>

AR Assembler User Guide

for Arm Limited's Arm®© cores

May 2025
AARM-15

Copyright © 1999-2025 IAR Systems AB

Copyright notice

This document contains IAR Systems AB (hereinafter “IAR”) proprietary information and may, in no part, be reproduced without the prior
written consent of IAR. The software described in this document is furnished under a license and may only be installed, used and/or copied in
accordance with the terms and conditions of such license.

Export control

The software described herein and thereto related technical information may be subject to Swedish, EU and/or US export control regulations.
As such, the aforementioned technical information contained herein may not be disclosed, exported or re-exported contrary to such export
control regulations, nor may it be shared with individuals or entities subject trade restrictions or other international sanctions.

Disclaimer

The information in this document is subject to change without notice and does not represent a commitment on any part of IAR. While the
information contained herein is assumed to be accurate, it is provided as-is and AR assumes no responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this document be liable for special, direct, indirect, or
consequential damage, losses, costs, charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

Trademarks

IAR, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect, C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit,
I-jet, I-jet Trace, I-scope, IAR Academy, IAR, and the logotype of IAR are trademarks or registered trademarks owned by IAR Systems AB.

All other third party brands and product names referred to herein are trademarks or registered trademarks of their respective owners.

Table of Contents

g S T\ N 8
Who should read this GUIAEccuuiiiiiiiiie e e e e e e ees 8
HOW t0 USE this GUIAE ...uuivniiiiiiiie e e e e e e e e et e et e e aees 8
What this gUIAe CONTAINSivniiieiieie ettt e e e e e e e et e e e et e s e eaeeeaaeeaneaaeeenaees 8
Other dOCUMENTALIONiiiti ittt e e e et e et e e e e e e ean e 9

User and 1eference GUIAESc..iiuuiitiie e 9
DOCUMENT CONVENTIONS ...ttt ettt ettt et et e e e et et e et e e e e e e et e eaeeeneeens 9
TypographiC CONMVENTIONSiuueieniiteit et e e e ettt e e e e e e e e 9
NAMING CONVENTIONS ..ttneitntiteii ettt et e et e et et et e e e e e e e e en e e e e e e e eaneenns 10

Introduction to the IAR Assembler for Armccccoievieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeeieseeeees 12

Introduction to assembler ProOgrammingeeuneeueineeunerinetietieeneereaeereeaeenernernaeannns 12
L€ 1811 T 72 s TP 13
MoOAUIAT PrOZIAMIMINEuivntiineieeiie et et et et et et e et e et e et eet e et eaeesnaesnetaneeaneaneennesnaesnees 13
External interface detailScouuiiiiiiiiiiiii e 14
Assembler INVOCATION SYNEAXevuuiieiineiineiieit et eeit e et e et et esteeaeerrneerneraeeneenaeanaesnees 14
PaSSING OPLIONS ...uiveiieeiiteii et e e et et et et e e e e e et e et e et e e e s eaa e et e et e eaeenaesneeanees 14
Environment variablesooeuuiiiiitii e 14
EITor 1@TUIM COARS ...niiniie ittt et et 15
N0 10 (T (o) 4o - | 15
ASSEMDIET INSTIUCLIONS ...vuittitiit et et ie e e et et e et e e e e et et et et e e e s e e e s e s esaeanesnesnesnaanns 15
EXCCULION TNOAES ...euiniiiiii it e e et et et et et e e et et e b e e e s e e e aaesneaaaanns 16
Expressions, operands, and OPETAtOTScc.ueeuuneiiunitiuieiii ettt ettt e et et eeeieeeias 16
INEEEET CONSTANES ...euietetn ittt et et et et et et et e e e aaeenas 16
ASCII Character CONSLANTSeeuuueiiieiii ettt ettt ea e e e e e eeanee 17
F1oating-poOint CONSLANTSevuueierieerineiinettett et eetie et eeteateateaneeaneraneeeneenerneeanaesnaens 17
True and falSEoiienii e 18
21110 o) PP 18
LIS ..t e 18
ReEgIStEr SYMDBOISetiinii e 18
Predefined SYMDOLScuniiie e 19
Absolute and relocatable eXPIeSSIONSceuuiiuiiniii it 23
EXPIession EStIICTIONSeuuitneit ettt ettt et e e e e et et et e e e e e eaneees 23
) 05 T A 1 1) 011 ¥ | AU PTPPRRt 24
3 (57 4 [OO 24
57T PN 24
SUIMIMATY L.ttt e e et e e et et et et e et e et e et e ane e eane e ans 24
Symbol and cross-reference tablecoouieiiiiiiiiiiiiiii 24
Programming RINTScoiuiiiiiiiii ittt et et e e et et et et et e e e e e e e s e et e et e et eanaeaenns 25
Accessing special funCtion TEISTETSovvueiuniieiiiiiiie et e e et e e e e e e eaneeaneens 25
Using C-style preprocessor dif€CIVESvuuiiuniieiiiiiiieiieeieiie e eieeie et e et e e eeneeaneeannans 25
Tracking call frame USAZEoeiuuiiiieeii ettt e e e e e e 25
Call frame information OVEIVIEWc..iiuuiiuneiieiie it et e e aaaas 26
Call frame information in more detailoooiiiiiiiiiiiii e 26
Defining a names DIOCKco.iiiiiii e 26
Defining a common bIOCKoiiiiiiiii e 27
Annotating your source code within a data blockcc.oooiiiiiiiiiiiniiii 28
Specifying rules for tracking resources and the stack depthccooviiiiiiiiiiiiini, 28
Using CFI expressions for tracking COMPIEX CASESovvuvvrneiineiieiierieiieiieiineieennnennnens 30
Stack usage analysis difCCHIVESuiiuiieiiieiieii et et e e et et e et e e e aeeaeeeaneerneeaneeens 30
Examples of using CFI dif€CtiVESivuiiiniiieiieiieeieii et et et e e e e e e e e e e e eaenas 31

