>

IDE Project Management
and Building Guide

for Arm Limited's Arm© cores

May 2025
UIDEARM-21

Copyright © 1999-2025 IAR Systems AB

Copyright notice

This document contains IAR Systems AB (hereinafter “IAR”) proprietary information and may, in no part, be reproduced without the prior
written consent of IAR. The software described in this document is furnished under a license and may only be installed, used and/or copied in
accordance with the terms and conditions of such license.

Export control

The software described herein and thereto related technical information may be subject to Swedish, EU and/or US export control regulations.
As such, the aforementioned technical information contained herein may not be disclosed, exported or re-exported contrary to such export
control regulations, nor may it be shared with individuals or entities subject trade restrictions or other international sanctions.

Disclaimer

The information in this document is subject to change without notice and does not represent a commitment on any part of IAR. While the
information contained herein is assumed to be accurate, it is provided as-is and AR assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

Trademarks

IAR, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect, C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit,
I-jet, I-jet Trace, I-scope, IAR Academy, IAR, and the logotype of IAR are trademarks or registered trademarks owned by IAR Systems AB.

All other third party brands and product names referred to herein are trademarks or registered trademarks of their respective owners.

Table of Contents

g S T\ N 9
Who should read this GUIAEccuuiiiiiiiiie e e e e e e ees 9
Required KNOWIEAEEvvviiiiiiii et e e e e e 9

HOW t0 USE thiS GUIAEiiniiniii e et e e e e e et e et e et e e e e ees 9
What this gUide CONTAINSeiuuiiiiiiii et et e e 10
Part 1. Project management and buildingc.ooooiiiiiiiiiiiiii 10

Part 2. Reference informationooouieiuiiniiiiiii et 10
Other dOCUMENTALIONiuuiii it ettt et e e e e e e e e et e e eannas 10
User and reference GUIAESvieuuiiiiiiii e e 10

The online help SYSIEIMceuuiiiiiiiie e e 11

WD SIEES ..ttt et et 11
DOCUMENT CONVENLIONS ...eetteiiieeiin ettt ettt ettt e e e et e et et e e et et et e e et e eeiaees 11
TypOgraphiC CONVENTIONSueiuniieeietii et e et etie et etie et e et eea e et eeneeanaeaneesneesneaneaeaaannns 11
NAMING CONVEINTIONS .1vutvnettneitneitrteertnettnettneteetnetneesneetneateseesnrsnetanetserenernersnarsneees 12

Part 1. Project management and buildingcccceeeeieiuiieiiiiiiiiiiiiiiiiieiieiieiieiieiieireiieerenieesessesenes 14
The development eNVIFONIMENT ...c.cceieiieiuiieiieereniesreiseeresses 15
Introduction to the IAR Embedded Workbench IDEcooiiiiiiiiiiiii e 16
Briefly about the IDE and the build toolchainc..ocoiiiiiiiiii 16
Tools for analyzing and checking your applicationcocieiuiiiiiiiiiniiiiiii e, 16

An extensible and modular enNVIFONMENToeeuiiuniiiiii et 17

The layout of the windows 0n the SCIEeNc.iiiiiiiiiiiiii e 17

D (Teh 110111508 T T [N 17
Using and customizing the IDEooiiiiiiiiii e 18
Running the IDE ..ottt e e e e 18
Working with eXample ProJECtSviieiiiniii et e e e aanas 18
Organizing Windows 0N the SCIEENcivuiiiniiiieiiieiieiie it et e tee e aieea e et e et eaieeaeeaaenns 23
SPECIfyIng t00] OPLIONSivuiiiniiiiiee et e et e e e e e e e e et e e e e s e eaaeerneeaeenns 24
Adding a button t0 @ tOOIDATcoviiiniiiiiieie e 24
Removing a button from @ toolbarc.ooeuiiiiiiiiiiii e 25
Showing/hiding toolbar BULtONSc..iitiiiiiiiie e 26
Recognizing filename eXteNSIONSc.uiuueiuntiteit et e e et e e e e 26
Getting started using external aNalyZerscc.iiiuiiiiiiiiiie e 27
Invoking external tools from the Tools MeNUccoviiiiiiiiiiiiiiiii e 28
Adding command line commands to the Tools Menucccoceuiiiiiiiiiniiinineeeenn. 29
Using an eXternal €AItOriieiii ittt et e 30
Reference information onthe IDE 31
IAR Embedded Workbench IDE WINdOwcooiiiiiiiiiiiiiiiiiiiiiec e 31
Customize diAloZ DOX ...ivuiiniiiiiiiie it e et et e e e e e e e e aaaaas 36
Button Appearance dialog DOXviiuiiiniiieiiieiiie e ettt aaaas 39

TOOL OULPUL WINAOW ..eveiiniiiieiie e e e e e e et e e et et et e e e e e e s e e s e et e et eaeaaenns 40
Colors and FONtS OPLIONSiiuuiieiitiii ettt et e e e e et e e et e e e e e e e e e et e st eaeaaenns 41

Edit Colors dialog DOXiuniiieiie e 43

Edit FOnts dialog DOXc.uiuniiieiie et 44

Key Bindings OPtiONSc.uiiuneiieii it 45
Language OPLIONSo.uiiniie ettt et et e e et eas 47
EdItOr OPEIONS «e.uneiiieiii et ettt et 48
Configure Auto Indent dialog DOXcouiiiniiiiiieiie e 52
External EdItOr OPtIONSovuniieiieeie ettt e e et et et et e e e e e e e e e eaneannas 53
Editor Setup FIles OPtIONSccuuiiuiiiiiieiie ettt e e e e e e e et e e e e eannas 54
Editor Syntax Feedback OPtionSceiuuiiuniiiieiiieiieiiie et iee e e e e e e e e e e eaenas 55
IMESSAZES OPLIONS ..vvnrieiineiinetieeeeett et e et e et e et e st esteeseeeaneeaneeaeeaeanasnaesneesnesneseaasnnns 56
TroubleShOOtING OPLIONSvuiiuniieiitiii it e et e et e e et et e et e et e e e et e ea e et e e eaeaaenns 57

IDE Project Management and Building

Guide

PrOJECt OPLIONS .. ouieieii ettt ettt et et e e et et eas 58

External AnalyZers OPTONSvuueiiuiineiieiie et et et e e e et e e e e e et e e e e eanaeanees 60
External Analyzer dialog DOXoiueiiiniiiiiiiie e 61
Language SEIVErS OPLIONScvuueiuneietiieeii et etietieetieetee et eeanetaeeaeeaeneanaeaneeseannesnaaannns 63
CMake/CMSIS-TOOIDOX OPLIONSuivuniieiineetneeieiieetieeiietierinerteeneeanaeanaeanearernaeaeaaaenns 64
Source Code Control options (deprecated)vevveiiniiiniiiniiieiiei e e e e e 66
DEDUZEET OPLIOMS ..vvniiiiiteiie et e et et e et e e e et e et e et e et e et e ea e aneeaneeaneeanesaeseasnnns 67
SEACK OPTIONS .. evuiittiititi ettt et et et e e e e e e e et e et e et e e e aae e s e e eaeeans 68
Terminal I/O OPLIONSouuiinii e 70
Configure Tools dialog DOXc.iieiiiii e 72
Configure Viewers dialog DOXco.iiiiiiiiiiiiie e 74

Edit Viewer Extensions dialog DOXco.oiiuiiiiiiiiiii e 76
Filename Extensions dialog DOXcceueiuniieniiiiiieiie et 77
Filename Extension Overrides dialog bOXcccoviiniiiiiiieiiiiiieii e 77

Edit Filename Extensions dialog DOXoeiuiiiiiiiniiiniiieiie e e e e e 78
Product Info dialog DOXcovuiiiiiiiie e 79
ArgUMENt VATIADIESuiiniiiiiie st e e e e e e e e e an e 79
Configure Custom Argument Variables dialog boXc.ccoeiviiiiiiiiiiiiiiiiiiieiicieieeaenns 80
CMSIS Manager dialog DOXivviiniiiiiii ettt e e e e e e e e e e e aaenas 83
Project ManagemeEntc.cceeieeieiieireiieireiieerenceeressassses 84
Introduction t0 MANAZING PIOJECTS ...euueinniiniii ittt et et et e e e e e e ei e e eeanas 84
Briefly about managing Projectseeuu et 84

How projects are organizedoiuuiiiiiiiiie e 85
Resolving source files for externally built executable filescoooiiiiiiiiiiiiinnn, 88

The IDE interacting with version control SYStemSccuuviueiuieinniinieiieieeieiieaieannes 89
MANAGING PIOJECES .. evueeeneetneeie et ettt et et et et et e et e e e e e e e et e et e aa e eaneeaneeaneeaneeneeneanenneen &9
Creating and managing a workspace and its PrOJECSveeuueerniiiineeiineeiiieeiineeninens 89
Viewing the workspace and itS PrOJECSuuvivreiuriinriineiieiieeiieeieeieeiereeeeerieeaneeannans 90
Interacting With SUDVEISIONoiiiiiiiiiiii e e e eaenas 91
Installing a CMSIS-Pack software packooiiiiiiiiiiiiiiiii e 92
Using CMSIS-Pack support in IAR Embedded Workbenchcoooviiiiiiiiiiininn, 92
Reference information on managing ProJECTSeeuueiuneiineiuneeieiieeiieererierieeiernaernaarnaranaens 94
WOTKSPACE WINAOW ..ottt et et 94
Create New Project dialog DOXc..iiuiiiiiiii e 99
Configurations for project dialog DOXooouiiiiiiiiiiii e 99

New Configuration dialog DOXoooiiiiiiii e 100

Add Project Connection dialog BOXc..ceeuuiiiiiiiiiiiiiiiiniiin e 102

Add Folder Alias dialog DOXovuuiiiiiiiieii e 102
Configure Aliases dialog DOXoivniiiiiiiiiiiiii et 104
Version Control System menu for SUDVErSIONcoeuuviiniiiniiieiiieineieeieeierieeineeens 105
SUDVETSION STALES .. eetueiiie ittt ettt ettt et et e e et e e e e eeanes 106
Building Projects ..c.ceieieiieiiuiieiieiieiieiieiiiiieiieiieiieireiieereiieeresssessassans 107
Introduction to building ProJECtSccuuiiuniiiiiiiie e e e e 107
Briefly about building @ Projectoiveeiiniiiiii e 107
Extending the toolchain ..o 107
Building @ PrOJECt ..o.ueeniii e 108
Setting project options using the Options dialog boxccooiiiiiiiiiiiiiiiiiii, 108
Building yOUL PrOJECEeeneei ittt 110
Correcting errors found during buildcoiiiiiiiiiiiiii 111
USING BUILA ACHIOMNS ...ivtiiieii ittt et e e e e e e e e e e e e eaneeens 111
Building multiple configurations in @ batchccoeiiiiiiiiiiiiiii 112
Building from the command 1iNecooiiiiiiiiiiiiiiiii e 112
Adding an external t00]oiiuiiiiiiiii s 113
Reference information on buildingccoiiiiiiiiiiiiiiiiiii e 113
OPioNS dIAlOZ DOX ..uiieniiiiii ittt e e e 113

IDE Project Management and Building
Guide 4

BUIld WINAOW . .einininii e e 115

Batch Build dialog DOXvvniiiiiieie e 117

Edit Batch Build dialog DOXccuuiiiiiiiiiieiie et 118
iarbuild—the TAR Command Line Build Utilityc.ccooiviiiiiiiiiiiiiiie e 119

T)Y 124
Introduction to the IAR Embedded Workbench editorccoiiiiiiiiiiiiiiiniiiniinee, 125
Briefly about the €ditorc.oiiiiiiiiiiiiii e 125
Briefly about source browse informationccceeviiiiiiiiiiiiiiiei e 125
Customizing the editor enVIrONMENTtocuuiiutiiiiiii e e 125
Editing @ f1leouniieii e 125
Indenting text automaticallyooooiiiiiiiiii e 126
Matching brackets and parentheseso.oviueieiiiiiiee e 126
Splitting the editor Window INtO PANESccouneiiiniiiiniiiiieiiine et eeieeeanee 126
DIrag@Ing tEXE ..ovuueieiiiiei et et e et et ettt e e aans 126

Lo [o] U 11 VSN 127
WOTd COMPLELION ...euiiiiiie et et e e e e e e e e e e e e e e e e eaneeens 127

LOoT [l 107011 o) (15 [) A PPN 127
Parameter NINtoiiiii e 128
Using and adding code templatesceiueiiiiiiiiiniiieiie e e 128
SYNLAX COLOTINEZ ..evnitititiei ettt e e e e e e e e et et et et et et et e e et e e eaneanesneaneaneanas 129
Adding DoOKMArKSc..iiiii e 130
Using and customizing editor commands and shortcut keysccoccoviiiiiiiiiiinin. 130
Displaying status infOrmMationoiuuiiuneiieie e 130
Programming @SSISTANCEceuueiuneiieit et e et e et e e e e e et e e e eans 130
Navigating in the insertion point RiStOIYcccouviiiiiiiiiiiiiei e 130
Navigating t0 @ fUNCHONiiuniieiiiiii ettt et e e e e e e e e e e eannas 131
Finding a definition or declaration of a symbolcccoocciiiiiiiiiiini 131
Finding references to @ SymMbOlccouiiiniiiiiiiiieiir e 131
Finding function calls for a selected functionc.ccoeiiiiiiieiiieiiieiineie e 131
Switching between source and header filescooovviiiiiiiiiiiiiiin e 131
Displaying source browse informationcocveiuiiiieiiieiiieiie e 131

TEXE SEATCHING ...ivniiniie et e e et et et et e et e e e e e e e e e 131
Reference information on the editoroooiiiiiiiiiiiii 132
EdItor WINAOW ..o 132

Find dialog DOXeeiiee e 140

Find in Files WINAOWoiiuiii e 142
Replace dialog DOXieniiieiie et 142

Find in Files dialog DOXvvuiiniiieiieeie et e eens 144
Replace in Files dialog DOXvvuniiiiiiiieiie e e e e e e e aens 146
Incremental Search dialog DOXvvviiiiiiiiiiii e 148
Declarations WINAOWieuieiiieiii et e e e 149
Ambiguous Definitions WINAOWeiuuiiiniiieiieeiieeiiee et e e eieeane e aens 150
References WINAOWoouuiiiiiieii et 151
OULHNE WINAOW ...ttt ettt et et e e et e e e e e e e e eaa s 152
Source Browse Log WINAOWcouiiiiiiiieiie e 154
Resolve File Ambiguity dialog bOXoooiiiiiiiiii 155

Call Graph WINAOWienii ittt 156
Template dialog DOXniiniiiiie e 157
Editor shortcut Key SUMMAIYocouiiiniiiiiiieii e e eens 157
Using an external build SYStemcceuviuiiiniiiniiiniiiiiiiiiiiiiiiiiriiiiicecree e eeceaeeaeeneenes 161
Introduction to using an external build SYStEmMcoouiiiiiiiiiiiiiiiiiie e 161
Briefly about CMake and CMSIS-TOOIDOXc..uiiuniiiiiiiiiiiiieii e eiee e ee e 161
Reasons for using an external build SYStemcoeeviiiiiiiiiiiieiiieiiieie e 162
Requirements for CMake or CMSIS-TOOIDOXcvvuiiiniiiiiiiiieiiieiie e ieeie e e 162
Working with CMake and CMSIS-T0OIDOX PrOJECESuevvnivniiniiineiieiieiieeiie e eieeieeieeinenns 162

IDE Project Management and Building
Guide 5

Adding a CMake project to the IDEc.ooooiiiiiiiiiii e 162

Adding a CMSIS-Toolbox project to the IDEccccoviiiiiiiiiiiieee e 162
Debug options for CMake/CMSIS-TOOIDOXuvruniiriiiiriieiieiieie e e e e e 163
Adding a file to @ CMSIS-TOOIDOX PIOJECtuvvvneieneiieeieeieei e e e e e e e e e e aens 163
Modifying options for a CMSIS-T0OIDOX PrOJECtuvvvneiiniiieiiieiieiieiie e eie e eanns 163
Troubleshooting CMake/CMSIS-TOOIDOX PIOJECESuvvrnivneiineiieineiieiieeieeiee e eaeeaneeaneenns 164
The Workspace window 1S almoSt €MPLYevvniiiniiiieiieiieeie it iie e e aee e eaeeeanens 164
Embedded Workbench tries to use all csolution contextsccoveiuuieiiuneiiieeeineaennnne. 164

The build log wraps lines of texts t00 €arlycoooiiiiiiiiiiiiiiiiii e, 164

The browse information and syntax highlighting is Wrongcceeoieiniininniniennn.n. 164

The configuration fails but works from the command lineco . 165
CMake and CMSIS-Toolbox in the IDE Referenceccccoveiviiiiiiiiiiiiiiiiiieieceeeee, 165
CMaKe Target OPLIOMSuueeuuneiiieeii et ettt ettt et ettt e e et e e e et e eeaa e 165

L1 1G] 15) 1 TN 166

(011Y INY IT ReTo) Lo) Qo) o4 o) 1 - PPN 167
CMake/CMSIS-To0IboX 10g WINAOWuvveiiieiineiieiiee e et et e e e eanees 168

Part 2. Reference iInformationc.cccceeuiiiniiiniiiniiiiiiiiiiiiiiiiiiiiieiiiiieieeeeceeeesieesseenes 170
Product fIles c...ceuiieniieniiuiiiiiiiuiiiiiiiiiiiiiiiiiiiiiiiieiieieiettieeiieeisteeetteaittsitasttastearsearsrasrnssanes 171
Installation dir€CtOry SLIUCEUIEivuiiniin et ettt et et et e e e et e et e et e et e et eseeeaeeeaneeaneeens 171
ROOE QIT@CLOTY o.veinie et e e e e e e e et e e e e e e e aaeaneens 171

The arm dir@CHOTYuieiii it ettt e e 171

The cOMMON QITECLOTY ...e.uiin ittt ettt e e e e 172

The Install-info dIr@CLOTYvunii ittt 172
Project dir€CtOry SLIUCTUIEiuiiei ittt et ettt et e e e e e e e e eeans 172
Various SEttNGS FIlESuienii it 173
Files for global SEtNGScouuuiiiiiiiiiii e 173

Files for 10Cal SETNGS ...ovuvvniiineiie ettt e e e e et e e e aans 173

S 1T o1 174
A7 02 111 S 1 4 1 T NN 176
IMIETIUS ..t ete et e e e et ettt ettt eane 176
FILE MONU . oeee ittt 176

Edit MU oot e e 178

Y (S48 11 1<) L PP 182
PrOJECE MEOIU «..et it 186
Erase Memory dialog DOXcuuiiuiiiiiiiie e 191
Lo 1T 05 1411 1L N 192
WINAOW IICIIUL .. oetiii et e et e e e e e e e eaeeens 194

HEIP MENU .ot 195
General OPLIONS ...ccuveuieniinieieiiiiiiiiiiiiiiiiiiiiiiitiieireireitetetetateetesteesssssssssssssssssssssssssssssssassassans 196
Description of general OPLtIONSc.ueiieiiiniiieiie e e e e et e e e e e e e eans 196
3 PO PRSP PPON 196
o | PSP PPIPPRRN 197
B4-DIE e et et e e 199
(01011011 L PPN 201
Library Configurationc.oeoueiiiiiii e 202
Library OPtions 1oooiinii e e 204
Library OPtiONS 2ouiiiii ettt e 205
(01111 00112 1) 113 10 1 L PN 207
Description of cOmMPIler OPLIONSueiuniieiii et e e e eens 207
Multi-file COMPILALION ..ouuieniieiie et e e e e e e e e eens 207
Language 1ooioniiiiii s 208
Lan@UAZE 2 ..eniniie et 210

COAE ..t 211
OPUMIZATIONS +..vvneieeiteeii ettt et et e et et eta et e et e et e et e st estesaesnetsnetsneeanesnesnaesnaesnees 212
(01011011 L APPSO 214

IDE Project Management and Building

Guide

LISt e ettt 215

PrEPTOCESSOT ..eniii i 215

LYo s T 1] [217

ENCOMINGS ..vniiniiieie ettt et a e 219

258 e N O 1 ()4 PPN 220

Edit Include Directories dialog DOXoovviiiniiiniiiiiie et ean e 220

ASSEMDBIEr OPIONS ..cuivviiniiniiiiiiiiiiiiiiiiiiriiiiiriiiiireitiereitreresaessassasss 222

Description 0f aSSEMDBIET OPTIONSvuiniineiieii ettt e et e e et et e e a e e eaeaneaneaneanns 222

LaNGUAZE ... 222

L0133 PPN 224

5T PPN 224

PrEPTOCESSOT ..enitin i 226

DD T 0 1] [227

EXEra OPLIONS . o.uniiiiiiiieeii ettt ettt 228

Output CONVErter OPLIONS c.ceuieuienienienieiieiieiieiieiieiteiieitetreiteireitetresessssssssssssssssssssssssssssssssassans 229

Description of output CONVEITET OPLIONSuuvvniineiineiineiieiieeiieeieeineeieeiee et eaeeeaneerneeenereneenns 229

(01011011 AP PPN 229

Custom DUIld OPLIONS ..c.cvuienieiiiuiiiiiiiiiiiiiiiiieiiiiieireitiereiieereiteesessesssssssssssssssssssssssssssssssssssassans 231

Description of custom build OPtIONScuuiiuniiiiiieiie e e e e e e 231

Custom Tool ConfIGUIAtIONiuuiiniiniieiei e e e e e et e et e e aeaneaneas 231

Build actions OPtioNSceuuieuiiiniiiiiiuiiiuiiiiiiiiiiiiiiiiitiitiitt ettt ssiesseesasrassnsassanens 233

Description of build actions OPtIONSeuuiiiniiiiiie e 233

Build Actions Configurationoeuviuuiiuniiie e 233

New/Edit Build Action dialog boXcoeuiiiiiiiiiie e 234

) 511110 1) 110 (1) 1 LN 236

Description Of lINKEr OPHONSvvuiieiieiieii ettt e e e e e e e e eens 236

L0703 1 1 N 236

55 1) 1 2PN 237

5510 PP PPN 238

OPUMIZATIONS +..evvneieneite ettt et et et e et ete e et e et e et e et e st esteesaesnetsneesneeaneenesnaesnersnees 239

AAVANCEA ... 240

(01311011 L PPN 242

53 PSPPSR 243

HACTING ... 244

LD e 00 1] 1 (PP 244

(0] 11101 11 1 s PPN 246

ENCOAINGS ... ettt 249

EXEra OPLIONS o.uniiiiiiiieeiie ettt et et et 250

Edit Additional Libraries dialog DOXcovuuviiiiiriiiiiiiiiiei e 250

Linker Configuration File Editor dialog DoXccovviiiiiiiiiiiiiiiieiieie e 251

Library builder OPtionSccceeieieiieieiieiieiiiiieiieiiiiieiieireiieiieiieeieiteeresseesssasssssssssssssssssssssssassans 252

Description of library builder OPtiONSc.uiiiiiiieiiieiie e e e e e e eens 252

(01011011 L APPSO 253

|25 43 - 0 5] 5 1) s PPN 254

L€ (1T) 255
List of Tables

1. Typographic conventions used in IAR documentationcccceuveieeiinniinniiieiineiineieeineineaannns 12

2. Naming conventions used in JAR documentationccoooeiiiiiiiiiiiiiiniiiiniiiiee e, 12

3. ATZUMENE VATIADIES ...eeuteiii ettt et e 79

4. iarbuild command [iNE OPONS iituiiii ettt et e e e 119

5. Editor shortcut keys for insertion point NAVIZAtION c.uuviiunieiiieeii e e e e e 158

6. Editor shortcut keys for selecting teXtooeuiiiiiiiiii e 158

7. Editor shortcut keys for SCrollingcouiiiiiiii e 158

8. Miscellaneous editor ShOrtCUt KEYSoouiiiiiiii e 159

IDE Project Management and Building

Guide

9. Additional Scintilla ShOTtCUt KEYScceuiiiiiiiiiiiii e 160
L ST N4 0 11 S 110 o 2 171
11. The COMMON QITECLOTY ...vuuiieiiietii et et et et e e e e e e et e e e e e e e e e e e ea e an e eaneesneenneenneenaeannns 172
12. File types

IDE Project Management and Building
Guide 8

Preface Preface

Preface

Who should 1ead this GUIAEovuiiiiiiiii et e e et e e e et e et e et e et e s eanns 9
Required KNOWIEAEEvvniiiiiii et e e e e e e e e e e e e b e e e e e e eaeees 9
HOW t0 USE thiS GUIAEivniiniii ittt e e e e e e e e e e et e e et e e e e e e e et e et e et e s eseeanns 9
What thiS SUIAE CONTAINSe.uitniieii e ettt e e e e e e eans 10
Part 1. Project management and buildingoooiiiiiiii i 10
Part 2. Reference infOrmationoeuuiiiniiue ittt et et e e e e e 10
Other dOCUMENTATION ... e.uiti ittt ettt et e e e e et et ettt et e e e e e e et e e e eneeeneeaneen 10
User and reference GUIAESu.iiiuniiiiiiii ettt et e e e 10
The online RelP SYSIEIMceuuuiiii ittt et et ea e eaes 11
L]] 1 PSPPI 11
DOCUMENE CONMVENMLIONS ... eetueiiiiteiit ettt e et ettt et e et et e e e et e e e et e et e e et e eanaeeaes 11
TYPOZIAPRIC CONVEMEIONS ..vuueieieiiiiieiiette it etie et e et et e et ett e et e eaneeaneatn e st eanaesneesnessneeseenneaneesnees 11
INAMING CONVENTIONS ..ivtitneitneiteieete et et et et este ettt et ettt etneanaeaneeseetnestesnaesnarsneraneereenns 12

WHO SHOULD READ THIS GUIDE

Read this guide if you plan to develop an application using IAR Embedded Workbench and want to get the
most out of the features and tools available in the IDE.

Required knowledge
To use the tools in IAR Embedded Workbench, you should have working knowledge of:

e The architecture and instruction set of the Arm core you are using (refer to the chip manufacturer's
documentation)

e The C or C++ programming language
e Application development for embedded systems
e The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer to their respective
documentation, see Other documentation, page 10.

HOW TO USE THIS GUIDE

Each chapter in this guide covers a specific fopic area. In many chapters, information is typically divided
into different sections based on /information types.

e Concepts, which describes the topic and gives overviews of features related to the topic area. Any
requirements or restrictions are also listed. Read this section to learn about the topic area.

. Tasks, which lists useful tasks related to the topic area. For many of the tasks, you can also find step-
by-step descriptions. Read this section for information about required tasks as well as for information
about how to perform certain tasks.

e Reference information, which gives reference information related to the topic area. Read this section
for information about certain features or GUI components.

If you are new to using IAR Embedded Workbench, we suggest that you first go through the tutorials,
which you can find in IAR Information Center in the product, under Product Explorer. They will help you
get started.

IDE Project Management and Building
Guide 9

What this guide contains Preface

Finally, we recommend the Glossary in the IDE Profect Management and Building Guide for Arm if you
should encounter any unfamiliar terms in the IAR user documentation.

WHAT THIS GUIDE CONTAINS

This is a brief outline and summary of the chapters in this guide.

Part 1. Project management and building

This section describes the process of editing and building your application:

The development environment, page 15 introduces you to the IAR Embedded Workbench
development environment. The chapter also demonstrates the facilities available for customizing the
environment to meet your requirements.

Project management, page 84 describes how you can create workspaces with multiple projects,
build configurations, groups, source files, and options that help you handle different versions of your
applications.

Building projects, page 107 discusses the process of building your application.

Editing, page 124 contains detailed descriptions of the IAR Embedded Workbench editor, how to use
it, and the facilities related to its usage. The final section also contains information about how to
integrate an external editor of your choice.

Using an external build system, page 161 describes how you can add CMake or CMSIS-Toolbox
projects to the IDE, to be able to use the IAR debugging and code analysis tools with the project.

Part 2. Reference information

Product files, page 171 describes the directory structure and the types of files it contains.
Menu reference, page 176 contains detailed reference information about menus and menu commands.
General options, page 196 specifies the target, output, and library options.

Compiler options, page 207 specifies compiler options for language, optimizations, code, output, list
file, preprocessor, and diagnostics.

Assembler options, page 222 describes the assembler options for language, output, list, preprocessor,
and diagnostics.

Output converter options, page 229 describes the options available for converting linker output files
from the ELF format.

Custom build options, page 231 describes the options available for custom tool configuration.
Build actions options, page 233 describes the options available for pre-build and post-build actions.
Linker options, page 236 describes the options for setting up for linking.

Library builder options, page 252 describes the options for building a library.

OTHER DOCUMENTATION

User documentation is available as hypertext PDFs and as a help system in HTML format. You can
access the documentation from the IAR Information Center or from the Help menu in the IAR Embedded
Workbench IDE.

User and reference guides
The complete set of IAR development tools is described in a series of guides. Information about:

System requirements and information about how to install and register the AR products are available
in the Installation and Licensing Quick Reference Guide and the Licensing Guide.

IDE Project Management and Building

Guide

10

Document conventions Preface

Using the IDE for project management and building, is available in the /DE Project Management and
Building Guide for Arm.

Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available in the C-SPY
Debugging Guide for Arm.

Programming for the IAR C/C++ Compiler for Arm and linking, is available in the /AR C/C++
Development Guide for Arm.

Programming for the IAR Assembler for Arm is available in the /AR Assembler User Guide for Arm.

Performing a static analysis using C-STAT and the required checks, is available in the C-STAT® Static
Analysis Guide.

Using I-jet, refer to the /AR Debug Probes User Guide for I-jet®, I-fet Trace, and I-scope.
Using J-Link and J-Trace, refer to the J-Link/J-Trace documentation available at www.segger.com.

Porting application code and projects created with a previous version of the IAR Embedded
Workbench for Arm, is available in the /AR Embedded Workbench® Migration Guide.

ﬁ Additional documentation might be available depending on your product installation.

The online help system
The context-sensitive online help contains information about:

IDE project management and building
Debugging using the IAR C-SPY® Debugger
The IAR C/C++ Compiler and Linker

The IAR Assembler

C-STAT

Web sites

Recommended web sites:

The chip manufacturer’s web site.

The Arm Limited web site, www.arm.com, that contains information and news about the Arm cores.
The 1AR web site, www.iar.com, that holds application notes and other product information.

The web site of the C standardization working group, www.open-std.org/jtc1/sc22/wg14.

The web site of the C++ Standards Committee, www.open-std.org/jtcl/sc22/wg21.

The C++ programming language web site, isocpp.org. This web site also has a list of recommended
books about C++ programming.

The C and C++ reference web site, en.cppreference.com.

DOCUMENT CONVENTIONS

When, in the IAR documentation, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full path to the
location is assumed, for example c: \iar\ewarm-2.1\arm\doc.

Typographic conventions
The 1AR documentation set uses the following typographic conventions:

IDE Project Management and Building

Guide

11

https://www.segger.com

Document conventions Preface

Style

computer

parameter
[option]
{option}

[option]
[alblc]
{alblc}
bold

ftalic

@

Used for

« Source code examples and file paths.
« Text on the command line.

« Binary, hexadecimal, and octal numbers.

A placeholder for an actual value used as a parameter, for example £iIename.h where
filename represents the name of the file.

An optional part of a linker or stack usage control directive, where [and] are not part of the actual
directive, butany [, 1, {, or } are part of the directive syntax.

A mandatory part of a linker or stack usage control directive, where { and } are not part of the actual
directive, butany [,], {, or } are part of the directive syntax.

An optional part of a command line option, pragma directive, or library filename.

An optional part of a command line option, pragma directive, or library filename with alternatives.
A mandatory part of a command line option, pragma directive, or library filename with alternatives.
Names of menus, menu commands, buttons, and dialog boxes that appear on the screen.

« A cross-reference within this guide or to another guide.

« Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary number of times.
Identifies instructions specific to the IAR Embedded Workbench® IDE interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1. Typographic conventions used in IAR documentation

Naming conventions
The following naming conventions are used for the products and tools from IAR, when referred to in the

documentation:

Brand name Generic term

IAR Embedded Workbench® for Arm IAR Embedded Workbench®
IAR Embedded Workbench® IDE for Arm the IDE

IAR C-SPY® Debugger for Arm C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for Arm the compiler

IAR Assembler™ for Arm the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2. Naming conventions used in IAR documentation

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured for the instruction sets

T32/T and A32.

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured for the instruction set A64.

IDE Project Management and Building

Guide

12

Document conventions Preface

For more information, see Execution modes, page 17.

IDE Project Management and Building
Guide 13

Part 1

. Project management and building

Part 1. Project management and building

Part 1. Project management and
building

This part contains these chapters:

. The development environment, page 15

e Project management, page 84

e Building projects, page 107

e Editing, page 124

e Using an external build system, page 161

IDE Project Management and Building

Guide

14

The development environment The development environment

The development environment

Introduction to the IAR Embedded Workbench IDEoooiiiiiiiiiiii e 16
Briefly about the IDE and the build toolchainc.cooiiiiiiiiiiii e 16
Tools for analyzing and checking your appliCationccceuiiiniiiniiiieiiieiie e e e 16
An extensible and modular @NVIFONMENTco.uiiuiiiiiii e et 17
The layout of the Windows 0n the SCIEEMieuiiiiiii e 17

2 (Te1h 1110731508 Lo T [P 17

Using and customizing the IDE ... e 18
Running the IDE ...ttt et et e 18
Working with Xample PIOJECESeeuuniiiiniiii ittt et e e e e e 18
Organizing WindoWs ON the SCICEMeiuniiiniiiiii et et et et et e e e e e et e eaeeae e et e eaeeaeanneaneeanees 23
SPECITYING tOO] OPLIONSvvneiineiieiie ettt et et et e e e e e et e e e et e et e e e e et e ea e an e eaneesneanneanneaneannns 24
Adding a button t0 @ tOOIDATiiuiiiiii it et a e 24
Removing a button from @ tOOIDArc..iiiiiiiiiiiiii e 25
Showing/hiding tOOIDAr DULLONSiveiieiiieiie ettt e e e e e e et e e e et e e e e e e eaneeaeeaeaaaaenas 26
Recognizing fllename EXENSIONScvuiveiineiieiieiteeit et eeteet et et et et et et e et eeaeaneanaeaneernees 26
Getting started using external ANALYZETScouiiiiiiiiii e 27
Invoking external tools from the ToOIS MENUcouiiiiiiiiiiiii e 28
Adding command line commands to the TOOIS MENUviuiiiiiiiiiiiii e 29
Using an eXternal ©AItOTiiuiii ettt 30

Reference information on the IDE ...t 31
IAR Embedded Workbench IDE WINAOWuiiuiiniiiiiie et e e e 31
(@0 10 e 1 0= oo . N 36
Button Appearance dialog DOXviieiiiiiiiniiie e 39
TOOL OULPUL WINAOW ..evueiiniiieiiee it e et e e e et et et et et e e e e e s e et e et e et e aaeeaneeaneeaneeaeaneaneesnees 40
Colors and FONtS OPLIONSivuuiieiiieiieiie e ie e et et et e e e et e et e et e et e et et eaeeeaneeaneaneenaaneesnees 41
Edit Colors dialog DOX ...ovuiiueiiiiiiiiii et a e 43
Edit FONS dIal0Z DOX .ouiiiniiiiiiiiie ettt e e e e e et e e e e 44
Key Bindings OPLIONSuiuuitiii ittt ettt e e 45
Language OPLIONSeuiiiii ittt ettt e et e e 47
e 103 o] o5] 4 PPN 48
Configure Auto Indent dialog DOXccuniiuiiiiii e 52
External EdItOr OPTIONSiuuiii ittt ettt e e e e e e e et e e e e eas 53
Editor Setup FIleS OPTIONScouuiiiieiiie ettt et e 54
Editor Syntax Feedback OPtiONSeiieiiiniiieie ettt e e e e e et e e e e 55
A (S TSt o] 018 o) 1 T PPN 56
TroubIeSNOOTING OPLIONSvuueiteiitii et et e e te et et et et et e et e ea e et e et e st eaneeaneeaneeaneenneenneaneesnees 57
PrOJECE OPTIOMS L. vuiiiiii ettt et e e e e e e et et e et e et e e s e et e et e et e aae e s e ean e et e aaeenaeaneesnees 58
External ANalyZers OPtIONSiiuneiineiieiiei et et et et e e e e e et e et e et e st et et e ean e et eaaeenaeaneeanees 60
External Analyzer dialog DOXoivniiiiiiiiiiiiei e e e 61
Language SETVETS OPLIONSiuuiiniie ittt et et et e e et et e e e e e e e eas 63
CMake/CMSIS-TOOIDOX OPLIONS ... eenieieitie ittt et ettt e e e e e e et e eae e e e e ees 64
Source Code Control options (Aeprecated)oieuiiiiiiiiie e 66
DEDUZZET OPLIONSieneii ettt et ettt et e et e e e et et e e et e e e e e eas 67
STACK OPTIONS ..ttt ettt ettt ettt et et e e e et e et e e et et et e e et e et e 68
Terminal I/0 OPTIONS ...ceuuneiiiiiii ettt et et e et e e eaas 70
Configure Tools dialog DOXceuniiiiiieii ettt et e e e e e et e e e e e 72
Configure VIewers dialog DOXiouiiiiiiiiiiiei e e e e e e e et e e e e 74
Edit Viewer EXtensions dialog DOXcouiiiiiiiiiiiiii e 76
Filename EXtensions dialoZ DOXoiuniiiiiiiiiiiiii e e e e et e e e e et e e et e e e e e 77
Filename Extension Overrides dialog DOXc..oiveiiiniiiiiiiiiiiieii e e e e e e 77

IDE Project Management and Building
Guide 15

Introduction to the IAR Embedded Workbench The development environment

IDE

Edit Filename Extensions dialog DOXcouuiiuniiiiiiiiiie ettt 78
Product Info dialog DOX ...c..uiiiniiii e 79
F N 4D 1100 LT T 21 o) Ut N 79
Configure Custom Argument Variables dialog bOXccoviiiiiiiiiiiiiiii e 80
CMSIS Manager dialog DOXiieiiieeiieiie e et et et e et e et e e e et e et e et e e e e s e eaneeaneeaeenaeaneeanees 83

INTRODUCTION TO THE IAR EMBEDDED WORKBENCH
IDE

Briefly about the IDE and the build toolchain

The IDE is the environment where all tools needed to build your application—the build toolchain—are
integrated: a C/C++ compiler, C/C++ libraries, an assembler, a linker, library tools, an editor, a project
manager with Make utility, and the IAR C-SPY® Debugger. The tools used specifically for building your
source code are referred to as the build tools.

The toolchain that comes with your product package supports a specific microcontroller. However, the IDE
can simultaneously contain multiple toolchains for various microcontrollers. This means that if you have
IAR Embedded Workbench installed for several microcontrollers, you can choose which microcontroller to
develop for.

ﬁ The compiler, assembler, and linker and library tools can also be run from a command line
environment, if you want to use them as external tools in an already established project
environment.

Tools for analyzing and checking your application

IAR Embedded Workbench comes with various types of support for analyzing and finding errors in your
application, such as:

e Compiler and linker errors, warnings, and remarks
All diagnostic messages are issued as complete, self-explanatory messages. Errors reveal syntax or
semantic errors, warnings indicate potential problems, and remarks (default off) indicate deviations
from the standard. Double-click a message and the corresponding source code construction is
highlighted in the editor window. For more information, see the /AR C/C++ Development Guide
for Arm.

e Stack usage analysis during linking

Under the right circumstances, the linker can accurately calculate the maximum stack usage for each
call tree, such as cstartup, interrupt functions, RTOS tasks, etc. For more information, see the /AR
C/C++ Development Guide for Arm.

e C-STAT for static analysis

C-STAT is a static analysis tool that tries to find deviations from specific sets of ru/es, where each rule
specifies an unsafe source construct. The rules come from various institutes, like MISRA (MISRA
C:2004, MISRA C++:2008, MISRA C:2012, and MISRA C:2023), CWE, and CERT. For information
about how to use C-STAT and the rules, see the C-STAT® Static Analysis Guide.

e C-SPY debugging features such as, Profiling, Code Coverage, Trace, and Power debugging. For more
information, see the C-SPY Debugging Guide for Arm.
e C-RUN for runtime error checking

Runtime error checking is a way of detecting erroneous code constructions when your application is
running. This is done by instrumenting the code in the application, or by replacing C/C++ library
functionality with a dedicated library that contains support for runtime error checking. C-RUN

IDE Project Management and Building

Guide

16

Execution modes The development environment

supports three types of runtime error checking—arithmetic checking, bounds checking, and heap
checking using a checked heap. For more information, see the C-SPY Debugging Guide for Arm.

An extensible and modular environment

Although the IDE provides all the features required for your project, you can also integrate other tools. For
example, you can:

e Use the Custom Build mechanism to add other tools to the toolchain, see Extending the toolchain,
page 107.

« Add IAR Visual State to the toolchain, which means that you can add state machine diagrams directly
to your project in the IDE.

e Use the Subversion version control system to keep track of different versions of your source code. The
IDE can attach to files in a Subversion working copy.

e Add an external analyzer, for example a lint tool, of your choice to be used on whole projects,
groups of files, or an individual file of your project. Typically, you might want to perform a static
code analysis on your source code, using the same settings and set of source code files as when you
compile. See Getting started using external analyzers, page 27.

* Add external tools to the Tools menu, for convenient access from within the IDE. For this reason,
the menu might look different depending on which tools you have preconfigured to appear as menu
commands.

e Configure custom argument variables, which typically can be useful if you install a third-party product
and want to specify its include directory. Custom argument variables can also be used for simplifying
references to files that you want to be part of your project.

The layout of the windows on the screen

In the IDE, each window that you open has a default location, which depends on other currently open
windows. You can position the windows and arrange a layout according to your preferences. Each window
can be either docked or floating.

You can dock each window at specific places, and organize them in fab groups. If you rearrange the size of
one docked window, the sizes of any other docked windows are adjusted accordingly. You can also make

a window floating, which means it is always on top of other windows. The location and size of a floating
window does not affect other currently open windows. You can move a floating window to any place on
your screen, including outside of the IAR Embedded Workbench IDE main window.

Each time you open a previously saved workspace, the same windows are open, and they have the same
sizes and positions.

For every project that is executed in the C-SPY environment, a separate layout is saved. In addition to the
information saved for the workspace, information about all open debugger-specific windows is also saved.

0 The editor window is always docked. When you open the editor window, its placement is
decided automatically depending on other currently open windows. For more information about
how to work with the editor window, see /ntroduction to the IAR Embedded Workbench editor,
page 125

EXECUTION MODES

IAR Embedded Workbench for Arm supports the 32-bit and 64-bit Arm architectures by means of
execution modes.

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured to generate and debug code
for the T32/T and A32 instruction sets, either on an Armv4/5/6/7 core or in the AArch32 execution state

IDE Project Management and Building
Guide 17

Using and customizing the IDE The development environment

on an Arm v8-A core. In 32-bit mode, you can use both the A32 and T32/T instruction sets and switch
between them.

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured to generate and debug code
for the A64 instruction set in the AArch64 execution state on an Arm v8-A core. Code in 64-bit mode can
call code in 32-bit mode, and that code can return back. However, the AR translator tools do not support
this switch being used in a single linked image. Switching between A32/T32/T code and A64 code must be
performed by using several images. For example, an OS using 64-bit mode can start applications in either
64-bit or in 32-bit mode.

The AArch32 execution state is compatible with the Arm v7 architecture. The AArch32 execution state is
emulated inside the AArch64 execution state.

USING AND CUSTOMIZING THE IDE

See also Extending the toolchain, page 107.

For more information about customizations related to C-SPY, see the C-SPY Debugging Guide for Arm.

Running the IDE

Click the Start button on the Windows taskbar and choose All Programs>IAR EW for Arm>IAR EW for
Arm.

The file TarIdePm. exe is located in the common\bin directory under your IAR installation, in case
you want to start the program from the command line or from within Windows Explorer.

The workspace file has the filename extension eww. If you double-click a workspace filename, the IDE
starts.

If you have several versions of IAR Embedded Workbench installed, the workspace file is opened by the
most recently used version of your IAR Embedded Workbench that uses that file type, regardless of which
version the project file was created in.

Working with example projects

Example applications are provided with IAR Embedded Workbench. You can use these examples to get
started using the development tools from IAR. You can also use the examples as a starting point for your
application project.

In addition to the examples provided by IAR, you can also access a large number of CMSIS-Pack example
projects from IAR Embedded Workbench.

The examples are ready to be used as is. They are supplied with ready-made workspace files, together with
source code files and all other related files.

To download an example project:

1. By default, downloaded examples are installed on your system disk, which might have limited space.
If you want to change the location, configure a global custom argument variable SEXAMPLES DIRS
and set its value to the path where you want to download the examples to. See Configure Custom
Argument Variables dialog box, page 80.

Choose Help>Information Center and click Example projects.

Under Example projects that can be downloaded, click the download button for the chip manufacturer
that matches your device.

IDE Project Management and Building

Guide

18

Using and customizing the IDE The development environment

IAR Information

EXAMPLE PROJECTS

IAR Information Center for ARM | Example projects

EXAMPLE PROJECTS

Example applications that demonstrate hardware
peripherals for specific devices and evaluation boards.

Example projects that can be downloaded

All examples

Aiji

AmbigMicro

In the dialog box that is displayed, choose where to get the examples from. Choose between:

» Download from IAR

» Copy from the installation DVD. In this case, use the browse button to locate the required self-
extracting example archive. You can find the archive in the \examples-archive directory on
the DVD.

The examples for the selected device vendor will be extracted to your computer. Unless you

have changed the location by defining a global custom argument variable SEXAMPLES DIRS,

the examples will be extracted to the Program Data directory or the corresponding directory

depending on your Windows operating system.

The downloaded examples will now appear in the list of installed example projects in the Information

Center.

To run an example project:

Choose Help>Information Center and click Example projects.

Under Installed example projects, browse to the example that matches the specific evaluation board
or starter kit you are using, or follow the steps under To download an example project if you want to
download an example from the AR website.

IDE Project Management and Building

Guide

19

Using and customizing the IDE The development environment

IAR Information Center

EXAMPLE PROJECTS

IAR Information Center for ARM | Example projects

W; Product explorer

EXAMPLE PROJECTS

Example applications that demonstrate
hardware peripherals for specific devices and
evaluation boards.

User guides

) . o Example projects
Links to silicon partner example applications

NXP KINITEIS-SDK

Integrated solutions
STM32Cube

Texas Instruments SimpleLink MCUs

Hardware solutions

Installed example projects

Support
XP

8% RK

4 111} 3

Click the Open Project button.
3. Inthe dialog box that appears, choose a destination folder for your project.

4. The available example projects are displayed in the workspace window. Select one of the projects, and
if it is not the active project (highlighted in bold), right-click it and choose Set as Active from the
context menu.

5. To view the project settings, select the project and choose Project>Options. Verify the settings for
General Options>Target>Processor variant and Debugger>Setup>Driver. As for other settings, the
project is set up to suit the target system you selected.

For more information about the C-SPY options and how to configure C-SPY to interact with the target
board, see the C-SPY Debugging Guide for Arm.

Click OK to close the project Options dialog box.
To compile and link the application, choose Project>Make or click the Make button.

To start C-SPY, choose Project>Download and Debug or click the Download and Debug button. If
C-SPY fails to establish contact with the target system, see the C-SPY Debugging Guide for Arm.

8. Choose Debug>Go or click the Go button to start the application.
Click the Stop button to stop execution.

IDE Project Management and Building
Guide 20

Using and customizing the IDE The development environment

To use a CMSIS-Pack example project:

1.

