecting...0.K.

Performing init segquence...0.K.
SWD speed: 8888 kH=

Unlocking flash...0.K.

Press any key to exit.

J-LINK TCP/IP SERVER (REMOTE J-LINK / J-TRACE USE)

The J-Link TCP/IP Server allows using J-Link / J-Trace remotely via TCP/IP. This enables you to connect to and fully
use a J-Link / J-Trace from another computer. Performance is just slightly (about 10%) lower than with direct USB
connection.

3= 1-Link TCP/IP Server

[PStat |N|:|t connected

R WA WWH

Thiz connechian |

Toatal |

1SEStat |N|:|t cohnected

©Rwonts apou |
Status

Waiting for client on port 13020,

The J-Link TCP/IP Server also accepts commands which are passed to the J-Link TCP/IP Server via the command line.

List of available commands

The table below lists the commands accepted by the J-Link TCP/IP Server

Command Description
port Selects the IP port on which the J-Link TCP/IP Server is listening.
usb Selects a usb port for communication with J-Link.

Table 5: Available commands

J-Link_J-TraceARM-2 23

24

port
Syntax

-port <Portno.>

Example

To start the J-Link TCP/IP Server listening on port 19021 the command should look as follows:

-port 19021

usb

Syntax

-usb <USBIndex>
Example

Currently usb 0-3 are supported, so if the J-Link TCP/IP Server should connect to the J-Link on usb port 2 the
command should look as follows:

-usb 2

J-MEM MEMORY VIEWER

J-Mem displays memory contents of ARM-systems and allows modifications of RAM and SFRs (Special Function
Registers) while the target is running. This makes it possible to look into the memory of an ARM chip at run-time;
RAM can be modified and SFRs can be written. You can choose between 8/16/32-bit size for read and write accesses.
J-Mem works nicely when modifying SFRs, especially because it writes the SFR only after the complete value has
been entered.

iy 3-Mem [H[=] B3

File Target Options Help

Address: IDxD l_x_2|x_4| Hefreshl
fiddress [B (1 (2 [3[4[5[6 (7?82 A [B[C|D[E[F[ASCIT Iil
|PPPPPPAA |@c @8 B@ EA FE FF FF En FE FF FF EA FE FF FF EA
PAAPAA16 |[FE FF FF EA FE FF FF En 5C B7 BB EA 7C @7 8@ En ..

AAAAAEE28 |50 DB 9F ES 58 B8 9F ES5 BF EB AB E1 18 FF 2F Eil
AAAAEA3A |40 B8 9F ES D1 FB 21 E3 48 88 9F E5 D2 F8 21 E3 @.

AAAPAA46 |A@ DA AG E1 6@ A0 4@ E2 13 FA 21 E3 8@ DB A@ E1 ..

AAAPAASHA | 2C @@ 9F E5 OF E@ A@ E1 1@ FF 2F E1 24 E@ 9F ES

PAAPAAGH |24 @@ 9F E5 1@ FF 2F E1 FE FF FF EA FE FF FF EnA

AAAPAA?A |[FE FF FF EA FE FF FF En 00 6@ 21 A0 91 BB 60 6@

HAAAAEAEA |G FB FF FF 25 Bl B0 B8 68 B8 BB B8 DD 12 B0 B8

AAAPAA%6 A BS 1A 48 9F 21 C? 43 19 4 Bn 60 19 49 8@ 22 .. H.*.C.J.'.I.
AAAPAAAB |12 B2 AR 6@ 18 49 A1 62 81 6E C? @7 FC D5 17 42 ... ' .I.b.n.....
[
[
[
[
[
[
[
[
[
[

IBBBBBEA (C1 62 81 6E 4% BY FC D5 81 6E 8% B7Y FC D5 84 21 .h.

IBAAAACHA |A1 63 81 6E B2 @7 FC D5 A1 6B 63 22 BA 43 B2 63 .c.n.....k.".C.

)IIABABDA (81 6E B89 87 FC D5 BE 48 BE 49 91 68 #1 20 85 E@ .n.....H.I.'. ..
IBBBBBED (B4 21 41 43 BA 4A BC 4B 53 58 48 1C 1F 28 F? DB .*'AC.

IIABAPFA (BA 48 BB 49 B1 68 A1 BC B8 47 €@ 46 8@ FC FF FF .H.I.'...G.F....
IBBBB166 (A8 B1 38 BB 44 FD FF FF 61 B6 88 B8 B85 1C 19 18
IAAART 8@ F@ FF FF 6C B0 6@ 6@ 7@ W@ 8@ 8@ 34 F1 FF FF1...p...
IAAART 74 BB B8 BB 12 4a 13 48 78 B4 81 BB 11 1C 12 1D
IAAART BA EB BB 68 54 68 15 68 88 2B 83 DB 5B 1E E6 5C ... [
)IBBBB146 |EE 54 FB D1 BC 31 8C 32 81 42 8C D2 53 68 14 68 .T...1.2.B..

Fieady Connected ARM core id: 3FOFOFOF |Speed: 4000kHz 2

J-FLASH ARM (PROGRAM FLASH MEMORY VIA JTAG)

J-Flash ARM is a software running on Windows 2000, Windows XP, Windows 2003 or Windows Vista systems and
enables you to program your flash EEPROM devices via the JTAG connector on your target system.

J-Flash ARM works with any ARM7/9 system and supports all common external flashes, as well as the programming
of internal flash of ARM microcontrollers. It allows you to erase, fill, program, blank check, upload flash content, and
view memory functions of the software with your flash devices.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

J-Link and }J-Trace related software —e

J-Flash requires a additional license. Even without a license key you can still use J-Flash ARM to open project files,
read from connected devices, blank check target memory, verify data files and so on. However, to actually program
devices via J-Flash ARM and J-Link / J-Trace you are required to obtain a license key.

i, J-Flash ARM [C:\Program Files\Segger\J-Flash ARM\Default jflash]
File Edit Miew
i P10 ult O]
Hame

Cornection Use

pions Window Help

Init JTAG speed | 30
JTAG speed | Auto

TAP rumber <riot used>
IR len <riot used>

Chip Generic ARMZ/ARMS
Clock speed | <dontt care>

Erdian Litle

Check coreld | Mo

ARMcarsld | 00

Uss target AidM | Mo

FoM address | 0v0

FéM size KB

Use DCC mode | Yes

Manufsctursr | no device selected
Devics no device selected
Size no device selected
Flashd no device selected
Base addisss | no device selected
Organization | no device selected

PRI

~d-Flash ARM (-Flash compiled Jul 4 2005 14,27.20)

- JLinkARM.dil [DLL compiled Jun 30 2005 10:57:30)
Fieading flash device list [C:\Program FileshS eagert-Flash ARM\Flash.csv]
- List of flash devices rsad suscessfully [147 Devicss)
Fieading MEL device list [C:\Program FilesSeagert-Flash ARMUMCL. csv]
- List of MCU devices read suscsssfully (50 Devices)

Open project file [C:4Progiam FileshS eagertJ Flash ARM\Defalflash]
-Project opened

| 4%

[List of MCU devices read sucsessfully (50 Devices) Nat connected Y

Features

Works with any ARM7/ARMS9 chip

ARM microcontrollers (internal flash) supported

Most external flash chips can be programmed

High-speed programming: up to 300 Kbytes/second (depends on flash device)
Very high-speed blank check: Up to 16 Mbytes/sec (depends on target)

Smart read-back: Only non-blank portions of flash transferred and saved

Easy to use, comes with projects for standard eval boards.

Using the)-LinkARM.dII
WHAT IS THE JLINKARM.DLL?

The J-LinkARM.d11 is a standard Windows DLL typically used from C or C++, but also Visual Basic or Delphi
projects. It makes the entire functionality of the J-Link / J-Trace available through the exported functions.

The functionality includes things such as halting/stepping the ARM core, reading/writing CPU and ICE registers and
reading/writing memory. Therefore, it can be used in any kind of application accessing an ARM core.

UPDATING THE DLL

The IAR C-SPY® debugger is shipped with the JLinkARM.d11 already installed. Anyhow it may make sense to
replace the included DLL with the latest one available, to take advantage of improvements in the newer version.

Updating the JLinkARM.dIl in the IAR Embedded Workbench (EWARM)

It’s recommended to use the J-Link DLL updater to update the JL.inkaRM. d11 in the IAR Embedded Workbench. The
IAR Embedded Workbench IDE is a high-performance integrated development environment with an editor, compiler,
linker, debugger. The compiler generates very efficient code and is widely used. It comes with the J-LinkARM.d11 in
the arm\bin subdirectory of the installation directory. To update this DLL, you should backup your original DLL and
then replace it with the new one.

Typically, the DLL is located in C: \Program Files\IAR Systems\Embedded Workbench 5.0\arm\bin\.

J-Link_J-TraceARM-2 25

After updating the DLL, it is recommended to verify that the new DLL is loaded as described in Determining which
DLL is used by a program on page 27.

J-Link DLL updater

The J-Link DLL updater is a tool which comes with the J-Link software and makes it possible to update the
JLinkARM.d11 in all installations of IAR Embedded Workbench, in an easy way. The updater is automatically started
after the installation of a J-Link software version and asks for updating old DLLs used by IAR Embedded Workbench.
The J-Link DLL updater can also be started manually. Simply enable the checkbox left to the IAR installation which
has been found. Click Ok in order to update the JL.inkARM.d11 used by the IAR installation.

J SEGGER J-Link DLL Updater ¥3.86 [%]

Link

The following 3rd-party applications uzing JLinkARM.dll have been found:

[[]14R Embedded Warkbench for ARM 4.404 (DLL V3.20h in "C:AT oohCHARNARM_V4404 4R M bin")

[]14R Embedded Warkbench for ARM 4.414 [DLL ¥3.80c in "C:AT oohCHARSNARM_V441 AMARMAbIR")

[[]14R Embedded Warkbench for ARM 4.424 [DLL V3,84 in "C:AToo\CHARNARM_V44245AR M bin'")

14R Embedded Workbench for ARM 4.314 [DLL ¥3.82 in "CATooMCHARNWARM_WV4 ANARMBEIR')

[]14R Embedded Warkbench for ARM 4.304 (DLL ¥3.80c in "C:AT oohCHARNARM_V430454RMbin")

[[]14R Embedded Warkbench for ARM 5.10 (DLL ¥3.78d in "C:AT oohCHARNARM_WS1 08WARMbIn")

[[]14R Embedded Warkbench for ARM 5.20 (DLL ¥3.85f in "C:AT oohCAARAARM_W520_betaB854ARMYbin'")
14R Embedded Workbench for ARM 5.20 [DLL V3.85) in "C:AT ool CMARNARM_WE20_beta302\AFMbin')
[[]14R Embedded Warkbench for ARM 5.17 [DLL Y3.78 in "C:AT oo CHARNARM_VST1_BETA_BO7ARMYbIn'")
[]14R Embedded Woarkbench for ARM 5.11 [DLL Y3.85h in "C:AT ook CAARNARM_WE11_97994ARM kN b
F 14F Embedded ‘Workbench for AR 520 [DLL W3.81k in "C:\Program Filesh AR SystemshEmbedded Workbench 5.0 [E'/ARM 5 20 ALPHA]\AHM;LI

| v

Select Al Select Mone |

Select the ones you would like to replace by thiz version.
The previous version will be renamed and kept in the zame folder, allowing manual “undo”.
I case of doubt, do not replace existing DLL(s).

*f'ou can always perform this operation at a later time via start menu.
Ok Cancel

DETERMINING THE VERSION OF JLINKARM.DLL

To determine which version of the JLink ARM.dll you are facing, the DLL version can be viewed by right clicking the
DLL in Windows Explorer and choosing Properties from the context menu. Click the Version tab to display
information about the product version.

jlinkarm.dll Properties 2=l

General Wersion | Securityl Summaryl
File wersion: ~ 3.0.4.0
Description: SEGGER J-Link ARM interface DLL

Copyright: Copyright © 2004, 2005

r— Other version infarmation

Item name: Walue:
Company Mame 3.00d ;I

QK I Cancel | Apply |

IAR J-Link and IAR }J-Trace
26 User Guide J-Link_J-TraceARM-2

J-Link and)-Trace related software

DETERMINING WHICH DLL IS USED BY A PROGRAM

To verify that the program you are working with is using the DLL you expect it to use, you can investigate which DLLs
are loaded by your program with tools like Sysinternals’ Process Explorer. It shows you details about the DLLs, used
by your program, such as manufacturer and version.

L]

#¥ Process Explorer - Sysinternals: www.sysinternals.com

=10l x|

File Options ‘“iew Process Find DLL Help
|88 =m3 < ae e | NG
Process | FID | CPU | Diescription | Compan... |
E = Spstem |dle Process 1] 93

T Interupts n'a Hardware Interupts

| DPC: n'a Defered Procedu...

=l System]

Egexplorer.exe 1148 ‘Windows Explorer Microgoft...

L procesp.exe 480 1 Syzinternals Proc... Sysintern...

XlarldePM.exe 1460 |4F Embedded ... |AR Spst...
Mame ¢ | Diescription | Company Marne | ergion | -
indicdll. dil Kevboard Language Indicator Shell... Microzoft Corporation 5.00,2920.0000

GGER olle

14R E-S Debugger Kemel

405, 0000.0000

Kemel.dl 14F Spstems

kemel32.dl Windows MT BASE APl Client DLL Microsoft Corporation 5.00.2195.6688 |
locale.nls

Logfindowe. dil 18R Log ‘Window 14F Spstems 4.06.0000. 0000

lz32.dll LZ Expand/Compress APl DLL Microzoft Corporation h.00.2195.6611
MFCF.dll MFCOLL Shared Library - Retail Ve... Microzoft Corporation 7.10.3077.0000

mpr.dil Multiple Provider Router DLL Microzoft Corporation h.00.2195.6611 -

CPU Usage: 1%

|C0mmit Charge: 12.24% |Pr0cesses: 34 | v

Process Explorer is - at the time of writing - a free utility which can be downloaded from www.sysinternals.com.

J-Link_J-TraceARM-2

—e

27

IAR J-Link and IAR }J-Trace
28 User Guide J-Link_J-TraceARM-2

Working with J-Link and }J-Trace

This chapter describes functionality and how to use J-Link and J-Trace.

Connecting the target system
POWER-ON SEQUENCE

In general, J-Link / J-Trace should be powered on before connecting it with the target device. That means you should
first connect J-Link / J-Trace with the host system via USB and then connect J-Link / J-Trace with the target device via
JTAG. Power-on the device after you connected J-Link / J-Trace to it.

VERIFYING TARGET DEVICE CONNECTION

If the USB driver is working properly and your J-Link / J-Trace is connected with the host system, you may connect J-
Link / J-Trace to your target hardware. Then start JLink . exe which should now display the normal J-Link / J-Trace
related information and in addition to that it should report that it found a JTAG target and the target’s core ID. The

screenshot below shows the output of JLink . exe. As can be seen, it reports a J-Link with one JTAG device connected.

l;:-.',; C:\Program Files'\SEGGER" JLink ARM_¥386" JLink.exe

SEGGER J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43
i - compiled Jun 27 2888 19:42:28
H 3ELéEk ARM U6 compiled Jun 27 2888 18:35:51

: TotallRLen = 4. IRPrint = BxB1
Found 1 JTAG device,. Total IRLen = 4:
Id of device H#8: Bx3FBFAFAF
Found ARM with core Id Bx3IFBFBFBF (ARM?7>

J-Link?

PROBLEMS

If you experience problems with any of the steps described above, read the chapter Support and FAQs on page 107 for
troubleshooting tips. If you still do not find appropriate help there and your J-Link / J-Trace is an original IAR System
product, you can contact support via e-mail. Provide the necessary information about your target processor, board etc.
and we will try to solve your problem. A checklist of the required information together with the contact information
can be found in chapter Support and FAQs on page 107 as well.

Indicators

J-Link uses indicators (LEDs) to give the user some information about the current status of the connected J-Link. All
J-Links feature the main indicator. Some newer J-Links such as the J-Link PRO come with additional input/output
Indicators. In the following, the meaning of these indicators will be explained.

MAIN INDICATOR

For J-Links up to V7, the main indicator is single color (Green). J-Link V8 comes with a bi-color indicator (Green &
Red LED), which can show multiple colors: green, red and orange.

J-Link_J-TraceARM-2

30

Single color indicator (J-Link V7 and earlier)

Indicator status Meaning
GREEN, flashing at 10 Hz Emulator enumerates.
GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is

switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, flashing at | Hz Emulator has a fatal error. This should not normally happen.

Table 6: J-Link single color main indicator

Bi-color indicator (J-Link V8)

Indicator status Meaning
GREEN, flashing at 10 Hz Emulator enumerates.
GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is

switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.
ORANGE Reset is active on target.
RED, flashing at | Hz Emulator has a fatal error. This should not normally happen.

Table 7: J-Link single color LED main color indicator

JTAG interface

By default, only one ARM device is assumed to be in the JTAG scan chain. If you have multiple devices in the scan
chain, you must properly configure it. To do so, you have to specify the exact position of the ARM device that should
be addressed. Configuration of the scan is done by the IAR C-SPY® debugger, which offers a dialog box for this

purpose.

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace —e

MULTIPLE DEVICES IN THE SCAN CHAIN

J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hardware where multiple chips are
connected to the same JTAG connector. As can be seen in the following figure, the TCK and TMS lines of all JTAG
device are connected, while the TDI and TDO lines form a bus.

{701 Device1 Ttoop— ltni Device 0 TpDOp—

= =
S 2R S 2R
= = = =
+AA +TT
¥ 0 k=
PEe
L 47Dl 00 |¢——MMM—
JTAG

Currently, up to 8 devices in the scan chain are supported. One or more of these devices can be ARM cores; the other
devices can be of any other type but need to comply with the JTAG standard.

Configuration

The configuration of the scan chain depends on the application used. Read JTAG interface on page 30 for further
instructions and configuration examples.

SAMPLE CONFIGURATION DIALOG BOXES

As explained before, it is responsibility of the application to allow the user to configure the scan chain. This is typically
done in a dialog box; some sample dialog boxes are shown below.

J-Link_J-TraceARM-2 31

IAR J-Link configuration dialog box
This dialog box can be found under Project | Options.

Options for node “at91sam7s-ek™ E

Categony: Factory Settings |

General Options
CiC++ Compiler

Assembler -

Cutput Converter Setup Connection | Breakpoint8|
Custom Build r— Commurication

Build Actions

o ID icel = l
Linker USE evice
Debugger " ICPAP Iaaa.bbb.ccc.ddd

Sirmulator

Angel JTAG scan chain
GDE Server

[V UTAG scan chain with multiple targets
IAR. ROM-manitar

J-Link)J-Trace & JTAG T&P number: ID

LMI FTDI = SwD ¥ Scan chain contains non-4RM devices
Macraigor

ROI

Third-Party Driver

~ Interface

Freceeding bits: IU

™ Log communication

[(TO0LRIT_DIRg espycomm.iog J

()8 I Cancel |

DETERMINING VALUES FOR SCAN CHAIN CONFIGURATION
When do | need to configure the scan chain?

If only one device is connected to the scan chain, the default configuration can be used. In other cases, J-Link / J-Trace
may succeed in automatically recognizing the devices on the scan chain, but whether this is possible depends on the
devices present on the scan chain.

How do | configure the scan chain?
2 values need to be known:

e The position of the target device in the scan chain

e The total number of bits in the instruction registers of the devices before the target device (IR len).

The position can usually be seen in the schematic; the IR len can be found in the manual supplied by the manufacturers
of the others devices.

ARM7/ARMO have an IR len of four.

IAR J-Link and IAR }J-Trace
32 User Guide J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

Sample configurations

The diagram below shows a scan chain configuration sample with 2 devices connected to the JTAG port.

—{T0I Device1 Ttoop—— pltni Device 0 TDOp—

[
(2]
o
[

— L 0] TDO |¢————
JTAG

»|TMS
p| TRST

—p|TCK

Lp| TCK
L p|TMS

S

TCK
TMS
TRST

Examples
The following table shows a few sample configurations with 1,2 and 3 devices in different configurations.

Device 0 Device | Device 2

Chip(IR len) Chip(IR len) Chip(IR len) Position IR len
ARM (4) - - 0 0
ARM (4) Xilinx(8) ; 0 0
Xilinx(8) ARM (4) - | 8
Xilinx(8) Xilinx(8) ARM (4) 2 16
ARM (4) Xilinx(8) ARM(4) 0 0
ARM(4) Xilinx(8) ARM (4) 2 12
Xilinx(8) ARM (4) Xilinx(8) | 8

Table 8: Example scan chain configurations

The target device is marked in blue.

JTAG SPEED

There are basically three types of speed settings:

e Fixed JTAG speed
e Automatic JTAG speed
e Adaptive clocking.

These are explained below.

Fixed JTAG speed

The target is clocked at a fixed clock speed. The maximum JTAG speed the target can handle depends on the target
itself. In general ARM cores without JTAG synchronization logic (such as ARM7-TDMI) can handle JTAG speeds up
to the CPU speed, ARM cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S, ARM966EJ-
S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

J-Link_J-TraceARM-2

—e

33

34

Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

Note:On ARM cores without synchronization logic, this may not work reliably, because the CPU core may be clocked
slower than the maximum JTAG speed.

Adaptive clocking

If the target provides the RTCK signal, select the adaptive clocking function to synchronize the clock to the processor
clock outside the core. This ensures there are no synchronization problems over the JTAG interface.

If you use the adaptive clocking feature, transmission delays, gate delays, and synchronization requirements result in
a lower maximum clock frequency than with non-adaptive clocking.

SWD interface

The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port with a clock (SWDCLK)
and a single bi-directional data pin (SWDIO), providing all the normal JTAG debug and test functionality. SWDIO and
SWCLK are overlaid on the TMS and TCK pins. In order to communicate with a SWD device, J-Link sends out data
on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one bit of data is transmitted or received
on the SWDIO.

SWO

Serial Wire Output (SWO) support means support for a single pin output signal from the core. The Instrumentation
Trace Macrocell ITM) and Serial Wire Output (SWO) can be used to form a Serial Wire Viewer (SWV). The Serial
Wire Viewer provides a low cost method of obtaining information from inside the MCU.

Usually it should not be necessary to configure the SWO speed because this is usually done by the debugger.

Max. SWO speeds
The supported SWO speeds depend on the connected emulator. They can be retrieved

from the emulator. Currently, the following are supported:

Emulator Speed formula Resulting max. speed
J-Link V6 6MHz/n, n >= 12 500kHz
J-Link V7/V8 6MHz/n, n >= | 6MHz

Table 9: J-Link supported SWO input speeds

Configuring SWO speeds

The max. SWO speed in practice is the max. speed which both, target and J-Link can handle. J-Link can handle the
frequencies described in SWO on page 34 whereas the max. deviation between the target and the J-Link speed is about
3%.

The computation of possible SWO speeds is typically done in the debugger. The SWO output speed of the CPU is
determined by TRACECLKIN, which is normally the same as the CPU clock.

Example1

Target CPU running at 72 MHz. n is be between 1 and 8192.
Possible SWO output speeds are:

72MHz, 36MHz, 24MHz, ...

J-Link V7: Supported SWO input speeds are: 6 MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

Permitted combinations are:

SWO output SWO input Deviation percent
6MHz, n =12 6MHz, n = | 0

3MHz, n =24 3MHz, n =2 0

<=3

2MHz, n = 36 2MHz,n =3 0

Table 10: Permitted SWO speed combinations

Example 2

Target CPU running at 10 MHz.