B NCRY 101 0] 1 1) 130 1 1 33

Using command line assembler OPLIONScvuiiniiniiiieiieiie e e et e e eaeeeanees 34

IAR Assembler User Guide 3

Specifying options and their Parametersoveeuureiuureiiineiii e e eeiaes 34

Extended command 1ine filecooiiiiiiiiiiiiii e 35
Summary of asseMDbIET OPHIONSvvuiiniiiiii et et e et e e e et e e e e e e e e e e eaneeaneeaneenns 35
Descriptions of assembIer OPLIONSivvuiiineiiiiieieeie et e et e e e et e e e e e aaneeanees 36

—mAATCR32 L e 36

—mAATCROA ... e 36

1) PSPPI 37

154 PSPPI 37

B e 38

PSPPI 38

1 1111 PSP 38

) 10 E PP PP PT PPN 39

1L 10 1a P 39

DD e 40

B¢ ETea 1 0T A T (o) 4 1T | PPN 40

—=AYNAMIC OULPUL L. eeeeitieii ettt e e e e et e e et et e et e et e e e et e ea e ean e eaneeaneasneaneanaannns 41

B e 41

PSP PPN 41

--enable_hardware Workaroundcooiiiiiiiiiiiiiiiie e 42

116 1 1« E PPN 42

e PP 42

S TP 43

010 PN 43

PN 44

PP PP PT PP PRPTPRRN 44

PP PPP PO PPPNN 44

S B U P PP UPTPPTOPPTRR 45

TP PP PSPPI 45

L e 46

PSPPI 46

o ALY ottt a e aaaas 47

L PSPPI 47

PPN 48

=0 AWArT3 CET oo e 48

=0 AWAITA e 48

e ORI L 0 N (71310 4 LS P 48

=0 THteTal POOL .o 49

--n0_path In_file MACTOSiiuniiniiiti ettt e e e e e e e e e eannas 49

S e 49

S B PP P P TSP PPTPPTRR 50

S o PP PSPPSR PPN 50

S PP PPTR 51

e T PSPPI 51

PSPPI PR 51

==SOUICE ENCOMIINE . evnietein ettt ettt ettt et et e et e e e et e e e e e e eaaaas 52

-=SUPPIEss_VEe Meaderooouiiiiii e 52

--systemInclude dir ... 52

PPN 53

1 11110 o TP 53

T e 53

<) 651 0) PSPPI 54

s T PP P P TP UPTPPTPPTRR 54

PP PP PP P PP TP PP PRPPPRR 55

) PSPPI 55

Y e et e et et a et a ettt ettt ettt ettt ettt e e aaanas 56

IAR Assembler User Guide 4

P NCRYS) 1110] 1 1) 1T 1) N 57

Precedence of assembIer OPEIAtOrSvuueiuniieneiiei ettt e e e e e e et e e e e ean e eanees 58
Summary of asseMDbIEr OPETALOLSvvueiieiieei et et et et e e et e e e e e e e e e e e eaneeaneeeneenns 58
Parenthesis OPEIALOTiveii et e ettt et et et e e e e e e e e e e e e e e e et e eaneeneeaneeanees 58
UNATY OPETALOTS ..evuetneineinete ettt e e e et e et e et et et et et et et e et et e e e e e e eaneaneens 58
Multiplicative arithmetic OPEIAtOISoivuiirneiieiieeiieii et et et e e et eeaeea e et e e eaiaaenns 59
Additive arithmetic OPETALOTSeiieiiineiieii ettt et e et e e e e e e et e e e aneeaneeanens 59

SHIft OPETALOTS ...ittiitii ittt e e et e e e e e e e e et et e e e b e e aeeaeeans 59
AND OPETALOTS ..ttt ettt et ettt et et ettt et et et e ettt e et et et e e e e e e eas 59

OR OPETALOTS ... ettt ettt ettt et et et e e e e e et e e e e e e anaas 59
COMPATISON OPETALOTSeenttneiteiteet et e et e et et e et e et e e et et e e ea e ea e en e e e e ean e eaeenaeneannas 59
Description of assembler OPETALOLSiuuiuniiie ittt et et e e e e 60
() ParentieSIS ..vniieiiiiei e et e e aeaaaaas 60

Bl L1 1010 B0 o L 60

S 85 L N 60

F AAAIEION Leei it 61

LS 11 720 111111 PP 61

e 11015 1o o) R PSPPI 61

F D 1% £ T) H PSPPSR 61
LSS thAI ..ot 62
<=Less than or €qual t0ccuiiiiiiii e 62

T T=NOE @QUALTO o 62

= == B QUAL 10 e 62

> Greater thanoiiii e 63

>= Greater than or €qUAl 10cc.iiiiiiiiiii i e 63

&& LoZICal AND ..o 63

S BItWISE AND .ot 64

~ BItWISE NOT .ottt 64
2300 IS) PPN 64

A BItwise eXClUSIVE OR ...oiiiiiii e 64

00 MOAULO .. e e 65
FLOZICAL NOT L.oetiitiiii e e e e e e e e e e e et e et e e e e eanees 65

[LOGICAL OR ...t et et 65

<< Logical shift Ieft ... e 65

>> Logical shift rightcooii e 66

D3 0 S 1 A o) N 66
BYTE2 SECONA DYLE ..ceuneiiiiiiiieiie ettt e e e 66
BYTES TRITA DY ...ceeineiiiiiiie e e 67
L0 I A o111 1 o) PPN 67
DATE Current time/dateoeeuueiiiiiii it 67
HIGH High DYLe ..uiieniiiiiiiiiie et e et e et e e e e et e et e e e e eannas 67
HWRD High WOTdoiiiiiiiiiie ettt et e e e e e e e e eaenas 68
LOW LOW DY ..euniiiiiieii ettt et e e e e et et e e e et e et e e e e e e e s e et e et e et aaenas 68
LO12 Lower 12 bits of SYMDOLooviiiiiiiiiii e e 68
LWRD LOW WOTA ...ttt e e 68
SBREL ..ottt et e e e e 69