In your IAR Embedded Workbench workspace, choose Project>CMSIS-Pack Manager or click the
CMSIS-Pack Manager toolbar button.

Save your workspace using the Save Workspace As dialog box.

In the CMSIS Manager dialog box that is displayed, navigate to the Devices view and select the
device you are using.

@ 4R Embedded Workbench CMSIS Manager [E=EE

File Edit Search CMSIS Manager Window Help

Q(Lv;:,jv;_ - ~ ¥ o - - Quick:;l'u:c&ssz @|
= B @ Packs [Devices 7 B Boards % Examples Bl Console = O
B %@ ~
type filter text
Device Summary
4 “t% All Devices 801 Devices
> ¥ Analog Devices 12 Devices
- W ARM 27 Devices
» W Silicon Labs 752 Devices
4 ¥ Texas Instruments 10 Devices
4 Vﬁ MSP432E4 Series 2 Devices
4 T MSP432E4 2 Devices

‘B MSP432E401Y ARM Cortex-M4 120 MHz, 256 kB RAM, 1 MB ROM
W MSP432E411Y ARM Cortex-h4 120 MHz, 256 kB RAM, 1 MB ROM
» ‘%3 MSP432Pdix Series 8 Devices

For more information about the CMSIS Manager dialog box, see CMSIS Manager dialog box, page
83.

If you did not already install the CMSIS-Pack software pack as described in /nstalling a CMSIS-Pack
software pack, page 92, click the tab Packs, select the pack you need, and click the Install button.

Focus shifts to the Console view which prints status messages concerning the installation process.
Click the Devices tab and make sure your device is still selected.

Click the Examples tab. The Examples view lists the available example projects for the selected
device.

IDE Project Management and Building

Guide

21

Using and customizing the IDE The development environment

@ EmptyMain/EmptyMain.rteconfig - IAR Embedded Workbench CMSIS Manager_lglﬂu

File Edit Search CMSIS Manager Window Help

= = q v g v ' - - +J_ (3:! L A QUiCkACCESS : E? |
$E. 2 " = B @Pac. B Dev.. Bl Bo. [The. ¥ BC.. =Pac. = 0O
& Components [] Only show examples from installed packs | o oM 3 g\;ﬂ| m -

Search Example
Software Components 5

‘B MsP432E401Y Example Action Description
» & CMSIS BlinkLED (MSP-EXP432E401Y) & Copy . This is a basic example demor
» € Device | EmptyMain (MSP-EXP432E401Y) '$ Copy This is a basic example provid
<« [m] b
Validation Output
< [P

Components | Device| Packs| | « |] F

7. Select an example and click the corresponding action button Copy to copy the CMSIS example project
into your IAR Embedded Workbench workspace.

IDE Project Management and Building
Guide 22

Using and customizing the IDE

Workspace X

[Dehug "]
Files o
=N |EmptyMain - Debuqg *
1] main.c

B Cutput
— [cmsis_compilerh
— [cmsis_iccarm h
— &l cmisis_wersian.h
— [t care_cmd.h
— [DLib_Config_Mormal h
—— &1 DLib_Defaults.h
— [DLikb_Product.h
— [l iccarm_builtinh
— [mpu_armw7.h
— H msp.h
— [kl msp432edilyh
— [kl stdint.h
— [system_msp432ediyh
— [1ycheckh
— [lywalsh
2w ChSIS-Pack
L3 m Device Startup
starnup_mspd32edily_ewarm.c
system_mspd3Zedlly.c
L= W Output
L— O Emptyhdain.out

Dverview| crnzis_test] || Ermphybd ain

The development environment

In the Components view, check if there are any unresolved dependencies to other software packs.
For information about resolving dependencies, see /nstalling a CMSIS-Pack software pack, page 92,

specifically step 6.

Choose Project>Options and verify the settings of your project options. You are now ready to start
working with your CMSIS example project in IAR Embedded Workbench.

Organizing windows on the screen
Use these methods to organize the windows on your screen:

To disconnect a tabbed window from a tab group and place it as a separate window, drag the tab away

from the tab group.

To make a window or tab group floating, double-click on the window’s title bar.
When dragging a window to move it, press Ctrl to prevent it from docking.

IDE Project Management and Building

Guide

23

Using and customizing the IDE The development environment

To place a window in the same tab group as another open window, drag the window you want to relocate
and drop it on the other window. Drop it on one of the arrow buttons of the organizer control, to control
how to dock it.

See also The layout of the windows on the screen, page 17.
Specifying tool options
You can find commands for customizing the IDE on the Tools menu.

1. Todisplay the IDE Options dialog box, choose Tools>Options to get access to a wide variety of
options:

- Commaon Fonts
- Key Bindings Tab size:
- Language
= Editor Indent size
External Editor Tab Ke
i Setup Files -
;) Inse
i. Colors and Fonts
- Messages @ inde
=I- Project .
: Sh':l'r"u' I
i External Analyzers 4 o
- Source Code Control :' Prirt
- Debugger @ Col.
- Stack File Enc
Defa

2. To access the options to the right in the dialog box, select a category to the left.

For more information about various options for customizing the IDE, see 7o0/s menu, page 192.

Adding a button to a toolbar

The buttons on the IDE toolbars provide shortcuts for commands on the IDE menus.

lf? If you instead of adding a button want to show a button that has been hidden temporarily, see
Showing/hiding toolbar buttons, page 26.

1. Toadd a new button to a toolbar in the main IDE window, click the Toolbar Options button and
choose Add or Remove Buttons>Customize.

IDE Project Management and Building
Guide 24

Using and customizing the IDE The development environment

3.

=% (55

The Customize dialog box opens on the Commands page.

In the Categories list, select the menu on which the command you want to add to the toolbar is
located.

i =)

Customize @

Commands | Options | Toolbars |

Categaries: Commands:
3 New Fie -
Wiew Tj Mew Workspace
Project £
Sirn]ulatclr] Open File...
Tools [™] Open Workspace... B
Window
Help [% Open Header/Source File
Mew Menu
All Commands & Close
ﬁj Save Workspace
Bl Save Workspace As . i

Description:

Drag a command from the Commands list to one of the toolbars where you want to insert the
command as a button.

You can rearrange the existing buttons by dragging them to new positions.

Removing a button from a toolbar

1.

To remove a button from any of the toolbars in the main window of the IDE, click the Toolbar
Options button and choose Add or Remove Buttons>Customize. Ignore the Customize dialog box that
is opened.

IDE Project Management and Building

Guide

25

Using and customizing the IDE The development environment

=% (55

2. Right-click on the toolbar button that you want to remove and choose Delete from the context menu.

G If you instead of removing a button want to hide it temporarily, see Showing/hiding toolbar
buttons, page 26.

Showing/hiding toolbar buttons
As an alternative to removing a button from an IDE toolbar, you can toggle its visibility on/off.

1. To hide a button temporarily from any of the toolbars in the main window of the IDE, click the
Toolbar Options button and choose Add or Remove Buttons>foo/bar.

0 R@e-=0 " .

et

Add or Remove Buttons - Main 3 'D Mew File

Customize... [Open File...

ﬁ Save

[v] @ savem

|| print.

X cut

F oy S o o 8 4

T&Bre&.t \ \

° Download and Debug

¥ Debug without Downloading

Reset Toolbar

2. Select or deselect the command button you want to show/hide.

l:? If you want to delete a button entirely from the toolbar, see Removing a button from a toolbar,
page 25.

Recognizing filename extensions

In the IDE, you can increase the number of recognized filename extensions. By default, each tool in the
build toolchain accepts a set of standard filename extensions. Also, if you have source files with a different
filename extension, you can modify the set of accepted filename extensions.

To get access to the necessary commands, choose Tools>Filename Extensions.

See Filename Extensions dialog box, page 77.

IDE Project Management and Building
Guide 26

Using and customizing the IDE The development environment

To override the default filename extension from the command line, include an explicit extension when you
specify a filename.

Getting started using external analyzers

1. To add an external analyzer to the Project menu, choose Tools>Options to open the IDE Options
dialog box and select the Project>External Analyzers page.

2. To configure the invocation, click Add to open the External Analyzer dialog box.

F T

M ame: Analyzer 1

Path: CxProgram Files [«86)%\MpdnalyzerT ool\dnalyzer |

Argumentz: -nc $FILE_PATHE $COMPILER_ARGS$

Cutput matching patterns

Location: $FILE_MARME$:$LIME_MUMBERS -
YWharning, [)warning(?-i): -
Error. (Filermo 7] -

[0k] [Canizel]

Specify the details required for the analyzer you want to be able to invoke.

Use Output matching patterns to specify (or choose from a list) three regular expressions for
identifying warning and error messages and to find references to source file locations.

Click OK when you have finished.
For more information about this dialog box, see External Analyzer dialog box, page 61.
3. Inthe IDE Options dialog box, click OK.

Choose Project>Analyze Project and select the analyzer that you want to run, alternatively choose
Analyze File(s) to run the analyzer on individual files.

IDE Project Management and Building
Guide 27

Using and customizing the IDE

The development environment

i Workbench ID

or | Project | Tools Window Help
Add Files... EiEe ep é
Add Group... utor.c | Utiities.c | Utilities.h

Import File List...
Add Project Connection...

] Edit Configurations...

Dl DU,

Analyze Project
Analyze File(s)

Stop Build

|[1%]

Download and Debug

Debug without Downloading
Make & Restart Debugger
Restart Debugger

Download

5FR Setup
Open Device File

ra

CTRL+BREAK

CTRL+D

CTRL+R
CTRL+SKIFT+R

/_.- . x__.-/"’

It gives you all the hards

Analyzer1
Analyzer 2

Analyzer 3

Each of the regular expressions that you specified will be applied on each line of output from the
external analyzer. Output from the analyzer is listed in the Build Log window. You can double-click
any line that matches the Location regular expression you specified in the External Analyzer dialog

box to jump to the corresponding location in the editor window.

.@ If you want to stop the analysis before it is finished, click the Stop Build button.

Invoking external tools from the Tools menu

1. To add an external tool to the menu, for example Notepad, choose Tools>Configure Tools to open the

Configure Tools dialog box.

IDE Project Management and Building
Guide

28

Using and customizing the IDE

Configure Tools

M enu Content;

Ok,

Cancel

MHew

Delete

keru Test:
&M otepad

Command:

C:Wwfindows\notepad. exe

Argument:

Initial Directany:

[T Redirect ta Output Window
[] Prompt for Command Line

Tool Available:

[.ﬁ.lwa_l,ls

|

Browse. ..

The development environment

2. Fill in the text fields according to the screenshot. For more information about this dialog box, see

Configure Tools dialog box, page 72.

3. After you have entered the appropriate information and clicked OK, the menu command you have

specified is displayed on the Tools menu.

&I | Options..,

Filename Extensions..

Configure Viewers...

Configure Custom Argument Variables..,

/% | Configure Tools...

Motepad

lf? You cannot use the Configure Tools dialog box to extend the toolchain in the IDE. If you intend
to add an external tool to the standard build toolchain, see Extending the toolchain, page 107.

Adding command line commands to the Tools menu

Command line commands and calls to batch files must be run from a command shell. You can add
command line commands to the Tools menu and execute them from there.

To add a command, for example Backup, to the Tools menu to make a copy of the entire project

directory to a network drive:

1. Choose Tools>Configure Tools to open the Configure Tools dialog box.

IDE Project Management and Building
Guide

29

Using and customizing the IDE The development environment

Type or browse to the cmd.exe command shell in the Command text box.
Type the command line command or batch file name in the Argument text box, for example:

/C copy c:\project*.*
F:

Alternatively, use an argument variable to allow relocatable paths:
/C copy $PROJ _DIR$*.* F:

The argument text should be specified as:

/C name

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the tool has
finished.

Using an external editor

The External Editor options—available by choosing Tools>Options>Editor>External Editor—Ilet you
specify an external editor of your choice.

G While you are debugging using C-SPY, C-SPY will not use the external editor for displaying the

current debug state. Instead, the built-in editor will be used.

To specify an external editor of your choice:

1.
2.

3.

Select the option Use External Editor.

On the command line, specify the command to pass to the editor, that is, the name of the editor and its
path, for instance:

C:\Windows\NOTEPAD.EXE

To send an argument to the external editor, type the argument in the Arguments field. For example,
type SFILE PATHS to start the editor with the active file (in editor, project, or messages windows).

IDE Options x

- Colors and Fonts
Use Extemal Editor

- Key Bindings
- Language Editar: | |
—- Editer

- Setup Files
E----Sj,rn‘cax Feedback

.. Messages

- Troubleshooting

4 Project

- Source Code Contro

.. Debugger

.. Stack

Cancel

Click OK.
When you double-click a filename in the Workspace window, the file is opened by the external editor.

IDE Project Management and Building

Guide

30

Reference information on the IDE The development environment

Variables can be used in the arguments. For more information about the argument variables that are
available, see Argument variables, page 79.

REFERENCE INFORMATION ON THE IDE

IAR Embedded Workbench IDE window

The main window of the IDE is displayed when you launch the IDE.

7M o @ tutorials - IAR Embedded Workbench IDE =N (EcR =)
\ enu bar | —— File Edit View Project Simulator Tools Window Help
|TO0Ibar|> THLOB@ = xE0 9 C < Q>8P >0 RG=0 >
—_— ‘Workspace ¥ L X | Tutorc x -
project? - Debug ~| main]) o
. - -
Files & + Tutor.c
& Cltorials +
roject] - Debug v # C tutorisl. Prints the Fibonacci seguence.
j -Debug v -
* $Revision: 8910 §
Workspace tilities.c =
window
I_. .projectSfDebug v #include "Tutor.h"
|-= @ projectd - Debug v
@ projects - Debug v int callCount; -
‘tuturﬁhbrarnyebug v R .
/#* Increase the 'callCount' variable by one. */
woid NextCounter (wvoid)
T {
f callCount += 1;
Ecljltor = — - — — — _
window
- /* Increase the a 1able.
Get and pri ted Fibonacci number.
=
woid DoForegroundProcess (void)
Overview project] | project2 | prcf o [« « - T gl &
Build v o x
Messages
| Building configuration: project? - Debug
Message Updating build tree..
windows
- Configuration is up-to-date
‘ [2
— Build | Debug Log
| SEBLUS bar I Ready Errors 0, Warnings 0 Ln 53, Col 3 Sys

The figure shows the window and its default layout.

IDE Project Management and Building
Guide 31

Reference information on the IDE

The menu bar contains:

File

Edit

View

Project

Simulator

C-SPY hardware
driver

Tools

Window

Help

The development environment

Commands for opening source and project files, saving and printing, and exiting
from the IDE.

Commands for editing and searching in editor windows and for enabling and
disabling breakpoints in C-SPY.

Commands for opening windows and controlling which toolbars to display.

Commands for adding files to a project, creating groups, and running the IAR
tools on the current project.

Commands specific for the C-SPY simulator. This menu is only available when
you have selected the simulator driver in the Options dialog box.

Commands specific for the C-SPY hardware debugger driver you are using, in
other words, the C-SPY driver that you have selected in the Options dialog box.
For some IAR Embedded Workbench products, the name of the menu reflects the
name of the C-SPY driver you are using and for others, the name of the menu is
Emulator.

User-configurable menu to which you can add tools for use with the IDE.

Commands for manipulating the IDE windows and changing their arrangement on
the screen.

Commands that provide help about the IDE.

For more information about each menu, see Menus, page 176.

IDE Project Management and Building

Guide

32

Reference information on the IDE The development environment

The buttons on the IDE toolbar provide shortcuts for the most useful commands on the IDE menus, and a
text box for typing a string to do a quick search. For information about how to add and remove buttons on
the toolbars, see Using and customizing the IDE, page 18.

For a description of any button, point to it with the mouse pointer. When a command is not available, the
corresponding toolbar button is dimmed, and you will not be able to click it.

The toolbars are dockable—drag and drop to rearrange them.

This figure shows the menu commands corresponding to each of the toolbar buttons:

Togge

I New Document l ‘ Print H Copy | {Ouick Search text box l I Navigate Forward/Backward ‘ Toolb: CMSIS-Pack .
] ! T B oolbar -Pac
|Save | |—Undo | |Find Next | [Togg1e Bookmark l I \ ‘ Make | Lpom Options Installer
NABRSBXBEDC, 2G5 cBORE Re=0 T
[P W W e z 7 |ETT’| | |m| 4 Deb 1 Project
—1 |M| |Cl| |E| Find |m| .F’revious.-"Next . Downlcad Wihl:it CM§IS—Da§k
|Open | |Paste | Previous |Replace | Bookmark and Debug Downlecading | EERi e

l:? When you start C-SPY, the Download and Debug button will change to a Make and Restart
Debugger button @ and the Debug without Downloading will change to a RestartDebugger
button' .

Toolbar Options L= Click the Toolbars Options button to open the Toolbars Options menu.

If you have a cloud license for IAR Embedded Workbench for Arm, there is a button in the top right corner
of the main IDE window. When you are logged out from your IAR account, the button reads Log in. If you
are logged in, it displays your signature.

— O
| Login @ |
. . - FE E FE |

Clicking Log in opens a web page in your default web browser, for logging in to your IAR account. For
more information, see the licensing documentation. When you are logged in, clicking the button displays a
menu for logging out.

IDE Project Management and Building

Guide

33

Reference information on the IDE The development environment

This context menu is available by right-clicking a toolbar button when the Customize dialog box is open.
For information about how to open this dialog box, see Customize dialog box, page 3e.

Reset to Default
Copy Button Image
Delete

Button Appearance...
v Image

Text

Image and Text

Start Group

These commands are available:

Reset to Default Hides the button icon and displays the name of the button instead.
Copy Button Image Copies the button icon and stores the image on the clipboard.
Delete Removes the button from the toolbar.

Button Appearance Displays the Button Appearance dialog box, see Button Appearance dialog box,

page 39.
Image Displays the button only as an icon.
Text Displays the button only as text.
Image and Text Displays the button both as an icon and as text.
Start Group Inserts a delimiter to the left of the button.

IDE Project Management and Building
Guide 34

Reference information on the IDE The development environment

This menu and its submenus are available by clicking the Toolbars Options button on the far right end of a

toolbar:
40 R@e=0 »
Add or Remove Buttons Main 3 'D Mew File

Customize... [Open File...

ﬁ Save

[v] @ savesn

[v| & print..

X cut

Fal SV S S S 4

. Y Y

o Download and Debug

F Debug without Downloading

Reset Toolbar

These commands are available:

Add or Remove Opens a submenu.
Buttons
toolbar Opens a submenu that lists all command buttons on the toolbar. Select or deselect

a checkbox to show/hide the button on the toolbar. Choose Reset Toolbar to
restore the toolbar to its default appearance.

Customize Displays the Customize dialog box, see Customize dialog box, page 36.

IDE Project Management and Building
Guide 35

Reference information on the IDE The development environment

The status bar at the bottom of the window can be enabled from the View menu.

=] | Errors 0, Warnings 0 Ln 9, Col 42 system CAP NUM OvR EES

The status bar displays:

e Source browser progress information
e The number of errors and warnings generated during a build

e The position of the insertion point in the editor window. When you edit, the status bar shows the
current line and column number containing the insertion point.

e The character encoding
e The state of the modifier keys Caps Lock, Num Lock, and Overwrite.

e If your product package is available in more languages than English, a flag in the corner shows the
language version you are using. Click the flag to change the language. The change will take force the
next time you launch the IDE.

Customize dialog box

The Customize dialog box is available by clicking the Toolbars Options button on the far right end of the a
toolbar in the main IDE window and choosing Add or Remove Buttons>Customize.

e o)

Customize @

Commands | Options | Toolbars |

Categories: Commands:
P Y New File -
Wiew m Mew Workspace
Project E
Sim]ula‘tn:-r] Open File...
Tools ™ Open Workspace...
Window
Help |__,E_| Open Header/Source File
MNew Menu
All Commands a Close
ﬁj Save Workspace
Gl Save Workspace As... i

Description:

These are the options on the Commands page of the Customize dialog box:

IDE Project Management and Building

Guide

36

Reference information on the IDE The development environment

Lists the menus in the IDE. Select a menu name to make the commands on that menu available for adding
as buttons to a toolbar. Select New Menu to add a custom drop-down menu to a toolbar.

Lists menu commands that can be dragged to one of the toolbars and inserted as buttons. If New Menu is
the selected Category, the command New Menu can be dragged to a toolbar to add a custom drop-down
menu to the toolbar. Commands from the Commands list can then be dragged to populate the custom menu.

Cptions

Toolbar
Show ScreenTips on toolbars

Show shortout keys in ScreenTips
[Large lcons

These are the options on the Options page of the Customize dialog box:

Enables tooltips for the buttons on the toolbars. The tooltips contain the display names of the buttons.

Includes the keyboard shortcut in the tooltip text for the buttons on the toolbar.

IDE Project Management and Building

Guide

37

Reference information on the IDE

Large Icons
Increases the size of the buttons on the toolbars.

Toolbars

The development environment

Toolbars:
Eain [Reset
Menu Bar

Reset All

[] Show text labels

These are the options on the Toolbars page of the Customize dialog box:

Toolbars

Select/deselect a toolbar to show/hide it in the main IDE window. The menu bar cannot be hidden.

Reset
Restores the selected toolbar to its default appearance.

Reset All
This button is disabled.

Show text labels

Displays the names of the buttons on the selected toolbar.

IDE Project Management and Building
Guide 38

Reference information on the IDE The development environment

Button Appearance dialog box

The Button Appearance dialog box is available by right-clicking a toolbar button when the Customize
dialog box is open and choosing Button Appearance from the context menu.

I Y

Button Appearance @
Image anhy Ise Default Image:
@) Text only Select User-defined Image:
Image and test W
Description: Ed

Button test: Stop Debugging QK] | Cancel

Use this dialog box to change the display hame of a toolbar button.

This option has no effect.

Enables the text box Button text.

Enables the text box Button text.

This option is disabled.

This option is disabled.

IDE Project Management and Building
Guide 39

Reference information on the IDE The development environment

This button is disabled.

This button is disabled.

The display name of the toolbar button. Edit the text to change the name.

Tool Output window
The Tool Output window is available by choosing View>Messages>Tool Output.

Tool Output =

Cutput

Debug Log | Tool Qutput | Build | Find in Files

This window displays any messages output by user-defined tools in the Tools menu, provided that you have
selected the Redirect to Output Window option in the Configure Tools dialog box, see Configure Tools
dialog box, page 72. When opened, this window is, by default, grouped together with the other message
windows.

This context menu is available:

Copy
Select Al

Clear all

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

IDE Project Management and Building
Guide 40

Reference information on the IDE

Colors and Fonts options

The development environment

The Colors and Fonts options are available by choosing Tools>Options.

IDE Options

- Colors and Fonts

- Key Bindings

- Language

- Editor

. Messages

- Troubleshooting

[- Project

- Source Code Control

Themes:

(Classic
High contrast Forts...
Dark mode
Solarized

Dark Solarized

Colors...

- Debugger Color Accessibility

- Stack User settings theme Duplicate
Import..
Export.

#pragma diag_suppress = Pe948 ~
#include <stdio.h> // Sample C++
#define TEST @
inline char * get_SP({ wvoid)
1

asm("MOV R@, SP" };
h

#pragma swi_number = @x@7
__swi void swi_watchdog (void);

S

* Sample Doxygen comment.

* @param sel Sample doc argument
* [@para non-existing-keyword Comm
const char* GetString(char sel)

1

A% Sample C comment */

char arg = sel; W

Use this page to configure the colors and fonts used for the windows in the IDE.

A colors and fonts theme is a combination of font and color settings for the IDE windows. Select the theme
you want to use and either click OK to close the dialog box and apply the theme, or use the buttons in the
dialog box to modify the theme. On the right-hand side of the dialog box is a preview of the settings you
make. You can use one of the predefined themes or create your own custom theme.

The predefined themes are:

Default

Classic

High contrast

Dark mode
Solarized

Dark Solarized
Color Accessibility

User settings theme

A darker version of the Solarized theme.

The theme used in the IDE unless you change it.

The colors and fonts match older versions of the IAR Embedded Workbench IDE.
A theme with a dark background, and very bright font colors.

A theme with a dark background and matching font colors.

A theme with soft colors that many find comfortable to look at.

Color combinations intended to assist users with color vision deficiencies.

If you had defined custom color settings in a version of IAR Embedded

Workbench installed before the current version, it will appear here as a user

settings theme.

To create your own custom theme, select the predefined theme you like best and click Duplicate,

3 and modify the duplicated theme.

IDE Project Management and Building
Guide

41

Reference information on the IDE The development environment

Opens the Edit Colors dialog box where you can change the colors used in the editor window, see £dlit

Colors dialog box, page 43.

Opens the Edit Fonts dialog box where you can change the fonts used in all IDE windows, see Edit Fonts
dialog box, page 44.

Restores the selected modified theme to its default setting.

Creates a copy of the selected theme.

Deletes the selected custom theme.

Makes the name of the selected custom theme editable.

Opens a standard Windows Open dialog box to let you import an XML file with a saved colors and fonts
theme.

Opens a standard Windows Save dialog box to let you save a colors and fonts theme as an XML file. Save
it as a back-up or share it with colleagues.

IDE Project Management and Building
Guide 42

Reference information on the IDE

Edit Colors dialog box

The development environment

The Edit Colors dialog box is available from the Colors and Fonts category in the IDE Options dialog box.

B | Edit Colors

Syntax Colaring:

Stings

Char

Preprocessor
Mumber

kemwords

- Kepword

- | Jser keyward

- Compiler kepword
- pzm keyword

- Dae keyward

- Doc keyword errar

- C++ comment
- Comment

- A comment
- Doc comment
Operator

Identifier

Syntax feedback
Inactive code
Other

Marmal

Backaground Caler...

Colar...

Cormmetits Type Style:

x

#pragma diag_suppress = Ped48
#define TEST @
inline char * get SP(woid)

1
¥

asm("MOV R@, SP" };

#pragma swi_number = 8x@7
_ swi void swi_watchdog (void);

SEE
* Sample Doxygen comment.

* [Eparom sel Sample doc argument

* [@para non-existing-keyword Comment
const char* GetString(char sel)

{
/% Sample C comment */
char arg = sel;
if (arg == 'c")
#if TEST
return "Some string - TEST";
#else

return "Some string”;

#include <stdioc.h> // Sample C++ comment

You can click text in the preview to select itz categaom.

Cancel

Use this dialog box to customize the colors used by the selected theme in the editor window. A preview is

shown of all the changes you make.

Select the syntactic source code element that you want to modify. The User keyword element corresponds
to the keywords that you have listed in the custom keyword file, see Edifor Setup Files options, page 54.

Lists colors to choose from. Automatic matches the standard color set in the Windows preferences. The
current color has an asterisk (*) next to its name.

Select Normal, Bold, or Italic style for the selected element.

Click to set the background color of the editor window. Automatic matches the standard color set in the
Windows preferences. The current color has an asterisk (*) next to its name.

IDE Project Management and Building
Guide

43

Reference information on the IDE The development environment

Edit Fonts dialog box
The Edit Fonts dialog box is available from the Colors and Fonts category in the IDE Options dialog box.

B ' Edit Fonts >

Proportional Font... | M5 Sans Serf, size = 10 Fixed Font... Courier, size = 10

Thiz font iz used for plain test in the IDE windows, e.g. Thiz font is used for values and addreszes in the IDE
the test in the “Work zpace window, windows, .. in the Memon windows.

..... Project- Debug 0x0000' 0000 6% £0 63 &5 h.n.
0x0000'0004 18 £0 9f 5

0x0000' 0008 58 f1 9e c5 X...
0x0000'0012 19 fl 9¢ &6
0x0000' 0010 18 &b 9f e5 . k..
0x0000'0014 00 00 00 00
0x0000'0018 61 £0 9f &5 a...
0x0000'0022 14 £0 9f 5

0x0000' 0020 ac 04 00 0O

Source files

v
L i i L o e Y | el | L - o i O W | +
Editar Fort. . Conzolaz, size =10
This font iz used in the text editar.
#pragma diag suppress = PeS48 A
#include «<stdic.h> // Sample C++ comment
inline char * get SP{ woid)
1
asm{ MOV R@, SP");
b
v

Apply font changes to all themes

Carcel

Use this dialog box to customize the fonts used by the selected theme in the IDE windows. Previews are
shown of all the changes you make.

Opens a font picker where you can select which proportional (variable-width) font and size to use for plain
text in all windows.

Opens a font picker where you can select which fixed-width (monospace) font and size to use for values
and addresses in all windows except the editor window.

IDE Project Management and Building
Guide 44

Reference information on the IDE The development environment

Opens a font picker where you can select which fixed-width (monospace) font and size to use in the editor
window.

Select this option to apply the changes you have made to all themes, not just the one that was selected when
you opened the Edit Fonts dialog box.

Key Bindings options

The Key Bindings options are available by choosing Tools>Options.

IDE Options
- Colors and Fonts
W ey Bindings Menu: _ -
Larjguage Command Primary Hlias E
- Editor 3
New Document Ctr=+N 3
- Messages
Troublechoofi Mew workspace
prl:l!.l eshooting Open Ctr=0
[Project Open Workspace
- Source Code Control Open file Ctr+Shift+H
- Debugger Close -
- Stack Press shortcut key: Primary Hias

il
:

(]
(1]
ol

[ok || cancal |

Use this page to customize the shortcut keys used for the IDE menu commands.

Selects the menu to be edited. Any currently defined shortcut keys for the selected menu are listed below
the Menu drop-down list.

Selects the menu command you want to configure your own shortcut keys for, from this list of all
commands available on the selected menu.

IDE Project Management and Building
Guide 45

Reference information on the IDE The development environment

Type the key combination you want to use as shortcut key for the selected command. You cannot set or add
a shortcut if it is already used by another command.

Choose to:

Set Saves the key combination in the Press shortcut key field as a shortcut for the
selected command in the list.

Clear Removes the listed primary key combination as a shortcut for the selected

command in the list.

The new shortcut will be displayed next to the command on the menu.

Choose to:

Add Saves the key combination in the Press shortcut key field as an alias—a hidden
shortcut—for the selected command in the list.

Clear Removes the listed alias key combination as a shortcut for the selected command

in the list.

The new shortcut will be not displayed next to the command on the menu.

Reverts the shortcuts for all commands to the factory settings.

IDE Project Management and Building

Guide

46

Reference information on the IDE

Language options
The Language options are available by choosing Tools>Options.

The development environment

IDE Options

- Colors and Fonts

- Key Bindings

- Language

+)- Editor

- Messages

- Troubleshooting

|- Project

- Source Code Contral
- Debugger

- Stack

Language
English (United States) -

After changing to a different language.
you must restar the application.

[ok][cancel

Use this page to specify the language to be used in windows, menus, dialog boxes, etc.

Selects the language to be used. The available languages depend on your product package, English (United
States) and Japanese (Japan).

l:? If you have installed IAR Embedded Workbench for several different toolchains in the same
directory, the IDE might be in mixed languages if the toolchains are available in different

languages.

IDE Project Management and Building

Guide

47

Reference information on the IDE

Editor options

The Editor options are available by choosing Tools>Options.

The development environment

IDE Options

- Colors and Fonts

- Key Bindings

- Language

+- Editor

- Messages

- Troubleshooting

[+- Project

- Source Code Contral
- Debugger

- Stack

Tah size: g Syntax highlighting
Auto indent
Indent size: 2
Tab Key Function: Show line numbers
() Insert tab Scan for changed files
@ Indent with spaces Show bookmarks
Show fold margin
Show right margin
i [] Enable vitual space
() Printing edge IR traiing blank
@ Columns: 20 emove trailing blanks
Auto code completion and parameter hints
File Encoding Show source browser tooltips
Default character encoding: [Shaw line break characters
lSystem v] [Show whitespaces
Auto-detect character encoding [7] Show inactive cods
EOL characters: PC -
[ok || cance |

Use this page to configure the editor. For more information about the editor, see Edliting, page 124.

Specify the width of a tab character, in terms of character spaces.

Specify the number of spaces to be used when tabulating with an indentation.

Controls what happens when you press the Tab key. Choose between:

Insert tab

Indent with spaces

Inserts a tab character when the Tab key is pressed.

Inserts an indentation (space characters) when the Tab key is pressed.

IDE Project Management and Building

Guide

48

Reference information on the IDE The development environment

Displays the area of the editor window outside the right margin as a light gray field. If this option is
selected, you can set the width of the text area between the left margin and the right margin. Choose to set

the width based on:

Printing edge

Columns

Bases the width on the printable area, which is taken from the general printer
settings.

Bases the width on the number of columns.

Controls file encoding. Choose between:

Default character
encoding

Auto-detect character
encoding

EOL characters

Selects the character encoding to be used by default for new files. Choose
between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic

Central European

Greek

Hebrew

Thai

Baltic

Russian

Vietnamese

Note that if you have specified a character encoding from the editor window
context menu, that encoding will override this setting for the specific document.

Detects automatically which character encoding that should be used when you
open an existing document.

Selects which line break character to use when editor documents are saved.
Choose between:

PC (default), Windows and DOS end of line characters.

UNIX, UNIX end of line characters.

Preserve, the same end of line character as the file had when it was opened, either

PC or UNIX. If both types or neither type are present in the opened file, PC end of
line characters are used.

IDE Project Management and Building

Guide

49

Reference information on the IDE The development environment

Makes the editor display the syntax of C or C++ applications in different text styles.

For more information about syntax highlighting, see Edit Colors dialog box, page 43 and Syntax coloring,
page 129.

Makes the editor indent the new line automatically when you press Return. For C/C++ source files, click
the Configure button to configure the automatic indentation, see Configure Auto Indent dialog box, page
52, For all other text files, the new line will have the same indentation as the previous line.

Makes the editor display line numbers in the editor window.

Makes the editor reload files that have been modified by another tool.
If a file is open in the IDE, and the same file has concurrently been modified by another tool, the file will

be automatically reloaded in the IDE. However, if you already started to edit the file, you will be prompted
before the file is reloaded.

Makes the editor display a column on the left side in the editor window, with icons for compiler errors and
warnings, Find in Files results, user bookmarks, and breakpoints.

Makes the editor display the fold margin in the left side of the editor window. For more information, see
Code folding, page 127.

Allows the insertion point to move outside the text area.

IDE Project Management and Building

Guide

50

Reference information on the IDE The development environment

Removes trailing blanks from files when they are saved to disk. Trailing blanks are blank spaces between
the last non-blank character and the end of line character.

Enables code completion and parameter hints. For more information, see Editing a file, page 125.

Toggles the display of detailed information about the identifier that the cursor currently hovers over.

Toggles the display of carriage return and line feed characters in the editor window.

Toggles the display of period (.) characters for single blank spaces and arrow (—>) characters for tabs in
the editor window.

Using preprocessor symbols, you can define which code that should be compiled for various build
configurations. This option toggles the display of inactive code—code that will not be compiled—in the
editor window. The feature only works for files in the active project.

IDE Project Management and Building

Guide

51

Reference information on the IDE The development environment

Configure Auto Indent dialog box
The Configure Auto Indent dialog box is available from the Editor category in the IDE Options dialog box.

e o)

Configure Auto Indent @
Sample code
Opening Brace (a) int f({int x)
0 a |
b switch (x)
Body (b} g | |
2] case 0O:
b return 1;
Label () c default:
a b return x;
}
}
QK] | Cancel

Use this dialog box to configure the editor’s automatic indentation of C/C++ source code.

For more information about indentation, see /ndenting text automatically, page 126.

Specify the number of spaces used for indenting an opening brace.

Specify the number of additional spaces used for indenting code after an opening brace, or a statement that
continues onto a second line.

Specify the number of additional spaces used for indenting a label, including case labels.

This area reflects the settings made in the text boxes for indentation. All indentations are relative to the
preceding line, statement, or other syntactic structures.

IDE Project Management and Building
Guide 52

Reference information on the IDE

External Editor options

The External Editor options are available by choosing Tools>Options.

The development environment

IDE Options

- Colors and Fonts
- Key Bindings
- Language Editor:
=- Editor
Arguments:
- Setup Files
Syntax Feedback
- Messages

- Troubleshooting

- Project

.. 3ource Code Control
- Debugger

... Stack

IUse Extemal Editor

Cancel

Use this page to specify an external editor of your choice.

See also Using an external editor, page 30.

Enables the use of an external editor.

Specify the filename and path of your external editor. A browse button is available.

Specify any arguments to be passed to the editor.

IDE Project Management and Building

Guide

53

Reference information on the IDE

The development environment

Editor Setup Files options

The Editor Setup Files options are available by choosing Tools>Options.

IDE Options

- Colors and Fonts
- Key Bindings

- Language

- Editor

External Editor
- Setup Files
.. Syntax Feedback

- Messages

- Troubleshooting

- Project

- Source Code Control
- Debugger

- Stack

[7] Use Custom Keyword Fils:

Ise Code Templates:
CAUsershjohanaAppData“ Roaming AR Embedded Worbench Code Templates. EMU bd E

0K || Cancel

Use this page to specify setup files for the editor.

Specify a text file containing keywords that you want the editor to highlight. For information about syntax
coloring, see Syntax coloring, page 129.

Specify a text file with code templates that you can use for inserting frequently used code in your source
file. For information about using code templates, see Using and adding code templates, page 128.

IDE Project Management and Building

Guide

54

Reference information on the IDE

The development environment

Editor Syntax Feedback options

The Editor Syntax Feedback options are available by choosing Tools>Options.

IDE Options

- Colors and Fonts
- Key Bindings

- Language

- Editor

- External Editor
- Setup Files

Syntax Feedback

- Messages

- Troubleshooting

- Project

- Source Code Control
- Debugger

- Stack

Syntax Feedback Level: MNone e

Abryt

Use this page to specify how much syntax feedback you want in the editor, in the form of squiggly lines
and tooltips.

For more information, see under Editor window, page 132.

Specify the desired feedback level. Choose between:

None

All

Warnings

Errors

The editor gives no feedback on the code in the editor windows.

The editor gives all available feedback on the code in the editor windows,
including purely informational feedback.

The editor warns about syntactic problems and indicates coding errors.

The editor indicates coding errors.

IDE Project Management and Building

Guide

55

Reference information on the IDE

Messages options

The Messages options are available by choosing Tools>Options.

The development environment

i

IDE Options

. Colors and Fonts
- Key Bindings

- Language

- Editor Enable All Dialogs

)

-. Messages

- Troubleshooting

[Project

. 5ource Code Control
- Debugger

- Stack

Some dialog boxes can be suppressed

by selecting a "Don't show again”

check boex. Click "Enable Al Dialogs"

to enable all suppressed dialog boxes again.

OK || Cancel

Use this page to re-enable suppressed dialog boxes.

Enables all dialog boxes you have suppressed by selecting a Don’t show again check box, for example:

e

l"x This will terminate the debug session.

[oK] [Cancel

[] Don't show again

larldePm =

-

IDE Project Management and Building

Guide

56

Reference information on the IDE The development environment

Troubleshooting options
The Troubleshooting options are available by choosing Tools>Options.

IDE Options (=25

- Colors and Fonts
.. Key Bindings Enable IDE logging (change effective after restart)

- Language Logging directory {change effective after restart):
- Editar C::\UsershiohanaDocuments' AR Embedded WarkbenchMyLogs E]
- Messages

- Troubleshooting

+- Project

- Source Code Control
- Debugger

- Stack

0K || Cancel

Use this page to create and save logs of IDE operations.

l:? The IDE log files can become quite large, so you should only enable logging when asked to do
so by IAR Technical Support.

Creates log files of IDE operations. If you contact IAR Technical Support over repeated performance
issues, you might be asked to generate and submit IDE logs to help the support engineers analyze the
problem. To interpret the logs, detailed knowledge of the internal structure of the Embedded Workbench
IDE is required.

Specify a location for the log files.

IDE Project Management and Building
Guide 57

Reference information on the IDE The development environment

Project options
The Project options are available by choosing Tools>Options.

IDE Options *
-.Colors and Fonts |
.Key Bindi

FY EIndings Stop build operation on: MNever e

-.Language

41 Editor Save editor windows befare building: Hways “

- Messages E - PR

- Troubleshooting bjird?n‘;:o Space and projects betore Always hl
Malke before debugging: Al -

.CMake/CMSIS-Toolbox aans ays

~5ource Code Control B Reload last workspace at startup

-~ Debugger @ Play sound after buiid operati

Stack ay sound after build operations

.. Terminal 1/0 B Enable project connections
B Enable build cache
B Enable parallel build Processes: qp { 20 cores reported by 05)

(") Resolve sources for active debug target in cument project

Cancel

Use this page to set options for the Make and Build commands.

Selects when the build operation should stop. Choose between:

Never Never stops.

Errors Stops on errors.

Selects when the editor windows should be saved before a build operation. Choose between:

Never Never saves.
Ask Prompts before saving.
Always Always saves before Make or Build.

IDE Project Management and Building
Guide 58

Reference information on the IDE The development environment

Selects when a workspace and included projects should be saved before a build operation. Choose between:

Never Never saves.
Ask Prompts before saving.
Always Always saves before Make or Build.

Selects when a Make operation should be performed as you start a debug session. Choose between:

Never Never performs a Make operation before a debug session.
Ask Prompts before performing a Make operation.
Always Always performs a Make operation before a debug session.

Loads the last active workspace automatically the next time you start the IAR Embedded Workbench IDE.

Plays a sound when the build operations are finished.

Enables the support for setting up live project connections, see Add Project Connection dialog box, page
102

Enables caching of build nodes.

Enables the support for parallel build. The compiler runs in several parallel processes to better use the
available cores in the CPU. In the Processes text box, specify the number of processes you want to use.
Using all available cores might result in a less responsive IDE.

IDE Project Management and Building

Guide

59

Reference information on the IDE The development environment

Makes the IAR Embedded Workbench IDE try to resolve the source files automatically when an externally
built executable is added to a project. This setting is used when you create a new project—existing projects
will not be affected by any changes. For more information, see Resolving source files for externally built
executable files, page 88.

External Analyzers options

The External Analyzers options are available by choosing Tools>Options.

-~

IDE Options *

- Colors and Fonts
- Key Bindings Analyzers:
- Language Analyzer 1 Maove Up
[+]- Editor Analyzer 2
- Messages Analyzer 3 Maove Down
- Troubleshooting
[=I- Project

Language Servers
- CMiake/CMSI5-Teolbox
- Source Code Control

- Debugger
- Stack
. Terminal /O

Add.. Delete

Cancel

Use this page to add an external analyzer to the standard build toolchain. External analyzers operate on
C/C++ source code in the user project. Header files or assembler source code files are not analyzed.

For more information, see Gefting started using external analyzers, page 27.

Lists the external analyzers that you have added to the standard build toolchain.

Moves the analyzer you have selected in the list one step up. This order is reflected on the Project menu.

Moves the analyzer you have selected in the list one step down. This order is reflected on the Project menu.

IDE Project Management and Building

Guide

60

Reference information on the IDE The development environment

Displays the External Analyzer dialog box where you can add a new analyzer to the toolchain and
configure the invocation of the analyzer.

Deletes the selected analyzer from the list of analyzers.

Displays the External Analyzer dialog box where you can edit the invocation details of the selected
analyzer.

External Analyzer dialog box
The External Analyzer dialog box is available by choosing Tools>Options>Project>External Analyzers.

' ™y

M ame:; Analyzer 1

Path: CxProgram Files [«86]%MpdnalyzerTool\Analuzer

Arguments: -nc $FILE_PATHSE $COMPILER_ARGSS

Cutput matching patterns

Location: $FILE_MAKME $:3LINE_MUMEER$
W arning: [Filwarmingl-):

Error: [Pilerror i)

Use this dialog box to configure the invocation of the external analyzer that you want to add to the standard
build toolchain.

External analyzers operate on C/C++ source code in the user project. Header files or assembler source code
files are not analyzed.

For more information, see Getting started using external analyzers, page 27.

IDE Project Management and Building
Guide 61

Reference information on the IDE The development environment

Specify the name of the external analyzer. Note that the name must be unique.

Specify the path to the analyzer’s executable file. A browse button is available.

Specify the arguments that you want to pass to the analyzer.

Note that you can use argument variables for specifying the arguments, see Argument variables, page 79.

Specify a regular expression used for finding source file locations. The regular expression is applied to each
output line which will appear as text in the Build Log window. You can double-click a line that matches the
regular expression you specify.

You can use the argument variables $SFILE NAMES, $SLINE NUMBERS, and $COLUMN NUMBERS

to identify a filename, line number, and column number, respectively. Choose one of the predefined
expressions:

* \"?$FILE NAMES\"?:SLINE NUMBERS will, for example, match a location of the form
file.c:17

* \"?2$FILE NAMES$\"? +$LINE_NUMBERS will, for example, match a location of the form
file.cl7

e \"?S$FILE NAMES$\"? will, for example, match a location of the form file.c

Alternatively, you can specify your own expression. For example, the regular expression Msg :
$FILE NAMES @ $LINE NUMBERS, when applied to the output string Msg:MySourceFile.c @
32, will identify the file as MySourceFile. ¢, and the line number as 32.

Any output line that matches this expression is tagged with the warning symbol.

For example, the expression (?i)warning (?-1) : will identify any line that contains the string
warning: (regardless of case) as a warning.

IDE Project Management and Building

Guide

62

Reference information on the IDE The development environment

Any output line that matches this expression is tagged with the error symbol. Errors have precedence over
warnings.

For example, the expression (?1i)error (?-1i) : will identify any line that contains the string error:
(regardless of case) as an error.

Language Servers options

The Language Servers options are available by choosing Tools>Options.

IDE Options x
- Colors and Fents
--Key Bindings Log Level: None w
- Language Browse processes: 4
- Editar Language server definttions: Reload
- Messages
- Troubleshooting
- Project server State Extensions Files
é----ExternalAnaIyzers clangd Enabled Compiler ext. - —

.. CMake/CMSIS-Toolbox Disable
- Source Code Control
- Debugger

.- Stack

.. Terminal I/0

Cancel

Use this page to configure and choose a language server.

0 The options Log Level and Browse Processes are only available for language servers delivered
with IAR Embedded Workbench. Any language server added using the Language server
definitions must to be configured manually.

The amount of server information delivered by clangd. This is internal information from clangd sent to and
from the server. Choose between:

None No server information is delivered.
Warnings Only server warnings are delivered.
Errors Only server error messages are delivered.
All All server information is delivered.

IDE Project Management and Building

Guide

63

Reference information on the IDE The development environment

The number of threads that clangd is allowed to create. The value must be a positive integer.

The path to a JSON format file that contains a set of language servers to include. When a file has been
parsed, its content is displayed in the table and servers can be enabled or disabled. For a list of supported
language servers, visit Supported Language Servers.

For information about creating files for language servers, visit Language Server Protocol.

CMake/CMSIS-Toolbox options

The IDE Options dialog box contains a page for using IAR Embedded Workbench with CMake/CMSIS-
Toolbox. The page is available by choosing Tools>Options>CMake/CMSIS-Toolbox.

The /CMSIS-Toolbox options are available by choosing Tools>Options.

IDE Options *

- Colors and Fonts
Options entered here are used to initialize new projects.

.. Key Bindi
& Eindings CMake
- Language
1 Editor CMake executable: C:\Program Files\CMake3.28"bin‘cmake. exe
-~ Messages CMake generator: Ninja Muli-Config w

- Troubleshooting
. Extra command line options for configuration:
+- Project

- CMake/CM5I5-Toolbox
- Source Code Control

. Debugger CMSI5-Toolbaox
- Stack

. Terminal /0

CMSI15-Toolbox installation:

Pack root:

B 4dd cument installation as 1AR_TOOLCHAIN_ROOT

B “utomatically download missing packs (automatically accepts licenses)
B “utomatically resolve device

Csolution extra command line options:

—context Har

Chuildgen extra command line options:

-Update-te

Cancel

These options will be used when you create new CMake/CMSIS-Toolbox projects. Any settings made
in the project options dialog box—available by choosing Project>Options>CMake/CMSIS-Toolbox—will
override these options.