Possible SWO output speeds are:

10MHz, 5SMHz, 3.33MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent
2MHz, n =5 2MHz, n =3 0

IMHz, n= 10 IMHz,n =6 0

769kHz, n = 13 750kHz, n = 8 2.53

Table 11: Permitted SWO speed combinations

Multi-core debugging

J-Link / J-Trace is able to debug multiple cores on one target system connected to the same scan chain. Configuring
and using this feature is described in this section.

HOW MULTI-CORE DEBUGGING WORKS

Multi-core debugging requires multiple debuggers or multiple instances of the same debugger. Two or more debuggers
can use the same J-Link / J-Trace simultaneously. Configuring a debugger to work with a core in a multi-core
environment does not require special settings. All that is required is proper setup of the scan chain for each debugger.
This enables J-Link / J-Trace to debug more than one core on a target at the same time.

J-Link_J-TraceARM-2

—e

35

The following figure shows a host, debugging two ARM cores with two instances of the same debugger.

Debugger

Instance 1

Both debuggers share the same physical connection. The core to debug is selected through the JTAG-settings as
described below.

IAR J-Link and IAR J-Trace
36 User Guide J-Link_J-TraceARM-2

USING MULTI-CORE DEBUGGING IN DETAIL

I Connect your target to J-Link / J-Trace.

core in the scan chain.

Start your debugger in the IAR Embedded Workbench IDE for ARM.

Options for node “BTL_AT91_¥430™

Working with }J-Link and }J-Trace

Choose Project | Options and configure your scan chain. The picture below shows the configuration for the first ARM

]|

Cateqgary:

eneral Options

C/C++ Compiler Setup

Connection I

Facton Settingz |

4R ROM-maonitor
b acraigar

ROl

Third-Party Driver

Azzembler — Cammunication
Cuztorn Build
Build Actions UsB
Litker i TCRAP Iaaa. bbb, ooz ddd
D ebugger
Sirnulator —JTAG scan chain
Anael

[V JTAG zcan chain with multiple targets

TAP number: IEI

[™ Sean chain contains non-4Rk devices

Freceeding bits: I':I

[T Log communication

I$TDDLK|T_D|H$'\CSD}'DDI‘I‘|H‘L log

N

x|

Cancel |

4 Start debugging the first core.

5 Start another debugger, for example another instance of IAR Embedded Workbench for ARM.

J-Link_J-TraceARM-2

—e

37

6 Choose Project|Options and configure your second scan chain. The following dialog box shows the configuration
for the second ARM core on your target.

Options for node “BTL_AT91_¥430" |

Categany: Factary Settings |
eneral Optionz :
C/C++ Compiler Setup Lonnection I
Azsembler — Communication
Cuztom Build
Build Actions f* UsB
Linker = TCRAP Iaaa.bbb.ccc.ddd
Debugger
Simulator —JTAG zcan chain
Angel

I4F ROM-moritr v JTAG scan chain with multiple targets

4P rumber [T

M acraigor [Scan chain containg non-4Fk devices

RDI
Third-Party Diriver Freceeding bits: II:I

[T Log communication
I$TDDLK|T_D|H$"\CSP}'CDI‘I‘II‘I‘I.|DQ J

] I Cancel |

7 Start debugging your second core.

Example:

TAP number TAP number
Core #1 Core #2 Core #3

debugger #I debugger #2
ARM7TDMI ARM7TDMI-S ARM7TDMI 0 |
ARM7TDMI ARM7TDMI ARM7TDMI 0 2
ARM7TDMI-S ARM7TDMI-S ARM7TDMI-S | 2

Table 12: Multicore debugging

Cores to debug are marked in blue.

THINGS YOU SHOULD BE AWARE OF

Multi-core debugging is more difficult than single-core debugging. You should be aware of the pitfalls related to JTAG
speed and resetting the target.

JTAG speed

Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores in the same chain is the minimum
of the maximum JTAG speeds.

For example:
Core #1: 2MHz maximum JTAG speed
Core #2: 4MHz maximum JTAG speed

Scan chain: 2MHz maximum JTAG speed

IAR J-Link and IAR }J-Trace
38 User Guide J-Link_J-TraceARM-2

Working with J-Link and }J-Trace

Resetting the target

All cores share the same RESET line. You should be aware that resetting one core through the RESET line means
resetting all cores which have their RESET pins connected to the RESET line on the target.

Connecting multiple J-Links / J-Traces to your PC

You can connect up to 4 J-Links / J-Traces to your PC. In this case, all J-Links / J-Traces must have different USB-
addresses. The default USB-address is 0.

In order to do this, 3 J-Links / J-Traces must be configured as described below. Every J-Link / J-Trace need its own J-
Link USB driver.

This feature is supported by J-Link Rev. 5.0 and up and by J-Trace.

HOW DOES IT WORK?

USB devices are identified by the OS by their product id, vendor id and serial number. The serial number reported by
J-Links / J-Traces is always the same. The product id depends on the configured USB-address.

e The vendor id (VID) is always 1366

e The product id (PID) for J-Link / J-Trace #1 is 101

e The product id (PID) for J-Link / J-Trace #2 is 102 and so on.

A different PID means that J-Link / J-Trace is identified as a different device, requiring a new driver. The driver for a
new J-Link device will be installed automatically.

The sketch below shows a host, running two application programs. Each application communicates with one ARM core
via a separate J-Link.

Application

Instance 1

J-Link_J-TraceARM-2

39

CONFIGURING MULTIPLE J-LINKS / J-TRACES

8 Start JLink.exe to view your hardware version. Your J-Link needs to be V5.0 or up to continue. For J-Trace the
Version does not matter.

9 Type usbaddr = 1 to set the J-Link / J-Trace #1.

] ILink.exe [_ |O0)

SEGGER J-Link Commander U2.74.81. '7*' for help.

ompiled 18:17:23 on Mov 25 2865L.

DLL version U2.74bh. compiled Mow 25 28685 1@8:17:13
irmware: J-Link compiled Nov 17 20885 16:12:1% ARH Rev.5S
ardware: US.00

rd

Target = @.0880U

peed set to 38 kH=z

—=Link>ushaddr = 1

8B address successfully changed to *1°.

Please unplug the device,. then plug it back in.
—Link>

10 Unplug J-Link / J-Trace and then plug it back in.

Il The system will recognize and automatically install a new J-Link / J-Trace.
=

% J-Link 1 driver

Installing ...

12 you can verify the driver installation by consulting the Windows device manager. If the driver is installed and your J-
Link / J-Trace is connected to your computer, the device manager should list the J-Link USB drivers as a node below
"Universal Serial Bus controllers" as shown in the following screenshot:

J Action Wiew |J L | ||§ |J
BB WMware Yirtual Ethernet Adapter For YMnetl ;I

BB WMware Virtual Ethernet Adapter For YMnet2
BB WMware Virtual Ethernet Adapter For YMnet3
----- BB WMware Virtual Ethernet Adapter For YMnets
- Ports (COM &LPT)

-4 SCSI and RAID controllers

[#H-¢}|> Sound, video and game controllers

[+ Storage volumes

£

:|..
B -'-

Syskem devices
i Serial Bus controllers
¢ Generic USE Hub
v Intel{R) 52801EE USE Universal Host Controller - 24D2
= Inkel{R) 82801EE USE Universal Host Controller - 2404
= Intel{R) 82801EE 1USE Universal Host Controller - 2407
v Intel{R) §2801EE USE Universal Host Controller - 24DE
p Intel{R) §2801EE USEZ2 Enhanced Host Controller - 2400
J-Link. 1 driver
J-Link. driver

USE 2.0 Root Hub
UISE Mass Storage Device

USE Rook Hub
USE Rook Hub —
USE Rook Hub LI

IAR J-Link and IAR }J-Trace
40 User Guide J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

CONNECTING TO A J-LINK / J-TRACE WITH NON DEFAULT USB-
ADDRESS

Restart JLink.exe and type usb 1 to connect to J-Link / J-Trace #1.

ILink.exe [_ |

. '? for help.

Cnnnectlng to J-Link via USBE (Port: 1>
DLL UBP“an U2_74h, compiled Mov 25 2005 1@:17:13
J-Link compiled Mov 17 20685 16:12:1? ARM Rev.5

U5 . A8

8. 888y
to 38 kH=

You may connect other J-Links / J-Traces to your PC and connect to them as well. To connect to an unconfigured J-
Link / J-Trace (with default address "0"), restart JLink. exe or type usb 0.

J-Link control panel

Since software version V3.86 J-Link the J-Link control panel window allows the user to monitor the J-Link status and
the target status information in real-time. It also allows the user to configure the use of some J-Link features such as J-
Link ARM FlashBP and ARM instruction set simulation. The J-Link control panel window can be accessed via the

J-Link tray icon in the tray icon list. This icon is available when the debug session is started.

erEN 1:as

To open the status window, simply click on the tray icon.

L;:-.'h SEGGER J-Link ARM ¥4.04a - Control panel

General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [329V |—
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

TABS

The J-Link status window supports different features which are grouped in tabs. The organization of each tab and the
functionality which is behind these groups will be explained in this section

General

In the General section, general information about J-Link and the target hardware are shown. Moreover the following
general settings can be configured:
e Show tray icon: If this checkbox is disabled the tray icon will not show from the next time the DLL is loaded.

e Start minimized: If this checkbox is disabled the J-Link status window will show up automatically each time the
DLL is loaded.

e Always on top: if this checkbox is enabled the J-Link status window is always visible even if other windows will
be opened.

The general information about target hardware and J-Link which are shown in this section, are:

J-Link_J-TraceARM-2

41

e Process: Shows the path of the file which loaded the DLL.

e J-Link: Shows the name of the connected J-Link, the hardware version and the Serial number. If no J-Link is
connected it shows "not connected" and the color indicator is red.

e Target interface: Shows the selected target interface (JTAG/SWD) and the current JTAG speed. The target current
is also shown. (Only visible if J-Link is connected)

Endian: Shows the target endianess (Only visible if J-Link is connected)
Device: Shows the selected device for the current debug session.

License: Opens the J-Link license manager.

About: Opens the about dialog.

Settings

In the Settings section project- and debug-specific settings can be set. It allows the configuration of the use of FlashBP
and some other target specific settings which will be explained in this topic. Settings are saved in the configuration file.
This configuration file needs to be set by the debugger. If the debugger does not set it, settings can not be saved. All
settings can only the changed by the user himself. All settings which are modified during the debug session have to be
saved by pressing Save settings, otherwise they are lost when the debug session is closed.

Section: Flash breakpoints:

In this section, settings for the use of the F1ashBP feature and related settings can be configured. When a license for
FlashBP is found, the color indicator is green and "License found" appears right to the F1ashBP usage settings.

B Flash breakpoint

* Auto License found

 On I~ Show info windav during
O pragram

[Enabled

e Auto: This is the default setting of F1ashBP usage. If a license has been found the FlashBP feature will be
enabled. Otherwise FlashBP will be disabled internally.

e On: Enables the F1lashBp feature. If no license has been found an error message appears.

e Off: Disables the F1ashBP feature.

e Show window during program: When this checkbox is enabled the "Programming flash" window is shown when
flash is re-programmed in order to set/clear flash breakpoints.

FlashBP independent settings
These settings do not belong to the F1ashBP settings section. They can be configured without any license needed.

.3, 3-Link ARM ¥3.86 Status 1] B3

General Seftings | BreakMatchI Lag I CPU Hegsl Target Powerl Sty I

M Flash download M Flash breakpoint
* Auto | License found * Auto | License found
 On ¥ Skip download on CRC match On I~ Show info windav during
 Off W Weiify download Off program
[Enabled, 2558 bytes dawnlaaded [Enabled

I~ Overide device selection

W Allow caching of flash contents (On)

v Allow instucti b simulati . |
[+ Allow instruction set simulation [Ep——

" Location of config file

IEI: “MyProjectshAR-LPC-2378-5K simplet CAN \zettingshcan_Flash_Debug 2378-5K. jlink

|Ready | | 4

e Override device selection: If this checkbox is enabled, a dropdown list appears, which allows the user to set a
device manually. This especially makes sense when J-Link can not identify the device name given by the debugger
or if a particular device is not yet known to the debugger, but to the J-Link software.

e Allow caching of flash contents: If this checkbox is enabled, the flash contents are cached by J-Link to avoid
reading data twice. This speeds up the transfer between debugger and target.

IAR J-Link and IAR }J-Trace
42 User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace —e

o Allow instruction set simulation: If this checkbox is enabled, ARM instructions will be simulated as far as
possible. This speeds up single stepping, especially when FlashBPs are used.

e Save settings: When this button is pushed, the current settings in the Settings tab will be saved in a configuration
file. This file is created by J-Link and will be created for each project and each project configuration (e.g.
Debug_RAM, Debug_Flash).

e Location of config file: Shows the path where the configuration file is placed. This configuration file contains all
the settings which can be configured in the Settings tab.

Brealk/Watch

In the Break/Watch section all breakpoints and watchpoints which are in the DLL internal breakpoint and watchpoint
list are shown.

3, I-Link ARM [_ [=]
Generall Settings Break/watch | Log I CPU Hegsl Target Powerl Sty I
Breakpoints:
ﬂl Handle | Address | Mode | Permizzion | Implementation I
1 - (0x001 00F98 ARM Any Flash - TEC
2 0Ox0002 (0x00000008 ARM Any Flash
3 0Ox0004 0x00100FES ARM Any Flash - TBS
4 0x00085 0x00100FDE ARM Any Hard
‘Watchpoints:
| Hande [Addr | Additask | Data | DataMask [cwl [CtiMask |
|Ready | 4

Section: Breakpoints
Lists all breakpoints which are in the DLL internal breakpoint list are shown.

Handle: Shows the handle of the breakpoint.
Address: Shows the address where the breakpoint is set.
Mode: Describes the breakpoint type (ARM/THUMB)

Permission: Describes the breakpoint implementation flags.

Implementation: Describes the breakpoint implementation type. The breakpoint types are: RAM, Flash, Hard. An
additional TBC (to be cleared) or TBS (to be set) gives information about if the breakpoint is (still) written to the
target or if it’s just in the breakpoint list to be written/cleared.

Note:It is possible for the debugger to bypass the breakpoint functionality of the J-Link software by writing to the debug
registers directly. This means for ARM7/ARMY cores write accesses to the ICE registers, for Cortex-M3 devices write
accesses to the memory mapped flash breakpoint registers and in general simple write accesses for software breakpoints
(if the program is located in RAM). In these cases, the J-Link software can not determine the breakpoints set and the
list is empty.

Section: Watchpoints
In this section, all watchpoints which are listed in the DLL internal breakpoint list are shown.

Handle: Shows the handle of the watchpoint.

Address: Shows the address where the watchpoint is set.

AddrMask: Specifies which bits of Address are disregarded during the comparison for a watchpoint match.
Data: Shows on which data to be monitored at the address where the watchpoint is set.

Data Mask: Specifies which bits of Data are disregarded during the comparison

for a watchpoint match.

Ctrl: Specifies the access type of the watchpoint (read/write).

CtrlMask: Specifies which bits of Ctrl are disregarded during the comparison for a watchpoint match.

J-Link_J-TraceARM-2 43

Log

In this section the log output of the DLL is shown. The user can determine which function calls should be shown in the
log window.

Available function calls to log: Register read/write, Memory read/write, set/clear breakpoint, step, go, halt, is halted.

1, -Link ARM = E3

Generall Settingsl BreakAwatch Log |EIF'U Hegsl Target Powerl Sty I

I~ Registerwite [~ Memory wite [V BF set ¥ Step ¥ Halt
I~ Registerread [~ Memoryread W BFclear | Go I IsHalted Clear lng |

J-Link ARM U2.85Q [beta) OLL Log ;I
OLL Compiled: Jun 26 2BBS 17:B5:33
Logging started B 20085-B5-27 15:88

=
o]
]
[l
ftd
T
]

Iii}

i

T

Te208 &3
Te208 &3
Te208 &3
Te208 &3
Te208 &3
TEESE 63
TEESE &3
TEESE &3
TEESE &3
TEESE &3
TEESE &3
Te208 &4
THESE &5
THESE &5

TE308 EEE:2

i o

= 1p8F 3 = @xFFFFFFF1]
dr = BREOEAEEES, Tupe = BuFFFFFFFL)
= 1pBFS = @xFFFFFFF1]

ddr = Brx@BE1EEFES, Tupe = BxFFFFFFF1)

@
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

0 0 0 0 0 0 0 0
| L U UL

L R R e e Y STy Ly =t
by Ty Ty TR T T T T
DINDDNDDDDNDDDTD:
M0 000000

@@

G BEEEEEE1)
B168F0S, Type = B:FFFFFFF1]

CPU Regs

In this section the name and the value of the CPU registers are shown.

3, I-Link ARM [_ [=]

Generall Settingsl BreakMatchI Log CPU Regs | Target Powerl Sty I

|ndex | Mame | WValue | State | -
a RO (0x0010269C

1 R1 (0x00000050

2 R2 0x00000010

3 R3 (0x00000003 —
4 R4 0x00201100

5 RS (0x00000000

g RE (0x00000000

7 R7 (0x00000000

g CPSR 0x80000053

| R15(PC) 0x00100FES

10 R8_USR (0x00000000

1 R3_USR (0x00000000

12 R10_USR (0x00000000

13 R11_USR (0x00000000

14 R1Z2_USR (0x00000002

15 R13_USR (0x00000000

18 R14_USR (0x00000000 LI

Ready 4

Target Power

In this section currently just the power consumption of the target hardware is shown.

IS E3
Generall Settingsl BreakMatchI Log I CPU Regs Target Power | Sty I Devicel MemMapI

r— Current status——— Permanent status
(% Fower enabled " Fower enabled
" Fower disabled (* Fower disabled
— Power information
Consumption |238md, |—
Ready JLINKARM_ExecCommand {Done) 0,008 sec, in 20 calls 4

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace —e

SWv

In this section SWV information are shown.

3, I-Link ARM [_ [=]

Generall Settingsl BreakMatchI Log I CPU Hegsl Target Power 5w |

Statuzs IUAF!T encoding, 19200 bps Huost buffer |4 MEB |—
Bytes in buffer ID bytes Emulator buffer |4 KE |—

Bytes transferred |235?D bytes

Refresh counter |1 522

|Ready | | 4

e Status: Shows the encoding and the baudrate of the SWV data received by the target (Manchester/UART, currently
J-Link only supports UART encoding).

e Bytes in buffer: Shows how many bytes are in the DLL SWV data buffer.

e Bytes transferred: Shows how many bytes have been transferred via SWYV, since the debug session has been
started.

e Refresh counter: Shows how often the SWV information in this section has been updated since the debug session
has been started.

o Host buffer: Shows the reserved buffer size for SWV data, on the host side.
o Emulator buffer: Shows the reserved buffer size for SWV data, on the emulator side.

Reset strategies

J-Link / J-Trace supports different reset strategies. This is necessary because there is no single way of resetting and
halting an ARM core before it starts to execute instructions.

What is the problem if the core executes some instructions after RESET?

The instructions executed can cause various problems. Some cores can be completely "confused", which means they
can not be switched into debug mode (CPU can not be halted). In other cases, the CPU may already have initialized
some hardware components, causing unexpected interrupts or worse, the hardware may have been initialized with
illegal values. In some of these cases, such as illegal PLL settings, the CPU may be operated beyond specification,
possibly locking the CPU.

RESET STRATEGIES IN DETAIL

Type 0: Hardware, halt after reset (normal)

The hardware reset pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU. This
typically halts the CPU shortly after reset release; the CPU can in most systems execute some instructions before it is
halted. The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the
faster the CPU can be halted.

Some CPUs can actually be halted before executing any instruction, because the start of the CPU is delayed after reset
release. If a pause has been specified, J-Link waits for the specified time before trying to halt the CPU. This can be
useful if a bootloader which resides in flash or ROM needs to be started after reset.

This reset strategy is typically used if nRESET and nTRST are coupled. If nRESET and nTRST are coupled, either on
the board or the CPU itself, reset clears the breakpoint, which means that the CPU can not be stopped after reset with
the BP@O reset strategy.

J-Link_J-TraceARM-2 45

46

Type |: Hardware, halt with BP@0

The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is programmed to halt program
execution at address 0; effectively, a breakpoint is set at address 0. If this strategy works, the CPU is actually halted
before executing a single instruction.

This reset strategy does not work on all systems for two reasons:
e IfnRESET and nTRST are coupled, either on the board or the CPU itself, reset clears the breakpoint, which means
the CPU is not stopped after reset.

e Some MCUs contain a bootloader program (sometimes called kernel), which needs to be executed to enable JTAG
access.

Type 2: Software, for Analog Devices ADuC7xxx MCUs

This reset strategy is a software strategy. The CPU is halted and performs a sequence which causes a peripheral reset.
The following sequence is executed:

e The CPU is halted

e A software reset sequence is downloaded to RAM

e A breakpoint at address 0 is set

e The software reset sequence is executed.

This sequence performs a reset of CPU and peripherals and halts the CPU before executing instructions of the user

program. It is the recommended reset sequence for Analog Devices ADuC7xxx MCUs and works with these chips
only.

Type 3: No reset

No reset is performed. Nothing happens.

Type 4: Hardware, halt with WP

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
a watchpoint. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release

Type 5: Hardware, halt with DBGRQ

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
the DBGRQ. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release.

Type 6: Software

This reset strategy is only a software reset. "Software reset" means basically no reset, just changing the CPU registers
such as PC and CPSR. This reset strategy sets the CPU registers to their after-Reset values:

e PC=0

e CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)

e All SPSR registers = 0x10

e All other registers (which are unpredictable after reset) are set to 0.
e The hardware RESET pin is not affected.

Type 7: Reserved

Reserved reset type.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

Type 8: Software, for ATMEL AT91SAM7 MCUs

The reset pin of the device is disabled by default. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work by default. For this reason a special reset strategy has been made available.

Itis recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the RSTC_CR
register. Resetting the peripherals puts all peripherals in the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect by writing 0x4
to the RSTC_CR register located at address Oxfffffd00.

Type 9: Hardware, for NXP LPC MCUs

After reset a bootloader is mapped at address 0 on ARM 7 LPC devices. This reset strategy performs a reset via reset
strategy Type 1 in order to reset the CPU. It also ensures that flash is mapped to address 0 by writing the MEMMAP
register of the LPC. This reset strategy is the recommended one for all ARM 7 LPC devices.

CORTEX-M3 SPECIFIC RESET STRATEGIES

J-Link supports different specific reset strategies for the Cortex-M3 core. All of the following reset strategies are
available in JTAG and in SWD mode. All three reset strategies halt the CPU after the reset.

Type 0: Normal

This reset strategy is the default strategy and should usually be used to reset the target. When using this strategy, J-Link
sets the VC_CORERESET bit before reset, which causes the CPU to halt before execution of the first instruction. In
addition to that the SYSRESETREQ bit and the VECTRESET bit are also set in order to guarantee that the core and
the peripherals are reset even on targets where the CPU RESET pin is not connected to Pin 15 (RESET) of the JTAG/
SWD connector.

Type |: Core

Only the core is reset via the VECTRESET bit. The peripherals are not affected. After setting the VECTRESET bit, J-
Link waits for the S_RESET_ST bit in the Debug Halting Control and Status Register (DHCSR) to first become high
and then low afterwards. The CPU does not start execution of the program because J-Link sets the VC_CORERESET
bit before reset, which causes the CPU to halt before execution of the first instruction.

Type 2: ResetPin

J-Link pulls its RESET pin low to reset the core and the peripherals. This normally causes the CPU RESET pin of the
target device to go low as well, resulting in a reset of both CPU and peripherals. This reset strategy will fail if the
RESET pin of the target device is not pulled low. The CPU does not start execution of the program because J-Link sets
the VC_CORERESET bit before reset, which causes the CPU to halt before execution of the first instruction.