T2l S Bl cTera (o) 1< o5 1 o P 69

N 2l BT o5 0] 1< 1 Lo 70
SIZEOF SECHION SIZE ...evueeneeneiieiie et e e et et et e e e e e e e e e e e et e e e e e e eeneeaeenns 70

UGT Unsigned greater thanoiuiiiiiiiee et e e e e e 71

ULT Unsigned 1€8s thancouviiiiiiiiieie e et e e e eane e 71

XOR Logical eXClusive ORiiiiiiiiiiiie et e e 71
ASSembIer direCtives ...c.cceuiiiuiiiuiieniieiiniiieiiiiiiiiiiiieiiiiiiiiieeiieeiiesieeieeteaieesieesierssersesssessssrsssnss 73
Summary of assemMbIEr dITECTIVESivvuiiiiiiiiieii e e e e e e e e e e erneeaneeens 73
Description of assembIer dir€CHIVESuiieiiieii e e ettt e e e e e et e e e et e e eaenas 76

IAR Assembler User Guide 5

Y (oTa L1 S Te s 1nge) Wa ST g=1o18 A L= SR 76

SymDbOol cONLrOl dIfECHIVES ...vvniiniiieiiei et et e e e e e e e e e eenns 78
Mode CONLIOL QITECLIVES ...evuueiiiieiiieiii et et ettt e e e e e 80
Section CONrOl AITECTIVESuiiun ittt et e e e 81

Value assignment dIr€CHIVESuiieiiineiieiieieeieeie e e et et e ae e e e e et e eaeeaaeanaeanaeanees 84
Conditional assembLy dir€CLIVESuivniiiniiieiieiieeie e et et et et e e e ae e e et e e eaeaaenas 86
MacCro ProCeSSING AITECLIVES ...vvuiirniieiieeiie it eiie et eteeie et e et e et e e eaneeaneeaneereaneaeaasenns 87
Listing CONtrOl diT@CHIVESvvuiiiniieiiteiit it e et e e et e e et et e e e e e e e e e e et e e e e aaenns 95
C-style PreproCcesSOr AITECHIVESiiuniiniii ittt ettt et e e e e 98

Data definition or allocation dir€CtIVESccuiiiuiiiiiiiiiiiii e 102
Assembler control dir€CtIVESieuiiniii it e 105
FUNCHON AIFECLIVES ...vuiniiniiieieie e e e e e e et e et et e a e e e aae e eaaeanans 108

Call frame information directives for names blocksccoviiiiiiiiiiiiiiiiiieene 108

Call frame information directives for common blocksccooiviiiiiiiiiniiiiiiinenn., 109

Call frame information directives for data blocksccoeeviiiiiiiiiiiiiiniinie e 110

Call frame information directives for tracking resources and CFASccoeevvvinnnnnnn. 111

Call frame information directives for stack usage analysiscccoveivieinneinreinneinnennnnn. 113
Assembler pseudo-iNStrUCtIONScccveuiinieieieiiiieiiiireiieireiiiireiiiereiteereseesesseesssssssssssssssssssssanss 115
N0 10100F: o PSP 115
Descriptions of pSeUdO-TNSIIUCLIONSuivuiiniiniiieieie ittt e e ae e te e aeaeaeaneaneaneanns 116
ADR (ARM) .ottt 116

ADR (CODETG) ..ctneiiieeie et ettt ettt e e e et e et e e eaes 117

ADR (THUMB) ...ttt et e et e e e e e et eeaneeeaes 117
ADRL (64-Dit NOAE) ..uneiiineiiin et ee ettt e e e et e e e e e e eaes 118
ADRL (ARM) ottt ettt e e e e e et et e e e ettt b e aa e aaes 118
ADRL (THUMB) .ottt ettt 119

LDR (64-DIt NOAE) ...cevuneeiieiiie et 119

LDR (ARM) ittt et 119

LDR (CODETO) .ttt ettt e e 120

LDR (THUMB) .ottt ettt e e e 120
MOV (CODETG) ..ottt ettt e e e 121
MOV32 (THUMB) ...t 122
MOVL (64-DIt NOAE)eeeieeii ettt et e e et e e e e e eees 122