Specifies the path to the CMake installation.

IDE Project Management and Building

Guide

64

https://github.com/iarsystems/ew-supported-language-servers
https://microsoft.github.io/language-server-protocol/

Reference information on the IDE The development environment

Use this field to send command line build options directly to CMake.

Specifies the path to the CMSIS-Toolbox installation.

Specifies the location of the pack root folder (the local PACK repository).

Sets the IAR TOOLCHAIN ROOT environment variable to the path of the CMSIS-Toolbox installation,
for the instance of IAR Embedded Workbench you are currently using.

Select this option to make IAR Embedded Workbench automatically attempt to locate and download
missing packs.

(’J-') Packs will be installed regardless of the type of license that governs their use.

Select this option to set the device automatically, based on the information in the csolution.yml
project file. This will change the device setting on the project options Target page
(Project>Options>General Options>Target).

Use this field to send command line options directly to csolution, the CMSIS-Toolbox Project
Manager.

Use this field to send command line build options directly to the cbuildgen tool.

IDE Project Management and Building
Guide 65

Reference information on the IDE The development environment

Source Code Control options (deprecated)
The Source Code Control options are available by choosing Tools>Options.

IDE Options (23w

- Colors and Fonts

- Key Bindings SCL Qptions

- Language Keep items checked out when checking in

+- Editor Save editor windows before perfoming

Alw -
- Messages source code control commands: s

- Troubleshooting

+- Project

- source Code Control
- Debugger

- Stack

[ok || Cancel

Use this page to configure the interaction between an IAR Embedded Workbench project and an SCC
project.

0 This is a deprecated feature which is not supported for new projects.

Determines the default setting for the option Keep Checked Out in the Check In Files dialog box.

Determines whether editor windows should be saved before you perform any source code control
commands. Choose between:

Never Never saves editor windows before performing any source code control
commands.

Ask Prompts before performing any source code control commands.

Always Always saves editor windows before performing any source code control
commands.

IDE Project Management and Building
Guide 66

Reference information on the IDE

Debugger options

The Debugger options are available by choosing Tools>Options.

The development environment

IDE Options

- Colors and Fonts

- Key Bindings

- Language

+- Editor

- Messages

- Troubleshooting

+- Project

- Source Code Control
- Debugger

- Stack

When source resolves to multiple function instances
[] Automatically choose all instances
Step into functions S5TL container expansion

@ All functions Depth: 10

~) Functions with source only
Update intervals (milliseconds) Default inteqger format

Live watch: 1000 Decimal b

Memory window: 1000

OK || Cancel Apply Help

Use this page to configure the debugger environment.

Some source code corresponds to multiple code instances, for example template code. When specifying a

source location in such code, for example when setting a source breakpoint, you can make C-SPY act on all
instances or a subset of instances. Use the Automatically choose all instances option to let C-SPY act on all
instances without asking first.

Controls the behavior of the Step Into command. Choose between:

All functions

Functions with source
only

Makes the debugger step into all functions.

Makes the debugger step only into functions for which the source code is known.
This helps you avoid stepping into library functions or entering disassembly mode

debugging.

Specify how many elements are shown initially when a container value is expanded in, for example, the

Watch window.

IDE Project Management and Building

Guide

67

Reference information on the IDE

The development environment

Specify how often the contents of the Live Watch window and the Memory window are updated in
milliseconds.

These text boxes are only available if the C-SPY driver you are using has access to the target system
memory while executing your application.

Selects the default integer format in the Watch, Locals, and related windows.

Stack options
The Stack options are available by choosing Tools>Options or from the context menu in the Stack window.

i

IDE Options

- Colors and Fonts
- Key Bindings

- Language

- Editor

- Messages

- Troubleshooting
- Project

i External Analyzers

- Source Code Control
- Debugger
- Stack

=

=

Enable graphical stack display and stack usage tracking
30 % stack usage threshold

Wam when exceeding stack threshold
Wam when stack poirter is out of bounds

Stack pointer(s) not valid urtil program reaches:

main
Wamings
@ Log
) Log and alert
[Limit stack display to 5 bytes
0K || Cancel

Use this page to set options specific to the Stack window.

&

If there are multiple stack pointers, C-SPY will decide which stack pointer to use for calculations
based on the name of the stack block as defined in the linker configuration file. To use a

different stack pointer for checks for out-of-bounds stack pointers, stack pointer validity, and
stack display, change the name of the stack block in the linker configuration file and the
cstartup. s file, or use the C-SPY command line option --proc_stack name.

IDE Project Management and Building

Guide

68

Reference information on the IDE The development environment

Enables the graphical stack bar available at the top of the Stack window. It also enables detection of
stack overflows. For more information about the stack bar and the information it provides, see the C-SPY
Debugging Guide for Arm.

% stack usage threshold. Specify the percentage of stack usage above which C-SPY should issue a
warning for stack overflow.

Warn when exceeding stack threshold. Makes C-SPY issue a warning when the stack usage exceeds the
threshold specified in the % stack usage threshold option.

Makes C-SPY issue a warning when the stack pointer is outside the stack memory range.

Specify a /ocation in your application code from where you want the stack display and verification to
occur. The Stack window will not display any information about stack usage until execution has reached
this location.

By default, C-SPY will not track the stack usage before the main function. If your application does not
have a main function, for example, if it is an assembler-only project, you should specify your own start

label. If this option is selected, after each reset C-SPY keeps a breakpoint on the given location until it is
reached.

Typically, the stack pointer is set up in the system initialization code cstartup, but not necessarily from
the first instruction. Select this option to avoid incorrect warnings or misleading stack display for this part
of the application.

Selects where warnings should be issued. Choose between:

Log Warnings are issued in the Debug Log window.

Log and alert Warnings are issued in the Debug Log window and as alert dialog boxes.

IDE Project Management and Building

Guide

69

Reference information on the IDE The development environment

Limits the amount of memory displayed in the Stack window by specifying a number of bytes, counting
from the stack pointer. This can be useful if you have a big stack or if you are only interested in the
topmost part of the stack. Using this option can improve the Stack window performance, especially if
reading memory from the target system is slow. By default, the Stack window shows the whole stack, or
in other words, from the stack pointer to the bottom of the stack. If the debugger cannot determine the
memory range for the stack, the byte limit is used even if the option is not selected.

(‘:P The Stack window does not affect the execution performance of your application, but it might
read a large amount of data to update the displayed information when the execution stops.

Terminal 1/O options
The Terminal 1/O options are available by choosing Tools>Options when C-SPY is running.

IDE Opticns *

- Colors and Fonts Input mode
- Key Bindings © Keyboard
Language e Buffered
4. Editor .
- Messages L
. Troubleshaoting O File
+- Project Text
. CMake/CMSIS-Toolbox Binary
- Source Code Control $PROJ_DIRS\Tem|OInput txt
- Debugger
- Stack Input echoing
™ Terminal |/0 Log file

[C] Terminal 1/0 window

Encoding

System d

[Show target reset in Teminal 1/0 window

oK l Cancel
Use this page to configure the C-SPY terminal 1/O functionality.
Controls how the terminal 1/O input is read. Choose between:
Keyboard Makes the input characters be read from the keyboard. Choose between:
« Buffered, Buffers input characters
« Direct, Does not buffer input characters
File Makes the input characters be read from a file. Choose between:

e Text, Reads input characters from a text file
e Binary, Reads input characters from a binary file
A browse button is available for locating the input file.

IDE Project Management and Building
Guide 70

Reference information on the IDE The development environment

Determines whether to echo the input characters and where to echo them. Choose between:

Log file Echoes the input characters in the Terminal 1/0 log file. Requires that you have
enabled the option Debug>Logging>Set Terminal 1/O Log File>Enable Terminal
1/0 log file.

Terminal I/O window Echoes the input characters in the Terminal 1/0 window.

Determines the encoding used for terminal input and output. Choose between:

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Chinese Traditional (Big5)
Korean (Unified Hangul Code)
Arabic

Central European

Greek

Hebrew

Thai

Baltic

Russian

Vietnamese

Displays a message in the C-SPY Terminal I/0 window when the target resets.

IDE Project Management and Building

Guide

71

Reference information on the IDE

Configure Tools dialog box

The Configure Tools dialog box is available from the Tools menu.

I

Configure Tocols

benu Content:

Ok

Cancel

M e

Delete

benu Text:

LM otepad

Command:

C:Wwindowshnotepad. exe

Argument:

Initial Directan:

[] Redirect to Dutput “Window
[] Prompt for Command Line

T ool Available:

[.-’-‘-.Iwa_l,ls

|

Browsze. ..

-

The development environment

Use this dialog box to specify a tool of your choice to add to the Tools menu, for example Notepad:

Opticns...

Filename Extensions...

Configure Viewers...

Configure Custom Argument Variables...

Configure Tools...

Motepad

&

page 107.

If you intend to add an external tool to the standard build toolchain, see Extending the toolchain,

You can use variables in the arguments, which allows you to set up useful tools such as interfacing to a
command line revision control system, or running an external tool on the selected file.

To add a command line command or batch file to the Tools menu:

1. Type or browse to the cmd . exe command shell in the Command text box.

2. Type the command line command or batch file name in the Argument text box as:

/C name

IDE Project Management and Building
Guide

72

Reference information on the IDE The development environment

where name is the name of the command or batch file you want to run.

The /C option terminates the shell after execution, to allow the IDE to detect when the tool has
finished.

For an example, see Adding command line commands to the Tools menu, page 29.

Creates a stub for a new menu command for you to configure using this dialog box.

Removes the command selected in the Menu Content list.

Lists all menu commands that you have defined.

Specify the name of the menu command. If you add the & sign anywhere in the name, the following
letter, N in this example, will appear as the mnemonic key for this command. The text you specify will be
reflected in the Menu Content list.

Specify the tool and its path, to be run when you choose the command from the menu. A browse button is
available.

Optional. Specify an argument for the command.

Specify an initial working directory for the tool.

IDE Project Management and Building

Guide

73

Reference information on the IDE The development environment

Makes the IDE send any console output from the tool to the Tool Output page in the message window.
Tools that are launched with this option cannot receive any user input, for instance input from the keyboard.

Tools that require user input or make special assumptions regarding the console that they execute in, will
notwork at all if launched with this option.

Makes the IDE prompt for the command line argument when the command is chosen from the Tools menu.

Specifies in which context the tool should be available. Choose between:

e Always
* When debugging
« When not debugging.

Configure Viewers dialog box
The Configure Viewers dialog box is available from the Tools menu.

i "

n| Configure Yiewers

Extensions Action Ok
txt SFILE_PATHS Cancel
bl Explorer Default

Mew
Edit...
Delete

Impaort...

TR

—

I Expaort...

This dialog box lists overrides to the default associations between the document formats that IAR
Embedded Workbench can handle and viewer applications.

IDE Project Management and Building
Guide 74

Reference information on the IDE The development environment

This area contains these columns:

Extensions Explicitly defined filename extensions of document formats that IAR Embedded
Workbench can handle.

Action The viewer application that is used for opening the document type. Explorer
Default means that the default application associated with the specified type in
Windows Explorer is used.

Displays the Edit Viewer Extensions dialog box, see £dit Viewer Extensions dialog box, page 76.

Displays the Edit Viewer Extensions dialog box, see £dit Viewer Extensions dialog box, page 76.

Removes the association between the selected filename extensions and the viewer application.

Opens a file browser where you can locate and import a File Viewer Association file in XML format.
This file contains associations between document formats and viewer applications. The XML structure of
this file is described in the example file FileViewerAssociationsExample.xml located in the
arm\src\ide\ directory in your product installation.

Displays a standard Save As dialog box to let you save the current associations between document formats
and viewer applications in the Configure Viewers dialog box to a file in XML format.

IDE Project Management and Building
Guide 75

Reference information on the IDE The development environment

Edit Viewer Extensions dialog box
The Edit Viewer Extensions dialog box is available from the Configure Viewers dialog box.

e 1

Edit Viewer Extensions

File name extensions:

il
Cancel
Action
Built-n text editor

@) Use file explorer assodations

Command line

=

Use this dialog box to specify how to open a new document type or edit the setting for an existing
document type.

Specify the filename extension for the document type—including the separating period (.).

Selects how to open documents with the filename extension specified in the Filename extensions text box.
Choose between:

Built-in text editor Opens all documents of the specified type with the IAR Embedded Workbench

text editor.
Use file explorer Opens all documents of the specified type with the default application associated
associations with the specified type in Windows Explorer.
Command line Opens all documents of the specified type with the viewer application you type or

browse your way to. You can give any command line options you would like to
the tool, for instance, type SFILE PATHS after the path to the viewer application

to start the viewer with the active file (in editor, project, or messages windows).

IDE Project Management and Building
Guide 76

Reference information on the IDE

Filename Extensions dialog box
The Filename Extensions dialog box is available from the Tools menu.

Filename Extension Overrides dialog box

I =

Filename Extensions

Taool chain

CPLIMNARME

Ok

Cancel

1l

Edi...

The development environment

Use this dialog box to customize the filename extensions recognized by the build tools. This is useful if you
have many source files with different filename extensions.

Lists the toolchains for which you have an IAR Embedded Workbench installed on your host computer.

Select the toolchain you want to customize filename extensions for.

Note the * character indicates user-defined overrides. If there is no * character, factory settings are used.

Displays the Filename Extension Overrides dialog box, see Filename Extension Overrides dialog box, page

77.

The Filename Extension Overrides dialog box is available from the Filename Extensions dialog box.

e

Filename Extension Overrides

Toal Factary Setting
Static Analyziz .CLCCLCPR

C/C++ Compiler [CLCPRLCT
Agzembler a3 asm.mseas
Qutput Converter oLk el pre: puff: 2o
Browze Info Compiler .c.occiopp

Linker .0.a

Library Builder 0.4

Browse [nfo Builder phi

Override

<Mone:
<Mone:
<Mones
<Monesr
<Mones
<Monesx
<Mone:
<Mones

Cancel

i

Edit...

-

IDE Project Management and Building

Guide

77

Reference information on the IDE The development environment

This dialog box lists filename extensions recognized by the build tools.

This area contains these columns:

Tool The available tools in the build chain.
Factory Setting The filename extensions recognized by default by the build tool.
Override The filename extensions recognized by the build tool if there are overrides to the

default setting.

Displays the Edit Filename Extensions dialog box for the selected tool.

Edit Filename Extensions dialog box
The Edit File Extensions dialog box is available from the Filename Extension Overrides dialog box.

I o

Edit Filename Extensions

Factony setting

Owveride | Cancel
.CLCCLCPp

This dialog box lists the filename extensions recognized by the IDE and lets you add new filename
extensions.

Lists the filename extensions recognized by default.

Specify the filename extensions you want to be recognized. Extensions can be separated by commas or
semicolons, and should include the leading period.

IDE Project Management and Building
Guide 78

Reference information on the IDE

The development environment

Product Info dialog box
The Product Info dialog box is available from the Help menu.

-

B " Product Info (overview)

==

Product

IAR. Embedded Workbench for CRUNAME
IAR. Embedded Warkbench shared components

Version ﬂ]
7.60.1.11216
3.0.8.4392

Copyright 2002-2017 IAR. Systems AB.

This dialog box lists the version number of your IAR Embedded Workbench product installation and the
shared components.

Opens a dialog box which lists the version numbers of the various components part of your product
installation.

Argument variables

You can use argument variables for paths and arguments, for example when you specify include paths in

the Options dialog box or whenever there is a need for a macro-like expansion that depends on the current

context, for example in arguments to tools. You can use a wide range of predefined argument variables as

well as create your own, see Configure Custom Argument Variables dialog box, page 80. These are the

predefined argument variables:

Variable

$COMPILER ARGS$

$CONFIG NAMES
$CUR_DIRS
$CUR_LINES

$SDATES

SEW_DIRS
$EXE_DIRS
SFILE BNAMES
$FILE BPATHS
SFILE DIR$
$FILE FNAMES
$FILE PATHS
$LIST DIRS

$OBJ DIRS

Description

All compiler options except for the filename that is used when compiling using the
compiler. Note that this argument variable is restricted to the Arguments text box in the
External Analyzer dialog box.

The name of the current build configuration, for example Debug or Release.
Current directory
Current line

Today’s date, formatted according to the current locale. Note that this might make the
variable unsuited for use in file paths.

Top directory of IAR Embedded Workbench, for example c: \iar\ewarm-2.1
Directory for executable output

Filename without extension

Full path without extension

Directory of active file, no filename

Filename of active file without path

Full path of active file (in editor, project, or message window)

Directory for list output

Directory for object output

IDE Project Management and Building

Guide

79

Reference information on the IDE

The development environment

Variable

$PROJ DIRS
$PROJ FNAMES
$PROJ PATHS
STARGET DIRS
$TARGET BNAMES
STARGET BPATHS
$TARGET FNAMES
$TARGET PATHS
$TOOLKIT DIR$
SUSER _NAMES
$WS_DIRS

Description

Project directory

Project filename without path

Full path of project file

Directory of primary output file

Filename without path of primary output file and without extension
Full path of primary output file without extension

Filename without path of primary output file

Full path of primary output file

Directory of the active product, for example c: \iar\ewarm-2.1\arm
Your host login name

The active workspace directory*

The Windows environment variable ENVVAR. Any name within $ and _$ will be
expanded to that system environment variable.

$ ENVVAR $

Your own argument variable, see Configure Custom Argument Variables dialog box, page
80. Any name within $ and $ will be expanded to the value you have defined.

$MY CUSTOM VARS$

Table 3. Argument variables

*This variable is only available in the IDE, not when using iarbuild.exe .

Argument variables can also be used on some pages in the IDE Options dialog box, see 7o0/s menu, page
192

Configure Custom Argument Variables dialog box
The Configure Custom Argument Variables dialog box is available from the Tools menu.

i

] Configure Custom Argument Yariables

Waorkspace | Global

= & Prod A v1.6 (global) Enable Group
A ROOT DIR = d'\prod_A_ 1.6
& _INCLUDE_DIR = d:'prod_A_1.6%nc
= =1 Prod A w2.0 (global)
A_ROOT_DIR = d:\prod_A_ 2.0 Add Variable...
A_INCLUDE_DIR = d:\prod_A_2.0\inc
=[] Prod B Evaluation
B_ROOT_DIR = d:\prod_B Delete
B_LIB_DIR = d:\prod_B\libs

[Expand/Collapse all]

[| Hide disabled groups

Use this dialog box to define and edit your own custom argument variables. Typically, this can be useful
if you install a third-party product and want to specify its include directory by using argument variables.

IDE Project Management and Building

Guide 80

Reference information on the IDE The development environment

Custom argument variables can also be used for simplifying references to files that you want to be part of

your project.

Custom argument variables have one of two different scopes:

. Workspace-local variables, which are associated with a specific workspace and can only be seen by
the workspace that was loaded when the variables were created.

e Global variables, which are available for use in all workspaces

You can organize your variables in named groups.

Click the tab with the scope you want for your variable:

Workspace .

Global .

Both global and workspace-local variables are visible in the display area.
Only workspace-local variables can be edited or removed.

Groups of variables as well as individual variables can be added or imported
to the local level.

Workspace-local variables are stored in the file

Workspace.custom argvars in a specific directory, see Files for local
settings, page 173.

Only variables that are defined as global are visible in the display area—all
these variables can be edited or removed.

Groups of variables as well as individual variables can be added or imported
to the global level.

Global variables are stored in the file global.custom argvarsina
specific directory, see Files for global settings, page 173.

Note that when you rely on custom argument variables in the build tool settings, some of the
information needed for a project to build properly might now be ina . custom argvars file.
You should therefore consider version-controlling your custom argument file (workspace-local
and global), and whether to document the need for using these variables.

Expands or collapses the view of the variables.

Hides all groups of variables that you previously have disabled.

IDE Project Management and Building
Guide

81

Reference information on the IDE The development environment

Enables or disables a group of variables that you have selected. The result differs depending on which tab
you have open:

e Workspace tab—Enabling or disabling groups will only affect the current workspace.

e Global tab—Enabling will only affect newly created workspaces. These will inherit the current global
state as the default for the workspace.

ﬁ You cannot use a variable that is part of a disabled group.

Opens the New Group dialog box where you can specify a name for a new group. When you click OK, the
group is created and appears in the list of custom argument variables.

Opens the Add Variables dialog box where you can specify a name and value of a new variable to the group
you have selected. When you click OK, the variable is created and appears in the list of custom argument
variables.

Note that you can also add variables by importing previously defined variables. See Import below.

Opens the Edit Variables dialog box where you can edit the name and value of a selected variable. When
you click OK, the variable is created and appears in the list of custom argument variables.

Deletes the selected group or variable.

Opens a file browser where you can locate a Workspace.custom argvars file. The file can contain
variables already defined and associated with another workspace or be a file created when installing a
third-party product.

IDE Project Management and Building

Guide

82

Reference information on the IDE The development environment

CMSIS Manager dialog box

The CMSIS Manager dialog box is available by choosing Project>CMSIS-Manager or by clicking the
toolbar button CMSIS-Manager.

~
@ test2/test2 reconfig - [AR Embedded Workbench CMSIS Manager E@Iﬂ

File Edit Search CMSIS Manager Window Help
Qi vl - - ! - - Quick Access %\l

. test2.rteconfig i3 = H @ Packs 5 = =g

4 Components [~ O] FE fEy @ 7

Search Pack
Software Components Sel. Variant Vendor Version Description

B MspaazpaoLy Texas Instruments ARM Cortex-Ma 48 | Pack Action Description
s 4 CMSIS Cortex Microcentro 4 ® Device Specific 1 Pack EFM32TG108F4 selected
4 & Device Startup, Systern Sety > '%; SiliconLabs.EFM32TG [Install Silicon Labs EFM32TG Tiny G...
@ Startup Texasnstruments 3.2.2 | System Startup for | 4 ® Generic 1 Pack Software Packs with generic ...
> ‘i’d, ARM.CMSIS @ Uptodate CMSIS (Cortex Microcontroll...
4 [+
Validation Output Description

Compoenents | Device | Packs

Use this dialog box to manage CMSIS software packs and example projects.

For more information, see:

e Installing a CMSIS-Pack software pack, page 92

e Using CMSIS-Pack support in IAR Embedded Workbench, page 92

Working with example projects, page 18, specifically the procedure 7o use a CMSIS-Pack example
project

For information about the views, buttons, and menu commands available in this dialog box, press F1 or
click the question mark icon to display the online help. The online help system is context-sensitive, which
means that depending on which view is in focus, different help topics are displayed.

IDE Project Management and Building
Guide 83

Project management Project management

Project management

Introduction t0 MANAZING PIOJECTS ...evuuivnirneitneiteii ettt ettt eetnettetereteaetneesneesaeateseaasetsneranersnaenernrernaesnaees 84
Briefly about Managing PrOJECESeeuueiureiriiieii et et et ettt et et e et e et e st eaee et e eaneeaeeaeenaeanaernees 84
HOW Projects are OTZaNIZEAiiuiiuiiiiii et e e e e et e e et e e e e ae et e et e et e et e et e e eaneeanees 85
Resolving source files for externally built executable filescoooiiiiiiiiiiii 88
The IDE interacting with version control SYSteMSoceuieiuiiiniiiiii e 89
A 3T e o) 0] [1P 89
Creating and managing a workspace and itS PrOJECESeeuueiuiiniuniei et e e e e e e e 89
Viewing the workspace and itS PrOJECTSv.ueiuneiuneineii ettt et e e e e e et et e e e e eanees 90
Interacting With SUDVEISIONiiiuniiiiiiiii et 91
Installing a CMSIS-Pack sOftWare Packccouviiniiiiiiiie e e 92
Using CMSIS-Pack support in IAR Embedded Workbenchcoooiiiiiiiiiiiiiini e 92
Reference information on Managing PIrOJECTSvevueeuneernerieiieernerinetterteenrernrernersneeternerrnarrnerrnerserens 94
WOTKSPACE WINAOW ...eetiiiiiieiie et e et e e e e e et e et e et e et e et e et e eaaeean e et e eaeen e eanaeaneesnees 94
Create New Project dialog DOXoiveiiieiiiiiei et e e e e et e e et e et e e eanees 99
Configurations for project dialog DOXoiiuiiiiiiiiiiii e 99
New Configuration dialog DOXc..iiuiiiiii e 100
Add Project Connection dialog DOXcouuiiiiiiiiiii e 102
Add Folder Alias dialog DOXoiuniiiiiiie e 102
Configure Aliases dialog DOXoouiiiii e 104
Version Control System menu for SUDVETSIONccuuiiiiiiiiniiiiiiii e e 105
Lol 1S3 10 S 72 £ N 106

INTRODUCTION TO MANAGING PROJECTS

Briefly about managing projects
In a large-scale development project, with hundreds of files, you must be able to organize the files in a
structure that is easily navigated and maintained by several engineers.

The IDE comes with functions that will help you stay in control of all project modules, for example, C or
C++ source code files, assembler files, include files, and other related modules. You create workspaces and

IDE Project Management and Building
Guide 84

Introduction to managing projects Project management

let them contain one or several projects. Files can be organized in file groups, and options can be set on all
levels—project, group, or file.

Frolec

Files

Files

Tk

Files

.

Changes are tracked so that a request for rebuild will retranslate all required modules, making sure that no
executable files contain out-of-date modules.

These are some additional features of the IDE:

* Project templates to create a project that can be built and executed for a smooth development startup
e Hierarchical project representation

e Source browser with an hierarchical symbol presentation

< Options can be set globally, on groups of source files, or on individual source files

e The Make command automatically detects changes and performs only the required operations

* Project connection to set up a connection between IAR Embedded Workbench and an external tool
e Text-based project files

e Custom Build utility to expand the standard toolchain in an easy way

e Command line build with the project file as input.

There are two main different ways to navigate your project files—using the Workspace window or the
Outline window. The Workspace window displays an hierarchical view of the source files, dependency
files, and output files and how they are logically grouped. The Outline window, on the other hand, displays
information about the build configuration that is currently active in the Workspace window. For that
configuration, the Outline window displays a hierarchical view of all globally defined symbols, such as
variables, functions, and type definitions. For classes, information about any base classes is also displayed.

For more information about source browsing, see Briefly about source browse information, page 125.

How projects are organized

The IDE allows you to organize projects in an hierarchical tree structure showing the logical structure at a
glance.

The IDE has been designed to suit the way that software development projects are typically organized. For
example, perhaps you need to develop related versions of an application for different versions of the target
hardware, and you might also want to include debugging routines into the early versions, but not in the
final application.

IDE Project Management and Building

Guide

85

Introduction to managing projects Project management

Versions of your applications for different target hardware will often have source files in common, and

you might want to be able to maintain only one unique copy of these files, so that improvements are
automatically carried through to each version of the application. Perhaps you also have source files that
differ between different versions of the application, such as those dealing with hardware-dependent aspects
of the application.

In the following sections, the various levels of the hierarchy are described.

Typically you create one or several projects, where each project can contain either:

e Source code files, which you can use for producing your embedded application or a library. For an
example where a library project has been combined with an application project, see the example about
creating and using libraries in the tutorials.

< Anexternally built executable file that you want to load in C-SPY. For information about managing
executable files built outside of the IDE, see Resolving source files for externally built executable
files, page 88 and the C-SPY Debugging Guide for Arm.

If you have several related projects, you can access and work with them simultaneously. To achieve this,
you can organize related projects in workspaces.

Each workspace you define can contain one or more projects, and each project must be part of at least one
workspace.

Consider this example: two related applications—for instance A and B—are developed, requiring one
development team each (team A and B). Because the two applications are related, they can share parts of
the source code between them. The following project model can be applied:

. Three projects—one for each application, and one for the common source code
. Two workspaces—one for team A and one for team B.

Collecting the common sources in a library project (compiled but not linked object code) is both convenient
and efficient, to avoid having to compile it unnecessarily. This figure illustrates this example:

A ,

Project for application A Project for application B

Utility
library

Library project for
common sources

Workspace for team A Om Workspace for team B Om
Project for application A Project for application B
Project for utility library Project for utility library

Often, you need to build several versions of your project, for example, for different debug solutions that
require different settings for the linker and debugger. Another example is when you need a separately built
executable file with special debug output for execution trace, etc. IAR Embedded Workbench lets you
define multiple build configurations for each project. In a simple case, you might need just two, called

IDE Project Management and Building

Guide

86

Introduction to managing projects Project management

Debug and Release, where the only differences are the options used for optimization, debug information,
and output format. In the Release configuration, the preprocessor symbol NDEBUG is defined, which means
the application will not contain any asserts.

Additional build configurations might be useful, for instance, if you intend to use the application on
different target devices. The application is the same, but hardware-related parts of the code differ. Thus,
depending on which target device you intend to build for, you can exclude some source files from the build
configuration. These build configurations might fulfill these requirements for Project A:

e Project A - Device 1:Release
e Project A - Device 1:Debug
e Project A - Device 2:Release
e Project A - Device 2:Debug

Normally, projects contain hundreds of files that are logically related. You can define each project

to contain one or more groups, in which you can collect related source files. You can also define
multiple levels of subgroups to achieve a logical hierarchy. By default, each group is present in all build
configurations of the project, but you can also specify a group to be excluded from a particular build
configuration.

Source files can be located directly under the project node or in a hierarchy of groups. The latter is
convenient if the amount of files makes the project difficult to survey. By default, each file is present in all
build configurations of the project, but you can also specify a file to be excluded from a particular build
configuration.

Only the files that are part of a build configuration will actually be built and linked into the output code.

Once a project has been successfully built, all include files and output files are displayed in the structure
below the source file that included or generated them.

l:? The settings for a build configuration can affect which include files that are used during the
compilation of a source file. This means that the set of include files associated with the source
file after compilation can differ between the build configurations.

The IDE supports relative source file paths to a certain degree, for:

e Project files
Paths to files part of the project file are relative if they are located on the same drive. The path is
relative either to SPROJ_DIRS or SEW_DIRS. The argument variable $EW_DIRS is only used if
the path refers to a file located in a subdirectory of SEW_DIR$ and the distance from SEW_DIRS is
shorter than the distance from $PROJ_DIRS.
Paths to files that are part of the project file are absolute if the files are located on different drives.

o Workspace files
For files located on the same drive as the workspace file, the path is relative to $PROJ DIRS.
For files located on another drive than the workspace file, the path is absolute.

e Debug files

If your debug image file contains debug information, any paths in the file that refer to source files are
absolute.

You can easily drag individual source files and project files from Windows Explorer to the Workspace
window. Source files dropped on a group are added to that group. Source files dropped outside the project
tree—on the Workspace window background—are added to the active project.

IDE Project Management and Building

Guide

87

Introduction to managing projects Project management

Resolving source files for externally built executable files

Being able to add an externally built executable file to a project is very useful for debugging purposes.
However, some core debugging tasks, like opening a specific source file and setting a breakpoint, or
viewing the functions in the ELF file in the C-SPY Symbols window, are only possible or significantly
easier to perform if the source files that the binary file was compiled from are available in the Workspace
window.

To make it possible for the IDE to find and display all source files referred to from the externally built
binary file, a source file resolution system exists, based on aliases. An alias replaces a specified segment
of a file path, allowing the system to resolve source files for a binary file that was built on, for example,
another computer or another operating system. For source file resolution to work, the file must have been
built with debug information.

The IAR Embedded Workbench IDE tries to resolve the source files if you:

e add afile to the project as an external binary file
e setahinary file as the debug target
» choose the Resolve Sources command.

All these commands can be found on the context menu in the Workspace window.

Aliases with an IDE-wide scope are called global aliases. They are valid for all projects in the IDE, existing
and future. Changes to global aliases, for example, updating a path or adding a new path, will automatically
update all projects in the IDE with the new information. Aliases that are valid only for the active project are
project aliases. Changes to project aliases will only update the active project. Toggling the Resolve source
for active debug target in current project option in the Configure Aliases dialog box will either remove or
add source files to the active debug target in the active project—see Configure Aliases dialog box, page
104. This is useful if you want to disable automatic source file resolution completely.

There are two ways to set up this source file resolution:

» Supply a mix of global aliases and project aliases in the Configure Aliases dialog box, so that files that
are unavailable to the IDE can be located and displayed.

« Enter (or skip) folders dynamically, prompted by the IDE, when you resolve source files manually
using the context menu in the Workspace window. Any aliases supplied this way will be listed under
Project aliases in the Configure Aliases dialog box.

The alias system has the following rules:

» Project aliases have higher priority than global aliases.
e Aliases with more derived paths (that are "closer to the source™) have higher priority.
The derived aliases for the externally built binary file are automatically propagated to the C-SPY Debugger

to be used during the debug session. The debugger can still prompt for files that are not listed in the
provided set of aliases, for example, when downloading a second debug image to the target board.

Automatic resolution of source files can be controlled in two ways:

» Using the Resolve source for active debug target in current project option on the
Tools>Options>Project settings page. This setting is used when you create a new project—existing
projects will not be affected by any changes.

« Using the Resolve source for active debug target in current project option in the Configure Aliases
dialog box. This setting determines the behavior of the current project.

l:? No check is made to make sure that a resolved source file is identical to the one that the binary
file was compiled from—only that it has the same name.

IDE Project Management and Building

Guide

88

Managing projects Project management

The IDE interacting with version control systems

The IAR Embedded Workbench IDE can identify and access any files that are in a Subversion (SVN)
working copy, see /nteracting with Subversion, page 91.

From within the IDE you can connect an IAR Embedded Workbench project to an external SVN project,
and perform some of the most commonly used operations.

To connect your IAR Embedded Workbench project to a version control system, you should be familiar
with the version control client applicationyou are using.

Some of the windows and dialog boxes that appear when you work with version control in the
0 IDE originate from the version control system and are not described in the documentation from

IAR. For information about details in the client application, refer to the documentation supplied

with that application.

Different version control systems use different terminology even for some of the most basic
ﬁ concepts involved. You must keep this in mind when you read the descriptions of the interaction

between the IDE and the version control system.

MANAGING PROJECTS

See also:

. Working with CMake and CMSIS-Toolbox projects, page 162

Creating and managing a workspace and its projects

This is a description of the overall procedure for creating the workspace, projects, groups, files, and build
configurations. For a detailed step-by-step example, see Creating an application project in the tutorials.

The steps involved for creating and managing a workspace and its contents are:

An empty Workspace window appears,
where you collect your projects, groups,
and files.

Create a
workspace

Add projects to the
workspace

Create
groups

You can base a new project on a
template project with preconfigured
settings. Template projects are available
for C/C++ applications, assembler
applications, and library projects.

A group of files can be added either to
the project’s top node or to another
group within the project.

Add files
to the
project

A file can be added either to the
project’s top node or to a group within
the project.

By default, each project you add has two
build configurations called Debug and
Release. You can base a new configuration
on one of these.

Exlude groups and files . Lo
S A e The icon that |r‘1d|cates the exc.Iud‘ed
group or file will change to white in the
¢ Workspace window.
Remove items from
a project

Create new build
configurations

IDE Project Management and Building

Guide

89

Managing projects Project management

lf? You do not have to use the same toolchain for the new build configuration as for other build
configurations in the same project, and it might not be necessary for you to perform all of these
steps and not in this order.

The File menu provides commands for creating workspaces. The Project menu provides commands for
creating projects, adding files to a project, creating groups, specifying project options, and running the IAR
development tools on the current projects.

Viewing the workspace and its projects
The Workspace window is where you access your projects and files during the application development.

1. To choose which project you want to view, click its tab at the bottom of the Workspace window.

Waorkspace * O X
Debug v|
Files o

B @ pre Choosea build ! .

Fa @ configuration

| B Output

| — [Tutarh

| L— [tilitie Cheese the
Utilities.c project to
B Output be displayed

Owerview || project] project2 | []«

For each file that has been built, an output folder icon appears, containing generated files, such as
object files and list files. The latter is only generated if the list file option is enabled. The Output
folder related to the project node contains generated files related to the whole project, such as the
executable file and the linker map file (if the list file option is enabled).
Also, any included header files will appear, showing dependencies at a glance.

2. Todisplay the project with a different build configuration, choose that build configuration from the
drop-down list at the top of the Workspace window.
The project and build configuration you have selected are displayed highlighted in the Workspace
window. It is the project and build configuration that you select from the drop-down list that are built
when you build your application.

3. Todisplay an overview of all projects in the workspace, click the Overview tab at the bottom of the
Workspace window.

IDE Project Management and Building
Guide 90

Managing projects Project management

An overview of all project members is displayed.

Workspace + 0 X
||:|r|:|iect1 - Debug vl
Files 2

B Cltutarials
= @ project] - Debug v

[Tuizr.c

[@ Utilities

B Output
®project? -
® projectd -
® projectd -
® projects -
@ tutor_librany - Debug

Current
selection in the
configuration
drop-down list

'SR A A

Owerview pru:uieu:t'|| pru:uieu:t2| projectd) 4 [«

The current selection in the Build Configuration drop-down list is also highlighted when an overview
of the workspace is displayed.

Interacting with Subversion

The version control integration in IAR Embedded Workbench allows you to conveniently perform some
of the most common Subversion operations directly from within the IDE, using the client applications
svn.exe and TortoiseProc.exe.

To connect an IAR Embedded Workbench project to a Subversion system:

1. Inthe Subversion client application, set up a Subversion working copy.
2. Inthe IDE, connect your application project to the Subversion working copy.

To set up a Subversion working copy:

1. To use the Subversion integration in the IDE, make sure that svn.exe and TortoiseProc.exe
are in your path.

2. Check out a working copy from a Subversion repository.
The files that constitute your project do not have to come from the same working copy—all files in
the project are treated individually. However, note that TortoiseProc.exe does not allow you to
simultaneously, for example, check in files coming from different repositories.

To connect application projects to the Subversion working copy:

1. Inthe Workspace window, select the project for which you have created a Subversion working copy.

2. From the Project menu, choose Version Control System>Connect Project to Subversion. This
command is also available from the context menu that appears when you right-click in the Workspace
window.

For more information about the commands available for accessing the Subversion working copy, see
Version Control System menu for Subversion, page 105.

When your IAR Embedded Workbench project has been connected to the Subversion working copy, a
column that contains status information for version control will appear in the Workspace window. Various
icons are displayed, where each icon reflects the Subversion state, see Subversion states, page 106.

IDE Project Management and Building

Guide

91

Managing projects

Installing a CMSIS-Pack software pack

CMSIS-Pack provides software components, device support, evaluation board support, and example
projects.

Project management

To facilitate the procedure Using CMSIS-Pack support in IAR Embedded Workbench, page 92, it is

recommended that you first install the CMSIS-Pack software pack that you need.

To install a CMSIS-Pack software pack:

> w DN

C

In your IAR Embedded Workbench project, choose Project>CMSIS-Manager.
Click the tab Devices, navigate to and select your device in the tree structure.
Click the tab Packs and select the software pack that you want to install.

lick the action button Install to start the installation process.

Focus shifts to the Console view which prints status messages concerning the installation process,
until the installation process is complete.

Using CMSIS-Pack support in IAR Embedded Workbench

1. Inyour IAR Embedded Workbench workspace, choose Project>Create New Project.

2. Inthe Create New Project dialog box that is displayed, select Empty CMSISPack project and click
OK.

-

Create Mew Project Iﬁ

Tool chain: Al -]

Project templates:

I:l asm
D C++
D C

- 2y Externally built executable

D ezcription:
Create an empty project and configure CMS5|SPack device and components

]] [Cancel

e

3. Save your project using the Save As dialog box that is displayed. Note that the project must be saved
in a different directory than the workspace you are using.

4. Inthe Select device dialog box that is displayed, select your device and click OK.

IDE Project Management and Building

Guide

92

Managing projects Project management

.‘
@ Select device L =10CT -g_hj

Select Device .

Device: MSP432E401Y CPL; ARM Cortex-M4
Yendor: Texas Instruments Max. Clock: 120 MHz
Pack: Texaslnstruments.MSP432E4_DFP_IAR.3.2.3 Memeorny: 256 kB RAM, 1 MB ROM

URL: http:/www. keil.com/dd2 /texasinstruments EPL:

'mepd32ed01y single precision - i
msp :
Search: Endian: Little-endian
> Analog Devices The SimpleLink(TM) M5P432E4 (TM) Ethernet -
. @ ARM micracentrollers (MCUs) are high-performance ARME
. & Silicon Labs Cortex®-M MCUs with integrated Ethernet MAC and
PHY
4w Texaslnstrumentsl and a wide variety of wired communication
4 ”{g MSP432E4 Series interfaces including universal serial bus (USE),
4 V“Eﬁ MSP432E4 controller area network (CAMN), Quad-SPI (Q55I), [2C,
B MSP432E401Y 5PL,
B MSP432E411Y UART and other serial protocols. Featuring a

120MHz ARM Cortex-M4F CPU, 1MB of Flash and
256kB of SRAM, and advanced cryptography
accelerators,

MSP432E4 MCUs offer ample amount of
processing rescurces for developers to implement
wired and wireless connectivity stacks and processing
algeorithms to build [oT-ready intelligent industrial
gateway applications.

+ ¥t MSP432P4s Series

Maore infoermation on MSP432E4 MCUs at
http:/fwwnw.ti.com/mspd32ed.

@' [OK J [Cancel

e

The CMSIS Manager dialog box is now displayed. Use this dialog box to select prebuilt CMSIS-Pack
software components and example projects that are available for your device. For more information,
see CMSIS Manager dialog box, page 83. See also Working with example projects, page 18.

In the Components view, select the software components that you need.

¢ Components® (-, Resolve @ [
Software Components Sel. Vanant Vendor Version Description
B MsP43ZE401Y Texas Instruments ARM Cortex-M4 120 MHz, 256 kB RAM, 1 MB ROM
4 . CMEIS Cortex Microcontroller Software Inteface Components
¥ CORE 1 ARM 511 , EMSIS-CORE for Cortex-M, SC000, SC300, ARNWE-M
. 4 RTOS (AP 100 , EMSIS-RTOS AP for Cortex-M, 5C000, and 5C300
. 4 RTOS2 (AP]) 212 , EMSIS-RTOS AP for Cortex-M, 5C000, and 5C300
a & Device Startup, Systermn Setup
¥ Startup Texaslnstruments 3.2.3 , Systemn Startup for MSP432E401Y
Validation Cutput Description
4 /b TexasInstruments:Device Startup Additional seftware components required
4 /4 require Celass="CMSIS", Cgroup="CORE" Select component from list
¥ ARM:CMSIS.CORE CMSIS-CORE for Cortex-M, SC000, SC300, ARMvE-M

Components | Device | Packs

IDE Project Management and Building

Guide

93

Reference information on managing projects Project management

7. Some unresolved dependencies are highlighted in orange. To resolve such an unresolved dependency,
select it and click the toolbar button Resolve.

If a dependency is highlighted in red, the CMSIS Manager dialog box could not find a resolution for
it. Typically, you will then need to install a missing pack.

8. To change your device, in the Device view, click the Change button and select the device you want to
use.

9. To make your selections take effect, choose File>Save. Your IAR Embedded Workbench project is
then populated with the files associated with your selections in the CMSIS Manager dialog box.

REFERENCE INFORMATION ON MANAGING PROJECTS

See also:

e CMake and CMSIS-Toolbox in the IDE Reference, page 165

Workspace window
The Workspace window is available from the View menu.

Column that contains
infermation about
option overrides

Waorkspace \\ * 0 X
Configuration | [p[giecﬂ Debug v]
drop-down menu i :]
. Files B Column that contains

e O e
=1 @ project] - Debug
& 1 Tutorc

Utilities.c

B Output

® project? - Debug

@ projecti - Debug

® projectd - Debug

® projects - Debug

@ tutor_library - Debug

= im project] | pru:uieu:t2| project3 |_ ik

o
] source code control
v

status information

| Workspace [

Current
project

L T T T 4

Tabs for choosing
workspace display

Use this window to access your projects and files during the application development.

At the top of the window there is a drop-down list where you can choose a build configuration to display in
the window for a specific project.

IDE Project Management and Building
Guide 94

Reference information on managing projects Project management

This area contains up to three columns.

The Files column displays the name of the current workspace and a tree representation of the projects,
groups and files included in the workspace. One or more of these icons are displayed:

m Workspace
- Project
E Project with multi-file compilation
=— Group of files
|
Group excluded from the build

Group of files, part of multi-file compilation

H
Group of files, part of multi-file compilation, but excluded from the build
| Object file or library
@ Assembler source file
C source file
[C++ source file
Source file excluded from the build
Header file
Text file
= HTML text file
Control file, for example the linker configuration file

IDE internal file

D Other file

o The column that contains status information about option overrides can have one of three icons for
each level in the project:

Blank There are no settings/overrides for this file/group.

Black check There are local settings/overrides for this file/group.

mark

Red check mark There are local settings/overrides for this file/group, but they are either identical to the

inherited settings or they are ignored because you use multi-file compilation, which means
that the overrides are not needed.

ﬂThe column contains status information about version control, if this is enabled. For information about
the various icons, see Subversion states, page 106.

IDE Project Management and Building
Guide 95

Reference information on managing projects Project management

Use the tabs at the bottom of the window to choose which project to display. Alternatively, you can choose
to display an overview of the entire workspace.

For more information about project management and using the Workspace window, see the /nfroduction to
managing projects, page 84.

IDE Project Management and Building
Guide 96

Reference information on managing projects

Project management

This context menu is available:

Options...

C-5TAT Static Analysis]

Add

Set as Debug Target

« Resolve Sources

Remowve

Wersion Control Systemn >

Open Containing Folder...

File Properties...

These commands are available:

Options

Make

Compile

Rebuild All

Clean

C-STAT Static
Analysis>Analyze
Project

C-STAT Static
Analysis>Analyze
File(s)

C-STAT Static
Analysis>Clear
Analysis Results

Displays a dialog box where you can set options for each build tool for the
selected item in the Workspace window, for example to exclude it from the build.
You can set options for the entire project, for a group of files, or for an individual
file. See Setting project options using the Options dialog box, page 108.

Brings the current target up to date by compiling, assembling, and linking only the
files that have changed since the last build.

Compiles or assembles the currently active file as appropriate. You can choose
the file either by selecting it in the Workspace window, or by selecting the editor
window containing the file you want to compile.

Recompiles and relinks all files in the selected build configuration.

Deletes intermediate files.

Makes C-STAT analyze the selected project. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

Makes C-STAT analyze the selected file(s). For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

Makes C-STAT clear the analysis information for previously performed analyses.
For more information about C-STAT, see the C-STAT® Static Analysis Guide.

IDE Project Management and Building

Guide

97

Reference information on managing projects Project management

C-STAT Static
Analysis>Generate
HTML Summary
C-STAT Static
Analysis>Generate
Full HTML Report
Stop Build
Add>Add Files
Add>Add filename

Add>Add Group

Set as Debug Target
Add External Binary

Resolve Sources

Remove
Rename

\ersion Control
System

Open Containing
Folder

File Properties
Set as Active

Shows a standard Save As dialog box where you can select the destination for a
report summary in HTML and then create it. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

Shows a standard Save As dialog box where you can select the destination for a
full report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Stops the current build operation.

Displays a dialog box where you can add files to the project.

Adds the indicated file to the project. This command is only available if there is an
open file in the editor.

Displays the Add Group dialog box where you can add new groups to the project.
For more information about groups, see Groups, page 87.