Using DCC for memory access

The ARM7/9 architecture requires cooperation of the CPU to access memory when the CPU is running (not in debug
mode). This means that memory can not normally be accessed while the CPU is executing the application program.
The normal way to read or write memory is to halt the CPU (put it into debug mode) before accessing memory. Even
if the CPU is restarted after the memory access, the real time behavior is significantly affected; halting and restarting
the CPU costs typically multiple milliseconds. For this reason, most debuggers do not even allow memory access if the
CPU is running.

Fortunately, there is one other option: DCC (Direct communication channel) can be used to communicate with the CPU
while it is executing the application program. All that is required is that the application program calls a DCC handler
from time to time. This DCC handler typically requires less than 1 ps per call.

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link software and can be found in the
Program Files\IAR Systems\Embedded Workbench 5.0\arm\src\debugger\dcc\ directory of the
package.

WHAT IS REQUIRED?
e An application program on the host (typically a debugger) that uses DCC, in this case C-SPY

J-Link_J-TraceARM-2

e A target application program that regularly calls the DCC handler
e The supplied abort handler should be installed (optional)

Another application program that uses DCC is JLink.exe.

TARGET DCC HANDLER

The target DCC handler is a simple C-file taking care of the communication. The function DCC_Process () needs to
be called regularly from the application program or from an interrupt handler. If a RTOS is used, a good place to call
the DCC handler is from the timer tick interrupt. In general, the more often the DCC handler is called, the faster
memory can be accessed. On most devices, it is also possible to let the DCC generate an interrupt which can be used
to call the DCC handler.

TARGET DCC ABORT HANDLER

An optional DCC abort handler (a simple assembly file) can be included in the application. The DCC abort handler
allows data aborts caused by memory reads/writes via DCC to be handled gracefully. If the data abort has been caused
by the DCC communication, it returns to the instruction right after the one causing the abort, allowing the application
program to continue to run. In addition to that, it allows the host to detect if a data abort occurred.

To use the DCC abort handler, 3 things need to be done:

e Place a branch to bcc_abort at address 0x10 ("vector" used for data aborts)
e Initialize the Abort-mode stack pointer to an area of at least 8 bytes of stack memory required by the handler
e Add the DCC abort handler assembly file to the application

Command strings

The behavior of J-Link can be customized via command strings passed to the JLinkARM.d11 which controls J-Link.
Applications such as the J-Link Commander, but also the C-SPY debugger which is part of the [AR Embedded
Workbench, allow passing one or more command strings. Command line strings can be used for passing commands to
J-Link (such as switching on target power supply), as well as customize the behavior (by defining memory regions and
other things) of J-Link. The use of command strings enables options which can not be set with the configuration dialog
box provided by C-SPY.

LIST OF AVAILABLE COMMANDS

The table below lists and describes the available command strings.

Command Description

device Selects the target device.
DisableFlashBPs Disables the F1ashPB feature.
DisableFlashDL Disables the J-Link ARM FlashDL feature.
EnableFlashBPs Enables the FlashPB feature.
EnableFlashDL Enables the J-Link ARM FlashDL feature.

map exclude

map indirectread

map ram

map reset
SetAllowSimulation
SetCheckModeAfterRead
SetResetPulseLen
SetResetType

SetRestartOnClose

Ignore all memory accesses to specified area.

Specifies an area which should be read indirect.

Specifies location of target RAM.

Restores the default mapping, which means all memory accesses are permitted.
Enable/Disable instruction set simulation.

Enable/Disable CPSR check after read operations.

Defines the length of the RESET pulse in milliseconds.

Selects the reset strategy

Specifies restart behavior on close.

Table 13: Available command line options

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

Command Description

SetDbgPowerDownOnClose Used to power-down the debug unit of the target CPU when the debug session is
closed.

SetSysPowerDownOnIdle Used to power-down the target CPU, when there are no transmissions between

J-Link and target CPU, for a specified timeframe.

SupplyPower Activates/Deactivates power supply over pin 19 of the JTAG connector.
SupplyPowerDefault Activates/Deactivates power supply over pin 19 of the JTAG connector
permanently.

Table 13: Available command line options

device

This command selects the target device.
Syntax
device = <DeviceID>

DeviceID has to be a valid device identifier. For a list of all available device identifiers please refer to chapter
Supported devices on page 58.

Example

device = AT91SAM7S256

DisableFlashBPs

This command disables the FlashBP feature.

Syntax

DisableFlashBPs

DisableFlashDL

This command disables the J-Link ARM FlashDL feature.

Syntax

DisableFlashDL

EnableFlashBPs

This command enables the F1ashBP feature.

Syntax

EnableFlashBPs

EnableFlashDL

This command enables the J-Link ARM FlashDL feature.

Syntax

EnableFlashDL

map exclude

This command excludes a specified memory region from all memory accesses. All subsequent memory accesses to this
memory region are ignored.

Memory mapping

Some devices do not allow access of the entire 4GB memory area. Ideally, the entire memory can be accessed; if a
memory access fails, the CPU reports this by switching to abort mode. The CPU memory interface allows halting the
CPU via a WAIT signal. On some devices, the WAIT signal stays active when accessing certain unused memory areas.
This halts the CPU indefinitely (until RESET) and will therefore end the debug session. This is exactly what happens
when accessing critical memory areas. Critical memory areas should not be present in a device; they are typically a
hardware design problem. Nevertheless, critical memory areas exist on some devices.

J-Link_J-TraceARM-2

—e

49

50

To avoid stalling the debug session, a critical memory area can be excluded from access: J-Link will not try to read or
write to critical memory areas and instead ignore the access silently. Some debuggers (such as IAR C-SPY) can try to
access memory in such areas by dereferencing non-initialized pointers even if the debugged program (the debuggee)
is working perfectly. In situations like this, defining critical memory areas is a good solution.

Syntax

map exclude <SAddr>-<EAddr>
Example
This is an example for the map exclude command in combination with an NXP LPC2148 MCU.

Memory map

0x00000000-0x0007FFFF On-chip flash memory

0x00080000-0x3FFFFFFF Reserved

0x40000000-0x40007FFF On-chip SRAM

0x40008000-0x7FCFFFFF Reserved

0x7FD00000-0x7FDO | FFF On-chip USB DMA RAM
0x7FD02000-0x7FD02000 Reserved

0x7FFFD000-0x7FFFFFFF Boot block (remapped from on-chip flash memory)
0x80000000-0xDFFFFFFF Reserved

0xE0000000-OxEFFFFFFF VPB peripherals

0xF0000000-0xFFFFFFFF AHB peripherals

The "problematic" memory areas are:

0x00080000-0x3FFFFFFF Reserved
0x40008000-0x7FCFFFFF Reserved
0x7FD02000-0x7FD02000 Reserved
0x80000000-0xDFFFFFFF Reserved

To exclude these areas from being accessed through J-Link the map exclude command should be used as follows:

map exclude 0x00080000-0x3FFFFFFF
map exclude 0x40008000-0x7FCFFFFF
map exclude 0x7FD02000-0x7FD02000
map exclude 0x80000000-0xDFFFFFFF

map indirectread

This command can be used to read a memory area indirectly. Indirectly reading means that a small code snippet is
downloaded into RAM of the target device, which reads and transfers the data of the specified memory area to the host.
Before map indirectread can be called a RAM area for the indirectly read code snippet has to be defined. Use
therefor the map ram command and define a RAM area with a size of >= 256 byte.

Typical applications
Refer to chapter Fast GPIO bug on page 71 for an example.
Syntax

map indirectread <StartAddressOfArea>-<EndAddress>

Example

map indirectread 0x3fffc000-0x3fffcfff

map ram

This command should be used to define an area in RAM of the target device. The area must be 256-byte aligned. The
data which was located in the defined area will not be corrupted. Data which resides in the defined RAM area is saved
and will be restored if necessary. This command has to be executed before map indirectread will be called.

Typical applications
Refer to chapter Fast GPIO bug on page 71 for an example.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

Syntax

map ram <StartAddressOfArea>-<EndAddressOfArea>

Example

map ram 0x40000000-0x40003fff;

map reset
This command restores the default memory mapping, which means all memory accesses are permitted.
Typical applications

Used with other "map" commands to return to the default values. The map reset command should be called before any
other "map" command is called.

Syntax

map reset

Example

map reset

SetAllowSimulation

This command can be used to enable or disable the instruction set simulation. By default the instruction set simulation
is enabled.

Syntax

SetAllowSimulation = 0 | 1

Example

SetAllowSimulation 1 // Enables instruction set simulation

SetCheckModeAfterRead

This command is used to enable or disable the verification of the CPSR (current processor status register) after each
read operation. By default this check is enabled. However this can cause problems with some CPUs (e.g. if invalid
CPSR values are returned). Please note that if this check is turned off (SetCheckModeAfterRead = 0), the success of
read operations cannot be verified anymore and possible data aborts are not recognized.

Typical applications

This verification of the CPSR can cause problems with some CPUs (e.g. if invalid CPSR values are returned). Note that
if this check is turned off (SetCheckModeAfterRead = 0), the success of read operations cannot be verified anymore
and possible data aborts are not recognized.

Syntax

SetCheckModeAfterRead = 0 | 1

Example
SetCheckModeAfterRead = 0

SetResetPulselen

This command defines the length of the RESET pulse in milliseconds. The default for the RESET pulse length is 20
milliseconds.

Syntax

SetResetPulselen = <value>

Example

SetResetPulselLen = 50

J-Link_J-TraceARM-2

SetResetType

This command changes the reset strategy.
Typical applications

Refer to chapter Reset strategies on page 45 for additional informations about the different reset strategies.

Value Description

0 Hardware, halt after reset (normal).

1 Hardware, halt with BP@O.

2 Software, for Analog Devices ADuC7xxx MCUs.
Table 14: List of possible value for command SetResetType

Syntax

SetResetType = <value>

Example

SetResetType = 0

SetRestartOnClose

This command specifies if the J-Link restarts target execution on close. The default is to restart target execution. This
can be disabled by using this command.

Syntax

SetRestartOnClose = 0 | 1

Example

SetRestartOnClose = 1

SetDbgPowerDownOnClose
When using this command, the debug unit of the target CPU is powered-down when the debug session is closed.

Note:This command works only for Cortex-M3 devices

Typical applications

This feature is useful to reduce the power consumption of the CPU when no debug session is active.
Syntax

SetDbgPowerDownOnClose = <value>

Example

SetDbgPowerDownOnClose
SetDbgPowerDownOnClose

1 // Enables debug power-down on close.
0 // Disables debug power-down on close.

SetSysPowerDownOnldle

When using this command, the target CPU is powered-down when no transmission between J-Link and the target CPU
was performed for a specific time. When the next command is given, the CPU is powered-up.

Note: This command works only for Cortex-M3 devices.
Typical applications
This feature is useful to reduce the power consumption of the CPU.

Syntax

SetSysPowerDownOnIdle = <value>

Note: A O for <value> disables the power-down on idle functionality.

IAR J-Link and IAR }J-Trace
52 User Guide J-Link_J-TraceARM-2

Working with }J-Link and }J-Trace

Example

SetSysPowerDownOnIdle = 10; // The target CPU is powered-down when there is no
// transmission between J-Link and target CPU for at least 10ms

SupplyPower

This command activates power supply over pin 19 of the JTAG connector. J-Link have the V5 supply over pin 19
activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax
SupplyPower = 0 | 1
Example
SupplyPower = 1
SupplyPowerDefault

This command activates power supply over pin 19 of the JTAG connector permanently. J-Link have the V5 supply over
pin 19 activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax
SupplyPowerDefault = 0 | 1
Example
SupplyPowerDefault = 1

USING COMMAND STRINGS

J-Link Commander

The J-Link command strings can be tested with the J-Link Commander. Use the comamand exec supplemented by one
of the command strings.

[_ [0 x]

SEGGER J- L1nk Commander U3 58c ¢'?' for help>

- complled Jan 12 2887 12:54:35
J-Link compiled Febh 8% 2887 19:59:46 ARM Rev.5
.38

JTAG speed: 38 kHz
Found 1 JTAG device,. Total IRLen = 4:
Id of device H#8: Bx4F1FAFAF
Found ARM with core Id Bx4F1FBFBF (ARM?7>
J-Link>exec map reset
g Elnh;exec map exclude Bx1B8BBBBE—-B:3FFFFFFF
in

Example

exec SupplyPower = 1
exec map reset
exec map exclude 0x10000000-0x3FFFFFFF

J-Link_J-TraceARM-2

54

IAR Embedded Workbench

The J-Link command strings can be supplied using the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog box and select Debugger.

Options for node "Project™ E
Category: Factory Settings |
General Options

C/C++ Compiler Setup | Downloadl Extra Dptionsl F'Iuginsl
Azzembler
Custom Build Doriver [+ Bunto
Build &ctions i -
J-LinkA)-T A
Linker I inl race J |ma|n
i Debugger
Simulator — Setup macro:
Angel Sy
I4R ROM-moritor I™ Use macio file
J-Linkd)-Trace
LI FTDI I J
Macraigor — Device description file
RDI .
ThirdParty Driver ™ Ovenide default
I$TDDLKIT_DIH$\EDNFIG\i0Ipc23?8.ddf J
’TI Cancel |

On the Extra Options page, select Use command line options.

Enter --jlink_exec_command "<CommandLineOption>" in the textfield. If more than one command should be
used separate the commands with semicolon.

Options for node "Project™ E

Category: Factary Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Azzembler
Cusztomn Build
Build &ctions
Linker

-flink_exec_command "map ram 0x40000000-0=40003; map indire;l

Simulator

Angel

14R R OM-monitor

J-Linkd)-Trace

LI FTDI

M acraigor

RDI

Third-Party Driver

LCommand line options: [one per line]

|

()8 | Cancel |

Switching off CPU clock during debug

We recommend not to switch off CPU clock during debug. However, if you do, you should consider the following:
Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

With these cores, the TAP controller uses the clock signal provided by the emulator, which means the TAP controller
and ICE-Breaker continue to be accessible even if the CPU has no clock.

Therefore, switching off CPU clock during debug is normally possible if the CPU clock is periodically (typically using
a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop at the first
instruction in the ISR (typically at address 0x18).

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Working with J-Link and J-Trace —e

Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

With these cores, the clock input of the TAP controller is connected to the output of a three-stage synchronizer, which
is fed by clock signal provided by the emulator, which means that the TAP controller and ICE-Breaker are not
accessible if the CPU has no clock.

If the RTCK signal is provided, the adaptive clocking function can be used to synchronize the JTAG clock (provided
by the emulator) to the processor clock. This way, the JTAG clock is stopped if the CPU clock is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possible if the CPU clock is periodically
(typically using a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop
at the first instruction in the ISR (typically at address 0x18).

Cache handling

Most ARM systems with external memory have at least one cache. Typically, ARM7 systems with external memory
come with a unified cache, which is used for both code and data. Most ARM9 systems with external memory come
with separate caches for the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware architecture.

CACHE COHERENCY

When debugging or otherwise working with a system with processor with cache, it is important to maintain the cache(s)
and main memory coherent. This is easy in systems with a unified cache and becomes increasingly difficult in systems
with hardware architecture. A write buffer and a D-Cache configured in write-back mode can further complicate the
problem.

ARMO chips have no hardware to keep the caches coherent, so that this is the responsibility of the software.

CACHE CLEAN AREA

J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does not have to
download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a cache clean area is not
required.

CACHE HANDLING OF ARM7 CORES

Because ARM7 cores have a unified cache, there is no need to handle the caches during debug.

CACHE HANDLING OF ARM9 CORES

ARMO cores with cache require J-Link / J-Trace to handle the caches during debug. If the processor enters debug state
with caches enabled, J-Link / J-Trace does the following:

When entering debug state
J-Link / J-Trace performs the following:

e it stores the current write behavior for the D-Cache

e it selects write-through behavior for the D-Cache.
When leaving debug state
J-Link / J-Trace performs the following:

e it restores the stored write behavior for the D-Cache
e it invalidates the D-Cache.

Note: The implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM9 cores.

J-Link_J-TraceARM-2 55

IAR J-Link and IAR }J-Trace
56 User Guide J-Link_J-TraceARM-2

Flash download and flash
breakpoints

This chapter describes how flash breakpoints work. In addition, the chapter contains a list of supported

microcontrollers.

Introduction

The JLinkARM.d11 is able to use the flash breakpoints features, but it requires an additional license.

Licensing
The standard J-Link does not come with a built-in license. You will need to obtain a license for every J-Link. For more

information about the different license types, please refer to License types on page 13.
For a complete list of devices which are supported by the device-based licenses, please refer to Device list on page 14.

Entering a license
The easiest way to enter a license is the following:

Open the J-Link control panel window, go to the General tab and choose License.

L;:-.'h SEGGER J-Link ARM ¥4.04a - Control panel

General | Settingsl BreakMatchI Log I CPU FRegs | Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [329V |—
208
{
License About
[Ready 319K ARM_Getspeed (Done) 0,777 sec. in 25 calls 4

Now the J-Link ARM license manager will open and show all licenses, both key-based and built-in licenses of J-Link.

J-Link ARM License management E

Licenses installed on PC:
Serial number | Feature | Expires |

Licenses in emulatar:
Serial number |Features |

Currently active licenses I

Add license | Delete license

J-Link_J-TraceARM-2 57

Now choose Add license to add one or more new licenses. Enter your license(s) and choose OK. Now the licenses

should have been added.

Licenses installed on PC:

Serial number | Feature | Expires |
FlashBP Mewver
FlashDL Mewver

Licenses in emulatar:

Serial number | Features |

Currently active licenses |FlazhBP, FlashDL

Delete license QK |

Supported devices

The following table lists the microcontrollers for which flash breakpoints are available.

Note:Only the devices listed below are currently supported with the flash breakpoint feature. This feature works on the
internal flash of the devices only. You need to make sure that the device you are using is supported.

The device is selected by its device identifier.

Manufacturer

Device ID

Devices

Analog Devices
Analog Devices

Analog Devices

ADuC7020x62
ADuC7021x32
ADuC7021x62

ADuC7020x62
ADuC7021x32
ADuC7021x62

Analog Devices ADuC7022x32 ADuC7022x32
Analog Devices ADuC7022x62 ADuC7022x62
Analog Devices ADuC7024x62 ADuC7024x62
Analog Devices ADuC7025x32 ADuC7025x32
Analog Devices ADuC7025x62 ADuC7025x62
Analog Devices ADuC7026x62 ADuC7026x62
Analog Devices ADuC7027x62 ADuC7027x62
Analog Devices ADuC7028x62 ADuC7028x62
Analog Devices ADuC7030 ADuC7030
Analog Devices ADuC7031 ADuC7031
Analog Devices ADuC7032 ADuC7032
Analog Devices ADuC7033 ADuC7033
Analog Devices ADuC7038 ADuC7038
Analog Devices ADuC7060 ADuC7060
Analog Devices ADuC7128 ADuC7128
Analog Devices ADuC7129 ADuC7129
Analog Devices ADuC7229x126 ADuC7229x126
Atmel AT91FR40162 AT91FR40162
Atmel AT9ISAM7A3 AT9ISAM7A3
Atmel AT91SAM7S32 AT91SAM7S32
Atmel AT9ISAM7S321 AT91SAM7S321
Atmel AT91SAM7S564 AT91SAM7S64
Atmel AT9ISAM7S128 AT91SAM7S128

Table 15: Supported microcontrollers

IAR J-Link and IAR }J-Trace

58 User Guide J-Link_J-TraceARM-2

Flash download and flash breakpoints —e

Manufacturer Device ID Devices

Atmel AT91SAM7S256 AT91SAM7S256
Atmel AT91SAM7S512 AT9ISAM7S512
Atmel AT91SAM7SE32 AT9ISAM7SE32
Atmel AT91SAM7SE256 AT9ISAM7SE256
Atmel AT91SAM7SES 12 AT9ISAM7SES5 12
Atmel AT91SAM7X128 AT9ISAM7X128
Atmel AT91SAM7X256 AT9ISAM7X256
Atmel AT91SAM7X512 AT9ISAM7X512
Atmel AT91SAM7XC128 AT9ISAM7XC128
Atmel AT91SAM7XC256 AT9ISAM7XC256
Atmel AT9ISAM7XC512 AT9ISAM7XC512
Freescale* MAC7101 MAC7101
Freescale* MAC7106 MAC7106
Freescale* MAC7I111 MAC7I11
Freescale* MAC7112 MAC7112
Freescale* MAC7116 MAC7116
Freescale* MAC7121 MAC7121
Freescale* MAC7122 MAC7122
Freescale* MAC7126 MAC7126
Freescale* MAC7131 MAC7131
Freescale* MAC7136 MAC7136
Freescale* MAC7141 MAC7141
Freescale* MAC7142 MAC7142
Luminary LM3S101 LM3S101
Luminary LM3S102 LM3S102
Luminary LM3S301 LM3S301
Luminary LM3S310 LM3S310
Luminary LM3S315 LM3S315
Luminary LM3S316 LM3S316
Luminary LM3S317 LM3S317
Luminary LM3S328 LM3S328
Luminary LM3S601 LM3S601
Luminary LM3S610 LM3S610
Luminary LM3S61 | LM3S61 |
Luminary LM3S612 LM3S612
Luminary LM3S613 LM3S613
Luminary LM3S615 LM3S615
Luminary LM3S617 LM3S617
Luminary LM3S618 LM3S618
Luminary LM3S628 LM3S628
Luminary LM3S801 LM3S801
Luminary LM3S81 | LM3S81 |
Luminary LM3S812 LM3S812
Luminary LM3S815 LM3S815
Luminary LM3s817 LM3S817
Luminary LM3S818 LM3S818
Luminary LM3S828 LM3S828

Table 15: Supported microcontrollers (Continued)

J-Link_J-TraceARM-2 59

60

Manufacturer Device ID Devices
Luminary LM3S2110 LM3S2110
Luminary LM3S2139 LM3S2139
Luminary LM3S2410 LM3S2410
Luminary LM3S2412 LM3S2412
Luminary LM3S2432 LM3S2432
Luminary LM3S2533 LM3S2533
Luminary LM3S2620 LM3S2620
Luminary LM3S2637 LM3S2637
Luminary LM3S2651 LM3S2651
Luminary LM3S52730 LM3S2730
Luminary LM3S2739 LM3S2739
Luminary LM352939 LM3S52939
Luminary LM352948 LM352948
Luminary LM352950 LM352950
Luminary LM3S2965 LM3S2965
Luminary LM3S6100 LM3S6100
Luminary LM3S6110 LM3Sé6110
Luminary LM356420 LM356420
Luminary LM3S6422 LM3S6422
Luminary LM3S6432 LM3S6432
Luminary LM3S6610 LM3S6610
Luminary LM3S6633 LM3S6633
Luminary LM3S6637 LM3S6637
Luminary LM3S6730 LM3S6730
Luminary LM3S6918 LM3S6918
Luminary LM356938 LM356938
Luminary LM3S6952 LM3S6952
Luminary LM3S6965 LM3S6965
NXP LPC2101 LPC2101
NXP LPC2102 LPC2102
NXP LPC2103 LPC2103
NXP LPC2104 LPC2104
NXP LPC2105 LPC2105
NXP LPC2106 LPC2106
NXP LPC2109 LPC2109
NXP LPC2114 LPC2114
NXP LPC2119 LPC2119
NXP LPC2124 LPC2124
NXP LPC2129 LPC2129
NXP LPC2131 LPC2131
NXP LPC2132 LPC2132
NXP LPC2134 LPC2134
NXP LPC2136 LPC2136
NXP LPC2138 LPC2138
NXP LPC2141 LPC2141
NXP LPC2142 LPC2142
NXP LPC2144 LPC2144