NOP (ARM) ottt ettt e e 123

A0) S (015 21 1<) T PPN 123
Assembler dia@nOStICS ...c.ceuieuiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieietititeteeteee st aeasasateassieanes 124
MESSAZE TOTMAL ...eetiii ettt et et et e e e e et et et e e eans 124
TS Ly 70 (537 N 124
Options fOr AIAGNOSTICS ...vvuniiniineiieiiee ittt e e et et et e e et e e et e et e e e e e e e e eaneeanees 124
ASSeMDIEr WaIrNING MESSAZES +..uevvnerenrrnrrnerinerinerenetnetneetneerneerneeteetaernaernersnerrneeneenns 124
Command liNe EITOT MESSAZES ..uvvuerrnernernerneerneetnertertereeereersnetrnetrersetnnernaeanarsneees 124
ASSCMDIET CITOT MESSAZES .. evuevvnerineiieietii et ettett et et et et eetneetesteanaernersnerreeneeens 125
Assembler fatal error MESSAZESuvvvuiieiiieii et e e e e e e e e e e e e e e eens 125
Assembler internal error MESSAZESivvuiiniineiieiieieeieeie et e e e e e eaieereereereeaeeens 125
Migrating to the IAR Assembler for Armcccceeeeiiuiiiuiiiiieiiniiieiiiiiiiiieiiciciiieeceeees 126
INErOAUCTION ..oeiie ettt e 126
Thumb code 1abelsiieiiii e 126
Aternative reZIStEr MAMIESuiiuuiteit ettt e e et e et e e e e e et e et e e e e e e e eaneenns 127
AILEINAtIVE MNEIMOMICS ...vuininineitetnei et et et etetetaeanetae s eaaetaesnesnesneanesnesnesnesnesnesnesnasnesnnes 127
OPETALOT SYNMOMYIIIS ..euetnetnetn et et et et et et et et et et et et et et et et et et e e et et et e en et et e taeaneaneanes 128
WaAINING MIESSAZES .. evuetneineeinetie it et et et e et et e eaeaa e aa e an e eaneean e et e et e et eaneanaeaneranaenneenns 129
The first register operand omittedc.viiiiiniiiieiiiiie e 129

The first register operand duplicatedc.oviiiiiiiiiiiiiiiiie e 129
Immediate #0 omitted in Load/Storecoouiiiiiiiiiiiiii e 129

IAR Assembler User Guide 6

List of Tables

1. Typographic conventions used in IAR documentationcoceviiieiiniiineiieiiieiineieeieeaieeannes 10
2. Naming conventions used in TAR documentationooeeuiiiiiiiiniiieiieii e e e 10
3. Assembler environment variablescoooiiiiiiiiiiii e 14
4. Assembler error TETUIM COUCS uuiuniin ittt et et e e e e e e enns 15
5. Assembler SOUrce line COMPONENLSc.ueiuniieiii ittt e et e et e e et e e e e et e e e e e en e e eanees 15
6. Integer CONStANE FOTMNALSuitneit ettt et e e e e e et e et e e e e e e e eaneees 17
7. ASCII character constant fOrMAtSccoiiniiiiiiiii e e e e e e e a e e e aeeaneans 17
8. Floating-POINt CONSTANES ...c..ueiiuniitniiti ettt ettt et ettt et et e e et e e et e e et e eaieeeaeeannee 17
9. Predefined register symbols in 32-bit MOAEoiiiiiiniiiiii e 18
10. Predefined 64-bit register symbols in 64-bit MOdeceevnviiiiiiiiiiiiiieiie e 19
11, Predefined SYMDOLS ...oo.iieniiiiiie e e e e e e e e e e a e 19
12. Symbol and cross-reference tableoiiiiiiiiiiiiiiiiie e 24
13. Code sample with backtrace rows and COIUMNSccooviiiiiiiiiiiiiieiie e 31
14. ASSembIer OPtIONS SUIMIMAIYuuivunireiineirnetteeteteernetneetneetesteseeseesneerneesesseenasnaesnaesnaees 35
15. Assembler dir€CtiVes SUIMIMATY uieuniiniin it ete et ettt e e et e et et e e e et et e e e eaeeen e eeneeanens 74
16. Module CONrol dir€CIVES uitiiiteii ettt et ettt e e e e e 77
17. Symbol CONrol dir€CtIVES uitiieeii ettt ettt e e e e e 79
18. MOdE CONIOL AITECLIVES ..vvuieieieiiteie et ettt et et et et et e et et et et et et e e e e e e e s e e e s e e esneanernesnans 80
19. Section CONtrOl AITECHIVES iviieiitiii ittt et et e e et e et et et et e e e e e e e s e e e s e e eaaeanans 82
20. Value assignment difECLIVES eieuuiiiiniiiie ittt ettt et ettt et et et e e e eeaaes 85
21. Macro procesSing difCCTIVES vvuirneiineiieiieiieei et et et et et eaa e ea e et e et e et eaeeaneeaneranaeaneenns 87
22. LiSting CONIOl dITECHIVES .vuuiiniiieiineii et et e ie et et et et e e et e e e et e et e et e et e et e s e eaneeaneeaneenns 95
23. C-style PreproCesSOr AITECTIVES ..vvunivuiineiineiteie et eetn et eeteet et eataereeernersnetsneaneenrernaeanaesneees 99
24. Data definition or allocation dir€CtIVES iieuuiiiinieiii e 103
25. Assembler CONtrol dirECHIVES ...c.uuuiiuieiii ettt et 105
26. Call frame information directives names blockcoooiiiiiiiiiiiiiii e 109
27. Call frame information directives common blockccoooiiiiiiiiiiiiiii 110
28. Call frame information directives for data blocksccoooiiiiiiiiiiiiii 111
29. Unary operators in CEFL @XPIeSSIONSicuiiuiinii ettt e e e et et e e e e e e e e e eenaas 112
30. Binary operators in CFI €XPreSSIONSoeuieuuiiuieiineiieiee et et e e e e e e e e eenaas 112
31. Ternary operators in CEFL @XPIreSSIONScc.uuteuuuetiunteiuieeii ettt e et e et e eei e eeaieeeaeeeens 112
32. Call frame information directives for tracking resources and CFASccccoceiiiiiiiiiiiniinnen. 113
33. Call frame information directives for stack usage analysisccocoveiiiiiiiiiiiiiiiiiieiineieeannns 114
34. Pseudo-instructions for A32 and T32c..oiiiiiiiiiiiii e 115
35. Pseudo-instructions fOr A4coouuiiiiiii e 116
36. AIternative TeZISEET MAMICS ivu.ivneiineieeie et et et eeteeteteeeteeeaneetnetaneeaeenreanaesneesnearaesnaasnns 127
37. AIErNatiVe MNEIMOMICS ...uettneitn ettt ettt et e et e et et e et e e et e e et e e eaa e e eat e e et e e et e e et eeaneeees 127
R I 0015 21 o) g 2110211711 - J PP 128