Starts the debug session with the selected file as the debug target.

Opens a standard navigation dialog box, in which you can select an externally
built binary file to add to the project.

Tries to locate and display the source files that the selected binary file was built
from. If any files cannot be located, the Add Folder Alias dialog box is displayed,
see Add Folder Alias dialog box, page 102.

Removes selected items from the Workspace window.

Displays the Rename Group dialog box where you can rename a group. For more
information about groups, see Groups, page 87.

Opens a submenu with commands for source code control, see Version Control
System menu for Subversion, page 105.

Opens the File Explorer that displays the directory where the selected file resides.

Displays a standard File Properties dialog box for the selected file.
Sets the selected project in the overview display to be the active project. It is the
active project that will be built when the Make command is executed.

IDE Project Management and Building

Guide

98

Reference information on managing projects

Create New Project dialog box

Configurations for project dialog box

The Create New Project dialog box is available from the Project menu.

-

Create New Project

S5

T ool chain: Arm

Project templates:

{:l asm
D C++
-3 C

------ [Z1 Externally built executable

b 40 Emnply CMSISPack project

L

Drezcription:

Creates an empty project.

Ok

] [Cancel

Project management

Use this dialog box to create a new project based on a template project. Template projects are available for
C/C++ applications, assembler applications, and library projects. You can also create your own template
projects.

Selects the target to build for. If you have several versions of IAR Embedded Workbench for different
targets installed on your host computer, the drop-down list might contain some or all of these targets.

Select a template to base the new project on, from this list of available template projects.

A description of the currently selected template.

IDE Project Management and Building

Guide

99

Reference information on managing projects Project management

The Configurations for project dialog box is available by choosing Project>Edit Configurations.

i "

Configurations for "projectl”

if

Configurations: 0

Releaze e, ..

Femove

[Dirag bo order]

Use this dialog box to define new build configurations for the selected project—either entirely new, or
based on a previous project.

Lists existing configurations, which can be used as templates for new configurations.

Displays a dialog box where you can define new build configurations, see New Configuration dialog box,
page 100.

Removes the configuration that is selected in the Configurations list.

New Configuration dialog box

IDE Project Management and Building

Guide

100

Reference information on managing projects Project management

The New Configuration dialog box is available by clicking New in the Configurations for project dialog
box.

i "

Mew Configuration @

MewCaonfig _
Cancel

Taool chairn:

| CPUNAME -

Bazed on configuration:

|Debug vl

Factomy zettings
@ Debug

Releaze

Use this dialog box to define new build configurations—either entirely new, or based on any currently
defined configuration.

Type the name of the build configuration.

Specify the target to build for. If you have several versions of IAR Embedded Workbench for different
targets installed on your host computer, the drop-down list might contain some or all of these targets.

Selects a currently defined build configuration to base the new configuration on. The new configuration
will inherit the project settings and information about the factory settings from the old configuration. If you
select None, the new configuration will be based strictly on the factory settings.

Select the default factory settings that you want to apply to your new build configuration. These factory
settings will be used by your project if you click the Factory Settings button in the Options dialog box.

Choose between:
Debug, Factory settings suitable for a debug build configuration.

Release, Factory settings suitable for a release build configuration.

IDE Project Management and Building

Guide

101

Reference information on managing projects Project management

Add Project Connection dialog box
The Add Project Connection dialog box is available from the Project menu.

Add Project Connection L-LhJ

Connect using: Processar Expert = |

aFk.]| Cancel |

- -

Use this dialog box to set up a project connection between IAR Embedded Workbench and an external tool.
This can, for example, be useful if you want IAR Embedded Workbench to build source code files provided
by the external tool. The source files will automatically be added to your project. If the set of files changes,
the new set of files will automatically be used when the project is built in IAR Embedded Workbench.

To disable support for this, see Project options, page 58.

Chooses the external tool that you want to set up a connection with.

Displays a dialog box where you specify the connection.

Add Folder Alias dialog box

The Add Folder Alias dialog box is opened by the IDE if source files are missing when you choose Resolve
Sources from the context menu in the Workspace window, or if you have selected the Resolve source for

IDE Project Management and Building
Guide 102

Reference information on managing projects Project management

active debug target in current project option and set a file as Debug Target from the context menu in the
Workspace window.

r |

Add Folder Alias X

| D:\[AR-STM32L 152VB-SK\LCD_Demo'\stm32/1xx_it.h

Location on disk:
| El
Original root folder:

B automatically determine the replacement path

[]1f possible, do not show this dialog again

Maote: To manage all folder aliases, choose Tools >Configure Aliases

Ise this folder Skip Folder

Use this dialog box when prompted by the IDE to supply (or skip) folders when you resolve source files
manually using the context menu in the Workspace window. Any aliases supplied this way will be listed
under Project aliases in the Configure Aliases dialog box. When you have located a file, click Use This
Folder to create an alias for this folder. This means that all source files in this folder can be displayed in the
Workspace window. Alternately, click Skip Folder to ignore all missing files in that folder.

The file that the IDE is unable to find and resolve.

Use the browse button to specify the location of the missing source file.

The path that the resolution algorithm has calculated as being the most likely root folder, or the root folder
for which you are supplying an alias.

Makes the IDE try to find a common root for the missing file and the file specified in the Location on disk
field.

The path that will replace the Original root folder when the source files are resolved.

IDE Project Management and Building

Guide

103

Reference information on managing projects Project management

Configure Aliases dialog box

The Configure Aliases dialog box is available from the Tools menu.

r

Configure Aliases *
Global Aliases
Folder Alias Add
ftest/skip <skipped> B
/users/test D:'\test .
foo/bar <skipped> n

Project Aliases

Folder Alias Add

[Resolve sources for active debug target in cument project Cancel

.

Use this dialog box to supply aliases to the IDE, so that files that are unavailable to the IDE can be located
and displayed in the Workspace window when an externally built binary file is added to a project, or when
you resolve source files.

(3? Project aliases have higher priority than global aliases.

This area lists aliases with an IDE-wide scope. They are valid for all projects in the IDE, existing and
future. The area contains these columns:

Folder A list of paths to a location where there are source files that were used to build
externally built binary files. The paths can be absolute or relative.

Alias Aliases for the paths displayed in the Folder column, or the text <skipped> if
the IDE has been told to ignore source files in that location.

IDE Project Management and Building

Guide

104

Reference information on managing projects Project management

This area lists aliases that are valid only for the active project. The area contains these columns:

Folder A list of paths to a location where there are source files that were used to build
externally built binary files. The paths can be absolute or relative. Absolute paths
are recommended.

Alias Aliases for the paths displayed in the Folder column, or the text <skipped> if
the IDE has been told to ignore source files in that location.

This option controls the automatic resolution of source files for the active debug target in the active project.
Toggling the setting will either remove or add source files in the Workspace window for the active debug
target. Choosing Resolve sources from the context menu in the Workspace window will still resolve source
files.

Click to open the Add Folder Alias dialog box, where you can add an alias. Use the first field in the dialog
box to supply the folder path, and use the second filed to browse to the location that will become the alias.

Click to remove the selected line to the left.

Click to open the Update Folder Alias dialog box, where you can make changes to an alias. Changes
to global aliases will automatically update all projects in the IDE with the new information. Changes to
project aliases will only update the active project.

Creates a duplicate project alias of the global alias selected to the left.

Creates a duplicate global alias of the project alias selected to the left.

Version Control System menu for Subversion

The Version Control System submenu is available from the Project menu and from the context menu in the
Workspace window.

Cornmnik,

Revert, ..
Update. ..
Diff...

Log...
Properties. ..

Refresh

For more information about interacting with an external version control system, see 7/e IDE interacting
with version control systems, page 89.

IDE Project Management and Building
Guide 105

Reference information on managing projects

Project management

These commands are available for Subversion:

Commit Displays Tortoise’s Commit dialog box for the selected file(s).

Add Displays Tortoise’s Add dialog box for the selected file(s).

Revert Displays Tortoise’s Revert dialog box for the selected file(s).

Update Opens Tortoise’s Update window for the selected file(s).

Diff Opens Tortoise’s Diff window for the selected file(s).

Log Opens Tortoise’s Log window for the selected file(s).

Properties Displays information available in the version control system for the selected file.

Refresh Updates the version control system display status for all files that are part of the
project. This command is always enabled for all projects under the version control
system.

Connect Project to Checks whether svn.exe and TortoiseProc.exe are in the path and then

Subversion enables the connection between the IAR Embedded Workbench project and an

existing checked-out working copy. After this connection has been created, a
special column that contains status information appears in the Workspace window.
Note that you must check out the source files from outside the IDE.

Disconnect Project
from Subversion

Removes the connection between the selected IAR Embedded Workbench project
and Subversion. The column in the Workspace window that contains SVN status
information will no longer be visible for that project.

Subversion states
Each Subversion-controlled file can be in one of several states.

A (blue A) Added.

(red C) Conflicted.

D (red D) Deleted.

1 (red 1) Ignored.

0 (blank) Not modified.

) (red M) Modified.

) (red R) Replaced.

B (gray X) An unversioned directory created by an external definition.

"~

(gray question mark) Item is not under version control.

' (black exclamation mark) Item is missing—removed by a non-SVN command—or
incomplete.
~ (red tilde) Item obstructed by an item of a different type.

l:? The version control system in the IAR Embedded Workbench IDE depends on the information
provided by Subversion. If Subversion provides incorrect or incomplete information about the
states, the IDE might display incorrect symbols.

IDE Project Management and Building
Guide 106

Building projects Building projects

Building projects

Introduction t0 DUIIAING PIrOJECESuiieiie ittt et et et e e e e e e et e et et e et e s e eaneeaneeaneenns 107
Briefly about building @ PrOJECtovuiiniii ettt et e e e e e e e e e e e e e e eans 107
Extending the t0OIChaINo.iiiuiiiiii e e 107

BUilding @ PIrOJECTnenei ittt et e et e e e 108
Setting project options using the Options dialog bOXcoiiiiiiiiiiiiiii e 108
Building YOUL PIOJECE ... eenitie ittt ettt et e e e e e e e e anaas 110
Correcting errors found during build ... 111
USINE DUILA BCTIONS ... eeviieiiiie ittt et e e et e e e eaes 111
Building multiple configurations in a batchccooiiiiiiiiiiii 112
Building from the command 1INEooouiiiiiiiii e 112
Adding an exXternal t00]iiiiiiiiiiiii et e a e aaas 113

Reference information on BUIIAINGoooiiiniiiiiiii e et e e e e e e e e e e eaanas 113
OPIONS QIAIOZ DOX 1.vniiiiiiiiie et e e et et et e e e e e e et e et e et e et ea e e e aans 113
BUILA WINAOW ..ottt et et e e et e e e e 115
Batch Build dialog DOXcvvniiiiiiiieii et aan s 117
Edit Batch Build dialog DOXc..eiuiiiii e 118
iarbuild—the TAR Command Line Build Utilitycoooiiiiiiiiii e 119

INTRODUCTION TO BUILDING PROJECTS

Briefly about building a project

The build process consists of these steps:

e Setting project options using the Options dialog box
< Building the project, either an application project or a library project
» Correcting any errors detected during the build procedure.

To make the build process more efficient, you can use the Batch Build command. This gives you the
possibility to perform several builds in one operation. If necessary, you can also specify pre-build and
post-build actions.

In addition to using the IAR Embedded Workbench IDE to build projects, you can also use the command
line utility iarbuild.exe.

For examples of building application and library projects, see the tutorials in the Information Center, under
Project Explorer. For more information about building library projects, see the /AR C/C++ Development
Guide for Arm.

Extending the toolchain

IAR Embedded Workbench provides a feature—Custom Build—which lets you extend the standard
toolchain. This feature is used for executing external tools (not provided by IAR). You can make these
tools execute each time specific files in your project have changed.

If you specify custom build options on the Custom tool configuration page, the build commands treat
the external tool and its associated files in the same way as the standard tools within the IAR Embedded
Workbench IDE and their associated files. The relation between the external tool and its input files and

IDE Project Management and Building
Guide 107

Building a project Building projects

generated output files is similar to the relation between the C/C++ Compiler, c files, h files, and o files.
For more information about custom build options, see Custom build options, page 231.

You specify filename extensions of the files used as input to the external tool. If the input file has changed
since you last built your project, the external tool is executed—just as the compiler executes if a c file has

changed. In the same way, any changes in additional input files (for instance, include files) are detected.

You must specify the name of the external tool. You can also specify any necessary command line options
needed by the external tool, and the name of the output files generated by the external tool. Note that you
can use argument variables for some of the file information.

You can specify custom build options to any level in the project tree. The options you specify are inherited
by any sub-level in the project tree.

Some examples of external tools, or types of tools, that you can add to the IAR Embedded Workbench
toolchain are:

e Tools that generate files from a specification, such as Lex and YACC

e Tools that convert binary files—for example files that contain bitmap images or audio data—to a table
of data in an assembler or C source file. This data can then be compiled and linked together with the
rest of your application.

For more information, see Adding an external tool, page 113.

BUILDING A PROJECT

Setting project options using the Options dialog box

1. Before you can set project options, choose a build configuration.

P

@ IAR Embedded Workbench IDE

File Edit View Project _Simulatar Tonle Windowe Haln

NN R =X Choose a build configuration

Workspace w 0Ex | Tutor.c |Ut|'||'t|'es..|: X

|Del:|ug E -
fes A B /*
* Copyrigh
= @ project] - Debug * v "
Fa [Tutor.c # Fermiss:
| B Output * purposs
| |— [k Tutor.h # copyrigh
| L— [RlUiiliies.h «
2] Ltilities.c + THE SOFT
Ciutput * WITH RE

By default, the IDE creates two build configurations when a project is created—Debug and
Release. Every build configuration has its own project settings, which are independent of the other
configurations.

For example, a configuration that is used for debugging would not be highly optimized, and would
produce output that suits the debugging. Conversely, a configuration for building the final application
would be highly optimized, and produce output that suits a flash or PROM programmer.

IDE Project Management and Building

Guide

108

Building a project Building projects

Decide which /evel/you want to set the options on—the entire project, groups of files, or for an
individual file. Select that level in the Workspace window (in this example, the project level) and
choose Options from the context menu to display the Options dialog box.

P

QIAR Emnbedded Workbench IDE | |
File Edit View Project Simulator Tools Window Help

N0 R =3 LKL OC -
Workspace * O X |Tut-:|r.c |Ut|'||'t|'&5.c x|
[Del:uug v]

. S*

Files = o ‘ IT‘ * Copyright f(c) 2
=8 lproject] - Debug * i _

F& [& Tutar.c Options.. %

| = M Output —

| — [l Tutorh _

| L[5 Ltilities.h Compile

[Lilities.c Rebuild All

| — - .

G There is one important restriction on setting options. If you set an option on group or file
level (group or file level override), no options on higher levels that operate on files will
affect that group or file.

The Options dialog box provides options for the build tools—a category for each build tool.

e ~

Options for node "projectl” @

Build tool categories |

Categony: J Factary S ettings

General Options [Muili-file ©) .
25 with options for each categor
Static Analysis Discd Pag P gory J

Aszembler | List | Preprocessor | Diagnostics I Encodings I Extra Options
COutput Converter Language 1 | Language 2 I Code I Optimizations I Cutput
Custom Build
Build Actions Language Lan =e- -
Linker L @cC

_Debugger .-~

Options in the General Options, Linker, and Debugger categories can only be set on project level
because they affect the entire build configuration, and cannot be set for individual groups and files.
However, the options in the other categories can be set for the project, a group of files, or an individual
file.

Select a category from the Category list to select which building tool to set options for. Which tools

that are available in the Category list depends on which tools are included in your product. When you

select a category, one or more pages containing options for that component are displayed.

Click the tab that corresponds to the type of options you want to view or change. Make the appropriate

settings. Some hints:

» To override project level settings, select the required item—for instance a specific group of files
or an individual file—and select the option Override inherited settings.

IDE Project Management and Building

Guide

109

Building a project Building projects

-

€ 14R Embedded Warkbench c

File Edit View . dow Help

. I. Select the item that you

O O B @ want to override setrings - Q> 85 e < PNER N

Workspace for, right-click and choose fuytiities.c x |

Diebug Options from the context L 2. Select Override inherited
— = settings and then make your

fRiles 1 Copyright (c) 2 special settings, for example

= @ projectl - Debug * | £ choosing a higher optimization

Ho O e level |

| B Cutput Options for node "Tutor.c'

| — [ETutarh .

| [Utilities.h [Exciude from build

Utilities.c Categary: [¥] Overide inherited sattings

B Output § .

Static Analysis
Runtime Checking
Custom Build Ligt Preprocessor Diagnostice Encodings
Language 1 Language 2 Code Optimiza
Language Language confon

The new settings will affect all members of that group, that is, files and any groups of files. Your
local overrides are indicated with a checkmark in a separate column in the Workspace window.

Use the Extra Options page to specify options that are only available as command line options
and are not in the IDE.

Options for node "projectl” @
Category: Factary Settings
General Options [Multifile Compilatiorn
Static Analysis Dizcard Unuzed Publics
Runtime Checking
Language 1 I Language 2 I Code I Optimizations — L

Assembler List Preprocessor I Diagriostics I Encodings \ Extra Options
Output Converter
Custom Build IUse command line options
Build Actions i 12 oplie i
Linker Command line options: {one perline)
Debugger —do_explicit_zero_opt_in_named_sections -
I4et/TTAGIEt —enable_restrict _
; -macro_positions_in_diagnostics
Simulator
Third-Party Driver

To restore all settings to the default factory settings, click the Factory Settings button, which
is available for all categories except General Options and Custom Build. Note that two sets of

factory settings are available—Debug and Release. Which one is used depends on your build
configuration, see New Configuration dialog box, page 100.

If you add a source file with a non-recognized filename extension to your project, you cannot set

options on that source file. However, you can add support for additional filename extensions. For
more information, see Filename Extensions dialog box, page 77.

Building your project
You can build your project either as an application project or as a library project.

You have access to the build commands both from the Project menu and from the context menu that
appears if you right-click an item in the Workspace window.

IDE Project Management and Building

Guide 110

Building a project Building projects

To build your project as an application project, choose one of the build commands Make, Compile, and
Rebuild All. They will run in the background, so you can continue editing or working with the IDE while
your project is being built.

To build your project as a library project, choose Project>Options>General Options>Output>Output
file>Library before you build your project. Then, Linker is replaced by Library Builder in the Category list
in the Options dialog box, and the result of the build will be a library. For an example, see the tutorials.

For more information, see Project menu, page 186.

Correcting errors found during build

Error messages are displayed in the Build message window.

To specify the level of output to the Build message window:

1. Right-click in the Build message window to open the context menu.

2. From the context menu, select the level of output you want—From All, which shows all messages,
including compiler and linker information, to Errors, which only shows errors, but not warnings or
other messages.

If your source code contains errors, you can jump directly to the correct position in the appropriate source
file by double-clicking the error message in the error listing in the Build window, or selecting the error and
pressing Enter.

After you have resolved any problems reported during the build process and rebuilt the project, you can
directly start debugging the resulting code at the source level.

For more information about the Build message window, see Build window, page 115.

Using build actions

You can use build actions to execute commands in a specific order during the build process. This way you
can customize the build process and use dependencies between commands.

A build action consists of a command, a set of input and output files, a directory in which the command is
executed, and a build order. The build action is sent to Ninja, which uses the information to create the order
in which the commands are executed during the build process.

The Project>Options>Build Actions options let you specify the required actions. For more information
about the build actions options, see Build actions options, page 233.

You can create dependencies between build actions by listing fake output files as input to other build
actions. A fake output file is a file that is listed as output in a build action, but which is not generated from
that build action.

A build action is executed in a build process if:

e Any of the listed output is a fake output file.
e Any of the listed input has a newer timestamp than any of the listed output
e The command line or working directory has been changed since the previous build.

You can use a pre-build action to embed a time stamp for the build in the resulting binary file. Follow these
steps:

1. Create a dedicated time stamp file, for example, timestamp. c, and add it to your project.

IDE Project Management and Building

Guide

111

Building a project Building projects

2. Inthis source file, use the preprocessor macros TIME and DATE to initialize a string
variable.

3. Choose Project>Options>Build Actions to open the Build Actions Configuration page.
Click New to display the New Build Action dialog box.

5. Inthe Command line text field, specify this command line:
del "S$OBJ DIR$\timestamp.o"

This command removes the t imestamp . o object file.

Alternatively, you can use the open source command line utility touch for this purpose (or any other
suitable utility that updates the modification time of the source file). For example:

touch $PROJ DIRS$\timestamp.c

Set the Build order to Run after linking and click OK.

Every time you build the project, timestamp . c will be recompiled and the correct timestamp will
end up in the binary file.

You can use a build action to automatically copy files from a remote location, such as a network drive.
Follow these steps:

Choose Project>Options>Build Actions to open the Build Actions Configuration page.
Click New to display the New Build Action dialog box.

3. Inthe Command line text field, specify, for example, this command line:
copy \\my-network-drive\remotefile.c localcopy.c

This command copies the file from the network drive to your project directory.

In the Output files box, specify 1ocalcopy.c.

In the Input files box, specify \\my-network-drive\remotefile.c

Let the Build order setting remain Automatic (based on input and output), and click OK.

Every time you use the Make command, and 1ocalcopy . c does not exist or is older than
remotefile. c, the build action will copy the file from the network drive to your project directory.

N o o &

Building multiple configurations in a batch

Use the batch build feature when you want to build more than one configuration at once. A batch is an
ordered list of build configurations. The Batch Build dialog box—available from the Project menu—Iets
you create, modify, and build batches of configurations.

For workspaces that contain several configurations, it is convenient to define one or more different batches.
Instead of building the entire workspace, you can only build the appropriate build configurations, for
instance Release or Debug configurations.

For more information about the Batch Build dialog box, see Baich Build dialog box, page 117.

Building from the command line

To build the project from the command line, use the IAR Command Line Build Utility (iarbuild.exe)
located in the common\bin directory. Typically, this can be useful for automating your testing for
continuous integration.

As input you use the project file, and the invocation syntax is:
iarbuild project.ewp [opmode] configl,config2,,...]|"*" [options]

For reference information about the invocation syntax, see /arbuild—the IAR Command Line Build Utility,
page 119.

IDE Project Management and Building

Guide

112

Reference information on building Building projects

Adding an external tool

The following example demonstrates how to add the tool F/exto the toolchain. The same procedure can
also be used for other tools.

In the example, Flex takes the file myFile. lex as input. The two filesmyFile.cand myFile.h are
generated as output.

1
2.

Add the file you want to work with to your project, for example myFile. lex.

Select this file in the Workspace window and choose Project>Options. Select Custom Build from the
list of categories.

In the Filename extensions field, type the filename extension . 1ex. Remember to specify the leading
period (.).

In the Command line field, type the command line for executing the external tool, for example:

flex S$FILE PATHS -o$FILE BNAMES.c

During the build process, this command line is expanded to:

flex myFile.lex -omyFile.c

Note the usage of argument variables and specifically the use of $FILE BNAME$ which gives the
base name of the input file, in this example appended with the ¢ extension to provide a C source

file in the same directory as the input file foo . 1ex. For more information about these variables, see
Argument variables, page 79.

In the Output files field, describe the output files that are relevant for the build. In this example, the

tool Flex would generate two files—one source file and one header file. The text in the Output files
text box for these two files would look like this:

SFILE BPATHS.c
SFILE BPATHS.h

If the external tool uses any additional files during the build, these should be added in the Additional
input files field, for instance:

STOOLKIT DIR$\inc\stdio.h

This is important, because if the dependency files change, the conditions will no longer be the same
and the need for a rebuild is detected.

Click OK.
To build your application, choose Project>Make.

REFERENCE INFORMATION ON BUILDING

Options dialog box

IDE Project Management and Building

Guide

113

Reference information on building

The Options dialog box is available from the Project menu.

Building projects

i

Options for nede "projectl”

Category:

Static Analysis
C/C++ Compiler
Assembler
Qutput Converter
Custom Build
Build Actions
Linker
Debugger

Simulator
I-et
IHink/1-Trace

Library Options 1

Library Options 2

Target |

Output file

(@ Executable

(7 Library

Output directories
Executables libraries:
project 1%DebugExe

Object files:

project 1%Debug Obj
List files:

praject 1%DebugtList

Stack/Heap

Output |

Library Corfiguration

]S

] [Canzel

Use this dialog box to specify your project settings.

See also Setting project options using the Options dialog box, page 108.

IDE Project Management and Building

Guide

114

Reference information on building Building projects

Selects the build tool you want to set options for. The available categories will depend on the tools installed
in your IAR Embedded Workbench IDE, and will typically include:

e General options
e Static Analysis, see the C-STAT® Static Analysis Guide for more information about these options

¢ Runtime Checking, see the C-SPY Debugging Guide for Arm for more information about these
options

e C/C++ Compiler
e Assembler

< Output Converter, options for converting ELF output to Motorola, Intel-standard, or other simple
formats, see Ouiput converter options, page 229.

e Custom build, options for extending the toolchain

e Build Actions, options for pre-build and post-build actions

e Linker, available for application projects but not for library projects

e Library builder, available for library projects but not for application projects
e Debugger

e Simulator

e C-SPY haraware drivers, options specific to additional hardware debuggers.

Selecting a category displays one or more pages of options for that component of the IDE.

Restores all settings to the default factory settings. Note that this option is not available for all categories.

Build window

The Build window is available by choosing View>Messages.

Build w 0 X
tessages File Line *
Tutor.c

/A wWaming[Pel64]: declaration does not declare anything C\Program File. \Tutorc 17

€9 ErrorPe0?0]: identifier "call_count" is undefined CAProgram File. ATutorc 24

f:@ Errar[Felz0]: identifier "call_count" is undefined CAProgram File. ATutorc 35

€9 Eror[Pe020]: identifier "call_count" is undefined CAProgram File. ATutore 45
Daone. 3 error(s), 1 warning(s)

Build | Debug Log

This window displays the messages generated when building a build configuration. When opened, the
window is, by default, grouped together with the other message windows. Double-click a message in the
Build window to open the appropriate file for editing, with the insertion point at the correct position.

IDE Project Management and Building

Guide

115

Reference information on building Building projects

This context menu is available:

Filter Level:

All
Messages
Warnings

Errors

Copy
Select All

Clear All

Live Log te File

These commands are available:

All

Messages
Warnings
Errors

Copy

Select All

Clear All

Live Log to File

Shows all messages, including compiler and linker information.
Shows all messages.

Shows warnings and errors.

Shows errors only.

Copies the contents of the window.

Selects the contents of the window.

Deletes the contents of the window.

Displays a submenu with commands for writing the build messages to a log file
and setting filter levels for the log.

IDE Project Management and Building

Guide

116

Reference information on building Building projects

Batch Build dialog box
The Batch Build dialog box is available by choosing Project>Batch build.

i -

Batch Build

Batches:

MuB atch

I e

Edit ...

Delete

Cloze

b EED |

Cancel

Build

Make | | Clean | [Rebuldal |

This dialog box lists all defined batches of build configurations. For more information, see Building
multiple configurations in a batch, page 112.

Select the batch you want to build from this list of currently defined batches of build configurations.

Give the build command you want to execute:

¢ Make
¢ Clean
* Rebuild All.

Displays the Edit Batch Build dialog box, where you can define new batches of build configurations, see
Edit Batch Build dialog box, page 118.

Displays the Edit Batch Build dialog box, where you can edit existing batches of build configurations.

IDE Project Management and Building
Guide 117

Reference information on building Building projects

Removes the selected batch.

Edit Batch Build dialog box
The Edit Batch Build dialog box is available from the Batch Build dialog box.

e 1

Edit Batch Build 5]

M ame

Awailable configurations Configurations to build

project] - Debug
project] - Releaze
projects - Debug
project? - Releaze

Es o
By Ea s o
e St

[Drrag to order]

[k.] | Cancel

Use this dialog box to create new batches of build configurations, and edit already existing batches.

Type a name for a batch that you are creating, or change the existing name (if you wish) for a batch that
you are editing.

Select the configurations you want to move to be included in the batch you are creating or editing, from
this list of all build configurations that belong to the workspace.

To move a build configuration from the Available configurations list to the Configurations to build list, use
the arrow buttons.

Lists the build configurations that will be included in the batch you are creating or editing. Drag the build
configurations up and down to set the order between the configurations.

IDE Project Management and Building
Guide 118

Reference information on building

Building projects

iarbuild—the IAR Command Line Build Utility

The IAR Command Line Build Utility (1arbuild) is located in the common\bin directory.

As input you use the project file, and the invocation syntax is:

iarbuild project.ewp

[opmode] configl,config2,...]1|"*" [options]

These are the possible parameters:

Parameter
project.ewp

opmode

config| "™

options

Description
Your IAR Embedded Workbench project file.
One of these operating modes (see descriptions below the table):

-build

—-clean
—compdb
-cspybat cmds
-cstat analyze
-cstat clean
-cstat cmds
-cstat report
-Jjsondb

-make (default)
-ninja

config, the name of a configuration you want to build, either one of the predefined

configurations Debug or Release or a name that you define yourself. For more information,
see Projects and build configurations, page 86.

* (wild card character), the operation mode commands will process all configurations defined in
the project. (The quote characters can be omitted under Microsoft Windows.)

One or more of these additional options (see descriptions below the table):
-fail fast

-log type

-output filename

-output type filetype

-parallel number

-tool type

-varfile filename

Table 4. farbuild command line options

If you run the application from a command shell without specifying a project file, you will get a sign-on
message describing available parameters and their syntax.

If the build process was successful, the IAR Command Line Build Utility returns 0. Otherwise it returns a
non-zero number and a diagnostic message.

IDE Project Management and Building

Guide

119

Reference information on building Building projects

Rebuilds and relinks all files in the specified build configuration(s).

Removes any intermediate and output files.

Generates a JSON compilation database of the project. By default, the output is generated as
compile commands. json. You can specify the filename with the ~output option.

Generates a command line for cspybat based on the content in the . ewp and . ewd file and
prints it to stdout. You can specify the file type with the —~output type option. Note that the
project .ewdfile must be located in the same directory as your project.ewp file.

Analyzes the project using C-STAT and generates information about the number of messages. For more
information, see the C-STAT® Static Analysis Guide.

Deletes the C-STAT output directory for the project. For more information, see the C-STAT® Static
Analysis Guide.

Generates the file cstatcommands. txt and check files with the selected checks for the analysis based
on the project, in the C-STAT output directory. cstatcommands . txt contains links to the check files.
For more information, see the C-STAT® Static Analysis Guide.

Generates a full report in HTML format in the C-STAT output directory, based on the analysis. For more
information, see the C-STAT® Static Analysis Guide.

IDE Project Management and Building

Guide

120

Reference information on building Building projects

Use together with either the -build or the -make operating mode command to stop the build process at
the first error.

Generates a JSON description of the project. The format is based on the compiler database format but also
contains the linking, custom, and conversion steps of the build. Optionally, you can specify the —output
option to name the output file, and the —too1 option to run a tool or set of tools. By default, the output is
generated in the file $SPROJ DIRS$/config/project jsondb.json.

The database contains entries on how to build the project on the format:

[

"arguments" : [Comma-separated list of arguments],

"directory" : "The directory in which to perform the
action",

"file" : "The input file",

"output" : "The output file",

"type" : "Name of the tool"

]

In case of multiple inputs or multiple outputs, the "output" or "file" tag is replaced by "outputs"
or "files" followed by a comma-separated list of the files:

"arguments" : [Comma-separated list of arguments],

"directory" : "The directory in which to perform the
action",

"files" : [Comma-separated list of files],

"outputs" : [Comma-separated list of files],

"type" : "Name of the tool"

Brings the specified build configuration(s) up to date by compiling, assembling, and linking only the files
that have changed since the last build. This is the default operating mode.

Generates a ninja build file based on the project structure. Optionally, you can specify the —tool option to
run a tool or set of tools.

IDE Project Management and Building

Guide

121

Reference information on building Building projects

Specifies the level of build message logging. Choose between:

-log errors Logs build error messages.
-log warnings Logs build warning and error messages.
-log info Logs build warning and error messages, and messages issued by the #pragma

message preprocessor directive.

-log all Logs all messages generated from the build, for example compiler sign-on information
and the full command line.

-output filename

Use together with the -5 sondb operating mode command to specify the name and the location of the
output file.

-output_ type filetype

Use together with the ~cspybat cmds operating mode command to specify the file type for a command
line file set. Choose between:

e shell

e bat

e powershell

The file setincludesa * .driver.xcl,a *.general.xcl, and a master file of the specified file type.

The files contain absolute paths and therefore cannot be moved to other computers or placed in a version
control system

-parallel number

Specifies the number of parallel processes to run the compiler in to make better use of the cores in the
CPU.

IDE Project Management and Building

Guide

122

Reference information on building Building projects

-tool typel|list

Use together with either the —j sondb or the —-ninJja operating mode command to run a specific set of
tools. Running iarbuild -tool 1list liststhe available tool options.

For example, iarbuild MyProject.ewp -ninja Debug -tool BuildTools will generate a
ninja file with all the build tools nodes in the project.

-varfile filename

Makes custom-defined argument variables become defined in a workspace scope available to the build
engine by specifying the file to use. See Configure Custom Argument Variables dialog box, page 80.

IDE Project Management and Building

Guide

123

Editing Editing

Editing

Introduction to the IAR Embedded Workbench editorcooiiiiiiiiiiiiiiiiiiii e 125
Briefly about the @ditOro.viiuiiiiiii et aans 125
Briefly about source browse informationc...ceiuiiiieiiiiiieiie e 125
Customizing the editor eNVITONMENTc..iiuiiitniiteii it et e e e eens 125

Editing @ f11€ ...oeniini e e et 125
Indenting text automMaticallycoiiiiiii i e 126
Matching brackets and parentheSescouiiuiiiiiiii et 126
Splitting the editor WINAOW INO PANESueeutneiitniiiieiii ettt ettt ettt e eeaeeeanee 126
DIFaZZING tEXE o evueiiieiii ettt et et et et ettt e e e e eaas 126
Lo T 101 U 11T 127
WOTd COMPLELION ...euieieii ettt e e e e e e e e e e et e et e e et e e an s ean e eaneenneeneaneannns 127
(oY [T 7011 o) (15 o) s NP 127
Parameter NINTo...iiii e e 128
Using and adding code teMPIatesco.oeiuiiniiiiiiieii e e et et et e e e et e e e e e e et e e e e aaenas 128
SYNLAX COLOTINE . evuiiniitiit et et e et e et et et et e et e e et e et e et e et e st e st e st eaeeeaaeesa e et e eneanesnasanees 129
Adding DOOKMATKSiui e 130
Using and customizing editor commands and shortcut Keysoooiiiiiiiiiiiniiiiiiiii e 130
Displaying status infOIrMAatiOnc.uoiueiueitie ettt e e e e 130

Programming @SSISTANCEeeuueintte ittt et et e e e e e e et e e e et et et e e e en e e e et et e e e e eanaas 130
Navigating in the insertion point NISTOTYoiuuiiiiiiiiiie e e e 130
Navigating to @ fUNCHONieuuiiiii it e e e e e e 131
Finding a definition or declaration of @ Symbolc.oiiiiiiiiiiiiii e 131
Finding references to @ SYMDOLoiuuiiiiiiiiie e et e e e e eaaas 131
Finding function calls for a selected fUNCONoviiiiiiiiiiiie e 131
Switching between source and header filescooviiiiiiiiiiii e 131
Displaying source browse informationcccoeiieeiineiieii e e e e e e e aans 131
TEXE SEATCHIIIE 1..ivnitiiie it e et e e e et e et e et et e e et e e et e e et e e e e e e e ae e ans 131

Reference information on the €ditoriiuiiiiiiiii e 132
EdItOr WINAOW ..ottt et ettt 132
FINd dalo@ DOXeeieii e e e e 140
Find in Files WINAOWoooiii ettt et e e 142
REPIACE QIAlOZ DOX ...oeniiie ittt ettt e 142
Find in Files dialog DOXuoeiiiiiiiiiii e 144
Replace in Files dialog DOXvuuiieiiiieiie ettt e et e e e e e e e e e e e e annas 146
Incremental Search dialog DOXovuiiiniiiiiiie ettt e e e e e aans 148
Declarations WINAOWieiuneiiie ettt ettt et et et e e e eaas 149
Ambiguous Definitions WINAOWcuuiiiiiieiiieieii ettt e e eeie et et et et eaa e eaneeaneeaeeneanaaaenns 150
RefErences WINAOWiiiiiii et ettt e e e 151
OULHNE WINAOW ...ttt et et ettt e e e e et e et e et e et e e et e et e e et eaeanaas 152
Source Browse Log WINAOWiiuuiiiiiiii et 154
Resolve File Ambiguity dialog DOXc..oiiiiiiii e 155
Call Graph WINAOW ...t ettt et et e e e e eens 156
Template dialoZ DOXieiiie ittt 157
Editor Shortcut Key SUMMATIYiiuieniiie ittt et e e e e e e e e e eannas 157

IDE Project Management and Building

Guide

124

Introduction to the IAR Embedded Workbench Editing
editor

INTRODUCTION TO THE IAR EMBEDDED WORKBENCH
EDITOR

For information about how to use an external editor in the IAR Embedded Workbench IDE, see Using an
external editor, page 30.

Briefly about the editor

The integrated text editor allows you to edit multiple files in parallel, and provides both basic editing
features and functions specific to software development, like:

e Automatic word and code completion

e Automatic line indentation and block indentation

e Parenthesis and bracket matching

e Function navigation within source files

e Textstyles and color that identify the syntax of C or C++ programs and assembler directives
* Powerful search and replace commands, including multi-file search
e Direct jump to context from error listing

e Multibyte character support

e Parameter hints

e Bookmarks

¢ Unlimited undo and redo for each window.

Briefly about source browse information

Source browse information is continuously generated in the background. This information is used by many
different features useful as programming assistance, for example:

¢ Outline window

e Go to definition or declaration

e Find all references

« Find all calls to a function, where the result is presented as a call graph.

The source browse information is updated when a file in the project is saved. When you save an edited

source file, or when you open a new project, there will be a short delay before the information is
up-to-date. During the update, progress information is displayed in the status bar.

I

r CAP MUM OVR

Customizing the editor environment

The IDE editor can be configured on the IDE Options pages Colors and Fonts and Editor. Choose
Tools>Options to access the pages.

For information about these pages, see 7ools menu, page 192.

EDITING A FILE

The editor window is where you write, view, and modify your source code.

See also:

IDE Project Management and Building
Guide 125

Editing a file Editing

e Programming assistance, page 130
e Using an external editor, page 30

Indenting text automatically

The text editor can perform various kinds of indentation. For assembler source files and plain text files, the
editor automatically indents a line to match the previous line.

To indent several lines, select the lines and press the Tab key.
To move a whole block of lines back to the left again, press Shift+Tab.

For C/C++ source files, the editor indents lines according to the syntax of the C/C++ source code. This is
performed whenever you:

e Press the Return key
* Type any of the special characters {, }, :,and #

. Have selected one or several lines, and choose the Edit>Auto Indent command.
To enable or disable the indentation:

1. Choose Tools>Options and select Editor.

2. Select or deselect the Auto indent option.
To customize the C/C++ automatic indentation, click the Configure button.
For more information, see Configure Auto Indent dialog box, page 52.

Matching brackets and parentheses
To highlight matching parentheses with a light gray color, place the insertion point next to a parenthesis:

volid NextCounter (void)

1
callCount += 1;

1

The highlight remains in place as long as the insertion point is located next to the parenthesis.

To select all text between the brackets surrounding the insertion point, choose Edit>Match Brackets. Every
time you choose Match Brackets (grow) or Match Brackets (shrink) after that, the selection will increase or
shrink, respectively, to the next hierarchic pair of brackets.

li? Both of these functions—automatic matching of corresponding parentheses and selection of text

between brackets—apply to (), [1, {}, and <> (requires Match All Brackets).

Splitting the editor window into panes

You can split the editor window horizontally into two panes, to look at different parts of the same source
file at once, or to move text between two different locations.

To split a window into panes, use the Window>Split command.
To revert to a single pane, double-click the splitter control or drag it to the edge of the window.

Dragging text

To move text within an editor window or to copy between editor windows, select the text and drag it to the
new location.

IDE Project Management and Building
Guide 126

Editing a file Editing

Code folding

Sections of code can be hidden and displayed using code folding.

To collapse or expand groups of lines, click on the fold points in the fold margin:

Tutor.c lll:itiﬁ.c*l o=

struct MyStruct
{

int a;

int b;
b:

The fold point positions are based on the hierarchical structure of the document contents, for example,
brace characters in C/C++ or the element hierarchy of an XML file. The Toggle All Folds command
(Ctrl+Alt+F) can be used for expanding (or collapsing) all folds in the current editor window. The
command is available from the Edit menu and from the context menu in the editor window. You can enable
or disable the fold margin from Tools>Options>Editor.

Word completion

Word completion attempts to complete the word that you have started to type, basing the assumption on the
contents of the rest of your document.

To make the editor complete the word that you have started to type, press Ctrl+Alt+Space or choose
Complete Word from the context menu. If the suggestion is incorrect, repeat the command to get new
suggestions.

Code completion

By default, the editor automatically suggests completions while you type in a C/C++ source file. You can
also open the code completion pop-up window manually by pressing Ctrl+Space.

#include <iostream>
#include "Rectangle.h"

int main()
=
Rectangle myRect;
for(int side = 0; side < 10; ++s3ide)

=

myRect.

std: : co|ie T EE] (] » [C.GetHeight();
std::colfyy GetHeight() int |

std::col ‘F(J GetWidth() int << "™ << std:iendl;
<_» mHeight int
< mWidth int
‘F(J operator={const Rectangle } Rectangle
-F” operator={Rectangle &) Rectangle
fiy SetSize(int side) void
‘F(J SetSize(int height, int width) void w

return 0;

To insert a suggestion, either click it or select it with the arrow keys, and press Enter. To close the code
completion pop-up window without inserting anything, press Esc.

The suggestions come from the source browse information and require that the source file is part of a
project that has been built at least once.

Many—hbut not all—of the suggested completions are identified by an icon:

¥ Class

IDE Project Management and Building
Guide 127

Editing a file

=

fo

Editing

Enumeration
Enumeration constant
Function

Macro

Namespace

Type definition

Variable

To turn off automatic code completion, choose Tools>Options>Editor and deselect the option.

<P

Only active code—code that will be compiled—is suggested.

Parameter hint

To make the editor suggest function parameters as tooltip information, start typing the first parenthesis after
a function name. A tooltip is also shown when you type a comma in a parameter list.

When there are several overloaded versions of a function, they are all displayed:

int overload(char c):
int overload(short s):
int overload(int i)

int function(void)

{

overload |

iy overload(char ¢} nt
fiy overload(short s) nt
iy overload(int i nt

Using and adding code templates

Code templates are a method of conveniently inserting frequently used source code sequences, for example
for loops and i f statements. The code templates are defined in a plain text file. By default, a few example
templates are provided. In addition, you can easily add your own code templates.

To set up the use of code templates:

1. Choose Tools>Options>Editor>Setup Files.
2. Select or deselect the Use Code Templates option. By default, code templates are enabled.
3. Inthe text field, specify which template file you want to use:

The default template file
The original template file CodeTemplates. txt (alternatively CodeTemplates.ENU. txt
or CodeTemplates.JPN. txt if you are using an IAR Embedded Workbench that is

available in both English and Japanese) is located in a separate directory, see Files for global
settings, page 173.

Note that this is a local copy of the file, which means it is safe to modify it if you want.

IDE Project Management and Building

Guide

128

Editing a file Editing

. Your own template file

Note that before you can choose your own template file, you must first have created one. To
create your own template file, choose Edit>Code Templates>Edit Templates, add your code
templates, and save the file with a new name. The syntax for defining templates is described in
the default template file.

A browse button is available for your convenience.

4. To use your new templates in your own template file, you must:
» Delete the filename in the Use Code Templates text box.

» Deselect the Use Code Templates option and click OK.
* Restart the IAR Embedded Workbench IDE.
» Choose Tools>Options>Editor>Setup Files again.

The default code template file for the selected language version of the IDE should now be
displayed in the Use Code Templates text box. Select the checkbox to enable the template.

To insert a code template into your source code:
1. In the editor window, right-click where you want the template to be inserted and choose Insert
Template (Ctrl+Alt+V).
2. Choose a code template from the menu that appears.
Untitled1* x

vold main (woid)
{

} Cut
Copy

Paste

Complete Word
Complete Code
Pararneter Hint
Match Brackets
Toggle All Folds
Insert Template [Statement [if

3
Open Header/Source File Corporate for

Toggle Breakpoint (Code) Edit Templates

Tooole Breaknoint (1 oo

If the code template requires any type of field input, as in the for loop example which needs an end
value and a count variable, an input dialog box appears.

Syntax coloring

If the Tools>Options>Editor>Syntax highlighting option is enabled, the IAR Embedded Workbench editor
automatically recognizes the syntax of different parts of source code, for example:

e Cand C++ keywords

e Cand C++ comments

e Assembler directives and comments
e Preprocessor directives

IDE Project Management and Building
Guide 129

Programming assistance Editing

e Strings.
The different parts of source code are displayed in different text styles.

To change these styles, choose Tools>Options, and use the Colors and Fonts options. For more information,
see Colors and Fonts options, page 41.

To define your own set of keywords that should be syntax-colored automatically:

1. Inatext file, list all the keywords that you want to be automatically syntax-colored. Separate each
keyword with either a space or a new line.

2. Choose Tools>Options to open the IDE Options dialog box.

3. Open the Editor>Setup Files category.

Select the Use Custom Keyword File option and specify your newly created text file. A browse button
is available for your convenience.

5. Open the Colors and Fonts category and click the Colors button. Select User Keyword in the Syntax
Coloring list. Specify the color and type style of your choice. For more information, see Colors and
Fonts options, page 41.

In the editor window, type any of the keywords you listed in your keyword file—see how the keyword is
colored according to your specification.

Adding bookmarks

Use the Edit>Navigate>Toggle Bookmark command to add and remove bookmarks. To switch between the
marked locations, choose Edit>Navigate>Navigate Next Bookmark or Navigate Previous Bookmark.

Using and customizing editor commands and shortcut keys

The Edit menu provides commands for editing and searching in editor windows, for instance, unlimited
undo/redo. You can also find some of these commands on the context menu that appears when you
right-click in the editor window. For more information about each command, see Edit menu, page 178.

There are also editor shortcut keys for:

e moving the insertion point
e scrolling text
e selecting text.

For more information about these shortcut keys, see Editor shortcut key summary, page 157.

To change the default shortcut key bindings, choose Tools>Options, and click the Key Bindings tab. For
more information, see Key Bindings options, page 45.

Displaying status information

The status bar is available by choosing View>Status Bar. For more information, see /AR Embedded
Workbench IDE window, page 31.

PROGRAMMING ASSISTANCE

There are several features in the editor that assist you during your software development. This section
describes various tasks related to using the editor.

Navigating in the insertion point history

The current position of the insertion point is added to the insertion point history by actions like Go to
definition and clicking on the result for the Find in Files command. You can jump in the history either

IDE Project Management and Building
Guide 130

Programming assistance Editing

forward or backward by using the Navigate Forward E and Navigate Backward E buttons (or by
pressing Alt + Right Arrow or Alt + Left Arrow).

Navigating to a function

Click the Go to function |ﬂ| button in the top-right corner of the editor window to list all functions defined
in the source file displayed in the window. You can then choose to navigate directly to one of the functions
by clicking it in the list. Note that the list is refreshed when you save the file.