Table 15: Supported microcontrollers (Continued)

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-2

Flash download and flash breakpoints

Manufacturer Device ID Devices

NXP LPC2146 LPC2146

NXP LPC2148 LPC2148

NXP LPC2194 LPC2194

NXP LPC2212 LPC2212

NXP LPC2214 LPC2214

NXP LPC2292 LPC2292

NXP LPC2294 LPC2294

NXP LPC2364 LPC2364

NXP LPC2366 LPC2366

NXP LPC2368 LPC2368

NXP LPC2378 LPC2378

NXP LPC2387 LPC2387

NXP LPC2388 LPC2388

NXP LPC2468 LPC2468

NXP LPC2478 LPC2478

OKI ML67Q4002 ML67Q4002
OKI ML67Q4003 ML67Q4003
OKI ML67Q4050 ML67Q4050
OKI ML67Q4051 ML67Q4051
OKI ML67Q4060 ML67Q4060
OKI ML67Q4061 ML67Q4061
Samsung* S3F445HX S3F445HX

ST STM32FI101Cé6 STM32F101Cé
ST STM32F101C8 STM32F101C8
ST STM32FI10ICB STM32FI10ICB
ST STM32FI0IR6 STM32FI101R6
ST STM32FI0IR8 STM32FI10IR8
ST STM32FI0IRB STM32FI0IRB
ST STM32FI0IRC STM32FI0IRC
ST STM32FI0IRD STM32FI0IRD
ST STM32FI0IRE STM32FI10IRE
ST STM32FI101Té STM32F101Té
ST STM32FI101T8 STM32F101T8
ST STM32F101V8 STM32F101V8
ST STM32F101VB STM32F101VB
ST STM32F10I1VC STM32F101VC
ST STM32F101VD STM32F101VD
ST STM32FI0IVE STM32FI101VE
ST STM32F101ZC STM32F101ZC
ST STM32F101ZD STM32F101ZD
ST STM32FI01ZE STM32FI01ZE
ST STM32F102Cé6 STM32F102Cé6
ST STM32F102C8 STM32F102C8
ST STM32F102CB STM32F102CB
ST STM32F103Cé STM32F103Cé
ST STM32F103C8 STM32F103C8
ST STM32F103R6 STM32F103R6

Table 15: Supported microcontrollers (Continued)

J-Link_J-TraceARM-2

62

Manufacturer

Device ID

Devices

ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST
ST

STM32FI03R8
STM32FI03RB
STM32FI03RC
STM32FI103RD
STM32FI03RE
STM32F103Té6
STM32F103T8
STM32F103V8
STM32FI103VB
STM32F103VC
STM32F103VD
STM32FI103VE
STM32F103ZC
STM32F103ZD
STM32FI103ZE
STR710FZI
STR710FZ2
STR711FRO
STR711FRI
STR711FR2
STR712FRO
STR712FRI
STR712FR2
STR715FRO
STR730FZ1
STR730FZ2
STR731FVO
STR73IFVI
STR731FV2
STR735FZI
STR735FZ2
STR736FV0
STR736FVI
STR736FV2
STR750FV0
STR750FVI
STR750FV2
STR751FRO
STR75IFRI
STR751FR2
STR752FR0O
STR752FRI
STR752FR2
STR755FRO
STR755FR1
STR755FR2
STR755FV0

STM32FI03R8
STM32FI03RB
STM32FI03RC
STM32FI03RD
STM32FI03RE
STM32F103Té
STM32FI03T8
STM32F103V8
STM32FI03VB
STM32F103VC
STM32F103VD
STM32FI03VE
STM32F103ZC
STM32F103ZD
STM32FI03ZE
STR710FZI
STR710FZ2
STR711FRO
STR711FRI
STR711FR2
STR712FRO
STR712FRI
STR712FR2
STR715FRO
STR730FZ1
STR730FZ2
STR731FVO
STR731FVI
STR731FV2
STR735FZ1
STR735FZ2
STR736FV0
STR736FVI
STR736FV2
STR750FVO0
STR750FVI
STR750FV2
STR751FRO
STR751FRI
STR751FR2
STR752FRO
STR752FRI
STR752FR2
STR755FRO
STR755FRI
STR755FR2
STR755FV0

Table 15: Supported microcontrollers (Continued)

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-2

Flash download and flash breakpoints

—e

Manufacturer Device ID Devices

ST STR755FVI STR755FVI

ST STR755FV2 STR755FV2

ST STR910FAM32 STR910FAM32
ST STR9I10FAW32 STR9I10FAW32
ST STR9I10FAZ32 STR9I10FAZ32
ST STR9I1FAM42 STR9I1FAM42
ST STR9I1FAM44 STR9I 1FAM44
ST STR9I1FAM46 STR9I1FAM46
ST STR9I1FAM47 STRII 1FAM47
ST STR9I1FAW42 STR9I IFAW42
ST STR9I IFAW44 STR9I IFAW44
ST STR9II1FAWA46 STR9I IFAW46
ST STR9I IFAW47 STR9I IFAW47
ST STRII1FM32 STRII1FM32
ST STR9I1FM42 STR9I1FM42
ST STR9I1FM44 STR9I1FM44
ST STRII1FW32 STRII IFW32
ST STRII1FW42 STRII1FW42
ST STR9I1FW44 STRII 1FW44
ST STR9I12FAW32 STR912FAW32
ST STR9I12FAW42 STR912FAW42
ST STR912FAW44 STR912FAW44
ST STR9II12FAW46 STR9I12FAW46
ST STR9I12FAW47 STR9I12FAW47
ST STR912FAZ42 STR9I12FAZ42
ST STR9I12FAZ44 STR9I12FAZ44
ST STR9I12FAZ46 STR9I12FAZ46
ST STR9I12FAZ47 STR9I12FAZ47
ST STR912FM32 STR912FM32
ST STR912FM42 STR912FM42
ST STR912FM44 STR912FM44
ST STR9I12FW32 STR9I12FW32
ST STR912FW42 STR912FW42
ST STR912FW44 STR912FW44
TI TMS470R 1 A64 TMS470R 1 A64
TI TMS470R1A128 TMS470R1A128
TI TMS470R1A256 TMS470R1A256
TI TMS470R 1 A288 TMS470R1A288
TI TMS470R1A384 TMS470R 1 A384
TI TMS470R1B512 TMS470R1B512
TI TMS470R 1B768 TMS470R 1B768
TI TMS470RI1BIM TMS470RI1BIM
TI TMS470R 1VF288 TMS470R 1 VF288
TI TMS470R 1 VF688 TMS470R 1 VF688
TI TMS470R 1 VF689 TMS470R 1 VF689

Table 15: Supported microcontrollers (Continued)
*Not available for RDI, J-Link GDB Server

J-Link_J-TraceARM-2 63

Using flash breakpoints

J-Link ARM FlashBP can be used by IAR Embedded Workbench.

IAR EMBEDDED WORKBENCH

To use J-Link FlashBP with IAR Embedded Workbench is quite simple:

First, choose the right device in the project settings if not already done. The device settings can be found at Project-
>Options->General Options->Target.

Options for node “at91sam7s-ek™ E
Category:

ions
CiC++ Compiler

Assembler
Qukput Corwverker Target | Dutputl Library Eonfigurationl Library Options | MISRA-C
Customn Build .
)) — Processor wariant
Build Actions

Linker & Core IAHM?TDMI 'l

Debugger
Simulator % Device IAtmeI at91 zam7 =256 Ek_l
Angel
GDE Server
IAB ROM-manitar — Endian mode
J-Linkj1-Trace

LMI FTOI @ Litle I Mohe - l

Macraigor e Big
RDI * BEZZ
Third-Party Driver ¢ BES

Cancel |

If you use the IAR project for the first time, the use of FlashBPs is set to Auto, which is the default value. For more
information about different configurations for FlashBPs, refer to Settings on page 42.

Now you can start the debug session. If you run this project for the first time a settings file is created in which the
configuration of FlashBPs is saved. This settings file is created for every project configuration (for example,
Debug_RAM, Debug_FLASH), so you can save different J-Link FlashBP configurations for different project
configurations. When the debug session starts, you should see the selected target in the Device tab of the J-Link status
window. When the debug session is running you can modify the settings regarding FlashBPs, in the Settings tab and
save them to the settings file.

3, I-Link ARM [_ [=]
General Seftings | BreakMatchI Lag I CPU Hegsl Target Powerl Sty I
M Flash download M Flash breakpoint
* Auto | License found * Auto | License found
 On ¥ Skip download on CRC match On I~ Show info windav during
 Off W Weiify download Off program
IEnabIed, 10272 bytes downloaded Enabled

I~ Overide device selection

W Allow caching of flash contents (On)

v Allow instucti b simulati . |
[+ Allow instruction set simulation [Ep——r—

" Location of config file

IEI: AToolChARNWARM_W520_betad024%4F kyexamplesiatmeliatd] zam7 z-ekgetting-started-projectie

|Ready | | 4

Currently changes in this tab, will take effect next time the debug session is started.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics

This chapter gives additional information about specific devices.

Analog Devices

J-Link has been tested with the following MCUs from Analog Devices, but should work with any ARM?7/9 and Cortex-
M3 device:
ADuC7020x62
ADuC7021x32
ADuC7021x62
ADuC7021x62
ADuC7022x32
ADuC7022x62
ADuC7024x62
ADuC7025x32
ADuC7025x62
ADuC7026x62
ADuC7027x62
ADuC7030
ADuC7031
ADuC7032
ADuC7033
ADuC7060
ADuC7128
ADuC7129
ADuC7229x126

ADUC7XXX

All devices of this family are supported by J-Link.

Software reset

A special reset strategy has been made available for Analog Devices ADuC7xxx MCUs. This special reset strategy is
a software reset. "Software reset" means basically no reset, just changing the CPU registers such as PC and CPSR.

The software reset for Analog Devices ADuC7xxxx executes the following sequence:
e The CPU is halted

o A software reset sequence is downloaded to RAM

e A breakpoint at address 0 is set

o The software reset sequence is executed.

It is recommended to use this reset strategy. This sequence performs a reset of CPU and peripherals and halts the CPU
before executing instructions of the user program. It is the recommended reset sequence for Analog Devices
ADuC7xxx MCUs and works with these devices only.

This information is applicable to the following devices:

e Analog ADuC7020x62

e Analog ADuC7021x32

J-Link_J-TraceARM-2

Analog ADuC7021x62
Analog ADuC7022x32
Analog ADuC7022x62
Analog ADuC7024x62
Analog ADuC7025x32
Analog ADuC7025x62
Analog ADuC7026x62
Analog ADuC7027x62
Analog ADuC7030
Analog ADuC7031
Analog ADuC7032
Analog ADuC7033
Analog ADuC7128
Analog ADuC7129
Analog ADuC7229x126

ATMEL

J-Link has been tested with the following ATMEL devices, but should work with any ARM7/9 and Cortex-M3 device:

AT91SAMT7A3
AT91SAM7S32
AT91SAM7S321
AT91SAM7S64
AT91SAM7S128
AT91SAM7S256
AT91SAM7S512
AT91SAM7SE32
AT91SAM7SE256
AT91SAM7SES12
AT9ISAMT7X128
AT91SAMT7X256
AT9ISAM7X512
AT91SAM7XC128
AT9ISAMT7XC256
AT91SAMT7XC512
AT91RM9200
AT91SAM9260
AT91SAMI261
AT91SAM9262
AT91SAM9263

AT91SAM7
All devices of this family are supported by J-Link.

Reset strategy

The reset pin of the device is per default disabled. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work per default. For this reason a special reset strategy has been made available.

IAR J-Link and IAR }J-Trace
66 User Guide J-Link_J-TraceARM-2

Device specifics

Itis recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the RSTC_CR
register. Reseting the peripherals puts all peripherals in the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect by writing 0x4
to the RSTC_CR register located at address Oxftfffd00.

This information is applicable to the following devices:

e AT91SAMTS (all devices)

e AT91SAMTSE (all devices)

e AT91SAM7X (all devices)

e AT91SAM7XC (all devices)

o AT91SAMT7A (all devices)

Memory mapping

Either flash or RAM can be mapped to address 0. After reset flash is mapped to address 0. In order to map RAM to
address 0, a 1 can be written to the RSTC_CR register. Unfortunately, this remap register is a toggle register, which
switches between RAM and flash with every time bit zero is written.

To achieve a defined mapping, there are two options:
Use the software reset described above.
Test if RAM is located at 0 using multiple read/write operations and testing the results.

Clearly 1 is the easiest solution and is recommended.

This information is applicable to the following devices:
o AT91SAMTS (all devices)

o AT91SAMTSE (all devices)

o AT91SAMT7TX (all devices)

o AT9ISAMTXC (all devices)

o AT91SAMT7TA (all devices)

Recommended init sequence

In order to work with an ATMEL AT91SAMY7 device, it has to be initialized. The following paragraph describes the
steps of an initialization sequence.

Set JTAG speed to 30 kHz

Reset target

Perform peripheral reset

Disable watchdog

Initialize PLL

Use full JTAG speed.

J-Link_J-TraceARM-2

—e

67

Example

/***
*

* _Init()
*/
_Init() {
__emulatorSpeed(30000) ; // Set JTAG speed to 30 kHz
__writeMemory32 (0xA5000004, 0OXFFFFFDOO, "Memory") ; // Perform peripheral reset
__sleep(20000) ;
__writeMemory32 (0x00008000, 0OXFFFFFD44, "Memory") ; // Disable Watchdog
__sleep(20000) ;
__writeMemory32 (0x00000601, 0OXFFFFFC20, "Memory") ; // PLL
__sleep(20000) ;
__writeMemory32 (0x10191c05, 0XFFFFFC2C, "Memory") ; // PLL
__sleep(20000) ;
__writeMemory32 (0x00000007, 0XFFFFFC30, "Memory") ; // PLL
__sleep(20000) ;
__writeMemory32 (0x002£0100, OXFFFFFF60, "Memory") ; // Set 1 wait state for
_ _sleep(20000) ; // flash (2 cycles)
__emulatorSpeed (12000000) ; // Use full JTAG speed
}

/***
*

* execUserReset ()

*/

execUserReset () {
__message "execUserReset()";
_Init();

}

/***
*

* execUserPreload()

*/

execUserPreload () {
__message "execUserPreload()";
_Init();

}

AT9I1SAM9

These devices are based on ARM926EIJ-S core. All devices of this family are supported by J-Link.

JTAG settings

We recommend using adaptive clocking.

This information is applicable to the following devices:
e AT91RM9200
e AT91SAM9260
e AT91SAM9261
e AT91SAM9262
e AT91SAM9263

Freescale
J-Link has been tested with the following Freescale devices, but should work with any ARM7/9 and Cortex-M3 device:

MAC7101
MAC7106
MACT7111
MACT7112
MACT7116
MACT7121
MACT7122

IAR J-Link and IAR }J-Trace
68 User Guide J-Link_J-TraceARM-2

MAC7I1X

MACT7126
MACT7131
MAC7136
MACT7141
MACT7142

All devices of this family are supported by J-Link.

Device specifics

Luminary Micro

J-Link has been tested with the following Luminary Micro devices, but should work with any ARM7/9 and Cortex-M3
device:

LM3S101
LM3S102
LM3S301
LM3S310
LM3S315
LM3S316
LM3S317
LM3S328
LM3S601
LM3S610
LM3S611
LM3S612
LM3S613
LM3S615
LM3S617
LM3S618
LM3S628
LM3S801
LM3S811
LM3S812
LM3S815
LM3S817
LM3S818
LM3S828
LM3S2110
LM3S2139
LM3S2410
LM3S2412
LM3S2432
LM3S2533
LM3S2620
LM3S2637
LM3S2651
LM3S2730
LM3S2739

J-Link_J-TraceARM-2

—e

69

LM3S2939
LM3S52948
LM3S2950
LM3S2965
LM3S6100
LM3S56110
LM3S6420
LM356422
LM3S6432
LM356610
LM3S6633
LM3S56637
LM3S6730
LM3S56938
LM3S6952
LM3S6965

STELLARIS LM3S100 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S300 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S600 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S800 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S2000 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6100 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6400 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

STELLARIS LM3S6700 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

IAR J-Link and IAR }J-Trace
70 User Guide J-Link_J-TraceARM-2

Device specifics —e

STELLARIS LM3S6900 SERIES

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

NXP

J-Link has been tested with the following NXP devices, but should work with any ARM7/9 and Cortex-M3 device:

LPC2101
LPC2102
LPC2103
LPC2104
LPC2105
LPC2106
LPC2109
LPC2114
LPC2119
LPC2124
LPC2129
LPC2131
LPC2132
LPC2134
LPC2136
LPC2138
LPC2141
LPC2142
LPC2144
LPC2146
LPC2148
LPC2194
LPC2212
LPC2214
LPC2292
LPC2294
LPC2364
LPC2366
LPC2368
LPC2378
LPC2468
LPC2478
PCF87750
SJA2010
SJA2510

LPC

Fast GPIO bug

The values of the fast GPIO registers can not be read direct via JTAG from a debugger. The direct access to the registers
corrupts the returned values. This means that the values in the fast GPIO registers normally can not be checked or
changed from a debugger.

J-Link_J-TraceARM-2 71

72

Solution / Workaround

J-Link supports command strings which can be used to read a memory area indirect. Indirectly reading means that a
small code snippet will be written into RAM of the target device, which reads and transfers the data of the specified
memory area to the debugger. Indirectly reading solves the fast GPIO problem, because only direct register access
corrupts the register contents.

Define a 256 byte aligned area in RAM of the LPC target device with the J-Link command map ram and define
afterwards the memory area which should be read indirect with the command map indirectread to use the
indirectly reading feature of J-Link. Note that the data in the defined RAM area is saved and will be restored after using
the RAM area.

This information is applicable to the following devices:

LPC2101

LPC2102

LPC2103

LPC213x/01

LPC214x (all devices)

LPC23xx (all devices)

LPC24xx (all devices)

Example

J-Link command line options can be used with the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog and select Debugger. Select Use command line options in the Extra Options tap and enter
in the textfield --j1link_exec_command "map ram 0x40000000-0x40003fff; map indirectread
0x3fffc000-0x3fffcfff; map exclude 0x3fffd000-0x3fffffff;" as shown in the screenshot
below.

Options for node "Project™ E

Category: Factary Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Azzembler "

Cusztomn Build
Build &ctions
Linker
Debuager ~jlink_exec_command “map ram 0x40000000-0<400036; map indire;l

Simulator

Angel

14R R OM-monitor

J-Linkd)-Trace

LI FTDI

M acraigor

RDI

Third-Party Driver

LCommand line options: [one per line]

|

()8 | Cancel |

With these additional commands are the values of the fast GPIO registers in the C-SPY debugger correct and can be
used for debugging. For more information about J-Link command line options, refer to Command strings on page 48.

OKI

J-Link has been tested with the following OKI devices, but should work with any ARM7/9 and Cortex-M3 device:

o ML67Q4002
ML67Q4003
ML67Q4050
ML67Q4051
ML67Q4060

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

ML67Q40X

ML67Q4061

All devices of this family are supported by J-Link.

Device specifics

ST Microelectronics
J-Link has been tested with the following ST Microelectronics devices, but should work with any ARM7/9 and Cortex-

M3 device:

STR710FZ1
STR710FZ2
STR711FRO
STR711FR1
STR711FR2
STR712FRO
STR712FR1
STR712FR2
STR715FRO
STR730FZ1
STR730FZ2
STR731FV0
STR731FV1
STR731FV2
STR735FZ1
STR735FZ2
STR736FV0
STR736FV1
STR736FV2
STR750FV0
STR750FV1
STR750FV2
STR751FRO
STR751FR1
STR751FR2
STR752FRO
STR752FR1
STR752FR2
STR755FR0O
STR755FR1
STR755FR2
STR755FV0
STR755FV1
STR755FV2
STRO11FM32
STR911FM44

STRO11FW32
STR911FW44

STRO912FM32

J-Link_J-TraceARM-2

—e

73

74

STRO912FM44

STRO12FW32

STR912FW44

STM32F101C6
STM32F101C8
STM32F101R6
STM32F101R8
STM32F101RB
STM32F101V8
STM32F101VB
STM32F103C6
STM32F103C8
STM32F103R6
STM32F103R8
STM32F103RB
STM32F103V8
STM32F103VB

STR7IX

These devices are ARM7TDMI based.
All devices of this family are supported by J-Link.

STR 73X

These devices are ARM7TDMI based.
All devices of this family are supported by J-Link.

STR 75X

These devices are ARM7TDMI-S based.
All devices of this family are supported by J-Link.

STR9IX

These device are ARM966E-S based.
All devices of this family are supported by J-Link.

Flash erasing

The devices have 3 TAP controllers built-in. When starting J-Link . exe, it reports 3 JTAG devices. A special tool, J-
Link STR9 Commander (JLinkSTR91x.exe) is available to directly access the flash controller of the device. This
tool can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall.
For more information about the J-Link STR9 Commander, please refer to J-Link STR91x Commander (Command line
tool) on page 22.

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The IOs are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

STM32

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Device specifics —e

Option byte programming

we suggest to perform the programming of the option bytes directly from the target application. J-Link (or an additional
software tool like J-Flash) does not support programming of the option bytes.

Read-protection

The user area internal flash of the STM32 devices can be protected against read by untrusted code. In order to unsecure
a read-protected STM32 device, SEGGER offers a free command line tool which overrides the read-protection of a
STM32 device. For more information about the J-Link STM32 Commander, please refer to J-Link STM32 Commander
(Command line tool) on page 23.

Note:J-Flash ARM supports securing and unsecuring a STM32 device, too.

Hardware watchdog

The hardware watchdog of a STM32 device can be enabled by programming the option bytes. If the hardware watchdog
is enabled the device reset periodically if the watchdog timer is not refreshed and reaches 0. If the hardware watchdog
is enabled by an application which is located in flash and which does not refresh the watchdog timer, the device can not
be debugged anymore.

Disabling the hardware watchdog

In order to disable the hardware watchdog the option bytes have to be re-programmed. SEGGER offers a free command
line tool which reprograms the option bytes in order to disable the hardware watchdog. For more information about the
STM32 commander, please refer to J-Link STM32 Commander (Command line tool) on page 23.

Note:In order to re-program the option bytes they have to be erased first. Erasing the option bytes will read-protect the
flash of the STM32. The STM32 commander will also override the read-protection of the STM32 device after disabling
the watchdog. Please also note that unsecuring a read-protected device will cause a mass erase of the flash memory.

Texas Instruments

J-Link has been tested with the following Texas Intruments devices, but should work with any ARM7/9 and Cortex-M3
device:
TMS470R1A64
TMS470R1A128
TMS470R1A256
TMS470R1A288
TMS470R1A384
TMS470R1B512
TMS470R1B768
TMS470R1B1M
TMS470R1VF288
TMS470R1VF688
TMS470R1VF689

TMS470
All devices of this family are supported by J-Link.

J-Link_J-TraceARM-2 75

IAR J-Link and IAR }J-Trace
76 User Guide J-Link_J-TraceARM-2

Hardware

This chapter gives an overview about J-Link / |-Trace specific hardware details, such as the pinouts and available

adapters.