IAR Assembler User Guide 7

Preface Preface

Preface

Who should 1ead this GUIAEovuiiiiiiiii et e e et e e e et e et e et e et e s eanns 8
HOW 10 USE this GUIAEuiiniiniiii ettt et e e e et e et e et e et e et e st e eaae e b e eaneaaeenneees 8
What this GUIAE CONTAINSuitniiiiiei ittt e e e e et et e e e e et e et e et e et e et e e e ean e et e et eaaeseeseeanns 8
Other dOCUMENTATIONiuuiin ittt ettt et et et e e e et et e e et e e e e e eaeeneens 9
User and 1eferenCe GUIAESc.uiiuuiin ittt ettt et 9
DOCUMENT CONVENTIONS ... et ettt ettt et ettt et e e e et et e e et e e en e e e e e e e e e et e enaeeneeeneeanes 9
TYPOZIaphiC COMVENLIONSe.uiuneineie ettt ettt et e e e e e et e e e e e e e e e e eeneens 9
INAMING CONVENETIONS .. ttuttneitneit et et et e et et e et e e et et et e e ea e ea e e e et e e e e et e en e en e aneeaneeaneenneenns 10

Welcome to the /AR Assembler User Guide for Arm—detailed reference information that can help you to
use the IAR Assembler for Arm to develop your application according to your requirements.

WHO SHOULD READ THIS GUIDE

You should read this guide if you plan to develop an application, or part of an application, using assembler
language for the Arm core, and need to get detailed reference information on how to use the IAR
Assembler for Arm. In addition, you should have working knowledge of the following:

e The architecture and instruction set of the Arm core (refer to the chip manufacturer’s documentation)
e General assembler language programming

e Application development for embedded systems

e The operating system of your host computer.

HOW TO USE THIS GUIDE

When you first begin using the IAR Assembler for Arm, you should read the chapter /ntroduction to the
IAR Assembler for Arm, page 12.

If you are an intermediate or advanced user, you can focus more on the reference chapters that follow the
introduction.

If you are new to using IAR Embedded Workbench, we suggest that you first go through the tutorials,
which you can find in IAR Information Center in the product, under Product Explorer. They will help you
get started.

WHAT THIS GUIDE CONTAINS

Below is a brief outline and summary of the chapters in this guide.

e Introduction to the IAR Assembler for Arm, page 12 provides programming information. It also
describes the source code format, and the format of assembler listings.

e Assembler options, page 33 first explains how to set the assembler options from the command line
and how to use environment variables. It then gives an alphabetical summary of the assembler options,
and contains detailed reference information about each option.

e Assembler operators, page 57 gives a summary of the assembler operators, arranged in order of
precedence, and provides detailed reference information about each operator.

IAR Assembler User Guide 8

Other documentation Preface

e Assembler directives, page 73 gives an alphabetical summary of the assembler directives, and
provides detailed reference information about each of the directives, classified into groups according
to their function.

e Assembler pseudo-instructions, page 115 lists the pseudo-instructions that are accepted by the IAR
Assembler for Arm.

e Assembler diagnostics, page 124 contains information about the formats and severity levels of
diagnostic messages.

e Migrating to the IAR Assembler for Arm, page 126 contains information that is useful when
migrating from an existing product to the IAR Assembler for Arm.

OTHER DOCUMENTATION

User documentation is available as hypertext PDFs and as a help system in HTML format. You can
access the documentation from the IAR Information Center or from the Help menu in the IAR Embedded
Workbench IDE.

User and reference guides
The complete set of IAR development tools is described in a series of guides. Information about:

e System requirements and information about how to install and register the IAR products are available
in the /nstallation and Licensing Quick Reference Guide and the Licensing Guide.

e Using the IDE for project management and building, is available in the /DE Project Management and
Building Guide for Arm.

e Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available in the C-SPY
Debugging Guide for Arm.

e Programming for the IAR C/C++ Compiler for Arm and linking, is available in the JAR C/C++
Development Guide for Arm.

e Programming for the IAR Assembler for Arm is available in the /AR Assembler User Guide for Arm.

« Performing a static analysis using C-STAT and the required checks, is available in the C-STAT® Static
Analysis Guide.

e Using I-jet, refer to the /AR Debug Probes User Guide for I-jet®, I-jet Trace, and I-scope.
e Using J-Link and J-Trace, refer to the J-Link/J-Trace documentation available at www.segger.com.

« Porting application code and projects created with a previous version of the IAR Embedded
Workbench for Arm, is available in the /AR Embedded Workbench® Migration Guide.

l:? Additional documentation might be available depending on your product installation.

DOCUMENT CONVENTIONS

When, in the IAR documentation, we refer to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example arm\ doc, the full path to the
location is assumed, for example c: \iar\ewarm-2.1\arm\doc.

Typographic conventions
The IAR documentation set uses the following typographic conventions:

IAR Assembler User Guide 9

https://www.segger.com

Document conventio

ns Preface

Style

computer

parameter
[option]
{option}

[option]
[alblc]
{alblc}
bold

ftalic

@

Used for

« Source code examples and file paths.
« Text on the command line.

« Binary, hexadecimal, and octal numbers.

A placeholder for an actual value used as a parameter, for example £iIename.h where
filename represents the name of the file.

An optional part of a linker or stack usage control directive, where [and] are not part of the actual
directive, butany [, 1, {, or } are part of the directive syntax.