Finding a definition or declaration of a symbol
To see the definition or declaration of a global symbol or a function, you can use these alternative methods:

* In the editor window, right-click on a symbol and choose the Go to definition or Go to declaration
command from the context menu that appears. If more than one declaration is found, the declarations
are listed in the Declarations window from where you can navigate to a specific declaration.

* Inthe Outline window, double-click on a symbol to view the definition
* Inthe Outline window, right-click on a symbol, or function, and choose the Go to definition command
from the context menu that appears

The definition of the symbol or function is displayed in the editor window.

Finding references to a symbol

To find all references for a specific symbol, select the symbol in the editor window, right-click and choose
Find All References from the context menu. All found references are displayed in the References window.

You can now navigate between the references.

Finding function calls for a selected function

To find all calls to a function, select the function in the editor window or in the Outline window, right-click
and choose Find All Calls to from the context menu. The result is displayed in the Call Graph window.

You can navigate between the function calls.

Switching between source and header files

If the insertion point is located on an #include line, you can choose the Open "header.h” command from
the context menu, which opens the header file in an editor window. You can also choose the command
Open Header/Source File, which opens the header or source file with a corresponding filename to the
current file, or activates it if it is already open. This command is available if the insertion point is located
on any line except an #include line.

Displaying source browse information

To open the Outline window, choose View>Source Browser>Outline. Source browse information is
displayed for the active build configuration.

Text searching
There are several standard search functions available in the editor:

* Quick search text box
» Find dialog box
* Replace dialog box

IDE Project Management and Building
Guide 131

Reference information on the editor Editing

* Find in Files dialog box
* Replace in Files dialog box
* Incremental Search dialog box.

To use the Quick search text box on the toolbar:

1. Type the text you want to search for and press Enter.

2. Press Esc to stop the search. This is a quick method of searching for text in the active editor window.
To use the Find, Replace, Find in Files, Replace in Files, and Incremental Search
functions:

1. Before you use the search commands, choose Tools>Options>Editor and make sure the Show
bookmarks option is selected.

2. Choose the appropriate search command from the Edit menu. For more information about each search
function, see Edit menu, page 178.

3. Toremove the blue flag icons that have appeared in the left-hand margin, right-click in the Find in
Files window and choose Clear All from the context menu.

REFERENCE INFORMATION ON THE EDITOR

Editor window
The editor window is opened when you open or create a text file in the IDE.

Drop-down menu

code folding, and for selecting entire lines

i | that lists all open files
Goto P J
function
5 o f) v x
‘ Window tabs }~ Tutor.c_ Utilities.c |
33 /* Initializes MAX FIB Fibonacci numbers. */ -
34 vold InitFik (veid)
35 {
B K 36 short 1 = 45;
reakpoint $ 37 Fib[0] = Fib[1] = L;
icon g
39 for (i = 2; i < MRX FIB; i++)
40 i
41 |~ Fib[i] = GetFib(i) + GetFib{i-1);
AT }
Bracket " ast]
m a[chmg 14
15 /* Returns the Fibonacci numbsr 'n'. */
48 unsigned int GetFik{int n) E
o 47 {
Find in files 48 if ((n > 0) =& (n <= MREX FIB})
icon 13 i
50 return (Fik[n-1]):
51 1
52 else
53 {
‘ Bockmark IfD 54 return 0;
55 1
56 1
4 | [T [
‘ Four columns for icons, line numbers, ‘ Right margin that indicates limit of printing area

You can open one or several text files, either from the File menu, or by double-clicking them in the
Workspace window. All open files are available from the drop-down menu at the upper right corner of the
editor window. Several editor windows can be open at the same time.

IDE Project Management and Building
Guide 132

Reference information on the editor Editing

Source code files and HTML files are displayed in editor windows. From an open HTML document,
hyperlinks to HTML files work like in an ordinary web browser. A link to an eww workspace file opens the

workspace in the IDE, and closes any currently open workspace and the open HTML document.

When you want to print a source file, it can be useful to enable the option Show line numbers—available
by choosing Tools>Options>Editor.

The editor window is always docked, and its size and position depend on other currently open windows.

For more information about using the editor, see Editing a file, page 125 and Programming assistance, page
130.

The IDE has partial support for relative source file paths.

If a source file is located in the project file directory or in any subdirectory of the project file directory, the
IDE uses a path relative to the project file when accessing the source file.

In addition to regular comments that start with // (in C++) or /* (in C and C++), the editor supports
documentation comments, that start with /x*, /x 1 /// or //!. The editor can distinguish these

documentation comments from regular comments. By default, the editor assigns the two types of comments
different colors.

Inside a documentation comment, the editor highlights doxygen-style keywords (keywords that begin with
\ or @) and by default uses a different color for them than for the rest of the comment. The color depends
on whether the keyword is identified as an existing doxygen keyword or not. You can customize the
editor’s use of colors on the Tools>Options>Colors and Fonts page, see Colors and Fonts options, page 41.

Lines inside documentation comment blocks can be shown in tooltips and parameter hints for variables and
functions. A comment block with no doxygen-style keywords will be shown as a concatenated text string
in tooltips and parameter hints. After the occurrence of a doxygen-style keyword, only text written after a
@brief keyword will be shown in tooltips and parameter hints.

IDE Project Management and Building

Guide

133

Reference information on the editor

The editor is capable of giving feedback on the code in an editor window as you type. Code that is

Editing

identified as having suspected or verified syntactic issues will be indicated by squiggly lines. The issue

might or might not be a real compiler problem.

If you hover over a squiggly line, a tooltip will identify the nature of the issue:

#include "stdint.h>
#include "Fibonacci.h"

static volid NextCounter (void) :
static wvoid DoForegroundProcess (void)

static int fast8 t callCountj

P e 7 7 ™ m a1 o
callCount i

LilZ=

Error expected ;' after top level declarator

Insert: ;

static volid NextCounter (void)

callCount 4= 1;

I all

[41]

L

A
4

=

- o) c
£ R . E=
i 4 1__ 1ikd pAL J.;;"__ 1__11

]
i

S 550

[41)

static volid DoForegroundProcess (v

=

)
id)

g R
el

If there is a potential simple fix for the identified issue, the tooltip will suggest it. To apply the suggested

fix, choose Apply Syntax Feedback Fix from the Edit menu or the editor window context menu.

Syntax feedback is based on source browser information and is not available during a debugging session.

To enable or disable syntax feedback, and to configure the level of feedback provided, see Editor Syntax

Feedback options, page 55.

IDE Project Management and Building
Guide

134

Reference information on the editor Editing

The name of the open file is displayed on the tab. If you open several files, they are organized in a tab
group. Click the tab for the file that you want to display. If a file has been modified after it was last saved,
an asterisk appears on the tab after the filename, for example Utilities.c *. If afile is read-only, a
padlock icon is visible on the tab.

The tab’s tooltip shows the full path and a remark if the file is not a member of the active project.

A context menu appears if you right-click on a tab in the editor window.

Save CppTutor.cpp

Close

Close All But This
Close All to the Right
Open Containing Folder...
File Properties...

These commands are available:

Save file Saves the file.
Close Closes the file.
Close All But This Closes all tabs except the current tab.

Close All to the Right Closes all tabs to the right of the current tab.

Open Containing Opens the File Explorer that displays the directory where the selected file resides.
Folder
File Properties Displays a standard File Properties dialog box.

You can have one or several editor windows open at the same time. The commands on the Window menu
allow you to split the editor window into panes and to open multiple editor windows. There are also
commands for moving files between editor windows.

For more information about each command on the Window menu, see Window menu, page 194.

IDE Project Management and Building

Guide

135

Reference information on the editor Editing

Go to function

@ICIick the Go to function button in the top right-hand corner of the editor window to list all functions of
the C or C++ editor window.

utor.h
Findude "Tutor.h”®

ounter

Filter the list by typing the name of the function you are looking for. Then click the name of the function
that you want to show in the editor window.

To close the list without moving the cursor from its original position in the editor window, press Esc.

IDE Project Management and Building
Guide 136

Reference information on the editor Editing

This context menu is available:

Cut

Copy
Paste

Complete Word
Complete Code
Apply Syntax Feedback Fix
Parameter Hint
Match Brackets
Toggle All Folds

Insert Ternplate k
Open Header/Source File

Go to Definition of 'main’

Go to Declaration of 'main’

Find All References to ‘'main’ '
Find All Calls to ‘main'

Find &ll Calls from 'main’
Find in Trace

Toggle Breakpoint (Code)

Teggle Breakpeoint (Log)

Toggle Breakpoint (Trace Start)

Toggle Breakpoint (Trace Stop)

Enable/disable Breakpoint

Set Data Breakpoint for ‘'main’

Set Data Log Breakpoint for ‘main’

Edit Breakpoint k

Set Mext Statement

Add to Quick Watch: 'main’
Add to Watch: 'main’
Add to Live Watch: 'main’

Maove to PC

Run to Cursor
Character Encoding L

Opticns...

IDE Project Management and Building
Guide 137

Reference information on the editor

Editing

The contents of this menu depend on whether the debugger is started or not, and on the C-SPY driver you
are using. Typically, additional breakpoint types might be available on this menu. For information about
available breakpoints, see the C-SPY Debugging Guide for Arm.

These commands are available:

Cut, Copy, Paste
Complete Word

Complete Code
Apply Syntax
Feedback Fix

Parameter Hint

Match Brackets

Toggle All Folds

Insert Template

Open "header.hi'

Open Header/Source
File

Go to Definition of
symbol

Go to Declaration of
symbol

Find All References
to symbol

Find All Calls to
symbol

Find in Trace

Standard window commands.

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor window.

Shows a list of classes, functions, variables, etc, that are available when you type.
For more information, see Code completion, page 127.

Applies the suggested fix for the syntactic issue identified by the Syntax feedback
feature.

Suggests parameters as tooltip information for the function parameter list you
have begun to type. For more information, see Parameter hint, page 128.

Selects all text between the brackets immediately surrounding the insertion point,
increases the selection to the next hierarchic pair of brackets, or beeps if there is
no higher bracket hierarchy.

Expands/collapses all code folds in the current editor window.

Displays a list in the editor window from which you can choose a code template to
be inserted at the location of the insertion point. If the code template you choose
requires any field input, the Template dialog box appears. For more information
about this dialog box, see Template dialog box, page 157. For information about
using code templates, see Using and adding code templates, page 128.

Opens the header file header.h in an editor window. If more than one header
file with the same name is found and the IDE does not have access to dependency
information, the Resolve File Ambiguity dialog box is displayed, see Resolve File
Ambiguity dialog box, page 155. This menu command is only available if the
insertion point is located on an #include line when you open the context menu.

Opens the header or source code file that has same base name as the current file.
If the destination file is not open when you choose the command, the file will first
be opened. This menu command is only available if the insertion point is located
on any line except an #include line when you open the context menu. This
command is also available from the File>Open menu.

Places the insertion point at the definition of the symbol. If no definition is found
in the source code, the first declaration will be used instead. If more than one
possible definition is found, they are listed in the Ambiguous Definitions window.
See Ambiguous Definitions window, page 150.

If only one declaration is found, the command puts the insertion point at
the declaration of the symbol. If more than one declaration is found, these
declarations are listed in the Declarations window.

The references are listed in the References window.

Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 156. If this command is
disabled, make sure to select a function in the editor window.

Searches the contents of the Trace window for occurrences of the given location—
the position of the insertion point in the source code—and reports the result in

IDE Project Management and Building

Guide

138

Reference information on the editor

Toggle Breakpoint
(Code)

Toggle Breakpoint
(Log)

Toggle Breakpoint
(Trace Start)

Toggle Breakpoint
(Trace Stop)

Enable/disable
Breakpoint

Set Data Breakpoint
for 'variable

Set Data Log
Breakpoint for
"variable

Edit Breakpoint

Set Next Statement

Add to Quick Watch:

symbol

Add to Watch:
symbol

Add to Live Watch:
symbol

Move to PC

Run to Cursor

Character Encoding

Editing

the Find in Trace window. This menu command requires support for Trace in the
C-SPY driver you are using, see the C-SPY Debugging Guide for Arm.

Toggles a code breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about code breakpoints, see the
C-SPY Debugging Guide for Arm.

Toggles a log breakpoint at the statement or instruction containing or close to
the cursor in the source window. For information about log breakpoints, see the
C-SPY Debugging Guide for Arm.

Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. For information about Trace Start breakpoints, see the C-SPY
Debugging Guide for Arm. Note that this menu command is only available if the
C-SPY driver you are using supports trace.

Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. For information about Trace Stop breakpoints, see the C-SPY
Debugging Guide for Arm. Note that this menu command is only available if the
C-SPY driver you are using supports trace.

Toggles a breakpoint between being disabled, but not actually removed—making
it available for future use—and being enabled again.

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. For more information about data
breakpoints, see the C-SPY Debugging Guide for Arm.

Toggles a data log breakpoint on variables with static storage duration. Requires
support in the C-SPY driver you are using. The breakpoints you set in this
window will be triggered by both read and write accesses—to change this, use
the Breakpoints window. For more information about data logging and data log
breakpoints, see the C-SPY Debugging Guide for Arm.

Displays the Edit Breakpoint dialog box to let you edit the breakpoint available on
the source code line where the insertion point is located. If there is more than one
breakpoint on the line, a submenu is displayed that lists all available breakpoints
on that line.

Sets the Program Counter directly to the selected statement or instruction without
executing any code. This menu command is only available when you are using the
debugger. For more information, see the C-SPY Debugging Guide for Arm.

Opens the Quick Watch window and adds the symbol, see the C-SPY Debugging
Guide for Arm. This menu command is only available when you are using the
debugger.

Opens the symbol to the Watch window and adds the symbol. This menu
command is only available when you are using the debugger.

Opens the Live Watch window and adds the symbol, see the C-SPY Debugging
Guide for Arm. This menu command is only available when you are using the
debugger.

Moves the insertion point to the current PC position in the editor window. This
menu command is only available when you are using the debugger.

Executes from the current statement or instruction up to the statement or
instruction where the insertion point is located. This menu command is only
available when you are using the debugger.

Interprets the source file according to the specified character encoding.
Choose between:

IDE Project Management and Building

Guide

139

Reference information on the editor

Options

Find dialog box

Editing

System (uses the Windows settings)
Western European

UTF-8

Japanese (Shift-JIS)

Chinese Simplified (GB2312)
Chinese Traditional (Big5)

Korean (Unified Hangul Code)
Arabic

Baltic

Central European

Greek

Hebrew

Russian

Thai

Vietnamese

Convert to UTF-8 (converts the document to UTF-8)

Use one of these settings if the Auto-detect character encoding option could
not determine the correct encoding or if the option is deselected. For more
information about file encoding, see Editor options, page 48.

Displays the IDE Options dialog box, see 700ls menu, page 192.

The Find dialog box is available from the Edit menu.

-

Find

sz |

Find what;

| Match case
kd atch whiole word

Oy i zelection

- Find Mesxt
Find Fresious
Cloze

L,

-

Note that the contents of the dialog box might be different if you search in an editor window compared to
if you search in the Memory window. This screen shot reflects the dialog box when you search in an editor

window.

Specify the text to search for. Use the drop-down list to use old search strings.

When you search in the Memory window, the value you search for must be a multiple of the display unit
size. For example, when using the 2 units size in the Memory window, the search value must be a multiple

of two bytes.

IDE Project Management and Building
Guide

140

Reference information on the editor Editing

Searches only for occurrences that exactly match the case of the specified text. Otherwise, specifying
int will also find INT and Int. This option is only available when you perform the search in an editor
window.

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying int will also find
print, sprintf etc. This option is only available when you perform the search in an editor window.

Searches for the specified hexadecimal value. This option is only available when you perform the search in
the Memory window.

Limits the search operation to the selected lines (when searching in an editor window) or to the selected
memory area (when searching in the Memory window). The option is only enabled when a selection has
been made before you open the dialog box.

Searches for the next occurrence of the specified text.

Searches for the previous occurrence of the specified text.

Stops an ongoing search. This button is only available during a search in the Memory window.

IDE Project Management and Building

Guide

141

Reference information on the editor Editing

Find in Files window
The Find in Files window is available by choosing View>Messages.

Find in Files x
Fath Line otring o
CAllse. \Fibonacci.c 16 #include <stdinth>
CAlse \Fibonacci.c 22 static wint_fastd_t callCount;

ChLlze \Fibonacoic 32 M Getand printthe associated Fibonacel numb

ChALlge. \Fibonacoic 35 wint32_tfik;

ChLlge. \Fibonacoic 43 M Frints the Fibonacc sequence. ™/
CALlse. AFibonacci.c 44 int mainfvoid)

Chllsersh. ALltilities.c 16 #include <stdinth>

PN [N TR AT falsl I L T T R td B O R Y L |

P 1 I

| Build | Debug Log | Find in Files |

This window displays the output from the Edit>Find and Replace>Find in Files command. When opened,
this window is, by default, grouped together with the other message windows.

Double-click an entry in the window to open the corresponding file with the insertion point positioned at
the correct location. That source location is highlighted with a blue flag icon. Choose Edit>Next Error/Tag
or press F4 to jump to the next in sequence.

This context menu is available:

Copy
Select Al

Clear all

These commands are available:

Copy Copies the selected content of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window and any blue flag icons in the left-side margin

of the editor window.

Replace dialog box
The Replace dialog box is available from the Edit menu.

i !

Replace 24

Find what; - Find Mext

Replace with: - Replace

| Match case Replace Al
td atch whiole ward Cloze

Only in zelectian

IDE Project Management and Building
Guide 142

Reference information on the editor Editing

Note that the contents of the dialog box are different if you search in an editor window compared to if you
search in the Memory window.

Specify the text to search for. Use the drop-down list to use old search strings.

Specify the text to replace each found occurrence with. Use the drop-down list to use old search strings.

Searches only for occurrences that exactly match the case of the specified text. Otherwise, specifying
int will also find INT and Int. This option is only available when you perform the search in an editor
window.

Searches for the specified text only if it occurs as a separate word. Otherwise, specifying int will also find
print, sprintf etc. This option is only available when you perform the search in an editor window.

Searches for the specified hexadecimal value. This option is only available when you perform the search in
the Memory window.

Limits the search operation to the selected lines (when searching in an editor window) or to the selected
memory area (when searching in the Memory window). The option is only enabled when a selection has
been made before you open the dialog box.

Searches for the next occurrence of the specified text.

Replaces the searched text with the specified text.

IDE Project Management and Building

Guide

143

Reference information on the editor

Replaces all occurrences of the searched text in the current editor window.

Find in Files dialog box
The Find in Files dialog box is available from the Edit menu.

e

Find in Files

Find what:

-

Match case
Match whole word
Match regular expression
Look in
| For all projects in workspace
Project files

Project files and user indude files
@) Project files and all indude files

Directory:
C:\Program Files (x36)\IAR Systems -

Look in subdirectories

File types

* oy %.opp; *.oop*.h; . hpp; *.5%; *.msa; *.asm -

Close

=]
o |

.

Use this dialog box to search for a string in files.

Editing

The result of the search appears in the Find in Files message window—available from the View menu.
You can then go to each occurrence by choosing the Edit>Next Error/Tag command, alternatively by
double-clicking the messages in the Find in Files message window. This opens the corresponding file in
an editor window with the insertion point positioned at the start of the specified text. A blue flag in the

left-hand margin indicates the line with the string you searched for.

IDE Project Management and Building
Guide 144

Reference information on the editor Editing

Specify the string you want to search for, or a regular expression. Use the drop-down list to use old search
strings/expressions. You can narrow the search down with one or more of these conditions:

Match case

Match whole word

Match regular
expression

Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Searches only for the string when it occurs as a separate word (mnemonic &w).
Otherwise, int will also find print, sprintf and so on.

Interprets the search string as a regular expression, which must follow the
regular expression syntax of the ECMAScript specification as defined by the C++
standard for the std: : regex library.

Specify which files you want to search in. Choose between:

For all projects in
workspace

Project files

Project files and user
include files

Project files and all
include files

Directory

Searches all projects in the workspace, not just the active project.

Searches all files that you have explicitly added to your project.

Searches all files that you have explicitly added to your project and all files
that they include, except the include files in the IAR Embedded Workbench
installation directory.

Searches all project files that you have explicitly added to your project and all files
that they include.

Searches the directory that you specify. Recent search locations are saved in the
drop-down list. A browse button is available for your convenience.

Look in subdirectories Searches the directory that you have specified and all its subdirectories.

A filter for choosing which type of files to search—the filter applies to all Look in settings. Choose the
appropriate filter from the drop-down list. The text field is editable, to let you add your own filters. Use the
* character to indicate zero or more unknown characters of the filters, and the 2 character to indicate one

unknown character.

Stops an ongoing search. This button is only available during an ongoing search.

IDE Project Management and Building

Guide

145

Reference information on the editor Editing

Replace in Files dialog box
The Replace in Files dialog box is available from the Edit menu.

Replace in Files [ﬁj

Find what: Stop
- B ————————
Close
Replace with:
- Find Mex
Replace
Match case —
rREepiace A
Match whole word
[~ | Match regular expression Slin File
Look in

["Far all projects in workspace
) Project files

@) Project files and user indude files
1 Project files and all indude files

) Directory:
D \Too-tick \test W ARMFlySim -

Look in subdirectories

File types
* oo * oo b F hppy *. 5% *.msa; *.asm -

Use this dialog box to search for a specified string in multiple text files and replace it with another string.

The result of the replacement appears in the Find in Files message window—available from the View
menu. You can then go to each occurrence by choosing the Edit>Next Error/Tag command, alternatively
by double-clicking the messages in the Find in Files message window. This opens the corresponding file
in an editor window with the insertion point positioned at the start of the specified text. A blue flag in the
left-hand margin indicates the line containing the string you searched for.

Specify the string you want to search for, or a regular expression. Use the drop-down list to use old search
strings/expressions. You can narrow the search down with one or more of these conditions:

Match case Searches only for occurrences that exactly match the case of the specified text.
Otherwise, specifying int will also find INT and Int.

Match whole word Searches only for the string when it occurs as a separate word (mnemonic sw).
Otherwise, int will also find print, sprintf and so on.

Match regular Interprets the search string as a regular expression, which must follow the
expression regular expression syntax of the ECMAScript specification as defined by the C++
standard for the std: : regex library.

IDE Project Management and Building
Guide 146

Reference information on the editor Editing

Specify the string you want to replace the original string with. Use the drop-down list to use old replace
strings.

Specify which files you want to search in. Choose between:

For all projects in Searches all projects in the workspace, not just the active project.
workspace
Project files Searches all files that you have explicitly added to your project.

Project files and user Searches all files that you have explicitly added to your project and all files
include files that they include, except the include files in the IAR Embedded Workbench
installation directory.

Project files and all Searches all project files that you have explicitly added to your project and all files
include files that they include.
Directory Searches the directory that you specify. Recent search locations are saved in the

drop-down list. A browse button is available for your convenience.

Look in subdirectories Searches the directory that you have specified and all its subdirectories.

A filter for choosing which type of files to search—the filter applies to all Look in settings. Choose the
appropriate filter from the drop-down list. The text field is editable, to let you add your own filters. Use the
* character to indicate zero or more unknown characters of the filters, and the 2 character to indicate one
unknown character.

Stops an ongoing search. This button is only available during an ongoing search.

Closes the dialog box. An ongoing search must be stopped first.

Finds the next occurrence of the specified search string.

IDE Project Management and Building

Guide

147

Reference information on the editor Editing

Replaces the found string and finds the next occurrence of the specified search string.

Saves all files and replaces all found strings that match the search string.

Skips the occurrences in the current file.

Incremental Search dialog box
The Incremental Search dialog box is available from the Edit menu.

i "\.
Incremental Search

Find what: Flnu:l M et

b atch caze I:I::use

Orly in zelection

Use this dialog box to gradually fine-tune or expand the search string.

Type the string to search for. The search is performed from the location of the insertion point—the
Start point. Every character you add to or remove from the search string instantly changes the search
accordingly. If you remove a character, the search starts over again from the start point.

If a word in the editor window is selected when you open the Incremental Search dialog box, this word will
be displayed in the Find What text box.

Use the drop-down list to use old search strings.

Searches for occurrences that exactly match the case of the specified text. Otherwise, searching for int
will also find INT and Int.

IDE Project Management and Building
Guide 148

Reference information on the editor Editing

Searches for the next occurrence of the current search string. If the Find What text box is empty when you
click the Find Next button, a string to search for will automatically be selected from the drop-down list. To
search for this string, click Find Next.

Closes the dialog box.

Limits the search operation to the selected lines. The option is only available when more than one line has
been selected before you open the dialog box.

Declarations window
The Declarations window is available by choosing View>Source Browser.

Declarations b4
Fath Line Siring
ChDocumentsy AR Embedded \Warkbenchy, \CppTutor.cpp 36 int callCount;
CADocumentsi|AR Embedded Workbenchy, \CppTutar.cpp 37 extern int callCount;
CADocumentsi|AR Embedded Workbenchh, \CppTutar.cpp I8 extern int callCount;

Fi 11 3
Euild | Debug Log | Declarations | Find in Files

This window displays the result from the Go to Declaration command on the editor window context menu.
When opened, this window is by default grouped together with the other message windows.

To find and list declarations for a specific symbol, select a symbol in the editor window, right-click and
choose Go to Declaration from the context menu. All declarations are listed in the Declarations window.

Double-click an entry in the window to open the corresponding file with the insertion point positioned at
the correct location. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

IDE Project Management and Building
Guide 149

Reference information on the editor Editing

This context menu is available:

Copy
Select Al

Clear all

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

Ambiguous Definitions window
The Ambiguous Definitions window is available by choosing View>Source Browser.

Fath Line atring

Chprojsitutotinterrupt.c 31 woid InitUarthvoid);

Dhvorajsitutotnterrupt.c 41 woid Initltartfeaid)

Fi 10 3
“Build Ambiguous Definitions | x

This window displays the result from the Go to Definition command on the editor window context menu, if
the source browser finds more than one possible definition.

When opened, this window is by default grouped together with the other message windows.

Double-click an entry in the window to open the corresponding file with the insertion point positioned at
the correct location. Choose Edit>Next Error/Tag or press F4 to jump to the next entry in sequence.

This context menu is available:

Copy
Select Al

Clear all

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

IDE Project Management and Building
Guide 150

Reference information on the editor Editing

References window
The References window is available by choosing View>Source Browser.

References X
Fath Line String
CADocumentsy AR Embedded Warkbenchy, \Fibonacci cpp 4z return (msFibaln - 17
ChDocumentsi|AR Embedded Workbenchy. \Fibonacci.cpp 64 msFib[n-1] = walue;

L L 3
| Build | Debug Log | Declarations | References | Find in Files

This window displays the result from the Find All References commands on the editor window context
menu.

When opened, this window is by default grouped together with the other message windows.

To find and list references for a specific symbol, select a symbol in the editor window, right-click and
choose Find All References from the context menu. All references are listed in the References window.

Double-click an entry in the window to open the corresponding file with the insertion point positioned at
the correct location. Choose Edit>Next Error/Tag or press F4 to jump to the next in sequence.

This context menu is available:

Copy
Select Al

Clear all

These commands are available:

Copy Copies the contents of the window.
Select All Selects the contents of the window.
Clear All Deletes the contents of the window.

IDE Project Management and Building
Guide 151

Reference information on the editor

Outline window
The Outline window is available from the View menu.

Editing

Qutline x
MName Detail Symbol type

NextCounter void (void) Function

DoForegroundProcess void (void) Function

<+ callCount int Variable

NextCounter void (void) Function

DoForegroundProcess void {(void) Function

main int {void) Function

This window displays an hierarchical view in alphabetical order of all symbols defined in the active build
configuration. This means that source browse information is available for symbols in source files and
include files part of that configuration. Source browse information is not available for symbols in linked

libraries.

For more information about how to use this window, see Displaying source browse information, page 131.

The display area contains four columns:

Name The names of global symbols and functions defined in the project. Note that an unnamed type,
for example a struct or a union without a name, will get a name based on the filename and

line number where it is defined. These pseudonames are enclosed in angle brackets.

Detail Displays addition information about the element, for example input and output parameters.
Symbol Displays the symbol type for each element.
type

To sort each column, click its header.

IDE Project Management and Building
Guide 152

Reference information on the editor Editing

Icons used for the symbol types
These are the icons used:

I Base class

Class

Configuration

Enumeration

Enumeration constant

|||f||lﬁ

Field of a struct

%

(Yellow rhomb)

. Function
(Purple rhomb)
Macro
Namespace

Template class

Template function

Type definition

T ER

'-.- Union
e
'

Variable

(Yellow rhomb)

= +

IDE Project Management and Building
Guide 153

Reference information on the editor Editing

This context menu is available in the display area:

Go To Defintion

These commands are available:

Go to Definition The editor window will display the definition of the selected item.

Find All Calls to Opens the Call Graph window which displays all functions in the project that
calls the selected function, see Call Graph window, page 156. If this command is
disabled, make sure to select a function in the Outline window.

Move to Parent If the selected element is a member of a class, struct, union, enumeration, or
namespace, this menu command can be used for moving the insertion point to the

enclosing element.

While the source browse information is generated for a project, a green progress bar is displayed in the
status bar of the IDE window. Clicking on this progress bar opens a context menu with a command to open
the Source Browse Log window, see Source Browse Log window, page 154.

If the source browser encounters a fatal error, the progress bar turns red.

Source Browse Log window
The Source Browse Log window is available by choosing View>Messages.

Source Browse Log

Output

Generating browse informations

Current phw file: C:3IAR“tutorials'\GetStarted\Debug'ObjiBasicDebugging . plw
Updating the Source Browser

Reading project configurations
Generating C:wIAR“tutorials'AdvancedDebugging' Delbugh 0lbjs TimerInterrupt .xcl

Parsing C:“IAR‘tutorials‘\AdvancedDebugging' TimerInterrupt.cs
Generating browse informations
Updating the Source Browser =

m

This window displays the output from the operation of the source browser.

IDE Project Management and Building
Guide 154

Reference information on the editor Editing

This context menu is available:

Filter Level:
All
¥ Messages

Errors

Copy
Select All

Clear All
Live Log to File 2

These commands are available:

All Shows all messages sent by the source browser. This is mainly useful as input to
IAR Technical Support.

Messages Gives information about what the source browser is doing and any errors that
occur during parsing.

Errors Shows only errors received during the source browsing.

Copy Copies the contents of the window.

Select All Selects the contents of the window.

Clear All Clears the contents of the window.

Live Log to File Displays a submenu with commands for writing the source browse messages to a

log file, and setting filter levels for the log.

Resolve File Ambiguity dialog box

The Resolve File Ambiguity dialog box is displayed when the editor finds more than one header file with
the same name.

Resclve File Ambiguity

Armbiguaus file name: mizc.h

Select one file:

]] [Cancel
i)

IDE Project Management and Building
Guide 155

Reference information on the editor Editing

This dialog box lists the header files if more than one header file is found when you choose the Open
"headerh™ command on the editor window context menu and the IDE does not have access to dependency
information.

Call Graph window

The Call Graph window is available by choosing View>Source Browser>Call Graph.

Call Graph x
Function File Line

= 4 Callsto getFibiint) Liilities.c 44

EI + doForegroundProcessvoid) Tutor.c 43

- + mainfvoid) Tutar.c 57
2t initFibfoid) |ilities.c 40

This window displays calls to or calls from a function. The window is useful for navigating between the
function calls.

To display a call graph, select a function name in the editor window or in the Outline window, right-click
and select Find All Calls to from the context menu.

Double-click an entry in the window to place the insertion point at the location of the function call (or
definition, if a call is not applicable for the entry). The editor will open the file that contains the call if
necessary.

The display area shows the call graph for the selected function, where each line lists a function. These
columns are available:

Function Displays the call graph for the selected function—first the selected function, followed by a list of
all called or calling functions. The functions calling the selected function are indicated with left
arrow and the functions called by the selected function are indicated with a right arrow.

File The name of the source file.
Line The line number for the call.

This context menu is available:

@0 ko Definition
Go ko Call

These commands are available:

Go to Definition Places the insertion point at the location of the function definition.

Go to Call Places the insertion point at the location of the function call.

IDE Project Management and Building
Guide 156

Reference information on the editor Editing

Template dialog box

The Template dialog box appears when you insert a code template that requires any field input.

e =

Template "for"

Variable i Cancel

for(inti = 0;i < 10; ++H)
{

}

Use this dialog box to specify any field input that is required by the source code template you insert.

li? The figure reflects the default code template that can be used for automatically inserting code for
a for loop.

Specify the required input in the text fields. Which fields that appear depends on how the code template is
defined.

The display area shows the code that would result from the code template, using the values you submit. For
more information about using code templates, see Using and adding code templates, page 128.

Editor shortcut key summary

There are three types of shortcut keys that you can use in the editor:

» Predefined shortcut keys, which you can edit using the IDE Options dialog box
e Shortcut keys provided by the Scintilla editor
e Custom shortcut keys that you can add using the IDE Options dialog box.

The following tables summarize the editor’s predefined shortcut keys.

IDE Project Management and Building

Guide

157

Reference information on the editor Editing

To move the insertion point Press

One character to the left Left arrow

One character to the right Right arrow

One word to the left Ctrl + Left arrow
One word to the right Ctrl + Right arrow

One word part to the left—when using mixed cases, for example mixedCaseName Ctrl + Alt + Left arrow

One word part to the right—when using mixed cases, for example mixedCaseName Ctrl + Alt + Right arrow

One line up Up arrow

One line down Down arrow

To the previous paragraph Ctrl + Alt + Up arrow
To the next paragraph Ctrl + Alt + Down arrow
To the start of the line Home

To the end of the line End

To the beginning of the file Ctrl + Home

To the end of the file Ctrl + End

Table 5. Editor shortcut keys for insertion point navigation

To select text, press Shift and the corresponding command for moving the insertion point. In addition, this
command is available:

To select Press
A column-based block Shift + Alt + Arrow key
Table 6. Editor shortcut keys for selecting text

To scroll Press

Up one line. Ctrl + Up arrow

When used in the parameter hints text box, this shortcut steps up one line through the
alternatives.

Down one line, Ctrl + Down arrow

When used in the parameter hints text box, this shortcut steps down one line through the

alternatives.
Up one page Page Up
Down one page Page Down

Table 7. Editor shortcut keys for scrolling

IDE Project Management and Building
Guide 158

Reference information on the editor

Editing

Description

When used in the parameter hints text box, this shortcut inserts parameters as text in the

source code.
Bracket matching—Expand selection to next level of matching of {3}, [, or ().

Bracket matching—Expand selection to next level of matching of {3}, [], (), or <>.

Bracket matching—Shrink selection to next level of matching of {3}, [], or ().
Bracket matching—Shrink selection to next level of matching of {}, [], (), or <>.
Change case for selected text to lower

Change case for selected text to upper

Complete code

Complete word

Insert template

Parameter hint

Zooming

Zoom in

Zoom out

Zoom normal

Press
Ctrl + Enter

Ctrl +B

Ctrl + Alt+B

Ctrl + Shift + B

Ctrl + Alt + Shift + B
Ctrl +u

Ctrl+U

Ctrl + Space

Ctrl + Alt + Space

Ctrl + Alt + V

Ctrl + Shift + Space
Mouse wheel

Ctrl + numeric keypad '+'
Ctrl + numeric keypad '-'
Ctrl + numeric keypad '/'

Table 8. Miscellaneous editor shortcut keys

IDE Project Management and Building

Guide

159

Reference information on the editor

Editing

Description

Scroll window line up or down

Select a rectangular block and change its size a line up or down, or a column left or

right

Move insertion point one paragraph up or down

Grow selection one paragraph up or down

Move insertion point one word left or right

Grow selection one word left or right

Grow selection to next start or end of a word

Move to first non-blank character of the line
Move to start of line

Select to start of the line

Select a rectangular block to the start or end of page

Delete to start of next word
Delete to start of previous word
Delete forward to end of line
Delete backward to start of line
Zoom in

Zoom out

Restore zoom to 100%

Cut current line

Copy current line

Delete current line

Change selection to lower case

Change selection to upper case

Press
Ctrl + Up Ctrl + Down
Shift + Alt + arrow key

Ctrl + Alt + Up

Ctrl + Alt + Down
Ctrl + Shift + Alt + Up

Ctrl + Shift + Alt + Down
Ctrl + Left

Ctrl + Right
Ctrl + Shift + Left

Ctrl + Shift + Right
Ctrl + Shift + Alt + Left

Ctrl + Shift + Alt + Right
Home

Alt + Home

Shift + Alt + Home

Shift + Alt + Page Up

Shift + Alt + Page Down
Ctrl + Delete

Ctrl + Backspace

Ctrl + Shift + Delete

Ctrl + Shift + Backspace
Ctrl + Add (numeric +)
Ctrl + Subtract (numeric -)
Ctrl + Divide (numeric /)
Ctrl + L

Ctrl + Shift+ T

Ctrl + Shift + L

Ctrl+ U

Ctrl + Shift + U

Table 9. Additional Scintilla shortcut keys

IDE Project Management and Building

Guide

160

Using an external build system Using an external build system

Using an external build system

Introduction to using an external build SYSTEMccoviiiiiiiiiiiiie e 161
Briefly about CMake and CMSIS-TOOIDOXuuivuniiiiiieiiieiie e e e e e e e e e e e eens 161
Reasons for using an external build SYSTEmMcoiviiiiiiiiiiii e 162
Requirements for CMake or CMSIS-TOOIDOXovuiiniiniiiiiiieiieie e e e e aeanas 162

Working with CMake and CMSIS-TOOIDOX PIOJECESceuuiuniineiieiie ettt e e 162
Adding a CMake project to the IDE ..o 162
Adding a CMSIS-Toolbox project to the IDE ..o e 162
Debug options for CMake/CMSIS-TOO0IDOXoivuuiiiiiiiiiiiiii e 163
Adding a file to @ CMSIS-TOOIDOX PIOJECT ...eevuniiiiiiiieiiie ittt et ea e 163
Modifying options for a CMSIS-TOOIDOX PIOJECTuvvuiineiieiieiieeie e et et e e e e e e e e e aiaeaenas 163

Troubleshooting CMake/CMSIS-TOOIDOX PIOJECESuevunrririnerineiieiieiie et ete et e et e et et eaieeaeeaneeaneaeneenns 164
The Workspace Window iS alMOSt ©IMPLYovvneiiniiieeiieiiieiie et e e e e e e e e e e eaneeaneaaneaens 164
Embedded Workbench tries to use all cSOlution CONLEXLSieuueiuieiiiniiiieiii e eeiee e 164
The build log wraps lines of teXts t00 €arlycoiiiiiiiiiiiiiiiiii e 164
The browse information and syntax highlighting iS WIONEcccvviiiiiniiiieiiieiiieiie e, 164
The configuration fails but works from the command linec..ooiiiiiii e, 165

CMake and CMSIS-Toolbox in the IDE Referenceooouiiiiiiiiiiiiiiiiiiiiii e 165
CMake Taret OPTIONSeeuiineii ettt ettt et et e e e e e e e et e e e e e e e eaeeens 165
L1 1G] 15) 1T 166
CMSIS-TOOIDOX OPLIOIIS ..evvuetiineeiinetii ettt ettt et e et ettt e e e et et et e e et e eaaaetai e eenaeeenaees 167
CMake/CMSIS-TooIboX 108 WINAOWuiiiiiiiiiiii e 168

INTRODUCTION TO USING AN EXTERNAL BUILD
SYSTEM

Briefly about CMake and CMSIS-Toolbox

CMake and CMSIS-Toolbox are standard software build systems for C/C++ software projects. CMSIS-
Toolbox is the next generation of CMSIS-Pack, evolving from a strict GUI application to a command line
application. Both offer a format for describing the content and relations of a project.

CMake and CMSIS-Toolbox projects can be added to the Embedded Workbench IDE.

A project that has been imported into the IDE is a reflection of the CMake/CMSIS-Toolbox project—
changes to the set of files and options are made in the CMake/CMSIS-Toolbox files. See the documentation
for CMake/CMSIS-Toolbox for information on how to configure the project.

IAR Embedded Workbench uses the Ninja build engine to build CMake and CMSIS-Toolbox projects. The
installation includes Ninja version 1.10, with custom UTF-8 support, located in the common\bin folder
in the Embedded Workbench installation directory. To use another installed version of Ninja, add it to
PATH or add ~-DCMAKE MAKE PROGRAM=install path tothe CMake extra options.

A CMake or CMSIS-Toolbox project in the IDE does not have to use an IAR compiler or
li? assembler—the system supports any compiler or assembler, including older versions of the IAR

tools. However, using the IAR compiler or assembler version installed with the IDE provides

richer debug information and improves the debugging capabilities of the C-SPY Debugger.

IDE Project Management and Building
Guide 161

Working with CMake and CMSIS-Toolbox projects Using an external build system

Reasons for using an external build system

Adding projects from the CMake or CMSIS-Toolbox build system to the Embedded Workbench IDE
allows you to use the familiar Embedded Workbench workflow.

With a CMake or CMSIS-Toolbox project in the IDE, you can use the C-SPY Debugger, C-STAT Static
analysis, and C-RUN Runtime error checking, if your license includes those.

Requirements for CMake or CMSIS-Toolbox

Because the IAR Embedded Workbench IDE is just a viewing frame for the CMake/CMSIS-Toolbox
project, all changes to files and options must be made in the CMake/CMSIS-Toolbox files. This means that
a working knowledge of CMake/CMSIS-Toolbox is required.

For more information about CMake, and for downloading the software, see the CMake website https://
cmake.org/.

For more information about CMSIS-Toolbox, and for downloading the software, see https://github.com/
Open-CMSIS-Pack/cmsis-toolbox.

WORKING WITH CMAKE AND CMSIS-TOOLBOX
PROJECTS

Adding a CMake project to the IDE

To add a CMake project:

1. Download and install CMake (version 3.31 or later).

2. Choose Project>Create New Project to open the Create New Project dialog box.

3. From the Tool chain dropdown menu, choose CMake for Arm and select the template Import
CMakeLists.txt.

4. Navigate to the CMakeLists. txt that belongs to the CMake project you want to add. Adding it
can take a few minutes.

5. Save the project file in a suitable location.
Now all files should be displayed in the Workspace window.
The project can now be analyzed and debugged as a regular Embedded Workbench
project. In a project with multiple executable targets, select the target to debug on the
Project>Options>CMake>Target page.
You can also use the template Empty project and import a CMakeLists. txt file into the IDE later,
provided you choose the tool chain CMake for Arm. Import the CMakeLists. txt file by selecting
Project>Add CMakeLists.txt to Project. Note that you can only add one CMakeLists. txt file.

Adding a CMSIS-Toolbox project to the IDE

1. Download and install a version of CMSIS-Toolbox that is compatible with the project you are going to

import.

Download and install CMake (version 3.31 or later).

Only if you are using IAR Build Tools for Linux:

1. Install the version of Ruby that corresponds to the Linux version you are using.

2. Navigate to the common/bin/pack2iar directory in the installation directory and run
bundle install todownload and install the bundles needed to run the pack conversion
steps.

IDE Project Management and Building

Guide

162

Working with CMake and CMSIS-Toolbox projects Using an external build system

Choose Tools>Options>CMake/CMSIS-Toolbox to open the settings page for CMake/CMSIS-
Toolbox and specify the paths to the:

* CMake executable

* CMSIS-Toolbox installation

» Pack root folder (the local PACK repository)

To prepare for adding a csolution. yml project file to the IDE, choose Project>Create New
Project to open the Create New Project dialog box.

From the Tool chain dropdown menu, choose CMake for Arm and select the template Import
csolution.yml.

Navigate to the csolution. yml file that belongs to the CMSIS-Toolbox project you want to add.
Adding it can take a few minutes.

Save the project file in a suitable location.

Now all files should be displayed in the Workspace window.

The project can now be analyzed and debugged as a regular Embedded Workbench

project. In a project with multiple executable targets, select the target to debug on the
Project>Options>CMake>Target page.

You can also use the template Empty project and import a csolution. yml file into the IDE

later, using the command Project>Add CMake Connector>CSolution. Note that you can only add one
csolution.yml filel

Debug options for CMake/CMSIS-Toolbox
Preparing a CMake/CMSIS-Toolbox project for debugging:

1.

2.

3.

Choose Project>Options>General Options>Target and select your target device.

For a CMSIS-Toolbox project, you can skip this step and instead use the option Automatically resolve
device, see CMake/CMSIS-Toolbox options, page 64 and CMSIS-Toolbox options, page 167.

On the Library Configuration page in the same options category, select these options:

Option Setting
Library low-level interface implementation Semihosted
stdout/stderr Via semihosting

Now the project is ready for debugging using the IAR C-SPY Debugger.

Adding a file to a CMSIS-Toolbox project
Files in a CSolution project are typically added to the cproject.yml file:

1.
2.

Open the cproject . yml that corresponds to the project.
Under groups, either add a new group like this:

- group: NewGroup
files:
- file: ./mySourceFile.c

or add files to existing groups using the - £1i 1e entry. For more options on adding files, see the
official CMSIS-Toolbox documentation.

Modifying options for a CMSIS-Toolbox project

Compiler and linker flags can be altered on different levels in the project. Options added to the
csolution.yml files can be included in all sub projects. Options added to the cproject. yml files
are project-specific.

IDE Project Management and Building

Guide

163

Troubleshooting CMake/CMSIS-Toolbox projects Using an external build system

For csolution.yml, options are specified under build-types, like this:

build-types:
- type: MyType
compiler: IAR
misc:
- C:
- "--newOption"
- Link:
- "--alsoNewOption"
A mi sc section can also be added to the project entry in the cproject . yml file for project-specific
options, or as conditional arguments for specific compilers and contexts under the setups section, like
this:
setups:
- setup: IAR Setup
for-compiler: IAR
misc:
- CPP:
- "——c++"
linker:
- script: linker.icf

define:
- test: 12

For more information, see the official CMSIS-Toolbox documentation.

TROUBLESHOOTING CMAKE/CMSIS-TOOLBOX
PROJECTS

At times you will run into problems with the CMake or CMSIS-Toolbox project in the Embedded
Workbench IDE. As a general rule, before contacting IAR Technical Support, you should try to perform
the same operations on your CMake/CMSIS-Toolbox project from the command line, without using the
Embedded Workbench IDE. In many cases, the problem is with CMake or CMSIS-Toolbox.

The Workspace window is almost empty

If the project tree in the Workspace window only contains the CMakeLists.txt Or csolution.yml
file, the project failed to configure itself correctly. Inspect the CMake/CMSIS-Toolbox log window for
errors, see CMake/CMSIS-Toolbox log window, page 168.

Try configuring and building the project from the command line and see if the problem persists.

Embedded Workbench tries to use all csolution contexts

If IAR Embedded Workbench attempts to use all contexts in the csolution. yml file, but you only want
to use some of them, you can limit the contexts that are generated by sending the -—context command
line option to csolution from the CMSIS-Toolbox options page, see CAMS/S-Toolbox options, page
167.

The build log wraps lines of texts too early

By default, the IAR compiler wraps long lines of text. To disable this, add --no_wrap diagnostics
to the compiler command line in your CMake or CMSIS-Toolbox files.

The browse information and syntax highlighting is wrong

If the source browse information and editor syntax highlighting is wrong, make sure that the project builds
as expected. You should also inspect the command lines for the project for missing options.

IDE Project Management and Building
Guide 164

CMake and CMSIS-Toolbox in the IDE Reference Using an external build system

The configuration fails but works from the command line

If the configuration fails in the Embedded Workbench IDE, but works from the command line, try deleting
the build directory used by CMake/CMSIS-Toolbox, either manually or by using the Project>Force
Reconfiguration menu command. If you change any underlying options in CMake, for example, the
selected compiler, you must remove the build directory and reconfigure the project.