20-pin JTAG/SWD connector

PINOUT FOR JTAG

VTref
nTRST

TDI

T™MS

TCK

RTCK [
TDO

RESET

DBGRQ
5V-Supply

N W =

11
13
15
17
19

®2
o4
®6
®3
e 10
12
® 14
® 16
® 18
® 20

NC

GND
GND
GND
GND
GND
GND
GND
GND
GND

J-Link and J-Trace have a JTAG connector compatible to ARM’s Multi-
ICE. The JTAG connector is a 20 way Insulation Displacement Connector
(IDC) keyed box header (2.54mm male) that mates with IDC sockets
mounted on a ribbon cable.

The following table lists the J-Link / J-Trace JTAG pinout.

PIN

SIGNAL TYPE

Description

13
15

VTref Input

Not connected NC

nTRST Output

TDI Output

TMS Output

TCK Output

RTCK Input

TDO Input
RESET 11O

DBGRQ NC

5V-Supply Output

This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.

This pin is not connected in J-Link.

JTAG Reset. Output from J-Link to the Reset signal of the target JTAG port. Typically
connected to nTRST of the target CPU. This pin is normally pulled HIGH on the target to
avoid unintentional resets when there is no connection.

JTAG data input of the target CPU. It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

JTAG mode set input of the target CPU. This pin should be pulled up on the target.
Typically connected to TMS of the target CPU.

JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

Return test clock signal from the target. Some targets must synchronize the JTAG inputs
to internal clocks. To assist in meeting this requirement, you can use a returned, and
retimed, TCK to dynamically control the TCK rate. J-Link supports adaptive clocking,
which waits for TCK changes to be echoed correctly before making further changes.
Connect to RTCK if available, otherwise to GND.

JTAG data output from the target CPU. Typically connected to TDO of the target CPU.

Target CPU reset signal. Typically connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

This pin is not connected in J-Link. It is reserved for compatibility with other equipment
to be used as a debug request signal to the target system. Typically connected to DBGRQ
if available, otherwise left open.

This pin can be used to supply power to the target hardware. Older J-Links may not be
able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page 78.

Table 16: J-Link / J-Trace pinout

J-Link_J-TraceARM-2

77

78

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for JTAG on page 77. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

Typical target connection for JTAG

JTAG connector Target board
Volt
5V supply I = Regulaagtir » VCC
VTref | 1
v
nTRST 35— 3 nTRST vee
TDI |2 = TDI
™S <2 z TMS
J-Link TCK 2 2 TCK CPU
RTCK |l M RTCK
TDO |€£3 13 TDO
15 15
RESET nRST GND

* NTRST and RTCK may not be available on some CPUs.
** Optional to supply the target board from J-Link.

Pull-up/pull-down resistors

Unless otherwise specified by the developer’s manual, pull-ups/pull-downs are recommended to be between 2.2
kOhms and 47 kOhms.

Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5 V, maximum current
is 300 mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to on
power off perm Set target power supply default to off

Table 17: Command List

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Hardware

PINOUT FOR SWD
The J-Link and J-Trace JTAG connector is also compatible to ARM’s

VTref le e2 NC Serial Wire Debug (SWD).
Not used 3 e ® 4 | GND
Not used 5e @6 |GND
SWDIO 7 ® 8 | GND
SWCLK Se e 10| GND
Not used [11 e 12/ GND
SWo 13 @ ® 14| GND
RESET 15 e ® 16| GND
Not used 17 e ® 18| GND
5V-Supply (19 e ® 20| GND

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

| VTref Input This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series

resistor.

2 Not connected NC This pin is not connected in J-Link.

3 Not Used NC This pin is not used by J-Link. If the device is accessed via JTAG, this pin can be connected
to nTRST, otherwise leave open.

5 Not used NC This pin is not used by J-Link. If the device is accessed via JTAG, this pin can be connected
to TDI, otherwise leave open.

7 SWDIO /10 Single bi-directional data pin. A pull-up resistor is required. ARM recommends 100
kOhms.

9 SWCLK Output Clock signal to target CPU.

It is recommended that this pin is pulled to a defined state on the target board. Typically
connected to TCK of the target CPU.

I Not used NC This pin is not used by J-Link when operating in SWD mode. If the device is also accessed
via JTAG, this pin can be connected to RTCK, otherwise leave open.

13 SWoO Output Serial Wire Output trace port. (Optional, not required for SWD communication.)

15 RESET /10 Target CPU reset signal. Typically, connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

17 Not used NC This pin is not connected in J-Link.

19 5V-Supply Output This pin can be used to supply power to the target hardware. Older J-Links may not be

able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page 80.

Table 18: J-Link / J-Trace SWD pinout

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

J-Link_J-TraceARM-2

80

Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for SWD on page 79. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

Typical target connection for SWD

JTAG connector Target board
Volt
5V supply 1¥—————————1% Regulator » VCC
VTref et L
: v
SWDIO |€Z z SWDIO vee
I-Link SWCLK |2 2 SWCLK
-Lin CPU
SWo |¢E—————————- = SWO
RESET |2 1 nRST
GND

* Optional to supply the target board from J-Link.

Pull-up/pull-down resistors

A pull-up resistor is required on SWDIO on the target board. ARM recommends 100 kOhms.
In case of doubt you should follow the recommendations given by the semiconductor manufacturer.

Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Description

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to on
power off perm Set target power supply default to off

Table 19: Command List

38-pin Mictor JTAG and Trace connector

J-Trace provides a JTAG+Trace connector. This connector is a 38-pin mictor plug. It connects to the target via a 1-1
cable.

The connector on the target board should be "TYCO type 5767054-1" or a compatible receptacle. J-Trace supports 4,
8, and 16-bit data port widths with the high density target connector described below.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Target board trace connector

J-Trace can capture the state of signals PIPESTAT[2:0], TRACESYNC and

Pin 1
chamfer

edge of each TRACECLK or on each alternate rising or falling edge.

CONNECTING THE TARGET BOARD

J-Trace connects to the target board via a 38-pin trace cable. This cable has a receptacle on the one side, and a plug on
the other side. Alternatively J-Trace can be connected with a 20-pin JTAG cable.

Warning: Never connect trace cable and JTAG cable at the same time because this

may harm your J-Trace and/or your target.

J-Trace
JTAG

-
=
1
(2}
®
0
Q
=
®

J-Trace

JTAG

Trace JTAG

o
—
>
()
0
Q
o
@

J-Link_J-TraceARM-2

Hardware

TRACEPKT([n:0] at each rising

J-Trace

-
=
3
(2}
o
O
Q
=
o

9|qed 9vV1ir

—e

81

PINOUT

The following table lists the JTAG+Trace connector pinout. It is compatible to the "Trace Port Physical Interface”
described in [ETM], 8.2.2 "Single target connector pinout".

PIN SIGNAL Description

| NC No connected.

2 NC No connected.

3 NC No connected.

4 NC No connected.

5 GND Signal ground.

6 TRACECLK Clocks trace data on rising edge or both edges.

7 DBGRQ Debug request.

8 DBGACK Debug acknowledge from the test chip, high when in debug state.

9 RESET Open-collector output from the run control to the target system reset.

10 EXTTRIG Optional external trigger signal to the Embedded trace Macrocell (ETM). Not used.
Leave open on target system.

I TDO Test data output from target JTAG port.

12 VTRef Signal level reference. It is normally fed from Vdd of the target board and must not
have a series resistor.

13 RTCK Return test clock from the target JTAG port.

14 VSupply Supply voltage. It is normally fed from Vdd of the target board and must not have a
series resistor.

I5 TCK Test clock to the run control unit from the JTAG port.

16 Trace signal 12 Trace signal. For more information, refer to Assignment of trace information pins between
ETM architecture versions on page 83.

17 T™S Test mode select from run control to the JTAG port.

18 Trace signal |1 Trace signal. For more information, refer to Assignment of trace information pins between
ETM architecture versions on page 83.

19 TDI Test data input from run control to the JTAG port.

20 Trace signal 10 Trace signal. For more information, refer to Assignment of trace information pins between
ETM architecture versions on page 83.

21 nTRST Active-low JTAG reset

22 Trace signal 9 Trace signals. For more information, refer to Assignment of trace information pins

23 Trace signal 20 between ETM architecture versions on page 83.

24 Trace signal 8

25 Trace signal 19

26 Trace signal 7

27 Trace signal 18

28 Trace signal 6

29 Trace signal 17

30 Trace signal 5

31 Trace signal 16

32 Trace signal 4

33 Trace signal I5

34 Trace signal 3

35 Trace signal 14

36 Trace signal 2

37 Trace signal 13

38 Trace signal |

Table 20: JTAG+Trace connector pinout

IAR J-Link and IAR }J-Trace

82 User Guide

J-Link_J-TraceARM-2

ASSIGNMENT OF TRACE INFORMATION PINS BETWEEN ETM

ARCHITECTURE VERSIONS

The following table show different names for the trace signals depending on the ETM architecture version.
Trace signal ETMvI ETMv2 ETMv3

Trace signal | PIPESTAT[0] PIPESTATI[O] TRACEDATA[0]
Trace signal 2 PIPESTAT[I] PIPESTATTI] TRACECTL
Trace signal 3 PIPESTAT([2] PIPESTAT[2] Logic |

Trace signal 4 TRACESYNC PIPESTATI[3] Logic 0

Trace signal 5 TRACEPKTI0] TRACEPKTIO0] Logic 0

Trace signal 6 TRACEPKT[] TRACEPKTI[!] TRACEDATA[I]
Trace signal 7 TRACEPKT[2] TRACEPKT[2] TRACEDATA[2]
Trace signal 8 TRACEPKT[3] TRACEPKTI[3] TRACEDATA[3]
Trace signal 9 TRACEPKT[4] TRACEPKT[4] TRACEDATA[4]
Trace signal 10 TRACEPKTI[5] TRACEPKTI[5] TRACEDATA[5]
Trace signal | | TRACEPKT[6] TRACEPKT[6] TRACEDATA[6]
Trace signal 12 TRACEPKT[7] TRACEPKT[7] TRACEDATA[7]
Trace signal |3 TRACEPKTI[8] TRACEPKTI[8] TRACEDATA[S]
Trace signal 14 TRACEPKT[9] TRACEPKT[9] TRACEDATA[9]

Trace signal 15
Trace signal 16
Trace signal |7
Trace signal 18
Trace signal 19

Trace signal 20

TRACEPKTI[10]
TRACEPKTII 1]
TRACEPKTI[12]
TRACEPKT[I3]
TRACEPKTI[14]
TRACEPKTII5]

TRACEPKT[10]
TRACEPKT[I 1]
TRACEPKT[12]
TRACEPKT[I3]
TRACEPKT[14]
TRACEPKT[I5]

TRACEDATA[10]
TRACEDATA[I 1]
TRACEDATA[12]
TRACEDATA[I3]
TRACEDATA[4]
TRACEDATA[I5]

Table 21: Assignment of trace information pins between ETM architecture versions

TRACE SIGNALS
Data transfer is synchronized by TRACECLK.

Signal levels
The maximum capacitance presented by J-Trace at the trace port connector,
including the connector and interfacing logic, is less than 6pF. The trace port lines have a matched impedance of 50.

The J-Trace unit will operate with a target board that has a supply voltage range of 3.0V-3.6V.

Clock frequency
For capturing trace port signals synchronous to TRACECLK, J-Trace supports

a TRACECLK frequency of up to 200MHz. The following table shows the TRACECLK frequencies and the setup and
hold timing of the trace signals with respect to TRACECLK.

Parameter Min. Max. Explanation

Tperiod Sns 1000ns Clock period

Fmax IMHz 200MHz Maximum trace frequency
Tch 2.5ns - High pulse width

Tcl 2.5ns - Low pulse width

Tsh 2.5ns - Data setup high

Thh 1.5ns - Data hold high

Tsl 2.5ns - Data setup low

Thi 1.5ns - Data hold low

Table 22: Clock frequency

J-Link_J-TraceARM-2

—e

83

The diagram below shows the TRACECLK frequencies and the setup and hold timing of the trace signals with respect
to TRACECLK.

Tperiod

A
\ 4

Full / /

TRACECLK Tch Tol

DATA \ /

Tsh Thh Tsl (e

Thl

A
\ 4

Half-rate / \

TRACECLK

Note:J-Trace supports half-rate clocking mode. Data is output on each edge of the TRACECLK signal and
TRACECLK (max) <= 100MHz. For half-rate clocking, the setup and hold times at the JTAG+Trace connector
must be observed.

19-pin JTAG/SWD and Trace connector

J-Trace for Cortex M3 provides a JTAG/SWD+Trace connector. This
connector is a 19-pin connector. It connects to the target via an 1-1 cable. VTref

1 ee 2 | SWDIO/TMS

GND 3 @@ 4 | SWCLK/TCK
GND 5ee6 | SWO/TDO
--- 7 8 |TDI
NC 9 e e 10| nRESET
5V-Supply| 11 e @ 12| TRACECLK
5V-Supply |13 ® ® 14| TRACEDATA[O]
GND 15 ® ® 16|/ TRACEDATA[1]
GND 17 ® ® 18| TRACEDATA[2]
GND 19 @ ® 20| TRACEDATA[3]

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

| VTref Input This is the target reference voltage. It is used to check if the target has power, to

create the logic-level reference for the input comparators and to control the output
logic levels to the target. It is normally fed from Vdd of the target board and must not
have a series resistor.

2 SWDIO/TMS 11O/ JTAG mode set input of target CPU. This pin should be pulled up on the target.
output Typically connected to TMS of the target CPU.

4 SWCLK/TCK Output JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

6 SWO/TDO Input JTAG data output from target CPU. Typically connected to TDO of the target CPU.

--- --- --- This pin (normally pin 7) is not existent on the |9-pin JTAG/SWD and Trace
connector.

8 TDI Output JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

9 NC NC Not connected inside J-Link. Leave open on target hardware.

10 nRESET /10 Target CPU reset signal. Typically connected to the RESET pin of the target CPU,

which is typically called "nRST", "nRESET" or "RESET".
Table 23: 19-pin JTAG/SWD and Trace pinout

IAR J-Link and IAR }J-Trace
84 User Guide J-Link_J-TraceARM-2

Hardware

PIN SIGNAL TYPE Description

I 5V-Supply Output This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 85.

12 TRACECLK Input Input trace clock. Trace clock = 1/2 CPU clock.

13 5V-Supply Output This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 85.

14 TRACEDATA[O0] Input Input Trace data pin 0.

16 TRACEDATA[I] Input Input Trace data pin 0.

18 TRACEDATA[2] Input Input Trace data pin 0.

20 TRACEDATA[3] Input Input Trace data pin 0.

Table 23: 19-pin JTAG/SWD and Trace pinout (Continued)

Pins 3, 5, 15, 17, 19 are GND pins connected to GND in J-Trace CM3. They should also be connected to GND in the
target system.

TARGET POWER SUPPLY

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to on
power off perm Set target power supply default to off

Table 24: Command List

RESET, nTRST

The TAP controller and ICE logic is reset independently from the ARM core with nTRST. For the ARM core to operate
correctly, it is essential that both signals are asserted after power-up.

The advantage of having separate connection to the two reset signals is that it allows the developer performing software
debug to set up breakpoints which are retained by the ICE logic even when the core is reset. (For example, at address
0, to allow the code to be single-stepped as soon as it comes out of reset).

J-Link_J-TraceARM-2

—e

85

Adapters

5 VOLT ADAPTER

The 5V adapter extends the voltage range of J-Link / J-Trace (and other, pin-compatible JTAG probes) to 5V. Most
targets have JTAG signals at voltage levels between 1.2V and 3.3V for J-Link and 3.0V up to 3.6V for J-Trace. These
targets can be used with J-Link / J-Trace without a 5V adapter. Higher voltages are common primarily in the
automotive sector.

Technical data

20 pin connector, female (plugs into J-Link / J-Trace)

20 pin connector male, for target ribbon cable

LED shows power status

Adapter is powered by target

Power consumption < 20 mA Target supply voltage: 3.3V - 5V
Maximum JTAG-frequency: 10 MHz

Compatibility note

The J-Link 5V adapter is compatible to J-Link revisions 4 or newer and J-Trace. Using an older revision of J-Link
together with a 5V adapter will not output a reset signal to your target, because older J-Link versions were not able to
drive high level on Reset and TRST to target. To actually determine if your J-Link is compatible to the 5V adapter, you
may check whether J-Link outputs a reset signal (active high) to your target CPU.

Usage

The 5 volt adapter should be plugged directly into J-Link / J-Trace with the 20-pin female connector. The target ribbon
cable is then attached to the 20-pin male connector of the adapter.

IAR J-Link and IAR J-Trace
86 User Guide J-Link_J-TraceARM-2

J-Link / J-Trace models

This chapter gives an overview about the different J-Link / |-Trace models. In addition to that, it gives information
about the changes between the hardware versions.

Introduction

J-Link / J-Trace is available in different variations, each designed for different purposes / target devices. Currently, the
following models of J-Link / J-Trace are available:

e J-Link ARM
o J-Trace ARM
o J-Trace for Cortex-M3

In the following, the different J-Link / J-Trace models are described and the changes between the different hardware
versions of each model are listed. To determine the hardware version of your J-Link / J-Trace, the first step should be

to look at the label at the bottom side of the unit. J-Links / J-Traces have the hardware version printed on the back label.

If this is not the case with your J-Link / J-Trace, start JLink.exe. As part of the initial message, the hardware version
is displayed.

l;:-.',; C:\Program Files'\SEGGER" JLinkARM_¥402d", JLink.exe

SEGGER J-Link Commander U4.82d (’'7* for help>
Compiled Mar 12 2889 15:39:38

DLL version U4.82d. compiled Mar 12 2889 15:39:15
Firmware: J-Link ARM U8 compiled Mar 12 268089 15:28:83

Hardware: UE.008
SN =

UTarget = B.086U
JTAG speed: 5 kHz
J-Link>_

J-Link ARM

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running Microsoft Windows 2000,
Windows XP, Windows 2003 or Windows Vista. J-Link has a built-in 20-pin JTAG connector, which is compatible with
the standard 20-pin connector defined by ARM.

ADDITIONAL FEATURES

e Serial Wire Debug supported *

e Serial Wire Viewer supported *

e Download speed up to 720 KBytes/second **
e DCC speed up to 800 Kbytes/second **

* = Supported by J-Link hardware version 6

** = Measured with J-Link Rev.5, ARM7 @ 50 MHz, 12MHz JTAG speed.

SPECIFICATIONS*

Power Supply USB powered <50mA if target power is off.
USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)
Serial Transfer Rate between J-Link and Target up to 12 MHz

Supported Target Voltage 1.2 - 3.3V, 5V tolerant

Table 25: J-Link specifications

J-Link_J-TraceARM-2

87

Target supply voltage 4.5V .. 5V (if powered with 5V on USB)

Target supply current Max. 300mA

Operating Temperature +5°C ... +60°C

Storage Temperature -20°C ... +65 °C

Relative Humidity (non-condensing) <90% rH

Size (without cables) 100mm x 53mm x 27mm

Weight (without cables) 70g

Electromagnetic Compatibility (EMC) EN 55022, EN 55024

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64

Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64

Table 25: J-Link specifications (Continued)

* = J-Link hardware revision 5 and up.

DOWNLOAD SPEED

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hard ARM7 ARM9 Cortex-M3
ardware via JTAG via JTAG via SWD
J-Link Rev. 6 — 8 720 Kbytes/s (12MHz JTAG) 550 Kbytes/s 180 Kbytes/s
(12MHz JTAG) (12 MHz SWD)

Table 26: Download speed differences between hardware revisions

All tests have been performed in the testing environment which is described on Measuring download speed on
page 107.

The actual speed depends on various factors, such as JTAG/SWD, clock speed, host CPU core etc.

HARDWARE VERSIONS

Versions 1-3

These J-Links use a 16-bit CISC CPU. Maximum download speed is approximately 150 Kbytes/second.
JTAG speed
Maximum JTAG frequency is 4 MHz; possible JTAG speeds are:

16 MHz / n, where n is 4,5, ..., resulting in speeds of:
4.000 MHz (n = 4)

3.200 MHz (n =5)

2.666 MHz (n = 6)

2285MHz (n=7)

2.000 MHz (n=38)

1777 MHz (n=9)

1.600 MHz (n = 10)

Adaptive clocking is not supported.
Target Interface

nTRST is open drain + 4K7 pull up
RESET is open drain

Version 4

Identical to version 3.0 with the following exception:

IAR J-Link and IAR }J-Trace
88 User Guide J-Link_J-TraceARM-2

J-Link /)-Trace models —e

Target Interface

nTRST is push-pull type
RESET is push-pull type

Version 5.0

Uses a 32-bit RISC CPU.
Maximum download speed (using DCC) is over 700 Kbytes/second.

JTAG speed
Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:

48 MHz / n, where n is 4,5, ..., resulting in speeds of:
12.000 MHz (n = 4)

9.600 MHz (n = 5)

8.000 MHz (n = 6)

6.857 MHz (n=7)

6.000 MHz (n = 8)

5.333 MHz (n =9)

4.800 MHz (n = 10)

Adaptive clocking is supported.
Target Interface

nTRST is push-pull type
RESET is push-pull type

Version 5.2
Identical to version 5.0 with the following exception:
Target Interface

nTRST is push-pull type
RESET is open drain

Version 5.3
Identical to version 5.2 with the following exception:

e 5V target supply current limited
5V target supply (pin 19) of Kick-Start versions of J-Link is current monitored and limited. J-Link automatically
switches off 5V supply in case of over-current to protect both J-Link and host computer. Peak current (<= 10 ms)
limit is 1A, operating current limit is 300mA.

Version 5.4

Identical to version 5.3 with the following exception:

e JTAG interface is 5V tolerant.

Version 6.0
Identical to version 5.4 with the following exception:

e Outputs can be tristated (Effectively disabling the JTAG interface)
e J-Link supports SWV (Speed limited to 500 kHz)

Version 7.0
e Uses an additional pin to the UART unit of the target hardware for SWV support (Speed limited to 6 MHz).

Version 8.0

e SWD support for non-3.3V targets.

J-Link_J-TraceARM-2 89

J-Trace ARM

J-Trace ARM is a JTAG emulator designed for ARM cores which includes trace (ETM) support. J-Trace can also be
used as a J-Link.

ADDITIONAL FEATURES

e Supports tracing on ARM7/9 targets
e Download speed up to 420 Kbytes/second *
e DCC speed up to 600 Kbytes/second *

* = Measured with J-Trace, ARM7 @ 50 MHz, 12MHz JTAG speed.

SPECIFICATIONS FOR J-TRACE

Power Supply USB powered < 300mA

USB Interface USB 2.0, full speed

Target Interface JTAG 20-pin (14-pin adapter available)
JTAG+Trace: Mictor, 38-pin

Serial Transfer Rate between |-Trace and Target up to 12 MHz

Supported Target Voltage 3.0 - 3.6 V (5V adapter available)

Operating Temperature +5°C ... +40°C

Storage Temperature -20°C ... +65 °C

Relative Humidity (non-condensing) <90% rH

Size (without cables) 123mm x 68mm x 30mm

Weight (without cables) 120g

Electromagnetic Compatibility (EMC) EN 55022, EN 55024

Supported OS Microsoft Windows 2000
Microsoft Windows XP
Microsoft Windows XP x64

Microsoft Windows 2003
Microsoft Windows 2003 x64
Microsoft Windows Vista
Microsoft Windows Vista x64

Table 27: J-Trace specifications

DOWNLOAD SPEED

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware ARM7 via JTAG ARMSY via JTAG
J-Trace Rev. | 420.0 Kbytes/s 280.0 Kbytes/s
(12MHz JTAG) (12MHz JTAG)

Table 28: Download speed differences between hardware revisions

All tests have been performed in the testing environment which is described on Measuring download speed on
page 107.