A mandatory part of a linker or stack usage control directive, where { and } are not part of the actual
directive, butany [,], {, or } are part of the directive syntax.

An optional part of a command line option, pragma directive, or library filename.

An optional part of a command line option, pragma directive, or library filename with alternatives.
A mandatory part of a command line option, pragma directive, or library filename with alternatives.
Names of menus, menu commands, buttons, and dialog boxes that appear on the screen.

« A cross-reference within this guide or to another guide.

« Emphasis.
An ellipsis indicates that the previous item can be repeated an arbitrary number of times.
Identifies instructions specific to the IAR Embedded Workbench® IDE interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Table 1. Typographic conventions used in IAR documentation

Naming conve

ntions

The following naming conventions are used for the products and tools from IAR, when referred to in the

documentation:

Brand name Generic term

IAR Embedded Workbench® for Arm IAR Embedded Workbench®
IAR Embedded Workbench® IDE for Arm the IDE

IAR C-SPY® Debugger for Arm C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for Arm the compiler

IAR Assembler™ for Arm the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2. Naming conventions used in IAR documentation

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured for the instruction sets

T32/T and A32.

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured for the instruction set A64.

IAR Assembler User Guide

10

Document conventions Preface

For more information, see Execution modes, page 16.

IAR Assembler User Guide 11

Introduction to the IAR Assembler for Arm Introduction to the IAR Assembler for Arm

Introduction to the IAR Assembler for
Arm

Introduction to asSemMDbIEr PrOZIAMIMIINGcceuuiiii ittt e et e et e e e et et e e e e et e e eaneaeanaas 12
GEtNG STATEEA ... eeeet ettt ettt e e 13
MoOdUIAT PrOZIAMITIINE .. e.ueti ittt ettt et e et et e e et et e et e e et e et e et e et e an e e e e e e eaneenns 13
External interface detailsoooiiiiiiii e 14
ASSEMDIET INVOCATION SYIEAXueitneiteiieii et ettt et et e e et e et e et et e ee e an e e e e ean e ea e eaeen e eneeaneeanees 14
o T V0T o] 015 0] N 14
Environment VAriableSciuiiiiiiiiiiii et e e e ettt e e 14
2y (o) O (T3 o 0 PSPPI 15
RO 1D (VTS 10) v - | PP 15
ASSEMDICT INSTIUCTIONS ... eetuetitit ettt ettt ettt et e et e et e et ettt et e e e e e et e e eaa e e eaa e eaneeaes 15
EXECULION MOAES ...ttt ettt e e et et e et et e et et et e e et e eeanas 16
Expressions, operands, and OPEIALOISc.uueeunrierieeineiietteeteetteetneetneeteetestaeseaerneesnerteenaeenaernaarnaees 16
INEEEET COMSTANLS ... eeuiin ittt et ettt et et et e et et et et e et e ean e eaneees 16
ASCII character CONSTANESc.uiuneiteit ettt et ettt e et e e e et et et e ea e en e eaneenneas 17
F1oating-pOint CONSLANTSe.uiunitn ittt ettt e e e et e et e e e e e e et e e e ea e en e en e eaneeanees 17
TrUE AN FAISE .. .eee e e e 18
171100) £ PSP 18
571 oY) N 18
a1 071111] LN 18
Predefined SYMDOLSooniiiie ettt e e 19
Absolute and relocatable EXPIESSIONSiiuneiineiieii et eieeie e et et e teetieete et e et eaaeeneeanaeanaernaees 23
EXPIeSSION TESIIICTIONS ...ivuiuneietitteii et et e et et eetie et e et et e et e eaa e esneean e et e et eanssnaesnesaneenneenneanaesnees 23
| B 41 (S 1024 1 - | PSPPSR UPRR PR 24
5 (S ¢ (<) S PPN 24
270 | PP 24
SUITIMATY .ttt ettt ettt et e e ettt et et e et e ea e e e e et e et e ebeeiaeanaas 24
Symbol and cross-reference table ..o e 24
Programming RINTSoouiiii e e 25
Accessing special fUNCtion TEGISTETSvuuiin ittt e e e e et et e e e e e ees 25
Using C-style preprocesSOr AIiTECLIVESuieuueitieiii ettt ettt e e et et et et e e e eeennee 25
Tracking call frame USAZEcc.uuieuuniiiiiiii ettt ettt e e e e 25
Call frame INfOrmMation OVEIVIEWcouuiiiiiniiiieiii ettt et e e e e et e ean e eaes 26
Call frame information in More detailcc.viiiiiiiiiiiii e 26
Defining @ NAMES DIOCKivuiieiiiiii ettt e e e e e e e e e et e e e b e et e ea e et e aneeaneeanaes 26
Defining a common DIOCKoiiuiiiiiiii e e e 27
Annotating your source code within a data bIockcooiiiiiiii i 28
Specifying rules for tracking resources and the stack depth ... 28
Using CFI expressions for tracking COMPIEX CASESc.uivuneiniiniiiieii ettt eanes 30
Stack usage analysis AITECTIVESuiuuiin ittt et et e e e e e e e e e 30
Examples of using CFIL dir€CtiVEsc.uuiiuiiiiiiei ettt e 31

INTRODUCTION TO ASSEMBLER PROGRAMMING

Even if you do not intend to write a complete application in assembler language, there might be situations
where you find it necessary to write parts of the code in assembler, for example, when using mechanisms in
the Arm core that require precise timing and special instruction sequences.

IAR Assembler User Guide 12

Modular programming Introduction to the IAR Assembler for Arm

To write efficient assembler applications, you should be familiar with the architecture and instruction set of
the Arm core. Refer to the Arm Limited hardware documentation for syntax descriptions of the instruction
mnemonics.