CMAKE AND CMSIS-TOOLBOX IN THE IDE REFERENCE

See also:

e the commands on the Project menu, page 186
e CMake/CMSIS-Toolbox options, page 64

CMake Target options

The CMake Target page contains the target-specific options for using IAR Embedded Workbench with
CMake/CMSIS-Toolbox. The page is available by choosing Project>Options>CMake/CMSIS-Toolbox.

CMake Target

CMake tanget to debug:
HelloWord_cm{plus out o

Detected target options:

Detected from csolution:
Device type: : CM515 Pack

Detected from caolution:

CM515 Device path: C:\UsersjookimimloApp DataLocal " Am
“Packs'\MWXPWKIZLIAGD_DFPY16.0.0Miarconfigdevices MWXP
WKIZLIABMKIZLIAGOVPITA_cmiplus i79

The target file to debug.

Displays which options that have been set automatically for a CMSIS-Toolbox project. Note that
changes to options are made in the CMSIS-Toolbox files. See the documentation for CMSIS-Toolbox
for information on how to configure the project.

IDE Project Management and Building
Guide 165

CMake and CMSIS-Toolbox in the IDE Reference Using an external build system

CMake options

The CMake page contains options for using IAR Embedded Workbench with CMake. The page is available
by choosing Project>Options>CMake/CMSIS-Toolbox.

CMake

CMake preset: Mone

Selected CMake: C:\Program Files\CMake3 28\bin\cmake exe

Generator: Minja Mutti-Config =7

Extra command line options for corfiguration:

B Overide tools in env
CC: STOOLKIT_DIRS“hin‘iccamm exe

C¥x: STOOLKIT_DIRS“bin‘iccam exe
ASM: STOOLKIT_DIRZ%bin‘iasmamm exe

Prepend directony to PATH while configuring:

Build directony:
SPROJ_DIRS cmake_build ' MyCMake Project

Choose a CMake configure preset for the project. The presets are imported from the project's
CMakePresets.json/CMakeUserPresets.json file.

This is the path to the CMake executable file. Change this path to use another CMake installation.

Sets the build generator. Choose between:

* Ninja

¢ Ninja Multi-Config

Use this field to send command line build options directly to CMake.

IDE Project Management and Building
Guide 166

CMake and CMSIS-Toolbox in the IDE Reference Using an external build system

Specify the locations of the C compiler (CC), C++ compiler (CXX), and assembler (ASM) that CMake will
use during the build process.

Specify a path to prepend to the PATH environment variables during the configuration of the project. For
example, entering the installation path to an older project version makes CMake use that compiler instead
of the current one.

Specify the location of the CMake build folder.

CMSIS-Toolbox options

The CMSIS-Toolbox page contains options for using IAR Embedded Workbench with CMSIS-Toolbox.
The page is available by choosing Project>Options>CMake/CMSIS-Toolbox.

CM515-Toolbox

Selected toolbow:

[] Overmide pack roat

B Add current installation as [AR_TOOLCHAIN_ROOT
B Automatically download missing packs (automatically accepts licenses)
B Automatically resolve device

Csolution extra command line options:

Chuildgen extra command line options:
-Updatete

This is the path to the CMSIS-Toolbox installation. Change this path to use another CMSIS-Toolbox
installation.

IDE Project Management and Building

Guide

167

CMake and CMSIS-Toolbox in the IDE Reference Using an external build system

Use this option to override the location of the pack root folder (the local PACK repository).

Sets the IAR TOOLCHAIN ROOT environment variable to the path of the CMSIS-Toolbox installation,
for the instance of IAR Embedded Workbench you are currently using.

Select this option to make IAR Embedded Workbench automatically attempt to locate and download
missing packs.

l:? Packs will be installed regardless of the type of license that governs their use.

Select this option to set the device automatically, based on the information in the csolution.yml
project file. This will change the device setting on the project options Target page
(Project>Options>General Options>Target).

Use this field to send command line options directly to csolution, the CMSIS-Toolbox Project
Manager.

Use this field to send command line build options directly to the cbui1dgen tool.

CMake/CMSIS-Toolbox log window

The CMake/CMSIS-Toolbox log window is available by choosing View>Messages>CMake/CMSIS-
Toolbox.

CMake/CMSIS-Toolbox 4

Output
Configuration of get_started.csolutionyml completed

Build CMake/CMSIS-Toolbox | Source Browse Log | Debug Log

IDE Project Management and Building

Guide

168

CMake and CMSIS-Toolbox in the IDE Reference

Using an external build system

This window displays output from CMake/CMSIS-Toolbox related commands, such as diagnostic
messages and operational log messages. When opened, this window is, by default, grouped together with
the other message windows.

A working CMake installation.

This context menu is available:

Filter Level:

» Al

Messages
Warnings

Errors

Copy
Select All

Clear All

These commands are available:

All
Messages
Warnings
Errors
Copy
Select All
Clear All

Shows all messages sent by operations on the CMake/CMSIS-Toolbox projects.
Shows all messages sent by operations on the CMake/CMSIS-Toolbox projects.
Shows warnings and errors.

Shows errors only.

Copies the contents of the window.

Selects the contents of the window.

Clears the contents of the window.

IDE Project Management and Building

Guide

169

Part 2. Reference information Part 2. Reference information

Part 2. Reference information

This part contains these chapters:

Product files, page 171

Menu reference, page 176

General options, page 196
Compiler options, page 207
Assembler options, page 222
Output converter options, page 229
Custom build options, page 231
Build actions options, page 233
Linker options, page 236

Library builder options, page 252

IDE Project Management and Building

Guide

170

Product files Product files

Product files

Installation dIir€CtOTY SEIUCTUIEiuuiieiie ittt it et et et e e et et et et e et et e e s e ean e et e et e st e st esneesneesneenneenns 171
ROOE QIIECIOTY ..itiiiiiiie ittt et e e e e e e e et e e e e et e et e et e et e st eaaeeaaeesneeaneeens 171
THE AN QITECTOTY L. etniintine et et e e e et e e e et e e et e e et e e e s e e e e e e e s e e esneaneens 171
The COMMON QITECLOTY .. e.uiiniit ittt ettt et et e e et e e eens 172
The InStall-INfO dIT@CTOTY ...iuniie ittt e 172
Project dir€CtOTY SLIUCTUIEiuiiteie ettt et et et et e e e e e e e e e e e e e e eanaas 172
Various SEtNES FILES ... ounii ittt e e e e e anas 173
Files for global SETNESuiiuneiieii ettt 173
Files fOr 10Cal SELLINEScevuuiiiiiiii et ettt et e e e e 173
2T o TP 174

INSTALLATION DIRECTORY STRUCTURE

The installation procedure creates several directories to contain the various types of files used with the
IAR development tools. The following sections give a description of the files contained by default in each
directory.

Root directory

The default installation root directory is typically c: \iar\ewarm-n.n\.

The arm directory
The arm directory contains all product-specific subdirectories.

Directory Description

arm\bin Contains executable files for Arm-specific components, such as the compiler, the assembler,
the linker and the library tools, and the C-SPY® drivers.

arm\config Contains files used for configuring the development environment and projects, for example:

« Linker configuration files (* . icf)

« Special function register description files (* . sfr)

* C-SPY device description files (* . ddf)

« Device selection files (* . 179, * .menu)

« Flash loader applications for various devices (* . out)
« Syntax coloring configuration files (* . c£g)

« Project templates for both application and library projects (* . ewp), and for the library
projects, the corresponding library configuration files.

arm\cstat Contains files related to C-STAT.

arm\doc Contains IAR documentation, and Arm reference guides. The directory also contains release
notes with recent additional information about the Arm tools.

arm\drivers Contains low-level device drivers, typically USB drivers required by the C-SPY drivers.

IDE Project Management and Building
Guide 171

Project directory structure Product files

Directory Description
arm\examples Contains files related to example projects, which can be opened from the Information Center.

arm\inc Contains include files, such as the header files for the standard C or C++ library. There are
also specific header files that define special function registers (SFRs)—these files are used by
both the compiler and the assembler.

arm\1lib Contains prebuilt libraries and the corresponding library configuration files, used by the
compiler.

arm Contains executable files and description files for components that can be loaded as plugin
modules.

arm\rtos Contains product information, evaluation versions, and example projects for third-party RTOS

and middleware solutions integrated into IAR Embedded Workbench.
arm\src Contains source files for some configurable library functions and the library source code.

For the ILINK linker, the directory also contains the source code for ELF utilities.

arm\tutorials Contains the files used for the tutorials in the Information Center.

Table 10. The arm directory

The common directory
The common directory contains subdirectories for components shared by all IAR Embedded Workbench

products.
Directory Description
common\bin Contains executable files for components common to all IAR Embedded Workbench

products, such as the editor and the graphical user interface components. The executable
file for the IDE is also located here.

common\config Contains files used by the IDE for settings in the development environment.

common\doc Contains release notes with recent additional information about the components common
to all IAR Embedded Workbench products. We recommend that you read these files. The
directory also contains documentation related to installation and licensing.

common\plugins Contains executable files and description files for components that can be loaded as plugin
modules.

Table 11. The common directory

The install-info directory

The install-info directory contains metadata (version number, name, etc.) about the installed product
components. Do not modify these files.

PROJECT DIRECTORY STRUCTURE

When you build your project, the IDE creates new directories in your project directory. A subdirectory
is created—the name of this directory reflects the build configuration you are using, typically bebug or
Release. This directory in turn contains these subdirectories:

BrowseInfo The default destination directory for information generated by the source browser.
Exe The default destination directory for:

e The executable file, which has the extension out and is used as input to the IAR
C-SPY® Debugger.

e Library object files, which have the extension a.
e The TrustZone import library file, which has the filename extension o.

IDE Project Management and Building
Guide 172

Various settings files Product files

C-STAT The default destination directory for information generated by the C-STAT static analysis,
created when you run an analysis. Note that the name and location of this directory can be
changed on the page Project>Options>Static Analysis>C-STAT Static Analysis.

List The default destination directory for various list files.

Obj The default destination directory for the object files from the compiler and assembler. The
object files have the extension o and are used as input to the linker.

The names and locations of these directories can be changed on the page Project>Options>General
Options>Output.

VARIOUS SETTINGS FILES

When you work in the IDE, the IDE creates files for various types of settings. These files are stored in
different directories depending on whether the files contain global or local settings.

Files for global settings

Files for global settings are stored in C: \Users\User\AppData\Local\IAR Embedded
Workbench. These are the global settings files:

CodeTemplates.txt A file that holds predefined code templates.

CodeTemplates.ENU.txt Note that if you are using an IDE that is available in both English and
Japanese, the language version is set when you start IAR Embedded
Workbench for the first time, based on the language settings of the operating
system. In this case, the filename is extended with ENU or JPN.

CodeTemplates.JPN. txt

See also Using and adding code templates, page 128.

global.custom argvars A file that holds any custom argument variables that are defined for a global
scope.
See also Configure Custom Argument Variables dialog box, page 80.

TarIde.xml A file that holds IDE and project settings global to your installed IAR
Embedded Workbench product(s).

Files for local settings

Most files for /ocal settings are stored in the directory settings, which is created in your project
directory. These are the local settings files:

Project.dbgdt A file for debugger desktop settings.
Project.Buildconfig.cspy.bat A batch file that C-SPY creates every time it is invoked.
Project.Buildconfig.driver.xcl A file that C-SPY creates every time it is invoked, and which

contains the command line options used that are specific to
the C-SPY driver you are using.

Project.Buildconfig.general.xcl A file that C-SPY creates every time it is invoked, and which
contains the command line options used that are specific to

cspybat.
Project.dnx A file for debugger initialization information.
Workspace.wsdt A file for workspace desktop settings.
Workspace.wspos A file for placement information for the main IDE window.
Workspace.custom_argvars A file for any custom argument variables that are defined

for a workspace-local scope. See also Configure Custom
Argument Variables dialog box, page 80.

IDE Project Management and Building
Guide 173

File types

FILE TYPES

Product files

Note: This file is created in the Workspace directory.

The 1AR development tools use the following default filename extensions to identify the produced files and
other recognized file types:

Ext.

a

asm
bat
board

ee
cfg

cgx

chm

cp

cpp

crun
cspy.bat
CXX

c++

dat
dbgdt
ddf

dep

dnx

ewd

ewp

ewplugin
ewt

eww

flash
flashdict

fmt

helpfiles
html, htm

i

icf

Type of file

Library

Assembler source code
Windows command batch file
Configuration file for flash loader
C source code

C++ source code

Syntax coloring configuration
Call graph file

Online help system file

C++ source code

C++ source code

C-RUN filter settings
Invocation file for cspybat
C++ source code

C++ source code

Macros for formatting of STL containers
Debugger desktop settings
Device description file
Dependency information
Debugger initialization file
Project settings for C-SPY

IAR Embedded Workbench project (current
version)

IDE description file for plugin modules
Project settings for C-STAT and C-RUN
Workspace file

Configuration file for flash loader

Flash loader redirection specification

Formatting information for the Locals and
Watch windows

C/C++ or assembler header source

Help menu configuration file
HTML document
Preprocessed source

Device selection file

Linker configuration file

Output from
iarchive
Text editor
C-SPY
Text editor
Text editor
Text editor
Text editor
ILINK
Text editor
Text editor
IDE
C-SPY
Text editor
Text editor
IDE
C-SPY
Text editor
IDE
C-SPY
IDE

IDE

IDE
IDE
Text editor
Text editor
IDE

Text editor

Text editor
Text editor
Compiler

Text editor
Text editor

Input to
ILINK
Assembler
Windows
C-SPY
Compiler
Compiler
IDE

IDE
Compiler
Compiler
IDE
Compiler
Compiler
IDE
C-SPY
C-SPY
IDE
C-SPY
IDE

IDE

IDE
IDE
IDE
C-SPY
C-SPY
IDE

Compiler or assembler
#include

IDE

IDE
Compiler
IDE
ILINK

IDE Project Management and Building

Guide

174

File types

Product files

Ext.
inc
ini
log
1st

mac

menu

out

out

pack

pbd
pbi

pew

prj

reggroups
s
sfr

sim

suc
svd

vSp

wsdt
WSpOS

xcl

Type of file

Assembler header source
Project configuration
Log information

List output

C-SPY macro definition
Device selection file

Object module

Target application

Target application with debug information

CMSIS-Pack package file

Source browse information
Source browse information

IAR Embedded Workbench project (old
project format)

IAR Embedded Workbench project (old
project format)

User-defined register group configuration
Assembler source code
Special function register definitions

Simple code formatted input for the flash
loader

Stack usage control file
System View Description

Visual State project files

Workspace desktop settings
Main IDE window placement information

Extended command line

Output from
Text editor
IDE

IDE

Compiler and
assembler

Text editor
Text editor

Compiler and
assembler

ILINK
ILINK

Software vendors

IDE
IDE
IDE

IDE

IDE

Text editor
Text editor
C-SPY

Text editor
Text editor

IAR Visual State
Editor

IDE
IDE

Text editor

Input to
Assembler #include

C-SPY
IDE
ILINK

EPROM, C-SPY, etc.

C-SPY and other
symbolic debuggers

CMSIS-Pack pack
manager

IDE
IDE
IDE

IDE

IDE
Assembler
C-SPY
C-SPY

ILINK
C-SPY

IAR Visual State Editor
and IAR Embedded
Workbench IDE

IDE
IDE

Assembler, compiler,
linker, cspybat, source
browser

Table 12. File types

When you run the IDE, some files are created and located in dedicated directories under your project
directory, by default SPROJ DIRS$\Debug, $PROJ DIRS$\Release, $PROJ DIRS$\settings.
None of these directories or files affect the execution of the IDE, which means you can safely remove

them if required.

IDE Project Management and Building

Guide

175

Menu reference Menu reference

Menu reference

1\ 1S 1 T TP UPR 176
FILE TN .ottt ettt 176
Bt MCIU .o e e 178
VICW IMICIIUL ..ttt ettt e e e et e e e e et ettt e e e e e e e e 182
PrOJECE INGIIUL ..eei ettt et et et et e e et e e e e e 186
Erase Memory dialog DOXouuiiiniiiiiei et 191
TOOIS TNCIIUL ...oeeii e e e e 192
WINAOW INEIIU ...oettint e et 194
HEIP MEIU .ottt et et 195

MENUS

In addition, a set of C-SPY-specific menus become available when you start the debugger. For more
information about these menus, see the C-SPY Debugging Guide for Arm.

File menu

The File menu provides commands for opening workspaces and source files, saving and printing, and
exiting from the IDE.

The menu also includes a numbered list of the most recently opened files and workspaces. To open one of
them, choose it from the menu.

Mew File Ctrl+=N

[i

MNew Workspace

Open File... Ctrl=0
Open Workspace...

Open Header/Source File Ctrl+5hift+H
Close

Save Workspace
Save Workspace As...
Close Waorkspace

Save Ctrl=5
Save As..

Save All

Page Setup...

m&e BRE PRE & 6 GO

Print... Ctrl=P

Recent Files L4

Recent Workspaces L4

€ Euit

IDE Project Management and Building
Guide 176

Menus

Menu reference

These commands are available:

New File (Ctrl+N)

New Workspace

Open File (Ctrl+O)

Open Workspace

Open Header/Source
File (Ctrl+Shift+H)

Close

Save Workspace

Save Workspace As

Close Workspace

Save (Ctrl+S)

Save As

Save All

Page Setup

[

Creates a new text file.

[

Creates a new workspace.

Displays an Open dialog box for selecting a text file or an HTML document to
open. See Editor window, page 132.

Displays an Open Workspace dialog box for selecting a workspace file to open.

Before a new workspace is opened you will be prompted to save and close any
currently open workspaces.

B

Opens the header file or source file that corresponds to the current file, and
shifts focus from the current file to the newly opened file. This command is also
available on the context menu in the editor window.

@]

Closes the active window. You will be given the opportunity to save any files that
have been modified before closing.

=’

Saves the current workspace file.

o

Displays a Save Workspace As dialog box for saving the workspace with a new
name.

&

Closes the current workspace file.

(™'
Saves the current text file or workspace file.

Displays a Save As dialog box where you can save the current file with a new
name.

<)
Saves all open text documents and workspace files.

i,

Displays a Page Setup dialog box where you can set printer options.

IDE Project Management and Building

Guide

177

Menus Menu reference

Print (Ctrl+P) =
Displays a Print dialog box where you can print a text document.

Recent Files Displays a submenu from where you can quickly open the most recently opened
text documents.

Recent Workspaces Displays a submenu from where you can quickly open the most recently opened
workspace files.

Exit 0
Exits from the IDE. You will be asked whether to save any changes to text files
before closing them. Changes to the project are saved automatically.

Edit menu
The Edit menu provides commands for editing and searching.

<) | Unda Ctri+=Z
Redo Cirl+Y
M cut Ctrl=¥
K copy Ctrl=C
(Y Paste Crl+V
Select All Ctrl=A
Find and Replace 4
Mavigate b
Code Templates b
Complete Word Ctrl+Alt=5pace
Complete Code Ctrl+5pace
Apply Syntax Feedback Fix Ctrl+M
Parameter Hint Ctrl=5hift+5pace
Match Brackets b
Eg Togale All Falds Ctrl+Alt+F
¥= Auto Indent Ctrl+T
*/f Block Comment Ctri=K
=N Block Uncomment Ctrl=Shift=K
Toggle Ereakpoint Fa

Enable/Disable Breakpoint Ctrl=F9

Mext ErrorTag F4
Previous Error/Tag Shift=F4

IDE Project Management and Building
Guide 178

Menus

Menu reference

These commands are available:

Undo (Ctrl+2Z)

Redo (Ctrl+Y)

Cut (Ctrl+X)

Copy (CtrlI+C)

Paste (Ctrl+V)

Select All (Ctrl+A)

Find and
Replace>Find
(Ctri+F)

Find and
Replace>Find Next
(F3)

Find and
Replace>Find
Previous (Shift+F3)

Find and
Replace>Find Next
(Selected) (Ctrl+F3)

Find and
Replace>Find
Previous (Selected)
(Ctrl+Shift+F3)

Find and
Replace>Replace
(Ctrl+H)

o
Undoes the last edit made to the current editor window.

c

Redoes the last Undo in the current editor window. You can undo and redo an
unlimited number of edits independently in each editor window.

y“

The standard Windows command for cutting text in editor windows and text
boxes.

[

The standard Windows command for copying text in editor windows and text
boxes.
[

The standard Windows command for pasting text in editor windows and text
boxes.

]

Selects all text in the active editor window.

Q

Displays the Find dialog box where you can search for text within the current
editor window, see Find dialog box, page 140. Note that if the insertion point is
located in the Memory window when you choose the Find command, the dialog
box will contain a different set of options than otherwise. If the insertion point
is located in the Trace window when you choose the Find command, the Find
in Trace dialog box is opened—the contents of this dialog box depend on the
C-SPY driver you are using, see the C-SPY Debugging Guide for Arm for more
information.

>
Finds the next occurrence of the specified string.

<
Finds the previous occurrence of the specified string.

Searches for the next occurrence of the currently selected text or the word
currently surrounding the insertion point.

Searches for the previous occurrence of the currently selected text or the word
currently surrounding the insertion point.

+

Displays a dialog box where you can search for a specified string and replace each
occurrence with another string, see Replace dialog box, page 142.

IDE Project Management and Building

Guide

179

Menus

Find and
Replace>Find in Files

Find and
Replace>Replace in
Files

Find and
Replace>Incremental
Search (Ctrl+1)

Navigate>Go To
(Ctri+G)

Navigate>Toggle
Bookmark (Ctrl+F2)

Navigate>Previous
Bookmark (Shift+F2)

Navigate>Next
Bookmark (F2)

Navigate>Navigate
Backward (Alt+Left
Arrow)

Navigate>Navigate
Forward (Alt+Right
Arrow)

Navigate>Go to
Definition (F12)

Code
Templates>Insert
Template
(CtrI+Alt+V)

Code Templates>Edit
Templates

Menu reference

Note that if the insertion point is located in the Memory window when you choose
the Replace command, the dialog box will contain a different set of options than
otherwise.

Displays a dialog box where you can search for a specified string in multiple text
files, see Find in Files window, page 142.

Displays a dialog box where you can search for a specified string in multiple text
files and replace it with another string, see Replace in Files dialog box, page 146.

Displays a dialog box where you can gradually fine-tune or expand the search by

continuously changing the search string, see /ncremental Search dialog box, page
148.

v

Displays the Go to Line dialog box where you can move the insertion point to a
specified line and column in the current editor window.

Toggles a bookmark at the line where the insertion point is located in the active
editor window.

£

Moves the insertion point to the previous bookmark that has been defined with the
Toggle Bookmark command.

>

Moves the insertion point to the next bookmark that has been defined with the
Toggle Bookmark command.

[

Navigates backward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and clicking
on a result from the Find in Files command.

B

Navigates forward in the insertion point history. The current position of the
insertion point is added to the history by actions like Go to definition and clicking
on a result from the Find in Files command.

Shows the declaration of the selected symbol or the symbol where the insertion
point is placed. This menu command is available when browse information has
been enabled, see Project options, page 58.

Displays a list in the editor window from which you can choose a code template to
be inserted at the location of the insertion point. If the code template you choose
requires any field input, the Template dialog box appears, see 7emplate dialog
box, page 157. For information about using code templates, see Using and adding
code templates, page 128.

Opens the current code template file, where you can modify existing code
templates and add your own code templates. For information about using code
templates, see Using and adding code templates, page 128.

IDE Project Management and Building

Guide

180

Menus

Complete Word
(Ctrl+Alt+Space)

Complete Code
(Ctrl+Space)

Apply Syntax
Feedback Fix
(Ctrl+M)

Parameter Hint
(Ctrl+Shift+Space)

Match Brackets

Toggle All Folds
(Ctrl+Alt+F)

Auto Indent (Ctrl+T)

Block Comment
(Ctri+K)

Block Uncomment
(Ctrl+Shift+K)

Toggle Breakpoint
(F9)

Enable/Disable
Breakpoint (Ctrl+F9)

Next Error/Tag (F4)

Previous Error/Tag
(Shift+F4)

Menu reference

Attempts to complete the word you have begun to type, basing the guess on the
contents of the rest of the editor window.

Shows a list of classes, functions, variables, etc, that are available when you type.
For more information, see Code completion, page 127.

Applies the suggested fix for the syntactic issue identified by the Syntax feedback
feature in the editor. For more information, see the description under Editor
window, page 132.

Suggests parameters as tooltip information for the function parameter list you
have begun to type. For more information, see Parameter hint, page 128.

Selects all text between the brackets immediately surrounding the insertion point,
increases the selection to the next hierarchic pair of brackets, or beeps if there is
no higher bracket hierarchy.

Mg

Expands/collapses all code folds in the current editor window.

Indents one or several lines you have selected in a C/C++ source file. To configure
the indentation, see Configure Auto Indent dialog box, page 52.

W

Places the C++ comment character sequence // at the beginning of the selected
lines.

Removes the C++ comment character sequence // from the beginning of the
selected lines.
o=

Toggles a breakpoint at the statement or instruction that contains or is located near
the cursor in the source window. This command is also available as an icon button
on the debug toolbar.

Toggles a breakpoint between being disabled, but not actually removed—making
it available for future use—and being enabled again.

If the message window contains a list of error messages or the results from a Find
in Files search, this command displays the next item from that list in the editor
window.

If the message window contains a list of error messages or the results from a
Find in Files search, this command displays the previous item from that list in the
editor window.

IDE Project Management and Building

Guide

181

Menus Menu reference

View menu

The View menu provides several commands for opening windows in the IDE. When C-SPY is running you

can also open debugger-specific windows from this menu. See the C-SPY Debugging Guide for Arm for
information about these.

Messages L4
i:' Waorkspace

Source Browser ¥

C-5TAT r
C-RUM b

Ereakpuoints

IDE Project Management and Building
Guide 182

Menus

Menu reference

These commands are available:

Messages

Workspace

Source
Browser>Qutline

Source
Browser>References

Source
Browser>Declarations

Source
Browser>Ambiguous
Definitions

Source Browser>Call
Graph

C-STAT>C-STAT
Messages

C-RUN>Messages

C-RUN>Messages
Rules

Breakpoints

Call Stack

Wiatch

Live Watch

Quick Watch

Displays a submenu which gives access to the message windows—Build, Find

in Files, Source Browse Log, Tool Output,CMSIS-Pack Log, Debug Log—that
display messages and text output from the IAR Embedded Workbench commands.
If the window you choose from the menu is already open, it becomes the active
window.

-

Opens the current Workspace window, see Workspace window, page 94.

Z

Opens the Outline window, see Outline window, page 152.

LAY

£;

Opens the References window, see References window, page 151.

=

o5

Opens the Declarations window, see Declarations window, page 149.

I

Opens the Ambiguous Definitions window, see Ambiguous Definitions window,
page 150.

==
===
=

Opens the Call Graph window, see Call Graph window, page 156.

Opens the C-STAT Messages window, see the C-STAT® Static Analysis Guide.
Opens the C-RUN Messages window, see the C-SPY Debugging Guide for Arm.

Opens the C-RUN Messages Rules window, see the C-SPY Debugging Guide for
Arm.

Opens the Breakpoints window, see the C-SPY Debugging Guide for Arm.
=

Opens the Call Stack window. Only available when C-SPY is running.
<«

Opens an instance of the Watch window from a submenu. Only available when
C-SPY is running.

s
Opens the Live Watch window. Only available when C-SPY is running.
<

IDE Project Management and Building

Guide

183

Menus

Auto
Locals

Statics

Memory

Registers

Disassembly

Stack

Symbolic Memory

Terminal 1/O

Macros>Macro
Quicklaunch

Macros>Macro
Registration

Macros>Debugger

Macros

Symbols

Code Coverage

Images

Cores

Menu reference

Opens the Quick Watch window. Only available when C-SPY is running.
Opens the Auto window. Only available when C-SPY is running.

Opens the Locals window. Only available when C-SPY is running.

b

Opens the Statics window. Only available when C-SPY is running.

!

Opens an instance of the Memory window from a submenu. Only available when
C-SPY is running.

Displays a submenu which gives access to the Registers windows—Registers and
Register User Groups Setup. Only available when C-SPY is running.

Opens the Disassembly window. Only available when C-SPY is running.

5

Opens an instance of the Stack window from a submenu. Only available when
C-SPY is running.

e

Opens the Symbolic Memory window. Only available when C-SPY is running.

Opens the Terminal 1/0 window. Only available when C-SPY is running.

b
l :

Opens the Macro Quicklaunch window. Only available when C-SPY is running.

&)

Opens the Macro Registration window. Only available when C-SPY is running.

5]

Opens the Debugger Macros window. Only available when C-SPY is running.

Opens the Symbols window. Only available when C-SPY is running.

[}

Opens the Code Coverage window. Only available when C-SPY is running.

Opens the Images window. Only available when C-SPY is running.
i

Opens the Cores window. Only available when C-SPY is running.

IDE Project Management and Building

Guide

184

Menus Menu reference

Fault exception Opens the Fault exception viewer window, see the C-SPY Debugging Guide for
viewer Arm. This menu command is only available when C-SPY is running.

IDE Project Management and Building
Guide 185

Menus Menu reference

Project menu

The Project menu provides commands for working with workspaces, projects, groups, and files, and for
specifying options for the build tools, and running the tools on the current project.

IDE Project Management and Building
Guide 186

Menus

[@ Add Files...

(@ Add Group..

[4] import File List...
Add Project Connection...
Edit Configurations...

Add CMakelists.txt to Project
Configure Project
Force Reconfiguration

Add CMake Connector
X | Remowve

t:l Create Mew Project...
™ Add Existing Project...

&

Options...
Version Control System

Make
Compile
Rebuild All

Clean

R0 0

Batch build...

Restart Language Servers

Clean Browse Information
C-5TAT Static Analysis

Analyze Project
Analyze File(s)

(3| stop Build

o Download and Debug
¥ Debug without Downloading
Attach to Running Target
Make & Restart Debugger
Restart Debugger

Download
.ﬂ, CMSIS-Pack Manager

SFR Setup
Open Device Description File

Save List of Registers...

ALT+F7

CTRL+F7

Fa

CTRL+EREAK

CTRL+D

CTRL+R
CTRL+5KIFT+R

IDE Project Management and Building
Guide

187

Menu reference

Menus

Menu reference

These commands are available:

Add Files

Add Group

Import File List

Add Project
Connection

Edit Configurations

(e

Displays a dialog box where you can select which files to include in the current
project.

(e

Displays a dialog box where you can create a new group. In the Group Name text
box, specify the name of the new group. For more information about groups, see
Groups, page 87.

[}]

Displays a standard Open dialog box where you can import information about
files and groups from projects created using another AR toolchain.

To import information from project files which have one of the older filename
extensions pew or prj you must first have exported the information using the
context menu command Export File List available in your current IAR Embedded
Workbench.

Displays the Add Project Connection dialog box, see Add Project Connection
dialog box, page 102.

Displays the Configurations for project dialog box, where you can define new or
remove existing build configurations. See Configurations for project dialog box,
page 99.

Add CMakeL.ists.txt to Project Opens a standard Windows Open dialog box, where you can browse

Configure Project

Force Reconfiguration

foraCMakeLists.txt file to add to the Embedded Workbench

project. Adding it can take a few minutes.
0 This removes any files that are already part of the project.

Synchronizes all build files with the CMake project files. This is
done automatically when you open a project and when you build.

Deletes all build files generated by CMake and reruns CMake to
regenerate them.

Add CMake Connector>CSolution Opens a standard Windows Open dialog box, where you can browse

Remove

Create New Project

Add Existing Project

for a CMSIS-Toolbox csolution. yml project file to add to the

Embedded Workbench project. Adding it can take a few minutes.
ﬁ This removes any files that are already part of the project.

X

In the Workspace window, removes the selected item from the workspace.

[
Displays the Create New Project dialog box where you can create a hew project
and add it to the workspace, see Create New Project dialog box, page 99.

e,

IDE Project Management and Building

Guide

188

Menus

Options (Alt+F7)

Version Control
System

Make (F7)

Compile (Ctrl+F7)

Rebuild All

Clean

Batch Build (F8)

Restart Language
Servers

Clean Browse
Information

C-STAT Static
Analysis>Analyze
Project

C-STAT Static
Analysis>Analyze
File(s)

C-STAT Static
Analysis>Clear
Analysis Results

Menu reference

Displays a standard Open dialog box where you can add an existing project to the
workspace.

o

Displays the Options dialog box, where you can set options for the build tools,
for the selected item in the Workspace window, see Options dialog box, page 113.
You can set options for the entire project, for a group of files, or for an individual
file.

Displays a submenu with commands for version control, see Version Control
System menu for Subversion, page 105.

Brings the current build configuration up to date by compiling, assembling, and
linking only the files that have changed since the last build.

Compiles or assembles the currently selected file, files, or group.

One or more files can be selected in the Workspace window—all files in the
same project, but not necessarily in the same group. You can also select the editor
window containing the file you want to compile. The Compile command is only
enabled if a//files in the selection can be compiled or assembled.

You can also select a group, in which case the command is applied to each file
in the group (also inside nested groups) that can be compiled, even if the group
contains files that cannot be compiled, such as header files.

If the selected file is part of a multi-file compilation group, the command will still
only affect the selected file.

Rebuilds and relinks all files in the current target.

s 4

Removes any intermediate files.

&

Displays the Batch Build dialog box where you can configure named batch build
configurations, and build a named batch. See Baich Build dialog box, page 117.

Stops and restarts any running language servers.

Deletes the browse information directory along with the information stored in it.
For information about specifying the location of this directory, see Output, page
201.

Makes C-STAT analyze the selected project. For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

Makes C-STAT analyze the selected file(s). For more information about C-STAT,
see the C-STAT® Static Analysis Guide.

Makes C-STAT clear the analysis information for previously performed analyses.
For more information about C-STAT, see the C-STAT® Static Analysis Guide.

IDE Project Management and Building

Guide

189

Menus

C-STAT Static
Analysis>Generate
HTML Summary

C-STAT Static
Analysis>Generate
Full HTML Report

Analyze Project

Analyze File(s)

Stop Build
(Ctrl+Break)

Download and Debug

(Ctrl+D)

Debug without
Downloading

Attach to Running
Target

Make & Restart
Debugger

Restart Debugger

Download

Menu reference

Shows a standard save dialog box where you can select the destination for a report
summary in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Shows a standard save dialog box where you can select the destination for a
full report in HTML and create it. For more information about C-STAT, see the
C-STAT® Static Analysis Guide.

Runs the external analyzer that you select and performs an analysis on all source
files of your project. The list of analyzers is populated with analyzers you specify
on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Gefting started using external analyzers, page
27.

Runs the external analyzer that you select and performs an analysis on a group of
files or on an individual file. The list of analyzers is populated with analyzers you
specify on the External Analyzers page in the IDE Options dialog box.

Note that this menu command is only available if you have added an external
analyzer. For more information, see Gefting started using external analyzers, page
27.

0

Stops the current build operation.

Downloads the application and starts C-SPY so that you can debug the project
object file. If necessary, a make will be performed before running C-SPY to
ensure the project is up to date. This command is not available during a debug
session.

Starts C-SPY so that you can debug the project object file. This menu command is
a shortcut for the Suppress Download option available on the Download page. The

Debug without Downloading command is not available during a debug session.

»)
Makes the debugger attach to a running application at its current location, without
resetting the target system. If you have defined any breakpoints in your project,
the C-SPY driver will set them during attachment. If the C-SPY driver cannot set
them without stopping the target system, the breakpoints will be disabled. The
option also suppresses download and the Run to option.
If the option is not available, it is not supported by the combination of C-SPY
driver and device you are using.

®

Stops C-SPY, makes the active build configuration, and starts the debugger again
—all in a single command. This command is only available during a debug
session.

©

Stops C-SPY and starts the debugger again—all in a single command. This
command is only available during a debug session.

Commands for flash download and erase. Choose between:

Download active application downloads the active application to the target without
launching a full debug session. The result is roughly equivalent to launching a
debug session but exiting it again before the execution starts.

IDE Project Management and Building

Guide

190

Menus

CMSIS-Manager

SFR Setup

Open Device
Description File

Save List of Registers

Menu reference

Download file opens a standard Open dialog box where you can specify a file to
be downloaded to the target system without launching a full debug session.

Erase memory erases all parts of the flash memory.

If your .board file specifies only one flash memory, a simple confirmation
dialog box is displayed where you confirm the erasure. However, if your .board
file specifies two or more flash memories, the Erase Memory dialog box is
displayed. For information about this dialog box, see the C-SPY Debugging Guide
for Arm.

Displays the CMSIS Manager dialog box, see CMSIS Manager dialog box, page
83

This menu command is only available if your target supports CMSIS-Pack.

Opens the SFR Setup window which displays the currently defined SFRs that
C-SPY has information about. For more information about this window, see the
C-SPY Debugging Guide for Arm.

Opens a submenu where you can choose to open a file from a list of all device
files and SFR definitions files that are in use.

Generates a list of all defined registers, including SFRs, with information about
the size, location, and access type of each register. If you are in a debug session,
the list also includes the current value of the register. This menu command is only
available when a project is loaded in the IDE.

Erase Memory dialog box

The Erase Memory dialog box is displayed when you have chosen Project>Download>Erase Memory and
your flash memory system configuration file (filename extension . board) specifies two or more flash

memories.

Erase Memory E|
Flash lnader | Range |
Cihprojectsitutoriactel\FlashAZFxM3F Flash 00 - OxfFF
Ci\projectsitutori Actel\FlashAa4HoodM3F Flash 01000 - 0x2000

Erase all | Erase | Cancel

Use this dialog box to erase one or more of the flash memories.

Each line lists the path to the flash memory device configuration file (filename extension . £1ash) and the
associated memory range. Select the memory you want to erase.

IDE Project Management and Building

Guide

191

Menus Menu reference

These buttons are available:

Erase all All memories listed in the dialog box are erased, regardless of individually
selected lines.
Erase Erases the selected memories.
Cancel Closes the dialog box.
Tools menu

The Tools menu provides commands for customizing the environment, such as changing common fonts and
shortcut keys.

It is a user-configurable menu to which you can add tools for use with IAR Embedded Workbench.
Therefore, it might look different depending on which tools you have preconfigured to appear as menu
items.

£F Options...

Filename Extensions...

Configure Viewers...

Configure Custom Argument Variables...
Configure Aliases...

}f: Configure Tools...

IAR Project Converter
Motepad

IDE Project Management and Building

Guide

192

Menus

Menu reference

These commands are available:

Options

Filename Extensions

Configure Viewers

Configure Custom
Argument Variables

Configure Aliases

Configure Tools

IAR Project Converter

Notepad

B

Displays the IDE Options dialog box where you can customize the IDE. See:
e Colors and Fonts gptions, page 41

» Debugger options, page 67

e Editor options, page 48

e Editor Setup Files options, page 54

e Editor Syntax Feedback options, page 55

e External Analyzers options, page 60

e External Editor options, page 53

e CMake/CMSIS-Toolbox options, page 64

» Key Bindings options, page 45

. Language options, page 47

. Language Servers options, page 63

. Messages options, page 56

e Project options, page 58

e Source Code Control options (deprecated), page 66
e Slack options, page 68

. Terminal 1/0 options, page 70

. Troubleshooting options, page 57

Displays the Filename Extensions dialog box where you can define the filename
extensions to be accepted by the build tools, see Filename Extensions dialog box,
page 77.

Displays the Configure Viewers dialog box where you can configure viewer
applications to open documents with, see Configure Viewers dialog box, page 74.
Displays the Configure Custom Argument Variables dialog box where you can
define and edit your own custom argument variables, see Configure Custom
Argument Variables dialog box, page 80.

Displays the Configure Aliases dialog box where you can supply aliases to the
IDE, so that files that are unavailable to the IDE can be located and displayed in
the Workspace window when an externally built binary file is added to a project,
see Configure Aliases dialog box, page 104.

‘&

Displays the Configure Tools dialog box where you can set up the interface to use
external tools, see Configure Tools dialog box, page 72.

Displays the IAR Project Converter dialog box where you can convert project files
from another tool vendor to project files for IAR Embedded Workbench, see the
Project converter guide in the arm\doc directory.

User-configured. This is an example of a user-configured addition to the Tools
menu.

IDE Project Management and Building

Guide

193

Menus

Window menu
The Window menu provides commands for manipulating the IDE windows and changing their arrangement

on the screen.

Ml | Close Window

[i]1 split

Move Tab to Mew Vertical Editor Window
Move Tab to New Horizontal Editor Window
Move Tab to the Next Window

Move Tab to the Previous Window

Close All Tabs Except Adctive

Close All Tabs to the Right of Active

Close All Editor Tabs

Toolbars

W | Status Bar

Windows,..

@ Close Document Ctrl+W

Menu reference

The last section of the Window menu lists the currently open windows. Choose the window you want to

switch to.

IDE Project Management and Building

Guide

194

Menus

Menu reference

These commands are available:

Close Document

(Cirl+W)

Close Window

Split

Move Tab to
New Vertical Editor
Window

Move Tab to New
Horizontal Editor
Window

Move Tab to the Next
Window

Move Tab to the
Previous Window

Close All Tabs Except
Active

Close All Tabs to the
Right of Active

Close All Editor Tabs

Toolbars

Status bar

Help menu

The Help menu provides help about IAR Embedded Workbench. From this menu you can also find the
version numbers of the user interface and of the IDE, see Product Info dialog box, page 79.

@)

Closes the active editor document.

&

Closes the active IDE window.

[i]

Splits an editor window horizontally into two panes, which means that you can see
two parts of a file simultaneously.

Opens a new empty window next to the current editor window and moves the
active document to the new window.

Opens a new empty window under the current editor window and moves the active
document to the new window.

Moves the active document in the current window to the next window.

Moves the active document in the current window to the previous window.

Closes all the tabs except the current tab.

Closes all tabs to the right of the current tab.

Closes all tabs currently available in editor windows.

The options on this submenu toggle the toolbars on or off. There might be toolbars

that are only available for certain C-SPY debug drivers, and only during a debug
session.

Toggles the status bar on or off.

You can also access the Information Center from the Help menu. The Information Center is an integrated
navigation system that gives easy access to the information resources you need to get started and during
your project development—tutorials, example projects, user guides, support information, and release notes.
It also provides shortcuts to useful sections on the IAR web site.

If you have a cloud license for IAR Embedded Workbench for Arm, you can log in to your IAR account
from the Help menu. For more information, see the licensing documentation.

IDE Project Management and Building

Guide

195

General options General options

General options

L0153 PP
Library ConfigUrationco.eiuiinii e ettt et e e e e e
Library OPtiONS 1oeeii ittt e e et ettt e e e e
LADIary OPLIONS 2 ...uiiiniiieiiii ettt et ettt ettt ettt e e e eaas

DESCRIPTION OF GENERAL OPTIONS

To set general options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select General Options in the Category list.
3. Torestore all settings to the default factory settings, click the Factory Settings button.

Target

The Target options specify target-specific features for the IAR C/C++ Compiler and Assembler.

Target

Processor varant

(®) Core Cortex-AS3 ~
() Device None Tl

() CMSISPack Mone

Execution mode

10 it
JLOI0

i~
o

LI

IDE Project Management and Building
Guide 196

Description of general options General options

Selects the processor variant;

Core

Device

CMSIS-Pack

The processor core you are using. For a description of the available variants, see
the /AR C/C++ Development Guide for Arm.

The device your are using. The choice of device will automatically determine
the default linker configuration file and C-SPY® device description file. For
information about how to override the default files, see the C-SPY Debugging
Guide for Arm.

The device you have selected in the CMSIS Manager dialog box. For more
information, see CMSIS Manager dialog box, page 83.

Shows the current execution mode for your project:

32-hit

64-bit

IAR Embedded Workbench for Arm will generate and debug code for the
instruction sets T32/T and A32.

IAR Embedded Workbench for Arm will generate and debug code for the
instruction set A64.

For more information, see Execution modes, page 17.

32-bit

The 32-bit options specify target-specific features for the IAR C/C++ Compiler and Assembler in 32-bit

mode.

If a 64-bit device is used in 32-bit mode, it is the 64-bit page that decides the FPU behavior, not the 32-bit

page.

Byvte order

D5SP Extension
Advanced SIMD (MEQMNHELILUM)

32-bit

Floating-point settings

EPL: AMFPw5 double precision | ~

O reqisters: 16 e

TrustZone

Maode: | Secure w

[] Peinter authentication (FACETI)

IDE Project Management and Building

Guide

197

Description of general options General options

Selects the byte order for your project:

Little The lowest byte is stored at the lowest address in memory. The highest byte is the
most significant—it is stored at the highest address.

Big The lowest address holds the most significant byte, while the highest address
holds the least significant byte.Choose between two variants of the big-endian
mode:

BE32 to make both data and code big-endian
BES8 to make data big-endian and code little-endian

Select the floating-point unit:

None (default) The software floating-point library is used.

VFPv2 A VFP unit that conforms to architecture VFPv2.

VFPv3 A VFP unit that conforms to architecture VFPv3.

VFPv4 A VFP unit that conforms to architecture VFPv4.

VFPv4 single- A VFP unit that conforms to the VFPv4 architecture, single-precision.
precision

VFPV5 single- A VFP unit that conforms to the VFPV5 architecture, single-precision.
precision

VFPvV5 double- A VFP unit that conforms to the VFPV5 architecture, double-precision.
precision

VFP9-S A VFPV2 architecture that can be used with the ARM9E family of CPU

cores. Selecting this coprocessor is therefore identical to selecting the VFPv2
architecture.

By selecting a VFP coprocessor, you will override the use of the software floating-point library for all
supported floating-point operations.

Selects the number of D registers to be used by the compiler.

Select this option to make the compiler use DSP instructions, if available on your device.

Selects the Neon or Helium architecture for your project, if it is available for your device.

IDE Project Management and Building
Guide 198

Description of general options General options

This option is selected when you have selected a device or core with support for the Pointer Authentication
and Branch Target Identification (PABCT]I) extension. Deselect it if you do not want to use Pointer
Authentication or Branch Target Identification.

Enables TrustZone for your project, if it is available for your device.

If you have set the option Core to either Cortex-M23 or Cortex-M33, the option TrustZone is automatically
selected. If your device does not have TrustZone, deselect the option TrustZone.

For other cores, this option is automatically deselected, unless your device has TrustZone or if you have
selected a core that always has TrustZone.

When the option TrustZone is selected, the compiler and assembler options —--cmse can be used.

For more information about TrustZone, see the /AR C/C++ Development Guide for Arm.

Specifies whether the current project is for secure or non-secure mode.
This option is automatically selected if the option TrustZone is selected.

Secure Indicates that your project will be built for secure mode.

When you have selected the secure mode, the compiler and assembler options
—--cmse are automatically set.

Non-secure Indicates that your project will be built for non-secure mode.

64-bit

IDE Project Management and Building
Guide 199

Description of general options General options

The 64-bit options specify target-specific features for the IAR C/C++ Compiler and Assembler in 64-bit

mode.
64-bit
Data model
(®) ILP32 (32t int, long, pointer)
() LPB4 (32bit int, 64-bit long, pointer)
FPU
Selects the data model for your project:
ILP32 This data model has 32-bit 1ong and pointer types, and 32-bit wchar t type. It

uses 32-bit ELF as object and image format.

LP64 This data model has 64-bit 1ong and pointer types, and 32-bit wchar t type. It
uses 64-bit ELF as object and image format.

li? Code generated using the ILP32 data model cannot be linked with code generated using the
LP64 data model.