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

HARDWARE VERSIONS

Version |

This J-Trace uses a 32-bit RISC CPU. Maximum download speed is approximately 420 KBytes/second (600 KBytes/
second using DCC).

IAR J-Link and IAR }J-Trace
90 User Guide J-Link_J-TraceARM-2

J-Link /)-Trace models —e

J-Trace for Cortex-M3

J-Trace for Cortex-M3 is a JTAG emulator designed for Cortex-M3 cores which includes trace (ETM) support. J-Trace
for Cortex-M3 can also be used as a J-Link and it also supports ARM7/9 cores. Tracing on ARM7/9 targets is not
supported.

ADDITIONAL FEATURES

e Has all the J-Link functionality
e Supports tracing on Cortex-M3 targets

DOWNLOAD SPEED

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware Cortex-M3 via SWD
J-Trace Rev. | 190 Kbytes/s (12MHz SWD)

Table 29: Download speed differences between hardware revisions

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

J-Link_J-TraceARM-2 91

IAR J-Link and IAR }J-Trace
92 User Guide J-Link_J-TraceARM-2

Background information

This chapter provides background information about JTAG and ARM. The ARM7 and ARM?9 architecture is based
on Reduced Instruction Set Computer (RISC) principles. The instruction set and the related decode mechanism are
greatly simplified compared with microprogrammed Complex Instruction Set Computer (CISC).

JTAG

JTAG is the acronym for Joint Test Action Group. In the scope of this document, "the JTAG standard" means
compliance with IEEE Standard 1149.1-2001.

TEST ACCESS PORT (TAP)

JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can provide access to many test support
functions built into a component. It is composed as a minimum of the three input connections (TDI, TCK, TMS) and
one output connection (TDO). An optional fourth input connection (nTRST) provides for asynchronous initialization
of the test logic.

PIN Type Explanation

TCK Input The test clock input (TCK) provides the clock for the test logic.

TDI Input Serial test instructions and data are received by the test logic at test data input (TDI).

T™S Input The signal received at test mode select (TMS) is decoded by the TAP controller to
control test operations.

TDO Output Test data output (TDO) is the serial output for test instructions and data from the
test logic.

nTRST Input (optional) The optional test reset (nTRST) input provides for asynchronous initialization of the

TAP controller.

Table 30: Test access port

DATA REGISTERS

JTAG requires at least two data registers to be present: the bypass and the boundary-scan register. Other registers are
allowed but are not obligatory.

Bypass data register
A single-bit register that passes information from TDI to TDO.
Boundary-scan data register

A test data register which allows the testing of board interconnections, access to input and output of components when
testing their system logic and so on.

INSTRUCTION REGISTER

The instruction register holds the current instruction and its content is used by the TAP controller to decide which test
to perform or which data register to access. It consist of at least two shift-register cells.

J-Link_J-TraceARM-2

93

94

THE TAP CONTROLLER

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK signals of the
TAP and controls the sequence of operations of the circuitry.

TAP controller state diagram

<< Reset <
tms=1

tms=0
Idle tms=1
tms=0 i
tms=1
Update-IR
tms=1 tms=0

State descriptions
Reset

The test logic is disabled so that normal operation of the chip logic can continue unhindered. No matter in which state
the TAP controller currently is, it can change into Reset state if TMS is high for at least 5 clock cycles. As long as TMS
is high, the TAP controller remains in Reset state.

Idle

Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this state remains active as long as
TMS is low.

DR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the selected data registers is initiated.
IR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the instruction register is initiated.
Capture-DR

Data may be loaded in parallel to the selected test data registers.

Shift-DR

The test data register connected between TDI and TDO shifts data one stage towards the serial output with each clock.
Exit1-DR

Temporary controller state.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Background information —e

Pause-DR

The shifting of the test data register between TDI and TDO is temporarily halted.

Exit2-DR

Temporary controller state. Allows to either go back into Shift-DR state or go on to Update-DR.
Update-DR

Data contained in the currently selected data register is loaded into a latched parallel output (for registers that have such
a latch). The parallel latch prevents changes at the parallel output of these registers from occurring during the shifting
process.

Capture-IR

Instructions may be loaded in parallel into the instruction register.

Shift-IR

The instruction register shifts the values in the instruction register towards TDO with each clock.
Exit1-IR

Temporary controller state.

Pause-IR

Wait state that temporarily halts the instruction shifting.

Exit2-IR

Temporary controller state. Allows to either go back into Shift-IR state or go on to Update-IR.
Update-IR

The values contained in the instruction register are loaded into a latched parallel output from the shift-register path.
Once latched, this new instruction becomes the current one. The parallel latch prevents changes at the parallel output
of the instruction register from occurring during the shifting process.

The ARM core

The ARM?7 family is a range of low-power 32-bit RISC microprocessor cores. Offering up to 130MIPs (Dhrystone?2.1),
the ARM?7 family incorporates the Thumb 16-bit instruction set. The family consists of the ARM7TDMI,
ARMT7TDMI-S and ARMT7EJ-S processor cores and the ARM720T cached processor macrocell.

The ARMY family is built around the ARM9TDMI processor core and incorporates the 16-bit Thumb instruction set.
The ARM9 Thumb family includes the ARM920T and ARM922T cached processor macrocells.

PROCESSOR MODES

The ARM architecture supports seven processor modes.

Processor mode Description

User usr Normal program execution mode.

System sys Runs privileged operating system tasks.

Supervisor svc A protected mode for the operating system.

Abort abt Implements virtual memory and/or memory protection.
Undefined und Supports software emulation of hardware coprocessors.
Interrupt irq Used for general-purpose interrupt handling.

Fast interrupt fiq Supports a high-speed data transfer or channel process.flash

Table 31: ARM processor modes

J-Link_J-TraceARM-2 95

REGISTERS OF THE CPU CORE

The CPU core has the following registers:

User/System Supervisor Abort Undefined Interrupt Fast interrupt
RO
RI
R2
R3
R4
R5
R6
R7
R8 R8_fiq
R9 R9_fiq
RI0 R10_fiq
RI1 RI1_fiq
RI12 R12_fiq
R13 R13_svc R13_abt R13_und R13_irq R13_fiq
R 14 R14_svc R14_abt R14_und R14_irq R14_fiq
PC
ICPSR

SPSR_svc SPSR _abt SPSR _und SPSR _irq SPSR_fiq

Table 32: Registers of the ARM core

= indicates that the normal register used by User or System mode has been replaced by an alternative register specific
to the exception mode.

The ARM core has a total of 37 registers:

e 31 general-purpose registers, including a program counter. These registers are 32 bits wide.

e 0 status registers. These are also 32 bits wide, but only 12 bits are allocated or need to be implemented.

Registers are arranged in partially overlapping banks, with a different register bank for each processor mode. At any
time, 15 general-purpose registers (RO to R14), one or two status registers, and the program counter are visible.

ARM/ THUMB INSTRUCTION SET

An ARM core starts execution in ARM mode after reset or any type of exception. Most (but not all) ARM cores come
with a secondary instruction set, called the Thumb instruction set. The core is said to be in Thumb mode if it is using
the Thumb instruction set. The Thumb instruction set consists of 16-bit instructions, whereas the ARM instruction set
consists of 32-bit instructions. Thumb mode improves code density by approximately 35%, but reduces execution
speed on systems with high memory bandwidth (because more instructions are required). On systems with low
memory bandwidth, Thumb mode can actually be as fast or faster than ARM mode. Mixing ARM and Thumb code
(interworking) is possible.

J-Link / J-Trace fully supports debugging of both modes without any limitations.

EmbeddedICE

EmbeddedICE is a set of registers and comparators used to generate debug exceptions (such as breakpoints).

EmbeddedICE is programmed in a serial fashion using the ARM core controller. It consists of two real-time watchpoint
units, together with a control and status register. You can program one or both watchpoint units to halt the execution
of instructions by ARM core. Two independent registers, debug control and debug status, provide overall control of
EmbeddedICE operation.

IAR J-Link and IAR }J-Trace
96 User Guide J-Link_J-TraceARM-2

Background information

Execution is halted when a match occurs between the values programmed into EmbeddedICE and the values currently
appearing on the address bus, data bus, and various control signals. Any bit can be masked so that its value does not
affect the comparison.

Either of the two real-time watchpoint units can be configured to be a watchpoint (monitoring data accesses) or a
breakpoint (monitoring instruction fetches). You can make watchpoints and breakpoints data-dependent.

EmbeddedICE is additional debug hardware within the core, therefore the EmbeddedICE debug architecture requires
almost no target resources (for example, memory, access to exception vectors, and time).

BREAKPOINTS AND WATCHPOINTS

Breakpoints

A "breakpoint" stops the core when a selected instruction is executed. It is then possible to examine the contents of both
memory (and variables).

Watchpoints

A "watchpoint" stops the core if a selected memory location is accessed. For a watchpoint (WP), the following
properties can be specified:

e Address (including address mask)

e Type of access (R, R/'W, W)

e Data (including data mask).
Software / hardware breakpoints

Hardware breakpoints are "real" breakpoints, using one of the 2 available watchpoint units to breakpoint the instruction
at any given address. Hardware breakpoints can be set in any type of memory (RAM, ROM, or flash) and also work
with self-modifying code. Unfortunately, there is only a limited number of these available (2 in the EmbeddedICE).
When debugging a program located in RAM, another option is to use software breakpoints. With software breakpoints,
the instruction in memory is modified. This does not work when debugging programs located in ROM or flash, but has
one huge advantage: The number of software breakpoints is not limited.

THE ICE REGISTERS

The two watchpoint units are known as watchpoint 0 and watchpoint 1. Each contains three pairs of registers:

e address value and address mask
e data value and data mask

e control value and control mask

The following table shows the function and mapping of EmbeddedICE registers.

Register Width Function

0x00 3 Debug control

0x0l 5 Debug status

0x04 6 Debug comms control register
0x05 32 Debug comms data register
0x08 32 Watchpoint 0 address value
0x09 32 Watchpoint 0 address mask
0x0A 32 Watchpoint 0 data value
0x0B 32 Watchpoint 0 data mask
0x0C 9 Watchpoint 0 control value
0x0D 8 Woatchpoint 0 control mask
0x10 32 Watchpoint | address value
Oxl | 32 Woatchpoint | address mask
0x12 32 Watchpoint | data value
0xI3 32 Watchpoint | data mask

Table 33: Function and mapping of EmbeddedICE registers

J-Link_J-TraceARM-2

—e

97

98

Register Width Function

Ox14 9 Watchpoint | control value

0xI5 8 Watchpoint | control mask

Table 33: Function and mapping of EmbeddedICE registers

For more information about EmbeddedICE, see the technical reference manual of your ARM CPU. (www.arm.com)

Embedded Trace Macrocell (ETM)

Embedded Trace Macrocell (ETM) provides comprehensive debug and trace facilities for ARM processors. ETM
allows to capture information on the processor's state without affecting the processor's performance. The trace
information is exported immediately after it has been captured, through a special trace port.

Microcontrollers that include an ETM allow detailed program execution to be recorded and saved in real time. This
information can be used to analyze program flow and execution time, perform profiling and locate software bugs that
are otherwise very hard to locate. A typical situation in which code trace is extremely valuable, is to find out how and
why a "program crash" occurred in case of a runaway program count.

A debugger provides the user interface to J-Trace and the stored trace data. The debugger enables all the ETM facilities
and displays the trace information that has been captured. J-Trace is seamlessly integrated into the IAR Embedded
Workbench® IDE. The advanced trace debugging features is used with the IAR C-SPY debugger.

TRIGGER CONDITION

The ETM can be configured in software to store trace information only after a specific sequence of conditions. When
the trigger condition occurs the trace capture stops after a programmable period.

CODE TRACING AND DATA TRACING

Code trace

Code tracing means that the processor outputs trace data which contain information about the instructions that have
been executed at last.

Data trace

Data tracing means that the processor outputs trace data about memory accesses (read / write access to which address
and which data has been read / stored). In general, J-Trace supports data tracing, but it depends on the debugger if this
option is available or not. Note that when using data trace, the amount of trace data to be captured rises enormously.

J-TRACE INTEGRATION EXAMPLE

In the following a sample integration of J-Trace and the trace functionality on the debugger side is shown.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-2

Code coverage - Disassembly tracing

ZZ1AR Embedded Workbench IDE
File Edit View Project Debug Disassembly J-link Tools ‘Window Help

Background information

[-[Ox]

IEE IR FZyY %=

B &0 [EE TR S b ob|

CeZaLEZT|X

oled_lle | stm32f10x_rvic.c

93 #ifdef DEBUG
94 debug(>;
25 flendif

26

® 197
98 clock systen
39 i Teiess

BZ lh.fnd:f EHBJLRSH
#% Set the Uector Table hase location at Bx20000000 */

34 NUlC,S:t-J:ctnr-'lahl:(NUlC Ue:tTahJRH Bx@3;

@5 flelse ~x UECT_TAB_FLA:

B6 /% Set the U=ctnl~ Table

has: location at B:

@87 NUIC_S ahle(NVIC VectTah_FLASH, 8x@>;
88 flendif
B2 NUIC_PriorityGroupConfig{(NUIC_PriorityGroup_4>;
a
77 SysTick end of count event each B.1s with input clock equal to ?MHz CHCLK/8.
1] SysTick_SetReload(906: >H

77 Enable SysTick interrupt
SysTick_| lTCunfl.g(ENRBLE)
SysTick _CounterCmd{SysTick_Counter_Enable>;

#7 Buttons port init
77 GPIO enable clock and release Res
RCC_APB2PeriphResetCmd(RCCJPBZPEPIF}] GPIOR

i RCC_APB2Periph_GPIOG, DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA

RCC_APB2Periph_GPIOG. ENABLE);

GPIO_InitStructure. GPIOJ].n = B1_MASK

GPIOJ‘DdE INJLORTING,
GPIO_Speed S@MHz
GPIO_Init<Bi_PORT. &GPIO_] lnltStructure),

GPIO_InitStructure .GPIO_Pin B2_MAS.
GPIO_| lnitStPucture.GPIOJud: GPI0_Mode | INJLORTING,
GPIO_InitStructure .GPI0_Sp GPIO_Speed S@MHz
GPIO_Init<{B2_PORT, &GPIOQ_] lnltStructure),

EXT_CRT_SECTIONCY;

AN_IR port and ADC 1nit
// Enable ADCL and GPIOC c
RCCJPBZP:l'-1.th=setCmd(RCCJPBZPerlpthCl
RCC_APB2PeriphClockCmd (RCC_APB2Periph_ADC1

RCC_APB2Periph_GPIOC. DISABLED;
RCC_APB2Periph_GPIOC. ENABLE);

defaul

o

T — —]

[7PDrawTable_: |
DBodBEAD ~BDLA ADD SP, SP, #0x68
0E00BFA2 ED7O FOF {R4,RE,RE,FC}

77OrawTable_0: [
0800BFA4 DDCO BLE 0X800BF28
0Z00BFAE 0300 LERS RO, RO, #0x0

oid main(woid)

ain:

ain:

L TexT_14:
0E00BFAE EELQ PUSH R4, LR}
0800BFAA BDSE suB SP, SP, #0x20
ebug(l;

OF00EFAC FODIFEAs BL debug

ENTR _CRT_SECTIDN

Clk_Init

SeoTarEs trererez BL clk_Init

HyTC sewe:tnrmmemvx: vectTah FLASH, ox0):
0F00BFEE 2100 S RL,

0800BFBA FOSFE000 MD\IS RO, #0xE00000
0800BFBE FOOLFCES NvIC_: se(ve:tnrmme
HTC Prwrwtvﬁrwuc:mﬁumvxc Friorit 4
DEDOBFCE - F4477040 RO,

300
0800BFCE_ FOO wwic_PriorityGroupcontig

SysTick setRewad[sooaooj

RO, [PC, #0x108

SysTick ITConfig ENAELE H

0800BFDG 2001 Ra,

080DBFD2 FOOLFE1A SyST m< ITCunﬁg
SysTick Countercmd Sys'ﬁ ck_Counter _Enab

0800BFDE 2001 RO,

0B00BFDE FOOLFAEB SySTick Enunter(md
CC_AFB2Feri hRESEtCmd R PBZPEFI h

| REC_APB2ZPEriph, GPIDG DISABLE]S
0800BFDC 2100 Vs R1, #ox0
0F00BFDE F44F7082 MO\I RDv

%
CE_aPB2PEr phResetcmd
bezorTan G oA

0800BFE2 F7FFFASD
Bee apEsper pht lockcmir _ace

L RCC_APB2Feriph GPING, ENABLE):
0BO0BFEG 2101 MOVS
0S00BFEE F44F7082 MOV Rd, wonlod
0BODBFEC F7FFFAZO0 BL RCE_APB2PEr phe nekamd
GPIO_InitStructure.GPIO_Pin = &1_WMASK:
Q600BFFD F43F7080 MOV RO, #0x100

0800BFF4 FEADDOO0

RO, [5P]
SPIO_Initstructure. GPInJmne = GPIO Wode TH_FLOATING:

[fol_[+
oX[Bay =
Indesx Frame [Address [opeode Trace [Comment
003064 003382 0x0B00DGSE E0D4 B PPNWIC_SetvectorTable_2
77TNVIC_SetvectorTable_2:
003065 003383 OXDB00DBAA. 4807 LOR RO, [PC, #0x1C]
003068 003384 00800D8AC 4265 cup .
003067 003388 Ox0E00DSAE D204 BCC TTNVIC_SetvectorTable 4
2PNVIC_SetvectorTable_s:
003068 003zEe Ox08000ZEA 4804 LOR: RO, [FC, #0x10]
003063 003387 0080008BC 4028 ANDS RO, RO, RS
003070 03388 0x0800D8BE 4320 ORRS RO, RO, R4
003071 003zEe Ox080008C0 4304 LOR R1, [FC, #0x10]
003072 003330 0X080008C2 809 LOR R1, [R1]
003073 003391 0X0800DECH 6088 STR RO, [R1, #0x&]
003074 003392 0X0800DBCE BD31 POP {RO,R4,R5,PC}
0032078 003382 Ox0800BFC2 Fd4F Ll RO, #0x300
003076 003394 OX0BO0BFCE FoOL BL NVIC_Pri ori tyGroupCoantig
NYIC_PriorityGroupconfig:
003077 003395 0X0B00DE4C BS10 PUSH {R4,LR]}
003078 00333 Ox0E00DE4E 0004 MaE R4, RO
003079 003357 008000850 Fsea cup R4, #0x700
003080 003338 Ox0E00DEE4 Not executed
003081 003353 00800085 6 FsBa P R4, #0x600
003082 003400 0X0800085A NOT executed
003082 003401 Ox0E00DEEC FEE4 CMF R4, #0xEO00
003084 003402 0x0B8000&60 Not executed
003085 003403 008000862 Fsga <P R4, #0x400
00308e 003404 Ox0E00DEEE Not executed
003087 003405 0x08000868 FsBa P R4, #0x300
003088 003406 0x0800086C NOT executed
TTNVIC_FriorityGroupConfig_0:
003089 003407 0X0B800DS6E E0D4 B 2PNVIC_Pri0r tyGroupContig_2
TTNVIC_FriorityGroupConfig_z:
003030 003408 OX0B00DETA. F80F LOR.W [PC, #0x58]
003091 003409 0X0800DSTE 6800 LOR RO, [RO]
0020382 003410 Ox08000&50 4301 LOR: R1, [PC, #0x4]
003033 003411 0x08000852 4321 ORRS RL, R1, R4
003094 003412 0X0800DEEH 60C1 STR R1, [RO, #0xC]
003095 003413 0X0800D886 BD10 POP {R4,PC}
00303e 0032414 OxHEHEFEA 4876 LOR: RO, [P, #0x1DE]

4

ETM Trace [ETH Function Trace

N

J-Link_J-TraceARM-2

—e

99

Code coverage

Flle Edi

1AR Embedded Workbench IDE

View Project

Debug Disassembly

Source code tracing

ik Tooks Window Help

=1 E3

BT IR

Fl4y %%

B P GBS b

=l

bﬁ&&nﬂﬂlbulxl

aledl_ll.c | stm3zF10x_nwvic.c

T — C—]