Getting started

To ease the start of the development of your assembler application, you can:

e Work through the tutorials—especially the one about mixing C and assembler modules—that you find
in the Information Center, under Product Explorer

« Read about the assembler language interface—also useful when mixing C and assembler modules—in
the /AR C/C++ Development Guide for Arm

* Inthe IAR Embedded Workbench IDE, you can base a new project on a template for an assembler
project.

MODULAR PROGRAMMING

It is widely accepted that modular programming is a prominent feature of good software design. If
you structure your code in small modules—in contrast to one single monolith—you can organize your
application code in a logical structure, which makes the code easier to understand, and which aids:

« efficient program development
. reuse of modules
. maintenance.

The 1AR development tools provide different facilities for achieving a modular structure in your software.

Typically, you write your assembler code in assembler source files—each file becomes a named moadule. If
you divide your source code into many small source files, you will get many small modules. You can divide
each module further into different subroutines.

A section is a logical entity containing a piece of data or code that should be mapped to a physical

location in memory. Use the section control directives to place your code and data in sections. A section is
relocatable. An address for a relocatable section is resolved at link time. Sections enable you to control how
your code and data is placed in memory. A section is the smallest linkable unit, which allows the linker to
include only those units that are referred to.

If you are working on a large project you will soon accumulate a collection of useful routines that are
used by several of your applications. To avoid ending up with a huge amount of small object files, collect
modules that contain such routines in a /ibrary object file. Note that a module in a library is always
conditionally linked. In the IAR Embedded Workbench IDE, you can set up a library project, to collect
many object files in one library. For an example, see the tutorials in the Information Center.

To summarize, your software design benefits from modular programming, and to achieve a modular
structure you can:

e Create many small modules, one per source file

e Ineach module, divide your assembler source code into small subroutines (corresponding to functions
on the C level)

< Divide your assembler source code into sections, to gain more precise control of how your code and
data finally is placed in memory

e Collect your routines in libraries, which means that you can reduce the number of object files and
make the modules conditionally linked.

IAR Assembler User Guide 13

External interface details Introduction to the IAR Assembler for Arm

EXTERNAL INTERFACE DETAILS

You can use the assembler either from the IAR Embedded Workbench IDE or from the command line.
Refer to the /DE Project Management and Building Guide for Arm for information about using the
assembler from the IAR Embedded Workbench IDE.

Assembler invocation syntax
The invocation syntax for the assembler is:

iasmarm [options] [sourcefile] [options]

For example, when assembling the source file prog. s, use this command to generate an object file with
debug information:

iasmarm prog -r

By default, the IAR Assembler for Arm recognizes the filename extensions s, asm, and msa for source
files. The default filename extension for assembler output is o .

Generally, the order of options on the command line, both relative to each other and to the source filename,
is not significant. However, there is one exception—when you use the -T option—the directories are

searched in the same order that they are specified on the command line.

If you run the assembler from the command line without any arguments, the assembler version number and
all available options, including brief descriptions, are directed to stdout and displayed on the screen.

Passing options
You can pass options to the assembler in three different ways:

e Directly from the command line
Specify the options on the command line after the iasmarm command, see Assembler invocation
syntax, page 14.

e Viaenvironment variables

The assembler automatically appends the value of the environment variables to every command ling,
so it provides a convenient method of specifying options that are required for every assembly, see
Environment variables, page 14.

e Viaatext file by using the - £ option, see -7, page 42.

For general guidelines for the option syntax, an options summary, and more information about each option,
see Assembler options, page 33.

Environment variables
You can use these environment variables with the IAR Assembler:

Environment variable Description

IASMARM Specifies command line options, for example:

set IASMARM=-L -ws

IASMARM INC Specifies directories to search for include files, for example:

set IASMARM INC=c:\myinc\

Table 3. Assembler environment variables

For example, setting this environment variable always generates a list file with the name temp . 1st:

IAR Assembler User Guide 14

Source format Introduction to the IAR Assembler for Arm

set IASMARM=-1 temp.lst

For information about the environment variables used by the compiler and linker, see the /AR C/C++
Development Guide for Arm.

Error return codes

When using the IAR Assembler from within a batch file, you might have to determine whether the
assembly was successful to decide what step to take next. For this reason, the assembler returns these error
return codes:

Return code Description

0 Assembly successful, warnings might appear.

1 Warnings occurred (only if the —ws option is used).
2 Errors occurred.

3 Fatal errors occurred (making the assembler abort).

Table 4. Assembler error return codes

SOURCE FORMAT

The format of an assembler source line is as follows:
[label [:]] loperation] [operands] [; comment]

where the components are as follows:

label A definition of a label, which is a symbol that represents an address. If the label starts in the first
column—that is, at the far left on the line—the : (colon) is optional.

operation An assembler instruction or directive. This must not start in the first column—there must be some
whitespace to the left of it.

operands Anassembler instruction or directive can have zero, one, or more operands. The operands are
separated by commas.

comment Comment, preceded by a ; (semicolon)

C or C++ comments are also allowed.

Table 5. Assembler source line components

The components are separated by spaces or tabs.
A source line cannot exceed 2,047 characters.

Tab characters, ASCII 094, are expanded according to the most common practice, that is, to columns 8,
16, 24 etc. This affects the source code output in list files and debug information. Because tabs might be set
up differently in different editors, do not use tabs in your source files.

ASSEMBLER INSTRUCTIONS

The 1AR Assembler for Arm supports the syntax for assembler instructions as described in the ARM
Architecture Reference Manual.

It complies with the requirement of the Arm architecture on word alignment. Any instructions in a code
section placed on an odd address results in an error.

IAR Assembler User Guide 15

Execution modes Introduction to the IAR Assembler for Arm

EXECUTION MODES

IAR Embedded Workbench for Arm supports the 32-bit and 64-bit Arm architectures by means of
execution modes.