FPU Select this option to use a floating-point unit with the data model, if it is available
for your device.

IDE Project Management and Building
Guide 200

Description of general options General options

Output

The Output options determine the type of output file. You can also specify the destination directories for
executable files, object files, list files, and build files.

Output
Output file) B
0 Executable i) Library [] Shared ohject
Output directories
Executables/libraries:
DebugExe

Object files:
DebugOhj

List files:
DebugtList

Browse files:

Debug*BrowseInfo

Build files:
Debug

Selects the type of the output file. Choose between:

Executable (default) As a result of the build process, the linker will create an application (an executable
output file). When this setting is used, linker options will be available in the
Options dialog box. Before you create the output you should set the appropriate
linker options.

Library As a result of the build process, the library builder will create a /ibrary file. When
this setting is used, library builder options will be available in the Options dialog
box, and Linker will disappear from the list of categories. Before you create the
library you can set the options.

Select this option to generate a shared object output file instead of an executable output file. Using this
option changes the filename extension from . out to . so. Note that the option is only available in 32-bit
mode. For more information about shared objects, see the IAR C/C++ Development Guide for Arm.

IDE Project Management and Building
Guide 201

Description of general options General options

Specify the paths to the destination directories. Note that incomplete paths are relative to your project
directory. You can specify:

Executables/libraries Overrides the default directory for executable or library files. Type the name of the
directory where you want to save executable files for the project.

Object files Overrides the default directory for object files. Type the name of the directory
where you want to save object files for the project.

List files Overrides the default directory for list files. Type the name of the directory where
you want to save list files for the project.

Browse files Overrides the default directory for storing source browser information.
Type the name of the directory where you want to store source browser
information for the project. To delete the contents of this directory, choose
Project>Clean Browse Information.

Build files Overrides the default directory for build files, that is, logs, dependency files, and
other files generated by the build engine. Type the name of the directory where
you want to save build files for the project.

Note that sharing a build file directory between multiple build configurations
can increase the number of rebuilds (as the configurations might use different
command lines).

Library Configuration

The Library Configuration options determine which library to use.

Library Configuration

Library: Description:

Momal e A compact configuration of the C/C++14 untime
library. Mo locale inteface, C locale, no file
descriptor support, no multibytes in print and
scanf, and no hex floats in strtod.

STOOLKIT_DIRSYnc e DLlib_Config_MNaormal h

Enable thread support in library

Librany lowdevel interface implementation CM5I5 (egacy)
() Mane gtdowt /stdemr (] Use CMSIS 5.7
© Semihosted © Via semihosting

) D5SP library
IAR breakpoint (_J)Wia SWO

For information about the runtime library, library configurations, the runtime environment they provide,
and the possible customizations, see /AR C/C++ Development Guide for Arm.

IDE Project Management and Building
Guide 202

Description of general options General options

Selects which runtime library to use. For information about available libraries, see the /AR C/C++
Development Guide for Arm.

The names of the library object file and library configuration file that actually will be used are displayed in
the Library file and Configuration file text boxes, respectively.

Displays the library configuration file that will be used. A library configuration file is chosen automatically
depending on the project settings. If you have chosen Custom DLIB in the Library drop-down list, you
must specify your own library configuration file.

Select this option to automatically configure the runtime library for use with threads.

Controls the type of low-level interface for I/O to be included in the library.
For Cortex-M, choose between:

None No low-level support for 1/0 available in the libraries. You must provide your own
___write function to use the 1/O functions part of the library.

Semihosted, stdout/ Semihosted 1/0O which uses the BKPT instruction.
stderr via semihosting

Semihosted, stdout/ Semihosted I/O which uses the BKPT instruction for all functions except for the
stderr via SWO stdout and stderr output where the SWO interface is used. This means a

much faster mechanism where the application does not need to halt execution to
transfer data.

IAR breakpoint Not available.

For other cores, choose between:

None No low-level support for 1/0 available in the libraries. You must provide your own
__write function to use the 1/O functions part of the library.

Semihosted Semihosted 1/O which uses the SVC instruction (earlier SWT).

IAR breakpoint The IAR proprietary variant of semihosting, which does not use the svcC
instruction and, therefore, does not need to set a breakpoint on the SvC vector.
This is an advantage for applications which require the svc vector for their
own use, for example an RTOS. This method can also lead to performance
improvements. However, this method does not work with applications, libraries,
and object files that are built using tools from other vendors.

IDE Project Management and Building

Guide

203

Description of general options General options

To enable CMSIS support, use these options:

Use CMSIS Adds the CMSIS header files to the compiler include path.

Note that if your application source code includes CMSIS header files explicitly,
then you should not use this option. This option is only available for Cortex-M
devices.

DSP library Links your application with the CMSIS DSP library. This option is only available
for Cortex-M devices.

Library Options 1

The options on the Library Options 1 page select the printf and scanf formatters.

Librany Options 1

Printf formatter
Auto - | [Enable muttibyte support
Automatic choice of formatter, without multibyte
support.

Scanf formatter
Auta - | | Enable muttibyte support

Automatic choice of formatter, without multibyte
support.

|| Buffered terminal output

For information about the capabilities of the formatters, see the /AR C/C++ Development Guide for Arm.

If you select Auto, the linker automatically chooses the appropriate formatter for print £-related
functions based on information from the compiler.

To override the default formatter for all print £-related functions, except for wprint £ variants, choose
between:

e Printf formatters in the IAR DLIB Library—Full, Large, Small, and Tiny

Choose a formatter that suits the requirements of your application.

Select Enable multibyte support to make the printf formatter support multibytes.

IDE Project Management and Building
Guide 204

Description of general options General options

If you select Auto, the linker automatically chooses the appropriate formatter for scanf-related functions
based on information from the compiler.

To override the default formatter for all scanf-related functions, except for wscanf variants, choose
between:

e Scanf formatters in the IAR DLIB Library—Full, Large, and Small

Choose a formatter that suits the requirements of your application.

Select Enable multibyte support to make the scanf formatter support multibytes.

Buffers terminal output during program execution, instead of instantly printing each new character to
the C-SPY Terminal 1/0O window. This option is useful when you use debugger systems that have slow
communication.

Library Options 2

The options on the Library Options 2 page select the heap and locale support.

Library Options 2

Heap selection

i@ Automatic

() Advanced heap
() Basic heap

i) Nofree heap

Locale support
[7] Use the following in addition to C locale:

sv_5Eisod853-1, sv_SE.UTF-8 Edit

IDE Project Management and Building
Guide 205

Description of general options General options

Select the heap to use. For more information about heaps, see the /AR C/C++ Development Guide for Arm.
Choose between:

Automatic Automatically selects the heap to use for your application.
The selection is based on the existence of calls to heap memory allocation routines
in your application and on the optimization settings for the application modules.
See the /AR C/C++ Development Guide for Arm for a detailed description.

Advanced heap Selects the advanced heap.
Basic heap Selects the basic heap.
No-free heap Uses the smallest possible heap implementation. Because this heap does not

support free or realloc, it is only suitable for applications that in the startup

phase allocate heap memory for various buffers etc. This heap memory is never
deallocated.

Select the locales that the linker will use in addition to the C locale. (Requires that you have selected a
library configuration that includes the C locale.)

IDE Project Management and Building

Guide

206

Compiler options Compiler options

Compiler options

Description Of COMPILET OPLIONSuuiieniieiie it e et e et e et et et et et e et e et e et e et e et e st eaneasneesneanneenns 207
Multi-file COMPIIATIONvuiiniiie it et e et e e e e e et e e e et e et e aaeeraeeaneeaneeens 207
Lan@UAZE 1 oottt et ettt ettt ans 208
LANGUAZE 2 ..ttt et 210
70T L PSP 211
L0511 0 0N 1221 1 1)1 1P 212
L0233 214
7T N 215
PIEPIOCESSOT ..ttt et ettt 215
LT s 1] (PPN 217
ENCOMINES .ooniiiiie ettt anns 219
|25 A e N O T (0] 1 1P 220
Edit Include Directories dialog DOXviveiiiniiiiieeie et e e e e e e e e e e e e eens 220

DESCRIPTION OF COMPILER OPTIONS

To set compiler options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select C/C++ Compiler in the Category list.
3. Torestore all settings to the default factory settings, click the Factory Settings button.

Multi-file Compilation

Before you set specific compiler options, you can decide whether you want to use multi-file compilation,
which is an optimization technique.

Factory Setlings

o | Multi-file Compilation

Dizcard Unuged Publics

Enables multi-file compilation from the group of project files that you have selected in the Workspace
window.

You can use this option for the entire project or for individual groups of files. All C/C++ source files in
such a group are compiled together using one invocation of the compiler.

This means that all files included in the selected group are compiled using the compiler options which have
been set on the group or nearest higher enclosing node which has any options set. Any overriding compiler
options on one or more files are ignored when building, because a group compilation must use exactly one

set of options.

For information about how multi-file compilation is displayed in the Workspace window, see Workspace
window;, page 94.

IDE Project Management and Building
Guide 207

Description of compiler options Compiler options

Discards any unused public functions and variables from the compilation unit.

For more information about multi-file compilation and discarding unused public functions, see the /AR
C/C++ Development Guide for Arm.

Language 1
The Language 1 options determine which programming language to use and which extensions to enable.
Language 1
Language Language conformance
OcC Q) Standard with extensions
OCs+ IAR extensions
() futo (extension-based) [GNLU extensions
() Standard

C dialect ~ Eta'; a
Ocs9 =
O Standard C C++ gptions

() Allaw VLA Enable exceptions

[] C+= inline semantics Enable RTTI
(") Require prototypes Destroy static objects

For more information about the supported languages, their dialects, and their extensions, see the /AR
C/C++ Development Guide for Arm.

Determines the compiler support for either C or C++. Choose between:

C (default) Makes the compiler treat the source code as C, which means that features specific
to C++ cannot be used.

C++ Makes the compiler treat the source code as C++.

Auto Language support is decided automatically depending on the filename extension

of the file being compiled:

c: files with this filename extension are treated as C source files.

cpp, -Ccc, .cp, .cxx, and . c++: files with these filename extensions will be
treated as C++ source files.

IDE Project Management and Building
Guide 208

Description of compiler options Compiler options

Controls how strictly the compiler adheres to the standard C or C++ language. Choose between:

Standard with
extensions

Standard

Strict

Choose between these subsettings, or select both:

IAR extensions Accepts IAR-specific extensions to the standard C or C++
language.

GNU extensions Accepts GNU extensions to the standard C or C++
language.

If you select none of the subsettings, the option has no effect.

Disables language extensions, but does not adhere strictly to the C or C++ dialect
you have selected. Some very useful relaxations to C or C++ are still available.

Adheres strictly to the C or C++ dialect you have selected. This setting disables a
great number of useful extensions and relaxations to C or C++,

Selects the dialect if C is the supported language. Choose between:

C89
Standard C

Require prototypes

Enables the C89 standard instead of Standard C.

Enables the C18 standard, also known as Standard C. This is the default standard
used in the compiler, and it is stricter than C89. Features specific to C89 cannot be
used. In addition, choose between:

Allow VLA, allows the use of C11 variable length arrays.

C++ inline semantics, enables C++ inline semantics when compiling a Standard C
source code file.

Forces the compiler to verify that all functions have proper prototypes, which
means that source code containing any of the following will generate an error:

« Afunction call of a function with no declaration, or with a Kernighan &
Ritchie C declaration.

« A function definition of a public function with no previous prototype
declaration.

* Anindirect function call through a function pointer with a type that does not
include a prototype.

Selects C++ language options. Choose between:

Enable exceptions
Enable RTTI

Destroy static objects

Enables exception support in the C++ language.
Enables runtime type information (RTTI) support in the C++ language.

Makes the compiler generate code to destroy C++ static variables that require
destruction at program exit.

IDE Project Management and Building

Guide

209

Description of compiler options Compiler options

Language 2

The Language 2 options control the use of some language extensions.

Language 2

Flain ‘char'is
" Signed

@ lUnsigned

Floating-point semantics
@) Strict corformance

) Relaxed (smaller and/or faster)

Normally, the compiler interprets the plain char type as unsigned char. Plain ‘char' is Signed makes
the compiler interpret the char type as signed char instead, for example for compatibility with another

compiler.

G The runtime library is compiled with unsigned plain characters. If you select the Signed option,
references to library functionality that uses unsigned plain characters will not work.

Controls floating-point semantics. Choose between:

Strict conformance

Relaxed

Makes the compiler conform strictly to the C and floating-point standards for
floating-point expressions.

Makes the compiler relax the language rules and perform more aggressive
optimization of floating-point expressions. This option improves performance for
floating-point expressions that fulfill these conditions:

* The expression consists of both single- and double-precision values

* The double-precision values can be converted to single precision without loss
of accuracy

» The result of the expression is converted to single precision.

Note that performing the calculation in single precision instead of double
precision might cause a loss of accuracy.

IDE Project Management and Building

Guide

210

Description of compiler options

Code

The Code options control the code generation of the compiler.

Processor mode

Arm

Thumb

Code

Position-independence

[]Code and read-only data (ropi)
[] Read/write data {rwpi)
Mo dynamic read /write initialization

Securty

Mo data reads in code memaony
Stack protection

Pointer authentication

Branch target identification

For more information about these compiler options, see the /AR C/C++ Development Guide for Arm.

Selects the processor mode for your project:

Arm
Thumb

Generates code that uses the full 32-bit instruction set.

Generates code that uses the reduced 16-bit instruction set. Thumb code
minimizes memory usage and provides higher performance in 8/16-bit bus
environments.

Determines how the compiler should handle position-independent code and data:

Code and read-only
data (ropi)

Read/write data
(rwpi)

No dynamic read/
write initialization

Generates code that uses PC-relative references to address code and read-only
data.

Generates code that uses an offset from the static base register to address-writable

data.

Disables runtime initialization of static C variables.

IDE Project Management and Building

Guide

211

Compiler options

Description of compiler options

Compiler options

Controls various features that increase the integrity of your application and device:

No data reads in code
memory

Stack protection

Pointer authentication

Branch target
identification

Optimizations

Use this option to generate code that should run from a memory region where it is
not allowed to read data, only to execute code.

The option also affects the automatic library selection performed by the linker.
An IAR-specific ELF attribute is used for determining whether libraries compiled
with this option should be used.

This option can only be used with Armv6-M and Armv7-M cores (includes
Armv8-M, Armv8.1-M, Armv8-A and Armv8-R cores). For more information,
see the compiler option --no_literal pool inthe /AR C/C++ Development
Guide for Arm.

Use this option to enable stack protection for the functions that are considered to
need it.

Use this option to make the compiler create the code needed for Pointer
Authentication. For more information, see the /AR C/C++ Development Guide
for Arm.

Use this option to make the compiler create the code needed for Branch Target
Identification. For more information, see the /AR C/C++ Development Guide for
Arm.

The Optimizations options determine the type and level of optimization for the generation of object code.

Level

() None
0O Low
() Medium
() High

Balanced

Mo size constraints

Optimizations

Enabled transformations:

masessse

IDE Project Management and Building

Guide

212

Description of compiler options Compiler options

Selects the optimization level. Choose between:

None No optimization—provides best debug support.
Low The lowest level of optimization.

Medium The medium level of optimization.

High The highest level of optimization. Choose from:

Balanced, the highest level of optimization, balancing between speed and size.
Size, the highest level of optimization, favoring size.
Speed, the highest level of optimization, favoring speed.

No size constraints Optimizes for speed, but relaxes the normal restrictions for code size expansion.
This option is only available at the level High, Speed.

By default, a debug project will have a size optimization that is fully debuggable, while a release project
will have a high balanced optimization that generates small code without sacrificing speed.

For a list of optimizations performed at each optimization level, see the /AR C/C++ Development Guide
for Arm.

Selects which transformations that are available at different optimization levels. When a transformation is
available, you can enable or disable it by selecting its check box. Choose between:

e Common subexpression elimination
e Loop unrolling

e Function inlining

e Code motion

e Type-based alias analysis

e Static clustering

e Instruction scheduling

e Vectorization

lfj-') In a debug project the transformations are, by default, disabled. In a release project the
transformations are, by default, enabled.

For a brief description of the transformations that can be individually disabled, see the /AR C/C++
Development Guide for Arm.

IDE Project Management and Building

Guide

213

Description of compiler options Compiler options

Output

The Output options determine the generated compiler output.

Cutput

| Generate debug information

Code section name:
text

Makes the compiler include additional information in the object modules that is required by C-SPY and
other symbolic debuggers.

Generate debug information is selected by default. Deselect it if you do not want the compiler to generate
debug information.

(? The included debug information increases the size of the object files.

The compiler places functions into named sections which are referred to by the IAR ILINK Linker. Code
section name specifies a different name than the default name to place any part of your application source
code into separate non-default sections. This is useful if you want to control placement of your code to
different address ranges and you find the @ notation, alternatively the #pragma location directive,

insufficient.

Take care when you explicitly place a function in a predefined section other than the one used
G by default. This is useful in some situations, but incorrect placement can result in anything

from error messages during compilation and linking to a malfunctioning application. Carefully

consider the circumstances—there might be strict requirements on the declaration and use of the

function or variable.

Note that any changes to the section names require a corresponding modification in the linker configuration
file.

For detailed information about sections and the various methods for controlling the placement of code, see
the /AR C/C++ Development Guide for Arm.

IDE Project Management and Building

Guide

214

Description of compiler options Compiler options

List

The List options make the compiler generate a list file and determine its contents.

ETEE

Output list file
Assembler mnemonics
Diagnostics

Output assembler file
Include source
Include call frame information

By default, the compiler does not generate a list file. Select any of the following options to generate a list
file or an assembler file. The list file will be saved in the Li st directory, and its filename will consist of
the source filename, plus the filename extension 1st.

If you want to save the list file in another directory than the default directory for list files, use the Output
Directories option in the General Options category, see Ouiput, page 201.

You can open the output files directly from the Output folder which is available in the Workspace window.

Makes the compiler generate a list file. You can open the output files directly from the Output folder which
is available in the Workspace window. By default, the compiler does not generate a list file. For the list file
content, choose between:

Assembler Includes assembler mnemonics in the list file.
mnemonics
Diagnostics Includes diagnostic information in the list file.

Makes the compiler generate an assembler list file. For the list file content, choose between:

Include source Includes source code in the assembler file.
Include call frame Includes compiler-generated information for runtime model attributes, call frame
information information, and frame size information.

Preprocessor

IDE Project Management and Building

Guide

215

Description of compiler options Compiler options

The Preprocessor options allow you to define symbols and include paths for use by the compiler and

assembler.
Preprocessor

[lgnore standard include directories

Addtional include directories: (one per ling)

Preinclude file:

Defined symbols: (one per ling)
JL [] Preprocessor output to file
Preserve comments
Generate Hine directives

Normally, the compiler and assembler automatically look for include files in the standard include
directories. Use this option to turn off this behavior.

Specify the full paths of directories to search for include files, one per line. Any directories specified here
are searched before the standard include directories, in the order specified.

Use the browse button to display the Edit Include Directories dialog box, where you can specify directories
using a file browser. For more information, see Edit Include Directories dialog box, page 220.

To avoid being dependent on absolute paths, and to make the project more easily portable between
different machines and file system locations, you can use argument variables like $TOOLKIT DIRS$ and

$PROJ DIRS, see Argument variables, page 79.

Specify a file to include before the first line of the source file.

IDE Project Management and Building
Guide 216

Description of compiler options Compiler options

Define a macro symbol (one per line), including its value, for example like this:
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Makes the compiler and assembler output the result of the preprocessing to a file with the filename
extension i, located in the 1 st directory. Choose between:

Preserve comments Includes comments in the output. Normally, comments are treated as whitespace,
and their contents are not included in the preprocessor output.
Generate #line Generates #11ine directives in the output to indicate where each line originated
directives from.
Diagnostics

The Diagnostics options determine how diagnostic messages are classified and displayed. Use the
diagnostics options to override the default classification of the specified diagnostics.

Diagnostics

[Enable remarks

Suppress these diagnostics:

Treat these as remarks:

Treat these as wamings:

Treat these as emors:

[] Treat all wamings as emors

l:? The diagnostic messages cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

IDE Project Management and Building
Guide 217

Description of compiler options Compiler options

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source code construct that
might cause strange behavior in the generated code.

Suppresses the output of diagnostic messages for the tags that you specify.

For example, to suppress the warnings Xx117 and Xxx177, type:

Xx117,%Xx177

Classifies diagnostic messages as remarks. A remark is the least severe type of diagnostic message. It
indicates a source code construct that might cause strange behavior in the generated code.

For example, to classify the warning Xxx177 as a remark, type:

Xx177

Classifies diagnostic messages as warnings. A warning indicates an error or omission that is of concern, but
which will not cause the compiler to stop before compilation is completed.

For example, to classify the remark Xx82 6 as a warning, type:

Xx826

Classifies diagnostic messages as errors. An error indicates a violation of the language rules, of such
severity that object code will not be generated, and the exit code will be non-zero.

For example, to classify the warning Xx117 as an error, type:

Xx117

Classifies all warnings as errors. If the compiler encounters an error, object code is not generated.

IDE Project Management and Building
Guide 218

Description of compiler options

Compiler options

Encodings

The Encodings options determine the encodings for source files, output files, and input files.

| Encodings

Default source file encoding Default input file encoding
@ Raw (Clocale) @ System locale

) System locale O UTF-3

I UTF-8

Text output file encoding
@ Az source encoding
) Sys=tem locale
O UTF-8 with BOM

Specifies the encoding that the compiler shall use when reading a source file with no Byte Order Mark
(BOM).

Raw (C locale) Sets the Raw encoding (C locale) as the default source file encoding.
System locale Sets the system locale encoding as the default source file encoding.
UTF-8 Sets the UTF-8 encoding as the default source file encoding

Specifies the encoding that the compiler shall use when reading a text input file with no Byte Order Mark
(BOM).

System locale Sets the system locale encoding as the default encoding.

UTF-8 Sets the UTF-8 encoding as the default encoding.

Specifies the encoding to be used when generating a text output file.

As source encoding Uses the same encoding as in the source file.

System locale Uses the system locale encoding.
UTF-8 Uses the UTF-8 encoding.
With BOM Adds a Byte Order Mark (BOM) to the output file.

This option is only available when you have selected the UTF-8 encoding.

IDE Project Management and Building

Guide

219

Description of compiler options Compiler options

Extra Options

The Extra Options page provides you with a command line interface to the tool.

Extra Options

lUse command line options

Command line options: (one per ling)

Specify additional command line arguments to be passed to the tool (not supported by the GUI).

Edit Include Directories dialog box

The Edit Include Directories dialog box is available from the Preprocessor page in the Options dialog box
for the compiler and assembler categories.

Include directory

A | C:\Program
$TOOLKIT_DIR$ utarking
«<Click to add:

CA\Program Files (x86)\IAR Systerns\Embedded Workbench'\target\inc
STOOLKIT_DIRS\inc

][Cancel]

Use this dialog box to specify or delete include paths, or to make a path relative or absolute.

To add a path to an include directory:

1. Click the text <Click to add>. A browse dialog box is displayed.
2. Browse to the appropriate include directory and click Select. The include path appears. To add yet
another one, click <Click to add>.

To make the path relative or absolute:

1. Click the drop-down arrow. A context menu is displayed. which shows the absolute path and paths
relative to the argument variables $SPROJ_DIRS and $TOOLKIT DIRS, when possible.

2. Choose one of the alternatives.

IDE Project Management and Building
Guide 220

Description of compiler options Compiler options

To change the order of the list:

1. Use the shortcut key combinations Ctrl+Up/Down.
2. The list will be sorted accordingly.

To delete an include path:

1. Select the include path and click the red cross at the beginning of the line, alternatively press the
Delete key.

2. The selected path will disappear.

IDE Project Management and Building
Guide 221

Assembler options Assembler options

Assembler options

Description 0f asSemMDIEr OPtIONSiveiiieiieiie ettt et et e et e e et e et e et e et e et eaeeerneerneeaneenns
LA @UAEE ...t
L0 1011011 L APPSRt
55 £ PSP
PIrEPTOCESSOT ..eniiit it et ettt e
LD e o Lo 1] 1 (P
D (3 0 015 (o) s -

DESCRIPTION OF ASSEMBLER OPTIONS

To set assembler options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select Assembler in the Category list.

3. To restore all settings to the default factory settings, click the Factory Settings button.

Language
The Language options control certain behavior of the assembler language.
Language
| User symbols are case sensitive

Macro quote characters:
-

=
B

Allow attemative register names, mnemonics and operands

Mo data reads in code memory

Toggles case sensitivity on and off. By default, case sensitivity is on. This means that, for example, LABEL

and 1abe1l refer to different symbols. When case sensitivity is off, LABEL and 1abel will refer to the

same symbol.

IDE Project Management and Building
Guide 222

Description of assembler options Assembler options

Selects the characters used for the left and right quotes of each macro argument. By default, the characters
are < and >.

Macro quote characters changes the quote characters to suit an alternative convention or simply to allow a
macro argument to contain < or >.

Macro quate characters:

To enable migration from an existing application to the IAR Assembler for Arm, alternative register
names, mnemonics, and operands can be allowed. This is controlled by the assembler command line option
-7. Use this option for assembler source code written for the Arm ADS/RVCT Assembler. For more
information, see the /AR Assembler User Guide for Arm.

Use this option to generate code that should run from a memory region where it is not allowed to read data,
only to execute code.

The option also affects the automatic library selection performed by the linker. An IAR-specific ELF
attribute is used for determining whether libraries compiled with this option should be used.

This option can only be used with Armv7-M cores, and cannot be combined with code compiled for
position-independence.

IDE Project Management and Building

Guide

223

Description of assembler options Assembler options

Output

The Output options determine the generated assembler output.

Cutput

Generate debug information

Makes the assembler generate debug information. Use this option if you want to use a debugger with your
application. By default, this option is selected in a Debug project, but not in a Release project.

List

The List options make the assembler generate a list file and determine its contents.

Output list file

Include header Include cross reference
Include listing [#defines
[Hincluded text [] Intemal symbols
[Macro definitions [] Dual line spacing
Macro expansions

[] ines/page: |80
[Macro execution info

[] Azzembled lines anby
[C] Multiine code

Tab spacing: 8

IDE Project Management and Building
Guide 224

Description of assembler options Assembler options

Makes the assembler generate a list file and send it to the file sourcename. 1st. By default, the
assembler does not generate a list file.

If you want to save the list file in another directory than the default directory for list files, use the Output
Directories option in the General Options category, see Ouiput, page 201. You can open the output files
directly from the Output folder which is available in the Workspace window.

Includes the header. The header of the assembler list file contains information about the product version,
date and time of assembly, and the command line equivalents of the assembler options that were used.

Selects which type of information to include in the list file. Choose from:

#included text Includes #include files in the list file.
Macro definitions Includes macro definitions in the list file.
Macro expansions Excludes macro expansions from the list file.

Macro execution info Prints macro execution information on every call of a macro.
Assembled linesonly Excludes lines in false conditional assembler sections from the list file.

Multiline code Lists the code generated by directives on several lines if necessary.

Includes a cross-reference table at the end of the list file. Choose from:

#define Includes preprocessor #defines.
Internal symbols Includes all symbols, user-defined as well as assembler-internal.
Dual line spacing Uses dual-line spacing.

Specify the number of lines per page, within the range 10 to 150. The default number of lines per page is
80 for the assembler list file.

Specify the number of character positions per tab stop, within the range 2 to 9. By default, the assembler
sets eight character positions per tab stop.

IDE Project Management and Building
Guide 225

Description of assembler options Assembler options

Preprocessor
The Preprocessor options allow you to define symbols and include paths for use by the assembler.

Preprocessor

[] lgnore standard include directories

Addttional include directores: (one per ling)

Preinclude file:

Defined symbols: {one per ling)

Normally, the compiler and assembler automatically look for include files in the standard include
directories. Use this option to turn off this behavior.

Specify the full paths of directories to search for include files, one per line. Any directories specified here
are searched before the standard include directories, in the order specified.

Use the browse button to display the Edit Include Directories dialog box, where you can specify directories
using a file browser. For more information, see Edit Include Directories dialog box, page 220.

To avoid being dependent on absolute paths, and to make the project more easily portable between
different machines and file system locations, you can use argument variables like $TOOLKIT DIR$ and

$PROJ_DIRS, see Argument variables, page 79.

Specify a file to include before the first line of the source file.

IDE Project Management and Building
Guide 226

Description of assembler options Assembler options

Define a macro symbol (one per line), including its value, for example like this:
TESTVER=1

This has the same effect as if a line like this appeared before the start of the source file:
#define TESTVER 1

A line with no value has the same effect as if =1 was specified.

Diagnostics
The Diagnostics options control individual warnings or ranges of warnings.

Diagnostics

Wamings
@ Enable @ Al wamings
_) Disable) Just waming:

) Wamings from:

[Max number of emore: | 100

Controls the assembler warnings. The assembler displays a warning message when it finds an element of
the source code that is legal, but probably the result of a programming error. By default, all warnings are
enabled. To control the generation of warnings, choose between:

Enable Enables warnings.

Disable Disables warnings.

All warnings Enables/disables all warnings.

Just warning Enables/disables the warning you specify.

Warnings from to Enables/disables all warnings in the range you specify.

For more information about assembler warnings, seethe IAR Assembler User Guide for Arm.

IDE Project Management and Building
Guide 227

Description of assembler options Assembler options

Specify the maximum number of errors. This means that you can increase or decrease the number of
reported errors, for example, to see more errors in a single assembly. By default, the maximum number of
errors reported by the assembler is 100.

Extra Options

The Extra Options page provides you with a command line interface to the tool.

| Extra Options

Use command line options

Command line options: {one per ling)

Specify additional command line arguments to be passed to the tool (not supported by the GUI).

IDE Project Management and Building
Guide 228

Output converter options Output converter options

Output converter options

Description of output CONVETTEr OPLIONSu.iveiineiieiieiteeti et et et et et et eaneeanesteeteserseersneernernneenns 229
L0 1011011 L APPSO 229

DESCRIPTION OF OUTPUT CONVERTER OPTIONS

To set output converter options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select Output Converter in the Category list.

Output

The Output options determine details about the promable output format.
Output

Generate additional output

vioorola

Cutput file

The ILINK linker generates ELF as output, optionally including DWARF for debug information. Generate
additional output makes the converter ielftool convert the ELF output to the format you specify,

for example Motorola or Intel-extended. For more information about the converter, see the /AR C/C++
Development Guide for Arm.

If you change the filename extension for linker output and want to use the output converter

li? ielftool to convert the output, make sure ielftool will recognize the new filename
extension. To achieve this, choose Tools>Filename Extension, select your toolchain, and click
Edit. In the Filename Extension Overrides dialog box, select Output Converter and click Edit. In
the Edit Filename Extensions dialog box, select Override and type the new filename extension
and click OK. ielftool will now recognize the new filename extension.

IDE Project Management and Building
Guide 229

Description of output converter options Output converter options

Selects the format for the output from ielftool. Choose between:

* Motorola S-records

* Intel Extended hex

e Texas Instruments TI-TXT
e Raw binary

e Simple-code

For more information about the converter, see the /AR C/C++ Development Guide for Arm.

Specifies the name of the ie1ftool converted output file. By default, the linker will use the project
name with a filename extension. The filename extension depends on which output format you choose, for
example, either srec or hex. To override the default name, select the Override default option and specify

the alternative filename or filename extension.

IDE Project Management and Building
Guide 230

Custom build options Custom build options

Custom build options

Description of custom DUild OPtIONSiveiiiniiieiie ettt e e e e e e e e e et e et e e e eaneeaneeaneeans 231
Custom ToOl CONFIGUIALIONuiieniieiiteii et e e e e et et et e e e e e e e et e et e et e e eaaeesneeaneeens 231

DESCRIPTION OF CUSTOM BUILD OPTIONS

To set custom build options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select Custom Build in the Category list.

Custom Tool Configuration

The Custom Tool Configuration options control the invocation of the tools you want to add to the tool
chain.

Custom Tool Configuration

Filename extensions:
Command line:

CQutput files {one per ling):

Additional input files jone per line):

Build order: |.ﬂ|.|.rtomati-: {based on input and output) -

For an example, see Extending the toolchain, page 107.

Specify the filename extensions for the types of files that are to be processed by the custom tool. You can
type several filename extensions. Use commas, semicolons, or blank spaces as separators. For example:

.htm; .html

Specify the command line for executing the external tool.

IDE Project Management and Building
Guide 231

Description of custom build options Custom build options

Specify the name for the output files from the external tool.

Specify any additional files to be used by the external tool during the build process. If these additional
input files, dependency files, are modified, the need for a rebuild is detected.

Specify where in the build process to execute the external tool. Choose between:

Automatic (basedon The time of execution will be calculated automatically by the build engine.
input and output)

Run before The tool will be executed before the compiler or assembler.
compiling/assembling

Run before linking The tool will be executed after the compiler or assembler, but before the linker.

IDE Project Management and Building
Guide 232

Build actions options Build actions options

Build actions options

Description of build aCtions OPLIONSiieiiniiieiie ettt et et et et et e e et e et e et e et eaeaeaeeranearneenneenns 233
Build Actions CONfIGUIATIONovuuiieiiteiie e e ettt et et et e e e e et e et e et e et e et e s eraeerneaaneeens 233
New/Edit Build Action dialog DOXoiuniiiiiiiiiii et e e 234

e Description of build actions options, page 233

DESCRIPTION OF BUILD ACTIONS OPTIONS

To set build action options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select Build Actions in the Category list.

Build Actions Configuration

The Build Actions Configuration options specify build actions in the IDE, to be performed before, during,
or after the build. These options apply to the whole build configuration, and cannot be set on groups or
files.

Build Actions Configuration

Build actions:
Command line Build order ~ Output file(s)

Mew...

If a build action returns a non-zero error code, the entire Build or Make command is aborted.

The display area shows all command lines to be executed at various stages of the build, when in the build
order they will be executed, and which output they produce. Use the buttons under the display area to
create, edit, or remove build actions.

IDE Project Management and Building
Guide 233

Description of build actions options

Build actions options

Opens a dialog box where you can create a new build action, see New/Edit Build Action dialog box, page

234,

Opens a dialog box where you can edit the selected build action, see New/Edit Build Action dialog box,

page 234.

Deletes the selected build action.

New/Edit Build Action dialog box

The New/Edit Build Action dialog box is available from the Build Actions Configuration page in the

Options dialog box.

Mew Build Action

Command line:

COutput files {one per ling):

Input files {one per line):

Working directory:

SPROJ_DIRS

Build order: Automatic (based on input and output)

Ok

Cancel

Use this dialog box to create or edit build actions.

IDE Project Management and Building
Guide

234

Description of build actions options Build actions options

Type the command to be executed. The command is executed as cmd /C command on Windows and sh
-c command on Linux.

Specify the files generated by the command. Note that specifying a file that is not generated by the
command will cause the build action, and any dependent build actions, to be rebuilt every time the project
is built.

Specify all files required for the build action. The files must exist on the computer or be specified as an
output from another build action.

Specify the directory where the command is executed. A browse button is available for your convenience.

Specify where in the build process to execute the build action. Choose between:

Automatic (basedon The command is executed based on input and output dependencies. All input and
input and output) output files for the command must be specified.

Run before The command is executed before the compiler or assembler. Use this build order
compiling/assembling to, for example, generate header files for the compiler.

Run before linking The command is executed before the linker, after the compiler or assembler. Use
this build order to, for example, generate linker configuration files.

Run after linking The command is executed after the linker. Use this build order to generate files
before, for example, output conversion.

ﬁ For commands that only have explicit dependencies, use the Automatic build order. For
commands with implicit dependencies, for example header files or linked libraries, use one
of the other build orders.

IDE Project Management and Building
Guide 235

Linker options Linker options

Linker options

Description Of lINKET OPLIONScvuuiieiiii ittt e e ee et et et et e e et e e e et e et e et e et e st eaeeeaneesneenneenns 236
(0703 11§ 1P 236
|51 1 o PSPPSR 237
5510 PP 238
L0351 0 0N 1221 5 1011 1S PSP 239
AVANCEA ...t 240
L0133 242
T N 243
2 [11 LT OO PUORPPPRRt 244
LT s 1] (PPN 244
CRECKSUIM ...ttt et et et e et e et e e e e 246
ENCOMINES .ovniiniiie et et et a e e aans 249
|25 A e N O] 1 ()1 PP 250
Edit Additional Libraries dialog DOXcciuuiiiiiiiiiieiieii et e e e e e e e e aans 250
Linker Configuration File Editor dialog DOXcc.oiiiiiiniiiiiiiieii e e 251

DESCRIPTION OF LINKER OPTIONS

To set linker options in the IDE:

1. Choose Project>Options to display the Options dialog box.
2. Select Linker in the Category list.
3. To restore all settings to the default factory settings, click the Factory Settings button.

Config

The Config options specify the path and name of the linker configuration file and define symbols for the
configuration file.

Corfig

Linker configuration file
Owemide default

T g L]
S0 K H=E LINFIC9
s L N LY (ERL - R | L)

[17]
i
2
&,

Corfiguration file symbal definitions: (one per ling)
COMNFIG_SYM3=42 e

IDE Project Management and Building
Guide 236

Description of linker options Linker options

A default linker configuration file is selected automatically based on your project settings. To override the
default file, select Override default and specify an alternative file. Alternatively, click the Edit button to
open the dedicated linker configuration file editor, see Linker Configuration File Editor dialog box, page
251.

The argument variables $TOOLKIT DIRS$ or $PROJ_DIRS can be used for specifying a project-specific
or predefined configuration file.

Define constant configuration symbols to be used in the configuration file. Such a symbol has the same
effect as a symbol defined using the define symbol directive in the linker configuration file.

Library

The Library options select the set of used libraries.

| Librany

Automatic runtime librany selection

Addttional libraries: {one per ling)

[] Overide defautt program entry
(@ Ertry symbal __iar_program_start
Mo entry symbaol

For more information about available libraries, see the /AR C/C++ Development Guide for Arm.

Makes the linker automatically choose the appropriate library based on your project settings.

IDE Project Management and Building

Guide

237

Description of linker options Linker options

Specify additional libraries that you want the linker to include during the link process. You can only specify
one library per line and you must specify the full path to the library.

Use the browse button to display the Edit Additional Libraries dialog box, where you can specify libraries
using a file browser. For more information, see Edit Additional Libraries dialog box, page 250.

The argument variables $PROJ DIRS and $STOOLKIT DIRS can be used, see Argument variables, page
79.

Alternatively, you can add an additional library directly to your project in the Workspace window. You can
find an example of this in the tutorial for creating and using libraries.

By default, the program entry is the label iar program start. The linker makes sure that a

module containing the program entry label is included, and that the section containing that label is not
discarded.

Override default program entry overrides the default entry label. Choose between:

Entry symbol Specify an entry symbol other than default.

No entry symbol No entry symbol will be defined and the entry point of the application image will
be 0. For this reason, the application must contain a symbol or section that has the
root attribute and that refers, directly or indirectly, to the rest of the application,
otherwise the image will be empty.

Input
The Input options specify how to handle input to the linker.

[mput

Keep symbols: {one per line)

Baw hinary image
File: Symbal: Section: Align:

File: Symbal: Section: Align:

IDE Project Management and Building
Guide 238

Description of linker options Linker options

Define the symbol, or several symbols one per line, that shall always be included in the final application.

By default, the linker keeps a symbol only if your application needs it.

Links pure binary files in addition to the ordinary input files. Specify these parameters:

File The pure binary file you want to link.

Symbol The symbol defined by the section where the binary data is placed.
Section The section where the binary data is placed.

Align The alignment of the section where the binary data is placed.

The entire contents of the files are placed in the section you specify, which means they can only contain
pure binary data, for example, the raw binary output format. The section where the contents of a specified
file are placed, is only included if the specified symbol is required by your application. Use Keep symbols
if you want to force a reference to the symbol. Read more about single output files and the --keep option

in the JAR C/C++ Development Guide for Arm.

Optimizations

The Optimizations options control linker optimizations.

Optimizations |

[Inline small routines
[7] Merge duplicate sections
Perform C++ Virtual Function Elimination

[7] Even ome modules are missing VFE information

For more information about these options, see the /AR C/C++ Development Guide for Arm.

Makes the linker replace the call of a routine with the body of the routine, where applicable.

IDE Project Management and Building

Guide

239

Description of linker options Linker options

Makes the linker keep only one copy of equivalent read-only sections.

Note that this can cause different functions or constants to have the same address, so an application that
depends on the addresses being different will not work correctly with this option selected.

Enables the Virtual Function Elimination optimization.

To force the use of Virtual Function Elimination, enable the Even if some modules are missing VFE
information option. This might be unsafe if some of the modules that lack the needed information perform
virtual function calls or use dynamic Runtime Type Information.

Advanced
The Advanced options control some miscellaneous linker features.

Advanced

Allow C++ exceptions
] Always include

Enable stack usage analysis
Contral file: | |

Call graph output (¥ML): | |

[] Replace linker executable with wrapper

For more information about these options, see the /AR C/C++ Development Guide for Arm.

If this option is not selected, the linker generates an error if there is a throw in the included code.

Do not use this option if you want the linker to check that exceptions are not used by mistake in your
application.

IDE Project Management and Building
Guide 240

Description of linker options Linker options

Makes the linker include exception handling code and tables even if they do not appear to be needed.

The linker considers exceptions to be used if there is a throw expression that is not a rethrow in the
included code. If there is no such throw expression in the rest of the code, the linker arranges for
operator new,dynamic_ cast, and typeid to call abort instead of throwing an exception on
failure. If you need to catch exceptions from these constructs but your code contains no other throws, you
might need to use this option.

Do not use this option if you want the linker to check that exceptions are not used by mistake in your
application.

Enables stack usage analysis. If you choose to produce a linker map file, a stack usage chapter is included
in the map file. Additionally, you specify one or more of these files:

Control file Specify a stack usage control file to use to control stack usage analysis or provide
more stack usage information for modules or functions. If no filename extension
is specified, the extension suc is used.

Call graph output Specify the name of a call graph file to be generated by the linker. If no filename
(XML) extension is specified, the extension cgx is used.

This option allows you to specify an executable file or script to replace the build engine’s call to the linker.

This makes it possible to execute commands just before or after calling the linker. The option requires that
the wrapper calls the linker properly (in place of the replaced call).

This is a very powerful option that lets you make radical changes to the linking process. Use it
with care.

IDE Project Management and Building

Guide

241

Description of linker options Linker options

Output

The Output options determine the generated linker output.

Output

Qutput filename:

saml11.out

| Include debug information in output

TrustZone import librany

saml11_import_lib.o

Sets the name of the ILINK output file. By default, the linker will use the project name with the filename
extension out. To override the default name, specify an alternative name of the output file.

If you change the filename extension for linker output and want to use the output converter

lf? ielftool to convert the output, make sure ielftool will recognize the new filename
extension. To achieve this, choose Tools>Filename Extension, select your toolchain, and click
Edit. In the Filename Extension Overrides dialog box, select Output Converter and click Edit. In
the Edit Filename Extensions dialog box, select Override and type the new filename extension
and click OK. ielftool will now recognize the new filename extension.

Makes the linker generate an ELF output file including DWARF for debug information.

When a secure project is built, the linker will automatically generate a library file that only includes
references to functions in the secure part that can be called from the non-secure part. Specify the name of
this file using the option TrustZone import library. The TrustZone import library file will be stored in the
same directory as the project executable file.

IDE Project Management and Building
Guide 242

Description of linker options Linker options

List

The List options control the generation of linker listings.

I

Generate linker map file

Generate log file
[Automatic library selection [] CRT routine selection

[Initiglization decisions [Extra info for sections
[] Module selections [] Small function inlining
[Redirected symbals [Results of merging sections
[7] Section =elections [7] Demangled symbals in logs

[Stack usage call graph
[7] Unused section fragments
[] Veneer statistics

Makes the linker generate a linker memory map file and send it to the projectname . map file located in
the 1ist directory. For detailed information about the map file and its contents, see the /AR C/C++
Development Guide for Arm.

Makes the linker save log information to the projectname. 1og file located in the 1ist directory. The log
information can be useful for understanding why an executable image became the way it is. You can log:

e Automatic library selection
« Initialization decisions

e Module selections

¢ Redirected symbols

e Section selections

e Stack usage call graph

e Unused section fragments

e Veneer statistics

e CRT routine selection

e Extra info for sections

e Small function inlining

e Results of merging sections
e C/C++ symbols with demangled names instead of mangled names

IDE Project Management and Building
Guide 243

Description of linker options Linker options

#define

The #define options define absolute symbols at link time.

Hdefine

Defined symbols: {one per ling)

Define absolute symbols to be used at link time. This is especially useful for configuration purposes. Type
the symbols that you want to define for the project, one per line, and specify their value. For example:

TESTVER=1

Note that there should be no space around the equals (=) sign.

Any number of symbols can be defined in a linker configuration file. The symbol(s) defined in this manner
will be located in a special module called ?ABS ENTRY MOD, which is generated by the linker.

The linker will display an error message if you attempt to redefine an existing symbol.

Diagnostics

IDE Project Management and Building
Guide 244

Description of linker options Linker options

The Diagnostics options determine how diagnostic messages are classified and displayed. Use the
diagnostics options to override the default classification of the specified diagnostics.

Diagnostics

[] Enable remarks

Suppress these diagnostics:

Treat these as remarks:

Treat these as wamings:

Treat these as emors:

[] Treat all wamings as emors

0 The diagnostic messages cannot be suppressed for fatal errors, and fatal errors cannot be
reclassified.

Enables the generation of remarks. By default, remarks are not issued.

The least severe diagnostic messages are called remarks. A remark indicates a source code construct that
might cause strange behavior in the generated code.

Suppresses the output of diagnostic messages for the tags that you specify.

For example, to suppress the warnings xx117 and Xx177, type:

Xx117,Xx177

Classifies diagnostic messages as remarks. A remark is the least severe type of diagnostic message. It
indicates a source code construct that might cause strange behavior in the generated code.

For example, to classify the warning Xx177 as a remark, type:

Xx177

IDE Project Management and Building
Guide 245

Description of linker options

Linker options

Classifies diagnostic messages as warnings. A warning indicates an error or omission that is of concern, but

which will not cause the linker to stop before linking is completed.

For example, to classify the remark Xx82 6 as a warning, type:

Xx826

Classifies diagnostic messages as errors. An error indicates a violation of the linking rules, of such severity

that an executable image will not be generated, and the exit code will be non-zero.

For example, to classify the warning Xxx117 as an error, type:

Xx117

Classifies all warnings as errors. If the linker encounters an error, an executable image is not generated.

Checksum

The Checksum options control filling and checksumming.

| Checksum

Fill unused code memany
Fill pattem: (FF

Start address: 15 End address: ()
Generate checksum

Chechksum size: AMignment: 1
Algorithm: CRC16 » | [Cx17021

Result in full size

Initial value
Complement: [.ﬁs is -] 1]
Eit order: [MSE first v] Use as input

[Reverse byte onder within word

Chechksum unit size:

For more information about checksum calculation, see the /AR C/C++ Development Guide for Arm.

IDE Project Management and Building

Guide

246

Description of linker options Linker options

Fills unused memory in the range you specify. Choose between:

Fill pattern Specifies a size, in hexadecimal notation, of the filler to be used in gaps between
segment parts.

Start address Specifies the start address for the range to be filled.

End address Specifies the end address for the range to be filled.

IDE Project Management and Building

Guide

247

Description of linker options Linker options

Generates a checksum for the specified range. Choose between:

Checksum size

Alignment

Algorithm

Result in full size

Complement

Bit order

Reverse byte order
within word

Initial value

Use as input

Checksum unit size

Selects the size of the checksum, which can be 1, 2, 4, or 8 bytes.