ETM Trace ETM Function Trace

93 Wildel DEBIG
ehug<>; 77O aWTaBT 5
95 frondif |
26 0300BFAE 0500 L=RE RO, RO, #0X0
@ 7 5 oid main{vaid) _
98 </ Init clock system I
99 Clk_Init(>; ain:
2o
. text_
BZ ulfndef E"BJL“SH OEDOEFAE BELO FUSH {R4,LR}
/% Set the Uector Table hase location at Bx20000000 =/ 0BODBFAA 0SB sus P, P, #Ox20
03 MUIC SetboctortonleNUTC UsctTah RAM, Did>: el ireas el 4
05 ftelse /% UECI_TAB_FLASH x/ . bug
. ENTR_CRT_SECTION
Bl (ridef the Mector Tehie Mase docation at oxatamaomn > R —
87 NUIC able<NUIC_VectTab_FLASH. Bx0); eI E
208 ttendif 0800BFES F7FFFFe: Clk_
209 NUIC PriorityGroupConfigCNUIC PriorityGroup 453 | NI, STyt T (NUTC vertTab L ATty eni:
0Z00EFEE
27 SysTick end of count event each B.1s with input clock equal to 9MHz <HCLK/8, defaul 080DEFEA FOSFGO0D MOVS RO, #0x6000000
& SysTick_SetReload<980080); 0B0DBFBE FODLFCES BL nic_setvectorTable
77 Enable SysTick interrupt MY Frior] buGroupcontialHiIC Frisctybroun
SoeTick 1TCont ig¢ENABLEYS 300 ;
SysTick_CounterCmd(SysTick Counter_Enahle); gﬁgﬁfziﬁsEzgg{;g;lzsugow NvIc_priorityGroupcontig
7 Bustons port inis . DS00EFCA 4876 RO, [PC, #0x10E
14 enable clock and release al 3l
R PRz PomipnRosettndd . R APB2Perivh_GPIOR Siabeon Sanr L atus R0,
i RCC_APB2Periph GPIOG, DISABLEY; 0B00BFD2 FOOIFBIA BL Siritk rrcantig
RCC_APB2PeriphClockCnd< RCC_APB2Periph GPIOR SyTick Countercud (SysTick Counter EnaglZ);
0S00BFOE 2001 70, #0x1
! RCC_APB2Periph_GPIOG, ENABLED; DBO0BFDS FODIFAEE Tick_Countercmd
; s labacascnil ot BRI B8
5 GPIO InitStructure.GPIO Pin = BL MASK;
26 GPIO_InitStructure.GPIO Mode = GPIO_Mode IN_FLOATIN! L o Ao
2?7 GPIO_InitStructure.GPIO Speed = GPIO_Speed SBMHz; JEOREFDE Faaf7hez MO Rz A0RiRR i prmesercma
GPIO_Init(Bi_PORT, &GPIO_InitStructured; RCC_APB2PeriphClockomd(RCC aPB2PerTph GPIOA
GPIO_InitStructure.GPIO Pin = B2 MASK; | RCC_APB2PErph_GPIOG, ENABLE):
GEIO_InitStructure . GPIO ode - GPIO Hode [N FLORTING: GB00EFEE 2101 WOVS AT
GPIO_InitStructure.GPI0 Speed = GPIO_Speed_SBMHz QBODEFES F4d4F7OEz MOV RO, #0x104
GPI0_Init<B2_PORT. &GPIO_InitStructure); 0BODBFEC F7FFFA20) RCC_APB2Per1 phcl ockama
GPIO_Initstructure.GPIO Pin = Bl WASK:
EXT_CRT_SECTIONC); 0Z00BFFD F44F7080 RO, #0x100
STl b e, T e = o L o 0w
~ AN_IR port and ADC in 0Z00BFFE 2004 T #0xq
” Enahle ADC1 and GPIOC ‘1 ck N N 0800BFFA FE300003 RO, [SP, #0x3]
RCC_APB2PeriphResetCnd(RCC_APBZPeriph ADCL i RCC_APB2Periph_GPIOC. DISABLED; SPID Tnitstructure.cale SDM = apid fpeidoamia
1o B2 RCC_APB2PerinhClockCnd<RCC_APB2Perinh ADCL i RCC_APBZPerivh GPIOC. ENABLE)} J_I SRS J_I
o
= x[2 v |
Index | Frame | Address [opcode [Trace [Comment [
002368 002686 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
o02403 o02721 OXOB00BEBE 2800 Clk_TInit() +
o0z407 0o0z7zs Ox0E00BE A4 EEL1D RCC,GEtF]EQStatus(uej
002442 002760 0X0B800BEBE 2800 CIk_INiE() + 86
002446 002764 OX0B00BS Ad BS10 RCC_GetFlagstatus(us)
o0z4s1 00z73e Ox0E00BEEE 2800 CTE_INit() + &6
002485 002803 0X0B00BS A4 B510 RCC_GerFlagstatus (us)
o02520 002838 OXOB00BEBE 2800 CI_Inite) + 66
o0zszd 002842 Ox0E00BE A4 EEL1D = GEtF]EQStatus(uej
002559 002877 0X0B800BEBE 2800 Clk_Init() +
002563 002881 OX0B00BS Ad BS10 RCC. GE(F'IagS(a(us(qu
o028 00z3le Ox0E00BEEE 2800 CTE_Init() +
002602 002920 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
002627 002955 OXOB00BEBE 2800 Clk_TInit() +
o0zEdl 002353 Ox0E00BE A4 EEL1D = GEtF]EQStatus(uej
002676 002994 0X0B800BEBE 2800 Clk_Init() +
a02680 002998 OX0B00BS Ad BS10 R:c,aetnagsmmscusj
o0z71E 003032 Ox0E00BEEE 2800 CTE_INit() + &6
002719 003037 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
oD2754 003072 OXOB00BEBE 2800 Clk_TInit() +
o0zZ7ES 00307 Ox0E00BE A4 EEL1D RCC,GEtF]EQStatus(uej
002793 003111 0X0B800BEBE 2800 CIk_INiE() + 86
an2797 003115 OX0B00BS Ad BS10 RCC_GetFlagstatus(us)
o0zE3z 003180 Ox0E00BEEE 2800 CTE_INit() + &6
002836 003154 0X0B00BS A4 B510 RCC_GerFlagstatus (us)
002571 003189 OXOB00BEBE 2800 CI_Inite) + 66
o0zETE 003132 Ox0E00BICE EEL1D RCC_USECLKConfig(u3z)
002883 003201 0X0B00BECE Fa4aF CIk_INiE() + 76
o02885 003203 0XD800B3EC B510 RCC_ADCCLKCONTigu3z)
o0z206 0o03zzd 0x0800BEDD 2000 CTE_Init() + &4
002908 003226 0X0800B37C B510 REC, FCLKZCGH‘F'\ grusz)
002923 003241 OXOB00BEDG FaaF Clk_Tnit() +
o0zezE 003z42 Ox0800B324 EEL1D RCC_ PCLKlCUHﬁ a(uiz)
002942 003260 0X0B800BEDE 2000 Clk_Init() +
aD2944 003262 OX0B00B2E4 BS10 R:(,H(chnnﬁg(uzzj
o0z3E3 003z77 Ox0E00BEEY 2002 Cl_Init() + 104
002961 003279 0X0800070C B510 FLASH_SetLatency(u3z)
o02985 003203 OXDBONBEEA 2000 Clk_Inite) + 110
o0zaE7 003208 Ox08000746 EEL1D FLASH_Hal foycleAccessCmd(u3z)
003009 003327 OX0B00BEFO 2010 CIk_INiE() + 116
a03011 003329 0x0800077C BS10 FLASH_PrefetchButfercmd(uzz)
002031 003243 Ox0E00BEFE 2002 Clk_Init() + 122
003033 003351 0X0B00B2AC B510 REC_SYSCLKConTig(u3z)
003083 003371 OXOBO0BEFC BOOL Clk_Inite) + 128
003084 003372 Ox0E00BFES 2100 mainf) + 1
003057 003375 0X0800D88C B538 NYIC_servectorTable(u3z, u3z)
G03075 003353 Faar maing) + 2
o0z2077 003338 Ox0E000E4C EEL1D NYIC_FriorityGroupconfiguzz)
003056 003414 DXDBODBFCA 4876 maing) + 34

IAR J-Link and IAR }J-Trace

100 User Guide

J-Link_J-TraceARM-2

ZZ1AR Embedded Workbench IDE

Fle Edt View Project Debug Disassembly J-nk Tools Window Help

Background information

[-[Ox]

I IEIRPEEIEE

Y W=

B &0 [EE TR S b ob|

CeZaLELTX

main.c | gled_| Tx
74 SCB-OHFSR - OxFFFFFFFF; Golo | |Memory | [E]
SCB->DFSR = OxFFFFFFFF} ext_eer =
> 0600DSE42 4770 B LR
OMAZ_Channell_IRQHandler: _|
* Punction Name : NUIC PriorityGroupConfig o2 Channel 1 TraHandTer:
* Description : Configures the pricrity grouping: pre-emption priority L text _e7:
* and subpriority. 05000844 4770 Bx i
* Input : — NUIC PriorityGroup: specifies the priority grouping bits b
* length. This parameter one of the Following values: M2 _Channel2_IRQHandler:
* = NUIC_PriorityGroup bits for pre-emption priority Piaz_channelz_tRQHandler:
* 4 bits for subpriority -
* - NUIC PriorityGroup. bhits for pre—emption priority Ristese 70 b "
* 3 bits for subpriority oma2_channel3_Irguandler:
* - NUIC_ PriorityGroup 2: 2 hits for pre-emption priority orins Chanmel 3 TRGHaNdTor
* 2 bhits for subpriority | text_ss:
* - NUIC PriorityGroup 3: 3 bits for pre-emption priority 080DDBAE 4770 Bx LR
* hits for subpriority
* T Beioritutrnan 4574 bits for pre-emption preiority 02 _Channe]4_5_TRQHand]er:
e B bits for subpriority omaz_Channel4_s_IRQHandler:
b Quiput i None Sabamesa 4770 Bx ®
* :
Return Mone 0id NuTC PriorityGroupconfio(uzz MVIC PriorityGrouni
E2 goid NUIC PriorityGroupConfisudz NUIC PriorityGroup) T —
NVIC_Priari tyGroupcontig:
/% Check the parameters e e A g
esem waranclS HUTC PRIONITY_GROUPCNUIC_PriorityGroup>s e PusH frate)
o1 ssoopss= 009
B2 /% Set the PRIGROUPL1® ts according to NUIC PriorityGroup value %/ aoert Garan(ls vic mouw GRDUP[N\IIC _EriorityGroup);
83 SCDSSAIRCR = ATRR. UBCTIEY NRSK 1 NOIG riariteGrovns SED0nEn FRBacFE)
94> 08000854 DOOE qu vvwx: pmnm(ycmup:nnﬁg,n
a5 0800DE5E FEB4EFCO CMF R4, €00
a6 0800D85A DOOG BEQ PPNVIC_Priori tyGroupcontia_o
87 % Fanction Name t NUIG Inat 0500DSSC F5BAEFAD CHP Ré, #0X500
98 « Description : Initializes the NUIC peripheral according to the specified ENDED DS ren od A erinaraupcontia t
parancters in the NUIC InitSt 05000866 DDO2 BEQ 27RvIC_Priori tyGroupcontig_o
m* Input O Thieitruct: posnter to s NIIC_InitTypeDef structure Becbeit Prdirree i e pom -
that contains the configuration information for the 0800086C 3 27TRVIC_Priori EyGroupcontia_t
o specified NUIC peripheral. 2nvTC pmumcyﬁmupcnnﬁg o:
13 * Qutput = None 0E00DEEE 004 TTNVIC_FriorityGroupconfig_z
14 % Return : None PPHLIC Pt oP T TyGroupContT g 1
15 08000870 211 RL, #0x64
16 void NUIC_Init<NUIC_InitTypeDefx NUIC_InitStruct> GeniDeze Fatfoosc LoRow RO, [PC, #0x5C]
DBDDDE?E F7FEFCAE assert_Tailed
omitu o _ = @xBe: CE_» AIRCR = ATRCR VECTKEY Mask | NWIC Friori coroup:
18 w32 tmppeiority = 6x00, 0xB0, tnpnask = 0x00; ,_,WIC S e
u, nppre . tmpsul oo87A F8 RO, [PC, #0x58]
DenobE7E Ga0n o Ro, [RO
21 % Check the parameters %/ SRRRREIT eERd = B Ieal J—I
[eol [|
Xa vy e

Index | Frame | Address [opcode [Trace [Comment
002368 002686 OxDSO0BSA+ B51D RCC_GETF1agSTAtLs (UB)

002403 002721 OxDSO0BEBE 2800 Clk_Init() + 66

002407 D0Z7IE OxDEQ0BEAY4 B510 RCC_GetFlagstatus (us)

002442 002760 OXDSODBEBE 2800 Clk_Tnit() + &6

002446 D0Z764 0xDS00BSA+ BS1D RCC_GETF]agstatus (us)
002481 002783 OxDEQ0BEBE 2800 Clk_Initl) + &6

002485 002803 OxDEODBSA B5S1D RCC_GETF1agSTatys (us)
002520 002838 0xDSOOBEBE 2800 Clk_Init() + 66

002524 002842 OxDEQ0BEAY4 B5L0 RCC_GetFlagstatus (us)
002559 002877 OXDSODBEBE 2800 Clk_Tnit() + &6

D02563 D0ZBEL 0xDS00BSA+ B5S1D RCC_GETF]agstatus (us)
002538 002916 OxDEQ0BEBE 2800 Clk_Initl) + &6

002602 002920 OXDEODBSA BS1D RCC_GETF1agSTatys (us)
002637 002955 OxDSO0BEBE 2800 Clk_Init() + 66

002641 D0Z9E3 OxDEQ0BEAY BSL0 RCC_GetFlagstatus (us)
002676 002994 OXDSODBEBE 2800 Clk_Tnit() + &6

002680 D0Z998 0xDE00BSA+ B5S1D RCC_GETF]agstatus (us)

002715 002037 OxDEQ0BEBE 2800 Clk_Initl) + &6

002719 003037 OXDEODBSA B51D RCC_GETF1agSTatys (us)
002754 003072 OxDSO0BEBE 2800 Clk_Init() + 66

002758 002076 OxDEQ0BEAY4 BS10 RCC_GetFlagstatus (us)

002793 003111 OXDSODBEBE 2800 Clk_Tnit() + &6

002797 DOZ115 0xDS00BSA+ B51D RCC_GETF]agstatus (us)

002832 00Z180 OxDEQ0BEBE 2800 Clk_Initl) + &6

002836 003154 OXDSO0BSA B51D RCC_GETF1agSTatys (us)
002871 003189 OxDSO0BEBE 2800 Clk_Init() + 66

002875 DOP187 OxDEQ0BICE BSLO RCC_USECLKCONTigluzz)

002883 003201 OXDSODBECE FadF Clk_Tnit() + 76

002885 003203 0xDS00BIEC B51D RCC_ADCCLKCONT gluz2)
002306 002224 OxDEQ0BEDD 2000 Clk_Initl) + &4

002308 003226 OXDEODB3PC BS1D RCC, PCLKZ(nm‘lg(u}zj

002923 003241 0xDS00BEDG Fa4F Clk_Tnit() +

002325 00Z24I OxDEQ0BI34 B5LO Rcc,Pchcunﬁg[uzzJ

002942 003260 OXDSODBEDE 2000 Clk_Tnit() + s8

D02944 D03262 0xDE00BZE4 B51D RCC_HCLKCON i g(u32)

002355 002277 OxOS00BEE4 2002 Clk_Initl) + 104

002961 003275 OxDE00DFOC B51D FLASH_SETLarency(u3z)

002985 003303 OxDSO0BEEA 2000 clk_Init() + 110

002387 DOP30E OxDE00D74E B5LD FLASH Han’Cyc]EA::esscmd[uZZ]
003009 003327 OXDSOOBEFD 2010 Clk_Tnit() + 11

003011 003329 0x0800D7FC BS1D FLASH Prefetchauffarcmn(usz)
003031 002343 OxOS00BEFE 2002 Clk_Init() + 122

003033 003351 OxDE0DBZAC B51D RCC_SYSCLKCONTI g(uz2)

003053 003371 0xDSO0BEFC BOOL clk_Init() + 128

003054 00P37z OxDEQ0BFEE 2100 main() + 18

003057 003375 Ox0S00DEEC B538 NVIC_SetvectorTable(uiz, u3z)
003075 003393 0xDS0DBFC2 FasF main() + 26

[iliE g [LEEEH [ELELLTEE EELY REC B OF T BT oUpEaR T GTLEYY
003056 003414 OXDEOOBFCA 4876 main() + 34

ETM Trace ETM Function Trace

The =

J-Link_J-TraceARM-2

—e

101

Embedded Trace Buffer (ETB)

The ETB is a small, circular on-chip memory area where trace information is stored during capture. It contains the data
which is normally exported immediately after it has been captured from the ETM. The buffer can be read out through
the JTAG port of the device once capture has been completed. No additional special trace port is required, so that the
ETB can be read via J-Link. The trace functionality via J-Link is limited by the size of the ETB. While capturing runs,
the trace information in the buffer will be overwritten every time the buffer size has been reached.

3, J-Link ARM M=

SEGGER J-Link Commander U3.72c ('7’ for help>
Compiled Jul 4 2887 28:17:14
DLL version U3.72c. compiled Jul 4 2887 28:17:89
Firmware: J-Link compiled Jun 14 2887 14:36:33 ARM Rev.5S
Hardware: US.38
S/N :
Feature{s> : RDI, FlashBP, FlashDL, JFlash, GDB
UTarget = 3.119U
JTAG speed: 38 kH=z
: CP15.8.8: Bx41869264: ARM. Architecure STEJ
= CP15.8.1: Bx1D192192: ICache: 32kB (4=256%32>, DCache: 32kB (4=256%32)>
Found 2 JTAG devices, Total IRLen = 8
Id of device H#8: Bx1B?BAFAF
Id of device #1: Bx1798@FAF

Found ARM with core Id Bx1798BFBF (ARM?>
ETH U1.3: & pairs addr.comp,. 8 data comp, 16 MM decs,. 4 counters. sequencer
ETB U1.8: 2848x24 bit RAM

J-Link>eth

ETB is present.

(ETBIBxBB1> : 1B?BAFAF

(ETBI[Bx61 1> : AAABAERA

(ETBIBxB21> : 0006618

(ETBIBxB3 1> : 00000668

(ETB[BxB41> : BACEBB1B?
RAM read pointer <(ETBI[BxB51> : BBEBAOBA
RAM write pointer (ETEBI[BxB61> : BBEBAOBA
Trigger counter (ETBL[BxB71> : BBEBAOBA
Control (ETBLBxB81> : BA0OOOOA
J-Link>

The result of the limited buffer size is that not more data can be traced than the buffer can hold. Throu this limitation
is an ETB not in every case an fully-fledged alternative to the direct access to an ETM via J-Trace.

Flash programming

J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities - reading and writing RAM, CPU
registers, starting and stopping the CPU, and setting breakpoints. The standard DLL does not have API functions for
flash programming. However, the functionality offered can be used to program the flash. In that case, a flashloader is
required.

HOW DOES FLASH PROGRAMMING VIA J-LINK / }-TRACE WORK?

This requires extra code. This extra code typically downloads a program into the RAM of the target system, which is
able to erase and program the flash. This program is called RAM code and "knows" how to program the flash; it
contains an implementation of the flash programming algorithm for the particular flash. Different flash chips have
different programming algorithms; the programming algorithm also depends on other things such as endianess of the
target system and organization of the flash memory (for example 1 * 8 bits, 1 * 16 bits, 2 * 16 bits or 32 bits). The
RAM code requires data to be programmed into the flash memory. There are 2 ways of supplying this data: Data
download to RAM or data download via DCC.

DATA DOWNLOAD TO RAM

The data (or part of it) is downloaded to an other part of the RAM of the target system. The Instruction pointer (R15)
of the CPU is then set to the start address of the Ram code, the CPU is started, executing the RAM code. The RAM
code, which contains the programming algorithm for the flash chip, copies the data into the flash chip. The CPU is
stopped after this. This process may have to be repeated until the entire data is programmed into the flash.

DATA DOWNLOAD VIA DCC

In this case, the RAM code is started as described above before downloading any data. The RAM code then
communicates with the host computer (via DCC, JTAG and J-Link / J-Trace), transferring data to the target. The RAM
code then programs the data into flash and waits for new data from the host. The WriteMemory functions of J-Link /
J-Trace are used to transfer the RAM code only, but not to transfer the data. The CPU is started and stopped only once.
Using DCC for communication is typically faster than using WriteMemory for RAM download because the overhead
is lower.

IAR J-Link and IAR }J-Trace
102 User Guide J-Link_J-TraceARM-2

Background information

J-Link / J-Trace firmware

The heart of J-Link / J-Trace is a microcontroller. The firmware is the software executed by the microcontroller inside
of the J-Link / J-Trace. The J-Link / J-Trace firmware sometimes needs to be updated. This firmware update is
performed automatically as necessary by the JLink ARM.dII.

FIRMWARE UPDATE

Every time you connect to J-Link / J-Trace, JLinkARM.dII checks if its embedded firmware is newer than the one used
the J-Link / J-Trace. The DLL will then update the firmware automatically. This process takes less than 3 seconds and
does not require a reboot.

It is recommended that you always use the latest version of JLink ARM.dII.

Link.exe [_ |
SEGGER J-Link Commander UZ2.68.81. '?' for help.
Cnmulled 14 a2:-49 _on Oct 25 2885.

Upd J-Link

:41:31 ARM Rev.5
2:19 ARM Rev.5
- .. Firmuare update successful. CRC=5EF3

Waiting for new firmuware to hoot

DLL version U2.78a,. compiled Oct 25 2005 14:82:4A

Firmware: J-Link compiled Oct 20 2685 14:41:31 ARM Rev.5
Hardware: US5.08

SN =

UTarget = @.088AU

Speed set to 38 kHz

J-Link>

In the screenshot:

o The red box identifies the new firmware.

e The green box identifies the old firmware which has been replaced.

INVALIDATING THE FIRMWARE

Downdating J-Link / J-Trace is not performed automatically through an old JLinkARM.dIl. J-Link / J-Trace will
continue using its current, newer firmware when using older versions of the JLink ARM.dII.

Note:Downdating J-Link / J-Trace is not recommended, you do it at your own risk!

Note:Note also the firmware embedded in older versions of JLink ARM.dIl might not execute properly with newer
hardware versions.

To downdate J-Link / J-Trace, you need to invalidate the current J-Link / J-Trace firmware, using the command exec

InvalidateFW.
[#%] ink.exe =]

SEGGER J-Link Commander U2.74.81. '?' for help.

Compiled 18:17:23 on Mov 25 2885.

DLL version U2.74bh,. compiled Mov 25 2805 1A:17:13

Firmuware: J-Link compiled Mov 17 2005 16:12:17 ARM Hew.j

Hardware: US.HA

SN =

UTarget = @.088AU

Speed set to 38 kHz=

J-Link*exec invalidatefuw

Info: Updating firmuware: J-Link compiled MOU 17 2885 16:12:19 ARM Rev.5

Info: Replacing firmuware: J-Link compiled Mouv 17 2885 16:12:19 ARM Rev.5

ILTH <. Firmuare update successful. CRC=CD83
Info: Waiting for new firmware to hoot

J—-Link>

In the screenshot, the red box contains information about the formerly used J-Link / J-Trace firmware version.

J-Link_J-TraceARM-2

103

Use an application (for example JLink.exe) which uses the desired version of JLinkARM.dIl. This automatically
replaces the invalidated firmware with its embedded firmware.

[#%] ink.exe [_ |

SEGGER J-Link Commander UZ2.68.81. '?' for help. Il
Compiled 14:82:4% on Oct 25 2085, [
Updating firmware: J-Link compiled Oct 20 2085 14:41:31 ARM Hev.5
i firmware: J-Link compiled NOU 17 2065 16:12:19 ARM Hew.5
«-- Firmuare update successful. CRC=5EF3
Waiting for new firmuware to hoot
DLL version U2.78a,. compiled Oct 25 2005 14:82:4A

Firmware: J-Link compiled Oct 20 2685 14:41:31 ARM Rev.5
Hardware: US5.08

SN =

UTarget = @.088AU

Speed set to 38 kHz

J-Link>

In the screenshot:

o The red box identifies the new firmware.

e The green box identifies the old firmware which has been replaced.

IAR J-Link and IAR }J-Trace
104 User Guide J-Link_J-TraceARM-2

Designing the target board for trace

This chapter describes the hardware requirements which have to be met by the target board.

Overview of high-speed board design

Failure to observe high-speed design rules when designing a target system containing an ARM Embedded Trace
Macrocell (ETM) trace port can result in incorrect data being captured by J-Trace. You must give serious consideration
to high-speed signals when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall times, even at relatively low
frequencies.

Note:These principles apply to all of the trace port signals (TRACEPKT/[0:15], PIPESTAT[0:2], TRACESYNC), but
special care must be taken with TRACECLK.

AVOIDING STUBS

Stubs are short pieces of track that tee off from the main track carrying the signal to, for example, a test point or a
connection to an intermediate device. Stubs cause impedance discontinuities that affect signal quality and must be
avoided.

Special care must therefore be taken when ETM signals are multiplexed with other pin functions and where the PCB
is designed to support both functions with differing tracking requirements.

MINIMIZING SIGNAL SKEW (BALANCING PCB TRACK LENGTHS)

You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK, PIPESTAT, TRACESYNC, and
TRACEPKT from the ASIC to the mictor connector to within approximately 0.5 inches (12.5mm) of each other. Any
greater differences directly impact the setup and hold time requirements.

MINIMIZING CROSSTALK

Normal high-speed design rules must be observed. For example, do not run dynamic signals parallel to each other for
any significant distance, keep them spaced well apart, and use a ground plane and so forth. Particular attention must be
paid to the TRACECLK signal. If in any doubt, place grounds or static signals between the TRACECLK and any other
dynamic signals.

USING IMPEDANCE MATCHING AND TERMINATION

Termination is almost certainly necessary, but there are some circumstances where it is not required. The decision is
related to track length between the ASIC and the JTAG+Trace connector, see Terminating the trace signal, page 105
for further reference.

Terminating the trace signal
To terminate the trace signal, you can choose between three termination options:

e Matched impedance
e Series (source) termination

e DC parallel termination.
Matched impedance

Where available, the best termination scheme is to have the ASIC manufacturer match the output impedance of the
driver to the impedance of the PCB track on your board. This produces the best possible signal.

1 Partl. Using the compiler 105

Series (source) termination

This method requires a resistor fitted in series with signal. The resistor value plus the output impedance of the driver
must be equal to the PCB track impedance.

DC parallel termination

This requires either a single resistor to ground, or a pull-up/pull-down combination of resistors (Thevenin termination),
fitted at the end of each signal and as close as possible to the JTAG+Trace connector. If a single resistor is used, its
value must be set equal to the PCB track impedance. If the pull-up/pull-down combination is used, their resistance
values must be selected so that their parallel combination equals the PCB track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability from the ASIC than series
termination and so, in practice, DC parallel termination is rarely used.

RULES FOR SERIES TERMINATORS

Series (source) termination is the most commonly used method. The basic rules are:
3 The series resistor must be placed as close as possible to the ASIC pin (less than 0.5 inches).

4 The value of the resistor must equal the impedance of the track minus the output impedance of the output driver. So
for example, a 50 PCB track driven by an output with a 17 impedance, requires a resistor value of 33.

5 A source terminated signal is only valid at the end of the signal path. At any point between the source and the end of
the track, the signal appears distorted because of reflections. Any device connected between the source and the end of
the signal path therefore sees the distorted signal and might not operate correctly. Care must be taken not to connect
devices in this way, unless the distortion does not affect device operation.

Signal requirements

The table below lists the specifications that apply to the signals as seen at the JTAG+Trace connector.

Signal Value
Fmax 200MHz
Ts setup time (min.) 2.0ns
Th hold time (min.) |.Ons
TRACECLK high pulse width (min.) |.5ns
TRACECLK high pulse width (min.) |.5ns

Table 34: Signal requirements

IAR J-Link and IAR }J-Trace
106 User Guide 1

Support and FAQs

This chapter contains troubleshooting tips together with solutions for common problems which might occur
when using J-Link / J-Trace. There are several steps you can take before contacting support. Performing these
steps can solve many problems and often eliminates the need for assistance. This chapter also contains a collection

of frequently asked questions (FAQs) with answers.

Measuring download speed
TEST ENVIRONMENT

JLink.exe has been used for measurement performance. The hardware consisted of:

e PC with 2.6 GHz Pentium 4, running Win2K
e USB 2.0 port
e USB 2.0 hub
e J-Link

e Target with ARM7 running at 5S0MHz.

Below is a screenshot of JLink . exe after the measurement has been performed.

'\ SEGGER' JLinkARM_Y386'

SEGGER J-Link Commander U3.86 ('7' for help)
Compiled Jun 27 28088 19:42:43
DLL version U3_86, compiled Jun 27 2008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 2088 18:35:51
Harduware: U6.0A
SN = 1
UTarget = 3.274U
JTAG speed:= 5 kHz
Info: TotallRLen = 4. IRPrint = Bx@1
Found 1 JTAG device,. Total IRLen = 4:
Id of device H#BA: Bx3FAFAFAF
Found ARM with core Id Bx3FBFBFAF (ARM?>

J—Link*speed 12000
JTAG speed: 126008 kHz
J-Link>testuspeed

Troubleshooting
GENERAL PROCEDURE

If you experience problems with J-Link / J-Trace, you should follow the steps below to solve these problems:

Close all running applications on your host system.

6
7 Disconnect the J-Link / J-Trace device from USB.
8 Disable power supply on the target.

9

Re-connect J-Link / J-Trace with the host system (attach USB cable).

10 Enable power supply on the target.

J-Link_J-TraceARM-2

107

Il Try your target application again. If the problem remains, with the rest of the procedure.
12 Close all running applications on your host system again.

13 Disconnect the J-Link / J-Trace device from USB.

14 Disable power supply on the target.

I5 Re-connect J-Link / J-Trace with the host system (attach the USB cable).

16 Enable power supply on the target.

17 Start JTLink. exe.

18 If JLink . exe displays the J-Link / J-Trace serial number and the target processor’s core ID, the J-Link / J-Trace is
working properly and cannot be the cause of your problem.

19 If TLink. exe is unable to read the target processor’s core ID you should analyze the communication between your
target and J-Link / J-Trace with a logic analyzer or oscilloscope. Follow the instructions in section .

TYPICAL PROBLEM SCENARIOS

J-Link / J-Trace LED is off
Meaning:

The USB connection does not work.
Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and reconnecting it. Make sure that
the connectors are firmly attached. Check the cable connections on your J-Link / J-Trace and the host computer. If this
does not solve the problem, check if your cable is defect. If the USB cable is ok, try a different host computer.

J-Link / J-Trace LED is flashing at a high frequency
Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.

Most likely reasons:

a.) Another program is already using J-Link / J-Trace.
b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnecting and reconnecting it.
b.) If the LED blinks permanently, check the correct installation of the J-Link USB driver. Deinstall and reinstall the
driver as shown in chapter Sefup on page 17.

J-Link/J-Trace does not get any connection to the target

Most likely reasons:

a.) The JTAG cable is defective.
b.) The target hardware is defective.

Remedy:

Follow the steps described in section General procedure on page 107.

Signal analysis
The following screenshots show the data flow of the startup and ID communication between J-Link / J-Trace and the
target device.

IAR J-Link and IAR }J-Trace
108 User Guide J-Link_J-TraceARM-2

Support and FAQs —e

START SEQUENCE

This is the signal sequence output by J-Link / J-Trace at start of JLink . exe. It should be used as reference when tracing
potential J-Link / J-Trace related hardware problems.

200 us 0s 200 us 400 us 600 us 800 us 1ms 12ms 14ms 16 ms 18ms 2ms 22 ms 24ms 28 ms 28 ms
Bus/Signal ;

I A R R R B N S B N B A R A S S A R R A R A S A SR R AR B

Time

Dﬂeaet
[rrsT
[rek
[(ms

o

oo

The sequence consists of the following sections:

5 clocks: TDI low, TMS high. Brings TAP controller into RESET state

1 clock: TDI low, TMS low: Brings TAP controller into IDLE state

2 clocks: TDI low, TMS high: Brings TAP controller into IR-SCAN state

2 clocks: TDI low, TMS low: Brings TAP controller into SHIFT-IR state

32 clocks: TMS low, TDI: 0x05253000 (Isb first): J-Link Signature as IR data
240 clocks: TMS low, last clock high, TDI high: Bypass command

1 clock: TDI low, TMS high: Brings TAP controller into UPDATE-IR state.

J-Link / J-Trace checks the output of the device (output on TDO) for the signature to measure the IR length. For ARM7
/ ARMDO chips, the IR length is 4, which means TDO shifts out the data shifted in on TDI with 4 clock cycles delay. If
you compare the screenshot with your own measurements, the signals of TCK, TMS, TDI, and TDO should be
identical.

Note that the TDO signal is undefined for the first 10 clocks, since the output is usually tristated and the signal level
depends on external components connected to TDO, such as pull-up or pull-down.

Zoom-in

The next screenshot shows the first 6 clock cycles of the screenshot above. For the first 5 clock cycles, TMS is high
(Resulting in a TAP reset). TMS changes to low with the falling edge of TCK. At this time the TDI signal is low. Your
signals should be identical. Signal rise and fall times should be shorter than 100ns.

Bus/Signal

i -20 us 219 ug
(L R T R T T T T T T L T

0Tk

[Tns

(ol

[roo

TROUBLESHOOTING

If your measurements of TCK, TMS and TDI (the signals output by J-Link / J-Trace) differ from the results shown,
disconnect your target hardware and test the output of TCK, TMS and TDI without a connection to a target, just
supplying voltage to J-Link’s/J-Trace’s JTAG connector: VCC at pin 1; GND at pin 4.

Contacting support

Before contacting support, make sure you tried to solve your problem by following the steps outlined in section General
procedure on page 107. You may also try your J-Link / J-Trace with another PC and if possible with another target
system to see if it works there. If the device functions correctly, the USB setup on the original machine or your target
hardware is the source of the problem, not J-Link / J-Trace.

J-Link_J-TraceARM-2 109

If you need to contact support, send the following information to
support@iar.com:

A detailed description of the problem
J-Link/J-Trace serial number

Output of JLink. exe if available
Your findings of the signal analysis

Information about your target hardware (processor, board, etc.).

Frequently Asked Questions
Supported CPUs

Which CPUs are supported?
J-Link / J-Trace should work with any ARM7/9 and Cortex-M3 core. For a list of supported cores, see sec-
tion Supported ARM Cores on page 12.

Maximum JTAG speed

>R

What is the maximum JTAG speed supported by J-Link / J-Trace?
J-Link’s/J-Trace’s maximum supported JTAG speed is 12MHz.

Maximum download speed

>R

What is the maximum download speed?

The maximum download speed is currently about 720 Kbytes/second when downloading into RAM; Com-
munication with a RAM-image via DCC can be still faster. However, the actual speed depends on various
factors, such as JTAG, clock speed, host CPU core etc.

ICE register access

Z R

Can I access individual ICE registers via J-Link / J-Trace?
Yes, you can access all individual ICE registers via J-Link / J-Trace.

Using DCC with J-Link

>R

Can I use J-Link / J-Trace to communicate with a running target via DCC?
Yes. The DLL includes functions to communicate via DCC. However, you can also program DCC commu-
nication yourself by accessing the relevant ICE registers through J-Link / J-Trace.

Read status of JTAG pins

>R

Can J-Link / J-Trace read back the status of the JTAG pins?
Yes, the status of all pins can be read. This includes the outputs of J-Link / J-Trace as well as the supply
voltage, which can be useful to detect hardware problems on the target system.

Advantage of more expensive JTAG probes

>R

J-Link / J-Trace is quite inexpensive. What is the advantage of some more expensive JTAG probes?

Some of the more expensive JTAG probes offered by other manufacturers support higher download speeds
or an ethernet interface. The functionality is similar, there is no real advantage of using more expensive
probes. J-Link / J-Trace is a suitable solution for the majority of development tasks as well as for produc-
tion purposes. Some features that are available for J-Link / J-Trace, such as a DLL, exposing the full func-
tionality of the emulator, flash download and flash breakpoints are not available for most of these
emulators.

J-Link support of ETM

>R

Does J-Link support the Embedded Trace Macrocell (ETM)?
No. ETM requires another connection to the ARM chip and a CPU with built-in ETM. Most current
ARM7 / ARMY devices do not have ETM built-in.

J-Link support of ETB

>R

Does J-Link support the Embedded Trace Buffer (ETB)?
Yes. J-Link supports ETB. Most current ARM7 / ARM9 devices do not have ETB built-in.

Why does J-Link / J-Trace - in contrast to most other JTAG emulators for ARM cores - not require the user
to specify a cache clean area?

IAR J-Link and IAR }J-Trace
110 User Guide J-Link_J-TraceARM-2

A:

Q:

A:

Support and FAQs

J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does
not have to download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a
cache clean area is not required.

Registers on ARM 7 / ARM 9 targets

I’m running J-Link.exe in parallel to my debugger, on an ARM 7 target. I can read memory okay, but the
processor registers are different. Is this normal?

If memory on an ARM 7/9 target is read or written the processor registers are modified. When memory
read or write operations are performed, J-Link preserves the register values before they are modified. The
register values shown in the debugger’s register window are the preserved ones. If now a second instance,
in this case J-Link.exe, reads the processor registers, it reads the values from the hardware, which are the
modified ones. This is why it shows different register values.

J-Link_J-TraceARM-2

IAR J-Link and IAR }J-Trace
112 User Guide J-Link_J-TraceARM-2

Glossary

This chapter describes important terms used throughout this manual.

Adaptive clocking

A technique in which a clock signal is sent out by J-Link / J-Trace. J-Link / J-Trace waits for the returned clock before
generating the next clock pulse. The technique allows the J-Link / J-Trace interface unit to adapt to differing signal
drive capabilities and differing cable lengths.

Application Program Interface

A specification of a set of procedures, functions, data structures, and constants that are used to interface two or more
software components together.

Big-endian

Memory organization where the least significant byte of a word is at a higher address than the most significant byte.
See Little-endian.

Cache cleaning
The process of writing dirty data in a cache to main memory.
Coprocessor

An additional processor that is used for certain operations, for example, for floating-point math calculations, signal
processing, or memory management.

Dirty data

When referring to a processor data cache, data that has been written to the cache but has not been written to main
memory is referred to as dirty data. Only write-back caches can have dirty data because a write-through cache writes
data to the cache and to main memory simultaneously. See also cache cleaning.

Dynamic Linked Library (DLL)

A collection of programs, any of which can be called when needed by an executing program. A small program that
helps a larger program communicate with a device such as a printer or keyboard is often packaged as a DLL.

Embedded Trace Macrocell (ETM)

ETM is additional hardware provided by debuggable ARM processors to aid debugging with trace functionality.
Embedded Trace Buffer (ETB)

ETB is a small, circular on-chip memory area where trace information is stored during capture.
EmbeddedICE

The additional hardware provided by debuggable ARM processors to aid debugging.

Halfword

A 16-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.
Host

A computer which provides data and other services to another computer. Especially, a computer providing debugging
services to a target being debugged.

ICache

Instruction cache.

ICE Extension Unit

A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

J-Link_J-TraceARM-2

ID

Identifier.

IEEE 1149.1

The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as JTAG.
Image

An executable file that has been loaded onto a processor for execution.

In-Circuit Emulator (ICE)

A device enabling access to and modification of the signals of a circuit while that circuit is operating.
Instruction Register

When referring to a TAP controller, a register that controls the operation of the TAP.

IR

See Instruction Register.

Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.
Little-endian

Memory organization where the least significant byte of a word is at a lower address than the most significant byte.
See also Big-endian.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the value that was most recently written
to that location. Obtaining memory coherency is difficult when there are multiple possible physical locations that are
involved, such as a system that has main memory, a write buffer, and a cache.

Memory management unit (MMU)

Hardware that controls caches and access permissions to blocks of memory, and translates virtual to physical
addresses.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does not translate virtual
addresses to physical addresses.

Multi-ICE
Multi-processor EmbeddedICE interface. ARM registered trademark.
RESET

Abbreviation of System Reset. The electronic signal which causes the target system other than the TAP controller to
be reset. This signal is also known as "nSRST" "nSYSRST", "nRST", or "nRESET" in some other manuals. See also
nTRST.

nTRST

Abbreviation of TAP Reset. The electronic signal that causes the target system TAP controller to be reset. This signal
is known as nICERST in some other manuals. See also nSRST.

Open collector

A signal that may be actively driven LOW by one or more drivers, and is otherwise passively pulled HIGH. Also known
as a "wired AND" signal.

Processor Core

The part of a microprocessor that reads instructions from memory and executes them, including the instruction fetch
unit, arithmetic and logic unit, and the register bank. It excludes optional coprocessors, caches, and the memory
management unit.

IAR J-Link and IAR }J-Trace
114 User Guide J-Link_J-TraceARM-2

Glossary

Program Status Register (PSR)

Contains some information about the current program and some information about the current processor state. Often,
therefore, also referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction to the Saved PSR (SPSR). The SPSR holds the
value the PSR had when the current function was called, and which will be restored when control is returned.

Remapping

Changing the address of physical memory or devices after the application has started

executing. This is typically done to make RAM replace ROM once the initialization has been done.
Remote Debug Interface (RDI)

RDI is an open ARM standard procedural interface between a debugger and the debug agent. The widest possible
adoption of this standard is encouraged.

RTCK

Returned TCK. The signal which enables Adaptive Clocking.
RTOS

Real Time Operating System.

Scan Chain

A group of one or more registers from one or more TAP controllers connected between TDI and TDO, through which
test data is shifted.

Semihosting

A mechanism whereby the target communicates I/O requests made in the application code to the host system, rather
than attempting to support the I/O itself.

SwWi

Software Interrupt. An instruction that causes the processor to call a programer-specified subroutine. Used by ARM to
handle semihosting.

TAP Controller

Logic on a device which allows access to some or all of that device for test purposes. The circuit functionality is defined
in IEEE1149.1.

Target

The actual processor (real silicon or simulated) on which the application program is running.
TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and TDO.
TDI

The electronic signal input to a TAP controller from the data source (upstream). Usually, this is seen connecting the J-
Link / J-Trace Interface Unit to the first TAP controller.

TDO

The electronic signal output from a TAP controller to the data sink (downstream). Usually, this is seen connecting the
last TAP controller to the J-Link / J-Trace Interface Unit.

Test Access Port (TAP)
The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO, and nTRST (optional).
Transistor-transistor logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or zero. LSI and VLSI logic often
used TTL with HIGH logic level approaching +5V and LOW approaching OV.

J-Link_J-TraceARM-2

115

Watchpoint
A location within the image that will be monitored and that will cause execution to stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

IAR J-Link and IAR }J-Trace
116 User Guide J-Link_J-TraceARM-2

IndeXx

A

Adaptive clocking
Application Program Interface...............

ARM

Processormodes
Registers. ...
Thumb instruction set.

Big-endian o ool

C

Cachecleaning............................
Coprocessoroouii i
copyrightnotice

D

Dirtydata L.
disclaimer...............o il
Dynamic Linked Library (DLL)

Embedded Trace Buffer (ETB)
Embedded Trace Macrocell (ETM)
EmbeddedICE

H

ICache.......... .. i
ICE Extension Unit........................

Joint Test Action Group JTAG) 114
JTAG . .o 93

TAP controller. o i 94
J-Flash ARM 24
J-Link

Adapters. . ..o 86

Supported chips 57,85
J-Link Commanderoooiiiii. .. 22
J-Link STR9 Commander 22
J-Link TCP/IP Server 23
J-Mem Memory Viewer............. 24
Little-endian. 114
Memory coherencyoooiiiiiiiii 114
Memory management unit MMU) 114
Memory Protection Unit (MPU)....................... 114
Multi-ICE 114
NTRST. ... 77,114
Opencollector i i, 114
Processor Core. ... 114
Program Status Register (PSR) 115
registered trademarks L. 2
Remapping.........o 115
Remote Debug Interface (RDI)........................ 115
RESET .. 114
RTCK .o 115
RTOS. . 115
ScanChaino i 115
Semihostingt 115

J-Link_J-TraceARM-2

117

SetDbgPowerDownOnClose 52

SetSysPowerDownOnldle 52
SUPPOTt ..o 107, 113
Supported flash devices 58, 64
SWI . 115
Tabs . 41
TAP Controller. ..., 115
Target. . ..o 115
TCK. . 77, 115
TDI .. 77, 115
TDO. . oot 77,115
Test Access Port (TAP). 115
trademarks 2
Transistor-transistor logic (TTL)....................... 115
Watchpoint i 97,116
Word ... 116
Numerics

Svoltadapter 86

IAR J-Link and IAR)-Trace
118 User Guide J-Link_J-TraceARM-2

	Contents
	Preface
	About this guide
	Typographic conventions

	Literature and references

	Introduction
	Overview about the J-Link product family
	J-Link
	J-Trace

	Common features of the J-Link product family
	Supported ARM Cores
	Requirements

	Licensing
	Introduction
	License types
	Built-in license
	Key-based license
	Device-based license

	Legal use of original J-Link software
	Products
	J-Link
	J-Trace

	J-Link OBs
	Illegal Clones

	Setup
	Installing the J-Link ARM software and documentation
	Setup procedure

	Setting up the USB interface
	Verifying correct driver installation

	Uninstalling the J-Link USB driver

	J-Link and J-Trace related software
	J-Link related software
	J-Link software and documentation package

	J-Link software and documentation package in detail
	J-Link Commander (Command line tool)
	J-Link STR91x Commander (Command line tool)
	J-Link STM32 Commander (Command line tool)
	J-Link TCP/IP Server (Remote J-Link / J-Trace use)
	J-Mem Memory Viewer
	J-Flash ARM (Program flash memory via JTAG)

	Using the J-LinkARM.dll
	What is the JLinkARM.dll?
	Updating the DLL
	Determining the version of JLinkARM.dll
	Determining which DLL is used by a program

	Working with J-Link and J-Trace
	Connecting the target system
	Power-on sequence
	Verifying target device connection
	Problems

	Indicators
	Main indicator

	JTAG interface
	Multiple devices in the scan chain
	Sample configuration dialog boxes
	Determining values for scan chain configuration
	JTAG Speed

	SWD interface
	SWO

	Multi-core debugging
	How multi-core debugging works
	Using multi-core debugging in detail
	Things you should be aware of

	Connecting multiple J-Links / J-Traces to your PC
	How does it work?
	Configuring multiple J-Links / J-Traces
	Connecting to a J-Link / J-Trace with non default USB- Address

	J-Link control panel
	Tabs

	Reset strategies
	Reset strategies in detail
	Cortex-M3 specific reset strategies

	Using DCC for memory access
	What is required?
	Target DCC handler
	Target DCC abort handler

	Command strings
	List of available commands
	device
	DisableFlashBPs
	DisableFlashDL
	EnableFlashBPs
	EnableFlashDL
	map exclude
	map indirectread
	map ram
	map reset
	SetAllowSimulation
	SetCheckModeAfterRead
	SetResetPulseLen
	SetResetType
	SetRestartOnClose
	SetDbgPowerDownOnClose
	SetSysPowerDownOnIdle
	SupplyPower
	Using command strings

	Switching off CPU clock during debug
	Cache handling
	Cache coherency
	Cache clean area
	Cache handling of ARM7 cores
	Cache handling of ARM9 cores

	Flash download and flash breakpoints
	Introduction
	Licensing
	Supported devices
	Using flash breakpoints
	IAR Embedded Workbench

	Device specifics
	Analog Devices
	ADuC7xxx

	ATMEL
	AT91SAM7
	AT91SAM9

	Freescale
	MAC71x

	Luminary Micro
	Stellaris LM3S100 Series
	Stellaris LM3S300 Series
	Stellaris LM3S600 Series
	Stellaris LM3S800 Series
	Stellaris LM3S2000 Series
	Stellaris LM3S6100 Series
	Stellaris LM3S6400 Series
	Stellaris LM3S6700 Series
	Stellaris LM3S6900 Series

	NXP
	LPC

	OKI
	ML67Q40x

	ST Microelectronics
	STR 71x
	STR 73x
	STR 75x
	STR91x
	STM32

	Texas Instruments
	TMS470

	Hardware
	20-pin JTAG/SWD connector
	Pinout for JTAG
	Pinout for SWD

	38-pin Mictor JTAG and Trace connector
	Connecting the target board
	Pinout
	Assignment of trace information pins between ETM architecture versions
	Trace signals

	19-pin JTAG/SWD and Trace connector
	Target power supply

	RESET, nTRST
	Adapters
	5 Volt adapter

	J-Link / J-Trace models
	Introduction
	J-Link ARM
	Additional features
	Specifications*
	Download speed
	Hardware versions

	J-Trace ARM
	Additional features
	Specifications for J-Trace
	Download speed
	Hardware versions

	J-Trace for Cortex-M3
	Additional features
	Download speed

	Background information
	JTAG
	Test access port (TAP)
	Data registers
	Instruction register
	The TAP controller

	The ARM core
	Processor modes
	Registers of the CPU core
	ARM / Thumb instruction set

	EmbeddedICE
	Breakpoints and watchpoints
	The ICE registers

	Embedded Trace Macrocell (ETM)
	Trigger condition
	Code tracing and data tracing
	J-Trace integration example

	Embedded Trace Buffer (ETB)
	Flash programming
	How does flash programming via J-Link / J-Trace work?
	Data download to RAM
	Data download via DCC

	J-Link / J-Trace firmware
	Firmware update
	Invalidating the firmware

	Designing the target board for trace
	Overview of high-speed board design
	Avoiding stubs
	Minimizing Signal Skew (Balancing PCB Track Lengths)
	Minimizing Crosstalk
	Using impedance matching and termination

	Terminating the trace signal
	Rules for series terminators

	Signal requirements

	Support and FAQs
	Measuring download speed
	Test environment

	Troubleshooting
	General procedure
	Typical problem scenarios

	Signal analysis
	Start sequence
	Troubleshooting

	Contacting support
	Frequently Asked Questions

	Glossary
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Numerics