Specifies an optional alignment for the checksum. Typically, this is useful when
the processor cannot access unaligned data. If you do not specify an alignment
explicitly, an alignment of 1 is used.

Selects the algorithm to be used when calculating the checksum. Choose between:

Arithmetic sum, the simple arithmetic sum algorithm. The result is truncated to
one byte.

CRC16 (default), the CRC16 algorithm (generating polynomial 0x1021).
CRC32, the CRC32 algorithm (generating polynomial 0x4C11DB?7).

CRC polynomial, the CRC polynomial algorithm, a generating polynomial of the
value you specify.

CRC64IS0, the CRC64ISO algorithm (generating polynomial 0x1B).

CRC64ECMA, the CRC64ECMA algorithm (generating polynomial
0x42FOE1EBA9EA3693).

Sum32, a word-wise (32 bits) calculated arithmetic sum.

Generates the result of the arithmetic sum algorithm in the size you specify
instead of truncating it to one byte.

Selects the complement variant. Leave either as is, or select the one’s complement
or two’s complement.

Selects the order in which the bits in each byte will be processed. Choose
between:

MSB first, outputs the most significant bit first for each byte.

LSB first, reverses the bit order for each byte and outputs the least significant bit
first.

Reverses the byte order of the input data within each word of the size specified in
Checksum unit size.

Specifies an initial value for the checksum. This is useful if the core you are using
has its own checksum calculation and you want that calculation to correspond to
the calculation performed by the linker.

Prefixes the input data with a word of size Checksum unit size that contains the
value specified in Initial value.

Selects the size of the unit for which a checksum should be calculated. Typically,
this is useful to make the linker produce the same checksum as some hardware
CRC implementations that calculate a checksum for more than 8 bits per iteration.
Choose between:

8-bit, calculates a checksum for 8 bits in every iteration.

16-bit, calculates a checksum for 16 bits in every iteration.
32-bit, calculates a checksum for 32 bits in every iteration.
64-bit, calculates a checksum for 64 bits in every iteration.

IDE Project Management and Building

Guide

248

Description of linker options Linker options

Encodings
The Encodings options control the character encodings of the input files to and the output files from the

linker.
Encoding

Default input file encoding
@) System locale
I UTF-8

Text output file encoding
@) System locale
I UTF-8 With BOM

Specifies the default encoding that the linker shall use when reading a text input file with no Byte Order
Mark (BOM). Choose between:

System locale Sets the system locale as the default encoding.

UTF-8 Sets the UTF-8 encoding as the default.

Specifies the encoding that the linker shall use when generating a text output file. Choose between:

System locale Uses the system locale encoding.
UTF-8 Uses the UTF-8 encoding.
With BOM Adds a Byte Order Mark to the output file.

This option is only available when you have selected one of the UTF encodings
for your output file.

IDE Project Management and Building
Guide 249

Description of linker options Linker options

Extra Options

The Extra Options page provides you with a command line interface to the tool.

| Extra Options

Use command line options

Command line options: {one per ling)

Specify additional command line arguments to be passed to the tool (not supported by the GUI).

Edit Additional Libraries dialog box
The Edit Additional Libraries dialog box is available from the Library page in the Options dialog box.

Edit Additional Libraries =

Libramy

C:\Program Files [#86]MAR Systems\Embedded Workbenchhtargethlibhdldt_abl.a

A $TOOLKIT_DIR$ targetlib\didt_abn.a

<Click to add> C:\Program Files (x86)\IAR Systems\Embedded Workbench'target\lib\dl4t_abn.a
STOOLKIT_DIRS\target\lib\dl4t_abn.a

I

Use this dialog box to specify additional libraries, or to make a path to a library relative or absolute.

To specify an additional library:

1. Click the text <Click to add>. A browse dialog box is displayed.
2. Browse to the appropriate include directory and click Open. The library is listed.
To add yet another one, click <Click to add>.

To make the path relative or absolute:

1. Click the drop-down arrow. A context menu is displayed. which shows the absolute path and paths
relative to the argument variables $PROJ DIRS$ and $STOOLKIT DIRS, when possible.

2. Choose one of the alternatives.

To change the order of the list:

1. Use the shortcut key combinations Ctrl+Up/Down.

IDE Project Management and Building
Guide 250

Description of linker options Linker options

2. The list will be sorted accordingly.

To delete a library from the list:

1. Select the library and click the red cross at the beginning of the line, alternatively press the Delete key.
2. The selected library will disappear.

Linker Configuration File Editor dialog box

The Linker Configuration File Editor dialog box is available from the Config page in the Options dialog
box.

Linker configuration file editor et

Vector Table Memory Regions ~ Stadk/Heap Sizes

Jintvec start | D%D2800000 |

Save

Use this dialog box to specify memory locations for linker sections and blocks in the linker configuration
file.

This dialog box contains these pages:

Specify the start location of the memory block for the reset vector table (. intvec).

Specify the start and end locations of the ROM and RAM memory regions.

Specify the size (start and end locations) of each of the linker stacks or heaps.

IDE Project Management and Building
Guide 251

Library builder options Library builder options

Library builder options

Description of library builder OPtIONSoiuueiuneiieiieeie ettt e e e e e e e eaie e e e raneeaneaaneeens 252
L0 1011011 L AP PP 253
|25 43 - 03] 5 1) PP 254

DESCRIPTION OF LIBRARY BUILDER OPTIONS

Options for the library builder are not available by default. Before you can set these options in the IDE, you
must add the library builder tool to the list of categories.

To set Library Builder options in the IDE:

1. Choose Project>Options>General Options>Output.

2. Select the Library option, which means that Library Builder appears as a category in the Options
dialog box.

3. Select Library Builder in the Category list.

IDE Project Management and Building
Guide 252

Description of library builder options Library builder options

Output

The Output options control the library builder and as a result of the build process, the library builder will
create a library output file.

e

-

Options for node "project3” @

Category:

Factom Settings]

General Options
Static Analysis
CfC++ Compiler

Assembler Output

Custom Build .
Build Actions Output file
Overide defaut

artst AR Embedded Workbench'chip*tutor\Debug*Exe’project3.a

(]] [Cancel

Specifies the name of the output file from the library builder. By default, the linker will use the project

name with a filename extension. To override the default name, select Override default and specify an
alternative name of the output file.

IDE Project Management and Building
Guide 253

Description of library builder options Library builder options

Extra Options

The Extra Options page provides you with a command line interface to the tool.

Extra Options

IUse command line options

Command line options: (one per ling)

Specify additional command line arguments to be passed to the tool (not supported by the GUI).

IDE Project Management and Building
Guide 254

Glossary

Glossary

A

IDE Project Management and Building

Guide

Glossary

This is a general glossary for terms relevant to embedded systems programming. Some of the terms do not
apply to the IAR Embedded Workbench® version that you are using.

Absolute location.

Address expression

AEABI

Application

Ar

Architecture

Archive
Assembler directives

Assembler language

Assembler options

Attributes

Auto variables

A specific memory address for an object specified in the source code,
as opposed to the object being assigned a location by the linker

An expression which has an address as its value.

Embedded Application Binary Interface for Arm, defined by Arm
Limited.

The program developed by the user of the IAR toolkit and which will
be run as an embedded application on a target processor.

The GNU binary utility for creating, modifying, and extracting from
archives, that is, libraries.

See Also /archive.

A term used by computer designers to designate the structure of
complex information-processing systems. It includes the kinds of
instructions and data used, the memory organization and addressing,
and the methods by which the system is implemented. The two main
architecture types used in processor design are called Harvardand von
Neumann.

See Also Harvard architecture, von Neumann architecture.
See Library.
The set of commands that control how the assembler operates.

A machine-specific set of mnemonics used to specify operations to the
target processor and input or output registers or data areas. Assembler
language might sometimes be preferred over C/C++ to save memory or
to enhance the execution speed of the application.

Parameters you can specify to change the default behavior of the
assembler.

See Section attributes.

The term refers to the fact that each time the function in which

the variable is declared is called, a new instance of the variable is
created automatically. This can be compared with the behavior of local
variables in systems using static overlay, where a local variable only
exists in one instance, even if the function is called recursively. Also
called local variables.

255

Glossary

Backtrace

Bank

Banked code

Banked data

Banked memory

Bank switching

Bank-switching routines

Batch files

Bitfield

Block, in linker configuration
file

Breakpoint

IDE Project Management and Building

Glossary

See Also Register variables.

Information for keeping call frame information up to date so that the
IAR C-SPY® Debugger can return from a function correctly.

See Also Call frame information.
See Memory bank.

Code that is distributed over several banks of memory. Each function
must reside in only one bank.

Data that is distributed over several banks of memory. Each data object
must fit inside one memory bank.

Has multiple storage locations for the same address.
See Also Memory bank.

Switching between different sets of memory banks. This software
technique increases a computer's usable memory by allowing different
pieces of memory to occupy the same address space.

Code that selects a memory bank.

A text file containing operating system commands which are executed
by the command line interpreter. In Unix, this is called a “shell

script” because it is the Unix shell which includes the command line
interpreter. Batch files can be used as a simple way to combine existing
commands into new commands.

A group of bits considered as a unit.

A continuous piece of code or data. It is either built up of blocks,
overlays, and sections or it is empty. A block has a name, and the start
and end address of the block can be referred to from the application.
It can have attributes such as a maximum size, a specific size, or a
minimum alignment. The contents can have a specific order or not.

1. Code breakpoint. A point in a program that, when reached,
triggers some special behavior useful to the process of debugging.
Generally, breakpoints are used for stopping program execution
or dumping the values of some or all of the program variables.
Breakpoints can be part of the program itself, or they can be set by
the programmer as part of an interactive session with a debugging
tool for scrutinizing the program'’s execution.

2. Data breakpoint. A point in memory that, when accessed, triggers
some special behavior useful to the process of debugging.
Generally, data breakpoints are used to stop program execution
when an address location is accessed either by a read operation or
a write operation.

3. Immediate breakpoint. A point in memory that, when accessed,
trigger some special behavior useful in the process of debugging.

256

Glossary

C

Call frame information

Calling convention

Checksum

Code banking

Code model

Code pointers

Code sections

Compilation unit

Compiler options

IDE Project Management and Building
Guide

Glossary

Immediate breakpoints are generally used for halting the program
execution in the middle of a memory access instruction (before
or after the actual memory access depending on the access type)
while performing some user-specified action. The execution is
then resumed. This feature is only available in the simulator
version of C-SPY.

Information that allows the IAR C-SPY® Debugger to show, without
any runtime penalty, the complete stack of function calls—cal/ stack—
wherever the program counter is, provided that the code comes from
compiled C functions.

See Also Backtrace.

A calling convention describes the way one function in a program

calls another function. This includes how register parameters are
handled, how the return value is returned, and which registers that

will be preserved by the called function. The compiler handles this
automatically for all C and C++ functions. All code written in
assembler language must conform to the rules in the calling convention
to be callable from C or C++, or to be able to call C and C++ functions.
The C calling convention and the C++ calling conventions are not
necessarily the same.

A small piece of data calculated from a larger block of data for the
purpose of detecting errors that might have been introduced during its
transmission or storage.

See Also CRC (cyclic redundancy check).
See Banked code.

The code model controls how code is generated for an application.
Typically, the code model controls behavior such as how functions are
called and in which code segment/section functions will be located. All
object files of an application must be compiled using the same code
model.

A code pointer is a function pointer. As many microcontrollers allow
several different methods of calling a function, compilers for embedded
systems usually provide the users with the ability to use all these
methods.

Do not confuse code pointers with data pointers.
Read-only sections that contain code.

See Also Section.

See Translation unit.

Parameters you can specify to change the default behavior of the
compiler.

257

Glossary
Context menu

CRC (cyclic redundancy
check)

C-SPY options

Cstartup

C-style preprocessor

D

Data banking

Data model

Data pointers

Data representation

Declaration

IDE Project Management and Building
Guide

Glossary

A context menu appears when you right-click in the user interface, and
provides context-specific menu commands.

A checksum algorithm based on binary polynomials and an initial
value. A CRC algorithm is more complex than a simple arithmetic
checksum algorithm and has a greater error detecting capability. Most
checksum calculation algorithms currently in wide used are based on
CRC.

See Also Checksum.

Parameters you can specify to change the default behavior of the IAR
C-SPY Debugger.

Code that sets up the system before the application starts executing.

A preprocessor is either a stand-alone application or an integrated part
of a compiler, that performs preprocessing of the input stream before
the actual compilation occurs. A C-style preprocessor follows the rules
set up in Standard C and implements commands like #define, #if,
and #include, which are used to handle textual macro substitution,
conditional compilation, and inclusion of other files.

See Banked data.

The data model specifies the default memory type. This means that
the data model typically controls one or more of the following: The
method used and the code generated to access static and global
variables, dynamically allocated data, and the runtime stack. It also
controls the default pointer type and in which data sections static and
global variables will be located. A project can only use one data model
at a time, and the same model must be used by all user modules and all
library modules in the project.

Many cores have different addressing modes to access different
memory types or address spaces. Compilers for embedded systems
usually have a set of different data pointer types so they can access the
available memory efficiently.

How different data types are laid out in memory and what value ranges
they represent.

A specification to the compiler that an object, a variable or function,
exists. The object itself must be defined in exactly one translation unit
(source file). An object must either be declared or defined before it is
used. Normally an object that is used in many files is defined in one
source file. A declaration is normally placed in a header file that is
included by the files that use the object. For example:

/* Variable "a" exists somewhere. Function

"b" takes two int parameters and returns an
int. */

258

Glossary

Definition

Demangling

Device description file

Device driver

Digital signal processor (DSP)

Disassembly window

DWARF

Dynamic initialization

Dynamic memory allocation

IDE Project Management and Building
Guide

Glossary

extern int a;
int b(int, int);

The variable or function itself. Only one definition can exist for each
variable or function in an application.

See Also T7entative definition.
For example:

int a;
int b(int x, int y)
{

return x + y;

}
To restore a mangled name to the more common C/C++ name.
See Also Mangling.

A file used by C-SPY that contains various device-specific information
such as 1/0O register (SFR) definitions, interrupt vectors, and control
register definitions.

Software that provides a high-level programming interface to a
particular peripheral device.

A device that is similar to a microprocessor, except that the internal
CPU is optimized for use in applications involving discrete-time signal
processing. In addition to standard microprocessor instructions, digital
signal processors usually support a set of complex instructions to
perform common signal-processing computations quickly.

A C-SPY window that shows the memory contents disassembled as
machine instructions, interspersed with the corresponding C source
code (if available).

An industry-standard debugging format which supports source level
debugging. This is the format used by the IAR ILINK Linker for
representing debug information in an object.

Variables in a program written in C are initialized during the initial
phase of execution, before the main function is called. These variables
are always initialized with a static value, which is determined either

at compile time or at link time. This is called static initialization.

In C++, variables might require initialization to be performed by
executing code, for example, running the constructor of global objects,
or performing dynamic memory allocation.

There are two main strategies for storing variables: statically at link
time, or dynamically at runtime. Dynamic memory allocation is often
performed from the heap and it is the size of the heap that determines
how much memory that can be used for dynamic objects and variables.
The advantage of dynamic memory allocation is that several variables
or objects that are not active at the same time can be stored in the same
memory, thus reducing the memory requirements of an application.

See Also Heap memory.

259

Glossary

Dynamic object

EEPROM

ELF

Embedded C++

Embedded system

Emulator

Enea OSE Load module
format

Enumeration

EPROM

Exceptions

IDE Project Management and Building
Guide

Glossary

An object that is allocated, created, destroyed, and released at
runtime. Dynamic objects are almost always stored in memory that
is dynamically allocated.

See Also Static object.

Electrically Erasable, Programmable Read-Only Memory. A type of
ROM that can be erased electronically, and then be re-programmed.

Executable and Linking Format, an industry-standard object file
format. This is the format used by the IAR ILINK Linker. The debug
information is formatted using DWARF.

A subset of the C++ programming language, which is intended
for embedded systems programming. The fact that performance
and portability are particularly important in embedded systems
development was considered when defining the language.

A combination of hardware and software, designed for a specific
purpose. Embedded systems are often part of a larger system or
product.

An emulator is a hardware device that performs emulation of one or
more derivatives of a processor family. An emulator can often be used
instead of the actual core and connects directly to the printed circuit
board—where the core would have been connected—via a connecting
device. An emulator always behaves exactly as the processor it
emulates, and is used when debugging requires all systems actuators,
or when debugging device drivers.

A specific ELF format that is loadable by the OSE operating system.
See Also ELF.

A type which includes in its definition an exhaustive list of possible
values for variables of that type. Common examples include Boolean,
which takes values from the list [true, false], and day-of-week

which takes values [Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday]. Enumerated types are a feature of typed languages,
including C and Ada. Characters, (fixed-size) integers, and even
floating-point types might be (but are not usually) considered to be
(large) enumerated types.

Erasable, Programmable Read-Only Memory. A type of ROM that
can be erased by exposing it to ultraviolet light, and then be re-
programmed.

An exception is an interrupt initiated by the processor hardware, or
hardware that is tightly coupled with the processor, for instance, a
memory management unit (MMU). The exception signals a violation
of the rules of the architecture (access to protected memory), or an
extreme error condition (division by zero).Do not confuse this use of

260

Glossary

Executable image

Extended keywords

F

Filling

Format specifiers

G

General options

Generic pointers

H

Harvard architecture

Heap memory

IDE Project Management and Building
Guide

Glossary

the word exception with the term exception used in the C++ language
(but not in Embedded C++).

Contains the executable image; the result of linking several relocatable
object files and libraries. The file format used for an object file is ELF
with embedded DWARF for debug information.

Non-standard keywords in C and C++. These usually control the
definition and declaration of objects (that is, data and functions).

See Also Keywords.

How to fill up bytes—with a specific fill pattern—that exists between
the sections in an executable image. These bytes exist because of the
alignment demands on the sections.

Used to specify the format of strings sent by library functions such

as printf. In the following example, the function call contains one
format string with one format specifier, $c, that prints the value of a as
a single ASCII character:

printf("a = %c", a);

Parameters you can specify to change the default behavior of all tools
that are included in the IDE.

Pointers that have the ability to point to all different memory types in,
for example, a core based on the Harvard architecture.

A core based on the Harvard architecture has separate data and
instruction buses. This allows execution to occur in parallel. As an
instruction is being fetched, the current instruction is executing on the
data bus. Once the current instruction is complete, the next instruction
is ready to go. This theoretically allows for much faster execution than
a von Neumann architecture, but adds some silicon complexity.

See Also von Neumann architecture.

The heap is a pool of memory in a system that is reserved for dynamic
memory allocation. An application can request parts of the heap for its
own use; once memory is allocated from the heap it remains valid until
it is explicitly released back to the heap by the application. This type

261

Glossary

Heap size

Host

larchive

IDE (integrated development

environment)

lelfdumparm

lelftool

ILINK

ILINK configuration

Image

Include file

Initialization setup in linker
configuration file

Initialized sections

Inline assembler

Inlining

Instruction mnemonics

IDE Project Management and Building

Glossary

of memory is useful when the number of objects is not known until the
application executes.

Note that this type of memory is risky to use in systems with a limited
amount of memory or systems that are expected to run for a very long
time.

Total size of memory that can be dynamically allocated.

The computer that communicates with the target processor. The term
is used to distinguish the computer on which the debugger is running
from the core the embedded application you develop runs on.

The 1AR utility for creating archives, that is, libraries. larchive is
delivered with IAR Embedded Workbench.

A programming environment with all necessary tools integrated into
one single application.

The IAR utility for creating a text representation of the contents of ELF
relocatable or executable image.

The 1AR utility for performing various transformations on an ELF
executable image, such as fill, checksum, and format conversion.

The IAR ILINK Linker which produces absolute output in the ELF/
DWARF format.

The definition of available physical memories and the placement
of sections—pieces of code and data—into those memories. ILINK
requires a configuration to build an executable image.

See Executable image.

A text file which is included into a source file. This is often done by the
preprocessor.

Defines how to initialize RAM sections with their initializers.
Normally, only non-constant non-noinit variables are initialized but,
for example, pieces of code can be initialized as well.

Read-write sections that should be initialized with specific values at
startup.

See Also Section.

Assembler language code that is inserted directly between C
statements.

An optimization that replaces function calls with the body of the called
function. This optimization increases the execution speed and can even
reduce the size of the generated code.

A word or acronym used in assembler language to represent a machine
instruction. Different processors have different instruction sets and

262

Glossary

Interrupts

Interrupt vector

Interrupt vector table

Intrinsic

Intrinsic functions

lobjmanip

K

Key bindings

Keywords

L

Language extensions
Library

Library configuration file

IDE Project Management and Building
Guide

Glossary

therefore use a different set of mnemonics to represent them, such
as, ADD, BR (branch), BLT (branch if less than), MOVE, LDR (load
register).

In embedded systems, the use of interrupts is a method of detecting
external events immediately, for example a timer overflow or the
pressing of a button.Interrupts are asynchronous events that suspend
normal processing and temporarily divert the flow of control through
an “interrupt handler” routine. Interrupts can be caused by both
hardware (1/0, timer, machine check) and software (supervisor, system
call or trap instruction).

See Also 7rap.

A small piece of code that will be executed, or a pointer that points to
code that will be executed when an interrupt occurs.

A table containing interrupt vectors, indexed by interrupt type. This
table contains the processor's mapping between interrupts and interrupt
service routines and must be initialized by the programmer.

An adjective describing native compiler objects, properties, events, and
methods.

1. Function calls that are directly expanded into specific sequences of
machine code. 2. Functions called by the compiler for internal purposes
(that is, floating-point arithmetic etc.).

The IAR utility for performing low-level manipulation of ELF object
files.

Key shortcuts for menu commands used in the IDE.

A fixed set of symbols built into the syntax of a programming
language. All keywords used in a language are reserved—they cannot
be used as identifiers (in other words, user-defined objects such as
variables or procedures).

See Also Extended keywords.

Target-specific extensions to the C language.
See Runtime library.

A file that contains a configuration of the runtime library. The file
contains information about what functionality is part of the runtime
environment. The file is used for tailoring a build of a runtime library.

See Also Runtime library.

263

Glossary

IDE Project Management and Building

Guide

Linker configuration file

Local variable
Location counter
Logical address

L-value

MAC (Multiply and
accumulate)

Macro

Glossary

A file that contains a configuration used by the IAR ILINK Linker
when building an executable image.

See Also /LINK configuration.

See Auto variables.

See Program location counter (PLC).
See Virtual adadress (logical address).

A value that can be found on the left side of an assignment and

that can, therefore, be changed. This includes plain variables and
dereferenced pointers. Expressions like (x + 10) cannot be assigned
a new value and are therefore not L-values.

A special instruction, or on-chip device, that performs a multiplication
together with an addition. This is very useful when performing signal
processing where many filters and transforms have the form:

N

Yi = Zci'xiﬂ'
1=0

The accumulator of the MAC usually has a higher precision (more bits)
than normal registers.

See Also Digital signal processor (DSP).

1. Assembler macros are user-defined sets of assembler lines that
can be expanded later in the source file by referring to the given
macro name. Parameters will be substituted if referred to.

2. C macro. A text substitution mechanism used during
preprocessing of source files. Macros are defined using the
#define preprocessing directive. The replacement text of each
macro is then substituted for any occurrences of the macro name
in the rest of the translation unit.

3. C-SPY macros are programs that you can write to enhance the
functionality of C-SPY. A typical application of C-SPY macros
is to associate them with breakpoints; when such a breakpoint is
hit, the macro is run and can, for example, be used to simulate
peripheral devices, to evaluate complex conditions, or to output a
trace.

264

Glossary

N

IDE Project Management and Building

Guide

Mailbox

Mangling

Memory area

Memory bank

Memory, in linker
configuration file

Memory map

Memory model

Microcontroller

Microprocessor

Module

Multi-file compilation

Nested interrupts

No-init sections

Glossary

The C-SPY macro language is like a simple dialect of C, but is less
strict with types.

A mailbox in an RTOS is a point of communication between two or
more tasks. One task can send messages to another task by placing the
message in the mailbox of the other task. Mailboxes are also known as
message queues or message ports.

Mangling is a technique used for mapping a complex C/C++ name into
a simple name. Both mangled and demangled names can be produced
for C/C++ symbols in ILINK messages.

A region of the memory.

The smallest unit of continuous memory in banked memory. One
memory bank at a time is visible in a core’s physical address space.

A physical memory. The number of units it contains and how many
bits a unit consists of, are defined in the linker configuration file. The
memory is always addressable from 0x0 to size -1.

A map of the different memory areas available to the core.

Specifies the memory hierarchy and how much memory the system can
handle. Your application must use only one memory model at a time,
and the same model must be used by all user modules and all library
modules.

A microprocessor on a single integrated circuit intended to operate as
an embedded system. In addition to a CPU, a microcontroller typically
includes small amounts of RAM, PROM, timers, and 1/O ports.

A CPU contained on one (or a few) integrated circuits. A single-

chip microprocessor can include other components such as memory,
memory management, caches, floating-point unit, 1/0 ports and timers.
Such devices are also known as microcontrollers.

An object. An object file contains a module and library contains one or
more objects. The basic unit of linking. A module contains definitions
for symbols (exports) and references to external symbols (imports).
When you compile C/C++, each translation unit produces one module.

A technique which means that the compiler compiles several source
files as one compilation unit, which enables for interprocedural
optimizations such as inlining, cross call, and cross jump on multiple
source files in a compilation unit.

A system where an interrupt can be interrupted by another interrupt is
said to have nested interrupts.

Read-write sections that should not be initialized at startup.

See Also Section.

265

Glossary

Non-banked memory

Non-initialized memory

Non-volatile storage

NOP

Objcopy

Object
Obiject file, absolute

Obiject file, relocatable

Operator

Operator precedence

Options

Output image

Overlay, in linker
configuration file

IDE Project Management and Building

Glossary

Has a single storage location for each memory address in a core’s
physical address space.

Memory that can contain any value at reset, or in the case of a soft
reset, can remember the value it had before the reset.

Memory devices such as battery-backed RAM, ROM, magnetic tape
and magnetic disks that can retain data when electric power is shut off.

See Also Volatile storage.

No operation. This is an instruction that does not do anything, but is
used to create a delay. In pipelined architectures, the NOP instruction
can be used for synchronizing the pipeline.

See Also Pipeline.

A GNU binary utility for converting an absolute object file in ELF
format into an absolute object file, for example the format Motorola-std
or Intel-std.

See Also /elftool.
An object file or a library member.
See Executable image.

The result of compiling or assembling a source file. The file format
used for an object file is ELF with embedded DWARF for debug
information.

A symbol used as a function, with infix syntax if it has two arguments
(+, for example) or prefix syntax if it has only one (for instance,
bitwise negation, ~). Many languages use operators for built-in
functions such as arithmetic and logic.

Each operator has a precedence number assigned to it that determines
the order in which the operator and its operands are evaluated. The
highest precedence operators are evaluated first. Use parentheses to
group operators and operands to control the order in which the
expressions are evaluated.

A set of commands that control the behavior of a tool, for example the
compiler or linker. The options can be specified on the command line
or via the IDE.

See Executable image.

Like a block, but it contains several overlaid entities, each built up of
blocks, overlays, and sections. The size of an overlay is determined
by its largest constituent. Code in overlaid memory areas cannot be
debugged in the C-SPY Debugger.

266

Glossary

P

IDE Project Management and Building

Guide

Parameter passing

Peripheral unit

Pipeline

Placement, in linker

configuration file

Pointer

#pragma

Pre-emptive multitasking

Preprocessing directives

Preprocessor
Processor variant

Program counter (PC)

Program location counter
(PLC)

Project

Project options

Glossary

See Calling convention.

A hardware component other than the processor, for example memory
or an 1/O device.

A structure that consists of a sequence of stages through which a
computation flows. New operations can be initiated at the start of the
pipeline even though other operations are already in progress through
the pipeline.

How to place blocks, overlays, and sections into a region. It determines
how pieces of code and data are actually placed in the available
physical memory.

An object that contains an address to another object of a specified type.

During compilation of a C/C++ program, the #pragma preprocessing
directive causes the compiler to behave in an implementation-defined
manner. This can include, for example, producing output on the
console, changing the declaration of a subsequent object, changing the
optimization level, or enabling/disabling language extensions.

An RTOS task is allowed to run until a higher priority process is
activated. The higher priority task might become active as the result

of an interrupt. The term preemptive indicates that although a task is
allotted to run a given length of time (a timeslice), it might lose the
processor at any time. Each time an interrupt occurs, the task scheduler
looks for the highest priority task that is active and switches to that
task. If the located task is different from the task that was executing
before the interrupt, the previous task is suspended at the point of
interruption.

See Also Round Robin.

A set of directives that are executed before the parsing of the actual
code is started.

See C-style preprocessor.

The different chip setups that the compiler supports.

A special processor register that is used to address instructions.
See Also Program location counter (PLC).

Used in the IAR Assembler to denote the code address of the current
instruction. The PLC is represented by a special symbol (typically $)
that can be used in arithmetic expressions. Also known as a location

counter (LC).

The user application development project.
General options that apply to an entire project, for example the target

processor that the application will run on.

267

Glossary

PROM

Qualifiers

Range, in linker configuration
file

Read-only sections

Real-time operating system
(RTOS)

Real-time system

Region expression, in linker
configuration file

Region, in linker configuration
file
Region literal, in linker

configuration file

Register

Register constant

Register locking

IDE Project Management and Building

Glossary

Programmable Read-Only Memory. A type of ROM that can only be
programmed once.

See Type qualifiers.

A range of consecutive addresses in a memory. A region is built up of
ranges.

Refers to sections that contain code or constants.
See Also Section.

An operating system which guarantees the latency between an interrupt
being triggered and the interrupt handler starting, and how tasks are
scheduled. An RTOS is typically much smaller than a normal desktop
operating system.

See Also Real-time system.
A computer system whose processes are time-sensitive.
See Also Real-time operating system (RTOS).

A region built up from region literals, regions, and the common set
operations possible in the linker configuration file.

A set of non-overlapping ranges. The ranges can lie in one or more
memories. Blocks, overlays, and sections are placed into regions in the
linker configuration file.

A literal that defines a set of one or more non-overlapping ranges in a
memory.

A small on-chip memory unit, usually just one or a few bytes in size,
which is particularly efficient to access and therefore often reserved as
a temporary storage area during program execution.

A register constant is a value that is loaded into a dedicated processor
register when the system is initialized. The compiler can then generate
code that assumes that the constants are present in the dedicated
registers.

Register locking means that the compiler can be instructed that some
processor registers shall not be used during normal code generation.
This is useful in many situations. For example, some parts of a system
might be written in assembler language to gain speed. These parts
might be given dedicated processor registers. Or the register might be
used by an operating system, or by other third-party software.

268

Glossary

Register variables

Relay

Relocatable sections

Reset

ROM-monitor

Round Robin

RTOS

Runtime library

Runtime model attributes

R-value

S

Saturation arithmetics

IDE Project Management and Building
Guide

Glossary

Typically, register variables are local variables that are placed in
registers instead of on the (stack) frame of the function. Register
variables are much more efficient than other variables because they

do not require memory accesses, so the compiler can use shorter/faster
instructions when working with them.

See Also Auto variables.
See \eneer.

Refers to sections that have no fixed location in memory before
linking.

A reset is a restart from the initial state of a system. A reset can
originate from hardware (hard reset), or from software (soft reset).
A hard reset can usually not be distinguished from the power-on
condition, which a soft reset can be.

A piece of embedded software designed specifically for use as a
debugging tool. It resides in the ROM of the evaluation board chip and
communicates with a debugger via a serial port or network connection.
The ROM-monitor provides a set of primitive commands to view and
modify memory locations and registers, create and remove breakpoints,
and execute your application. The debugger combines these primitives
to fulfill higher-level requests like program download and single-step.

Task scheduling in an operating system, where all tasks have the same
priority level and are executed in turn, one after the other.

See Also Pre-emptive multitasking.
See Real-time operating system (RTOS).

A collection of relocatable object files that will be included in the
executable image only if referred to from an object file, in other words
conditionally linked.

A mechanism that is designed to prevent modules that are not
compatible to be linked into an application. A runtime attribute is a
pair constituted of a named key and its corresponding value.

ILINK uses the runtime model attributes when automatically choosing
a library, to verify that the correct one is used.

A value that can be found on the right side of an assignment. This is
just a plain value.

See Also L-value.

Most, if not all, C and C++ implementations use mod—-2N 2-
complement-based arithmetics where an overflow wraps the value in
the value domain, that is, (127 + 1) = -128. Saturation arithmetics,
on the other hand, does not allow wrapping in the value domain,

for instance, (127 + 1) = 127, if 127 is the upper limit. Saturation

269

Glossary

Scheduler

Scope

Section

Section attributes

Section fragment

Section selection

Semaphore

Severity level

Sharing

Short addressing

IDE Project Management and Building
Guide

Glossary

arithmetics is often used in signal processing, where an overflow
condition would have been fatal if value wrapping had been allowed.

The part of an RTOS that performs task-switching. It is also
responsible for selecting which task that should be allowed to run.
Many scheduling algorithms exist, but most of them are either based
on static scheduling (performed at compile-time), or on dynamic
scheduling (where the actual choice of which task to run next is taken
at runtime, depending on the state of the system at the time of the
task-switch). Most real-time systems use static scheduling, because it
makes it possible to prove that the system will not violate the real-time
requirements.

The section of an application where a function or a variable can be
referenced by name. The scope of an item can be limited to file,
function, or block.

An entity that either contains data or text. Typically, one or more
variables, or functions. A section is the smallest linkable unit.

Each section has a name and an attribute. The attribute defines what a
section contains, that is, if the section content is read-only, read/write,
code, data, etc.

A part of a section, typically a variable or a function.

In the linker configuration file, defining a set of sections by using
section selectors. A section belongs to the most restrictive section
selector if it can be part of more than one selection. Three different
selectors can be used individually or in conjunction to select the set

of sections: section attribute (selecting by the section content), section
name (selecting by the section name), and object name (selecting from
a specific object).

A semaphore is a type of flag that is used for guaranteeing

exclusive access to resources. The resource can be a hardware port, a
configuration memory, or a set of variables. If several tasks must access
the same resource, the parts of the code (the critical sections) that
access the resource must be made exclusive for every task. This is done
by obtaining the semaphore that protects that resource, thus blocking
all other tasks from it. If another task wishes to use the resource, it

also must obtain the semaphore. If the semaphore is already in use,

the second task must wait until the semaphore is released. After the
semaphore is released, the second task is allowed to execute and can
obtain the semaphore for its own exclusive access.

The level of seriousness of the diagnostic response from the assembler,
compiler, or debugger, when it notices that something is wrong. Typical
severity levels are remarks, warnings, errors, and fatal errors. A remark
just points to a possible problem, while a fatal error means that the
programming tool exits without finishing.

A physical memory that can be addressed in several ways. It is defined
in the linker configuration file.

Many cores have special addressing modes for efficient access to
internal RAM and memory mapped 1/O. Short addressing is therefore

270

Glossary

Side effect

Signal

Simulator

Single stepping

Skeleton code

Special function register (SFR)

Stack frames

Stack sections

Standard libraries

Statically allocated memory

Static object

IDE Project Management and Building
Guide

Glossary

provided as an extended feature by many compilers for embedded
systems.

See Also Data pointers.

An expression in C or C++ is said to have a side-effect if it changes the
state of the system. Examples are assignments to a variable, or using

a variable with the post-increment operator. The C and C++ standards
state that a variable that is subject to a side-effect should not be used
more that once in an expression. As an example, this statement violates
that rule:

*d++ = *d;

Signals provide event-based communication between tasks. A task can
wait for one or more signals from other tasks. Once a task receives a
signal it waits for, execution continues. A task in an RTOS that waits
for a signal does not use any processing time, which allows other tasks
to execute.

A debugging tool that runs on the host and behaves as similar to

the target processor as possible. A simulator is used for debugging

the application when the hardware is unavailable, or not needed for
proper debugging. A simulator is usually not connected to any physical
peripheral devices. A simulated processor is often slower, or even
much slower, than the real hardware.

Executing one instruction or one C statement at a time in the debugger.

An incomplete code framework that allows the user to specialize the
code.

A register that is used to read and write to the hardware components of
the core.

Data structures containing data objects like preserved registers, local
variables, and other data objects that must be stored temporary for a
particular scope (usually a function). Earlier compilers usually had a
fixed size and layout on a stack frame throughout a complete function,
while modern compilers might have a dynamic layout and size that can
change anywhere and anytime in a function.

The sections that reserve space for the stack(s). Most processors use
the same stack for calls and parameters, but some have separate stacks.

The C and C++ library functions as specified by the C and C++
standard, and support routines for the compiler, like floating-point
routines.

This kind of memory is allocated once and for all at link-time, and

remains valid all through the execution of the application. Variables
that are either global or declared static are allocated this way.

An object whose memory is allocated at link-time and is created during
system startup (or at first use).

See Also Dynamic object.

271

Glossary

Static overlay

Structure value

Symbolic location

Target

Task (thread)

Tentative definition

Terminal 1/0
Timer

Timeslice

Translation unit

Trap

Type qualifiers

IDE Project Management and Building
Guide

Glossary

Instead of using a dynamic allocation scheme for parameters and auto
variables, the linker allocates space for parameters and auto variables
at link time. This generates a worst-case scenario of stack usage, but
might be preferable for small chips with expensive stack access or no
stack access at all.

A collecting names for structs and unions. A struct is a collection of
data object placed sequentially in memory (possibly with pad bytes
between them). A union is a collection of data sharing the same
memory location.

A location that uses a symbolic name because the exact address is
unknown.

An architecture.

A piece of hardware. The particular embedded system you are
developing the application for. The term is usually used to
distinguish the system from the host system.

A task is an execution thread in a system. Systems that contain many
tasks that execute in parallel are called multitasking systems. Because

a processor only executes one instruction stream at the time, most
systems implement some sort of task-switch mechanism (often called
context switch) so that all tasks get their share of processing time. The
process of determining which task that should be allowed to run next

is called scheduling. Two common scheduling methods are pre-emptive
multitasking and round robin.

See Also Pre-emptive multitasking, Round Robin.

A variable that can be defined in multiple files, provided that the
definition is identical and that it is an absolute variable.

A simulated terminal window in C-SPY.
A peripheral that counts independent of the program execution.

The (longest) time an RTOS allows a task to run without running the
task-scheduling algorithm. A task might be allowed to execute during
several consecutive timeslices before being switched out. A task might
also not be allowed to use its entire time slice, for example if, in a
preemptive system, a higher priority task is activated by an interrupt.

A source file together with all the header files and source files included
via the preprocessor directive # include, except for the lines skipped
by conditional preprocessor directives such as #if and #ifdef.

A trap is an interrupt initiated by inserting a special instruction into
the instruction stream. Many systems use traps to call operating system
functions. Another name for trap is software interrupt.

In Standard C/C++, const or volatile. IAR compilers usually add
target-specific type qualifiers for memory and other type attributes.

272

Glossary

U

UBROF (Universal Binary
Relocatable Object Format)

\'

Value expressions, in linker
configuration file

Veneer

Virtual address (logical
address)

Virtual space

\olatile storage

von Neumann architecture

W

Watchpoints

X

XAR

XLIB

IDE Project Management and Building
Guide

Glossary

File format produced by some of the IAR programming tools, if your
product package includes the XLINK linker.

A constant number that can be built up out of expressions that has a
syntax similar to C expressions.

A small piece of code that is inserted as a springboard between caller
and callee when there is a mismatch in mode, for example Arm and
Thumb, or when the call instruction does not reach its destination.

An address that must be translated by the compiler, linker or the
runtime system into a physical memory address before it is used. The
virtual address is the address seen by the application, which can be
different from the address seen by other parts of the system.

An IAR Embedded Workbench Editor feature which allows you to
place the insertion point outside of the area where there are actual
characters.

Data stored in a volatile storage device is not retained when the power
to the device is turned off. To preserve data during a power-down cycle,
you should store it in non-volatile storage. This should not be confused
with the C keyword volatile.

See Also Non-volatile storage.

A computer architecture where both instructions and data are
transferred over a common data channel.

See Also Harvard architecture.

Watchpoints keep track of the values of C variables or expressions in
the C-SPY Watch window as the application is being executed.

An AR tool that creates archives (libraries) in the UBROF format.

An AR tool that creates archives (libraries) in the UBROF format,
listing object code, converting and absolute object file into an absolute
object file in another format.

273

Glossary

XLINK

Z

Zero-initialized sections

Zero-overhead loop

Zone

IDE Project Management and Building
Guide

Glossary

The IAR XLINK Linker which uses the UBROF output format.

Refers to sections that should be initialized to zero at startup.
See Also Section.

A loop in which the loop condition, including branching back to the
beginning of the loop, does not take any time at all. This is usually
implemented as a special hardware feature of the processor and is not
available in all architectures.

Different processors have widely differing memory architectures. Zone
is the term C-SPY uses for a named memory area. For example, on
processors with separately addressable code and data memory there
would be at least two zones. A processor with an intricate banked
memory scheme might have several zones.

274

	Table of Contents
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Project management and building
	Part 2. Reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Project management and building
	The development environment
	Introduction to the IAR Embedded Workbench IDE
	Briefly about the IDE and the build toolchain
	Tools for analyzing and checking your application
	An extensible and modular environment
	The layout of the windows on the screen

	Execution modes
	Using and customizing the IDE
	Running the IDE
	Double-clicking the workspace filename

	Working with example projects
	Organizing windows on the screen
	Specifying tool options
	Adding a button to a toolbar
	Removing a button from a toolbar
	Showing/hiding toolbar buttons
	Recognizing filename extensions
	Getting started using external analyzers
	Invoking external tools from the Tools menu
	Adding command line commands to the Tools menu
	Using an external editor

	Reference information on the IDE
	IAR Embedded Workbench IDE window
	Customize dialog box
	Button Appearance dialog box
	Tool Output window
	Colors and Fonts options
	Edit Colors dialog box
	Edit Fonts dialog box
	Key Bindings options
	Language options
	Editor options
	Configure Auto Indent dialog box
	External Editor options
	Editor Setup Files options
	Editor Syntax Feedback options
	Messages options
	Troubleshooting options
	Project options
	External Analyzers options
	External Analyzer dialog box
	Language Servers options
	CMake/CMSIS-Toolbox options
	Source Code Control options (deprecated)
	Debugger options
	Stack options
	Terminal I/O options
	Configure Tools dialog box
	Configure Viewers dialog box
	Edit Viewer Extensions dialog box
	Filename Extensions dialog box
	Filename Extension Overrides dialog box
	Edit Filename Extensions dialog box
	Product Info dialog box
	Argument variables
	Configure Custom Argument Variables dialog box
	CMSIS Manager dialog box

	Project management
	Introduction to managing projects
	Briefly about managing projects
	Navigating between project files

	How projects are organized
	Projects and workspaces
	Projects and build configurations
	Groups
	Source files and their paths
	Drag and drop

	Resolving source files for externally built executable files
	The IDE interacting with version control systems

	Managing projects
	Creating and managing a workspace and its projects
	Viewing the workspace and its projects
	Interacting with Subversion
	Viewing the Subversion states

	Installing a CMSIS-Pack software pack
	Using CMSIS-Pack support in IAR Embedded Workbench

	Reference information on managing projects
	Workspace window
	Create New Project dialog box
	Configurations for project dialog box
	New Configuration dialog box
	Add Project Connection dialog box
	Add Folder Alias dialog box
	Configure Aliases dialog box
	Version Control System menu for Subversion
	Subversion states

	Building projects
	Introduction to building projects
	Briefly about building a project
	Extending the toolchain
	Tools that can be added to the toolchain

	Building a project
	Setting project options using the Options dialog box
	Building your project
	Correcting errors found during build
	Using build actions
	Tips for using build actions
	Using a build action for time stamping
	Using a build action to copy files

	Building multiple configurations in a batch
	Building from the command line
	Adding an external tool

	Reference information on building
	Options dialog box
	Build window
	Batch Build dialog box
	Edit Batch Build dialog box
	iarbuild—the IAR Command Line Build Utility

	Editing
	Introduction to the IAR Embedded Workbench editor
	Briefly about the editor
	Briefly about source browse information
	Customizing the editor environment

	Editing a file
	Indenting text automatically
	Matching brackets and parentheses
	Splitting the editor window into panes
	Dragging text
	Code folding
	Word completion
	Code completion
	Parameter hint
	Using and adding code templates
	Syntax coloring
	Adding bookmarks
	Using and customizing editor commands and shortcut keys
	Displaying status information

	Programming assistance
	Navigating in the insertion point history
	Navigating to a function
	Finding a definition or declaration of a symbol
	Finding references to a symbol
	Finding function calls for a selected function
	Switching between source and header files
	Displaying source browse information
	Text searching

	Reference information on the editor
	Editor window
	Find dialog box
	Find in Files window
	Replace dialog box
	Find in Files dialog box
	Replace in Files dialog box
	Incremental Search dialog box
	Declarations window
	Ambiguous Definitions window
	References window
	Outline window
	Source Browse Log window
	Resolve File Ambiguity dialog box
	Call Graph window
	Template dialog box
	Editor shortcut key summary

	Using an external build system
	Introduction to using an external build system
	Briefly about CMake and CMSIS-Toolbox
	Reasons for using an external build system
	Requirements for CMake or CMSIS-Toolbox

	Working with CMake and CMSIS-Toolbox projects
	Adding a CMake project to the IDE
	Adding a CMSIS-Toolbox project to the IDE
	Debug options for CMake/CMSIS-Toolbox
	Adding a file to a CMSIS-Toolbox project
	Modifying options for a CMSIS-Toolbox project

	Troubleshooting CMake/CMSIS-Toolbox projects
	The Workspace window is almost empty
	Embedded Workbench tries to use all csolution contexts
	The build log wraps lines of texts too early
	The browse information and syntax highlighting is wrong
	The configuration fails but works from the command line

	CMake and CMSIS-Toolbox in the IDE Reference
	CMake Target options
	CMake options
	CMSIS-Toolbox options
	CMake/CMSIS-Toolbox log window

	Part 2. Reference information
	Product files
	Installation directory structure
	Root directory
	The arm directory
	The common directory
	The install-info directory

	Project directory structure
	Various settings files
	Files for global settings
	Files for local settings

	File types

	Menu reference
	Menus
	File menu
	Edit menu
	View menu
	Project menu
	Erase Memory dialog box
	Tools menu
	Window menu
	Help menu

	General options
	Description of general options
	Target
	32-bit
	64-bit
	Output
	Library Configuration
	Library Options 1
	Library Options 2

	Compiler options
	Description of compiler options
	Multi-file Compilation
	Language 1
	Language 2
	Code
	Optimizations
	Output
	List
	Preprocessor
	Diagnostics
	Encodings
	Extra Options
	Edit Include Directories dialog box

	Assembler options
	Description of assembler options
	Language
	Output
	List
	Preprocessor
	Diagnostics
	Extra Options

	Output converter options
	Description of output converter options
	Output

	Custom build options
	Description of custom build options
	Custom Tool Configuration

	Build actions options
	Description of build actions options
	Build Actions Configuration
	New/Edit Build Action dialog box

	Linker options
	Description of linker options
	Config
	Library
	Input
	Optimizations
	Advanced
	Output
	List
	#define
	Diagnostics
	Checksum
	Encodings
	Extra Options
	Edit Additional Libraries dialog box
	Linker Configuration File Editor dialog box

	Library builder options
	Description of library builder options
	Output
	Extra Options

	Glossary