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured to generate and debug code
for the T32/T and A32 instruction sets, either on an Armv4/5/6/7 core or in the AArch32 execution state
on an Arm v8-A core. In 32-bit mode, you can use both the A32 and T32/T instruction sets and switch
between them.

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured to generate and debug code
for the A64 instruction set in the AArch64 execution state on an Arm v8-A core. Code in 64-bit mode can
call code in 32-bit mode, and that code can return back. However, the IAR translator tools do not support
this switch being used in a single linked image. Switching between A32/T32/T code and A64 code must be
performed by using several images. For example, an OS using 64-bit mode can start applications in either
64-bit or in 32-bit mode.

The AArch32 execution state is compatible with the Arm v7 architecture. The AArch32 execution state is
emulated inside the AArch64 execution state.

EXPRESSIONS, OPERANDS, AND OPERATORS

Expressions consist of expression operands and operators.

The assembler accepts a wide range of expressions, including both arithmetic and logical operations.
All operators use 64-bit two’s complement integers. Range checking is performed if a value is used for
generating code.

Expressions are evaluated from left to right, unless this order is overridden by the priority of operators. See
also Assembler operators, page 57.

These operands are valid in an expression:

« Constants for data or addresses, excluding floating-point constants

e Symbols—symbolic names—which can represent either data or addresses, where the latter also is
referred to as /abels

e The program location counter (PLC), . (period).

The operands are described in greater details on the following pages.
ﬁ You cannot have two symbols in one expression, or any other complex expression, unless the

expression can be resolved at assembly time. If they are not resolved, the assembler generates an
error.

Integer constants

The assembler uses 64-bit two’s complement internal arithmetic, so integers have a (signed) range from
-263-1 to 263-1.

Constants are written as a sequence of digits with an optional preceding - (minus) sign in front to indicate
a negative number.

Commas and decimal points are not permitted.

The following types of number representation are supported:

IAR Assembler User Guide 16

Expressions, operands, and operators

Integer type Example

Binary 1010b,b'1010
Octal 1234qg,q'1234
Decimal 1234,-1,d'1234

Hexadecimal OFFFFh, OxFFFF, h'FFFF

Table 6. Integer constant formats

Introduction to the IAR Assembler for Arm

0 Both the prefix and the suffix can be written with either uppercase or lowercase letters.

ASCII character constants

ASCII constants can consist of any number of characters enclosed in single or double quotes. Only
printable characters and spaces can be used in ASCII strings. If the quote character itself will be accessed,

two consecutive quotes must be used:

Format Value

'"ABCD' ABCD (four characters)

"ABCD" ABCD'\0"' (five characters the last ASCII null)
"A''B! A'B

AR A

"1 (4 quotes) !

' (2 quotes) Empty string (no value)

" (2 double quotes) "\0' (an ASCII null character)

\! ', for quote within a string, asin 'I\'d love to'
AR\ \, for \ within a string

\" ", for double quote within a string

Table 7. ASCII character constant formats

Floating-point constants

The IAR Assembler accepts floating-point values as constants and converts them into IEEE half-precision
(16-bit), single-precision (32-bit) or double-precision (64-bit) floating-point format, or fractional format.

Floating-point numbers can be written in the format:
[+]-1[digits].[digits] [{Ele}[+]|-1digits]

This table shows valid examples:

Format Value

10.23 1.023 x 10*
1.23456E-24 1,23456 x 1024
1.0E3 1.0 x 103

Table 8. Floating-point constants

Spaces and tabs are not allowed in floating-point constants.

l:? Floating-point constants do not give meaningful results when used in expressions.

IAR Assembler User Guide 17

Expressions, operands, and operators Introduction to the IAR Assembler for Arm

True and false
In expressions, a zero value is considered false, and a non-zero value is considered true.

Conditional expressions return the value 0 for false and 1 for true.

Symbols

User-defined symbols can be up to 32,000 characters long, and all characters are significant. Depending on
what kind of operation a symbol is followed by, the symbol is either a data symbol or an address symbol
where the latter is referred to as a label. A symbol before an instruction is a label and a symbol before, for
example the EQU directive, is a data symbol. A symbol can be:

* absolute—its value is known by the assembler
» relocatable—its value is resolved at link time.

Symbols must begin with a letter, a—z or A-Z, ? (question mark), or _ (underscore). Symbols can include
the digits 0-9 and $ (dollar).

Symbols may contain any printable characters if they are quoted with * (backquote), for example:
‘strange#label’

Case is insignificant for built-in symbols like instructions, registers, operators, and directives. For user-
defined symbols, case is by default significant but can be turned on and off using the Case sensitive user
symbols (-s) assembler option. For more information, see -s, page 51.

Use the symbol control directives to control how symbols are shared between modules. For example, use
the PUBLIC directive to make one or more symbols available to other modules. The EXTERN directive is
used for importing an untyped external symbol.

Note that symbols and labels are byte addresses. See also Data definition or allocation directives, page 102.

Labels

Symbols used for memory locations are referred to as labels.

The assembler keeps track of the start address of the current instruction. This is called the program location
counter.

To refer to the program location counter in your assembler source code, use the . (period) character. For
example:

section MYCODE:CODE (2)

arm

b . ; Loop forever
end

Register symbols
This table shows the predefined register symbols available in 32-bit mode:

Name Size Description

CPSR 32 bits Current program status register

DO-D31 64 bits Floating-point coprocessor registers for double precision
FPCXT 32 bits Floating-point context payload

FPEXC 32 bits Floating-point coprocessor, exception register

IAR Assembler User Guide 18

Expressions, operands, and operators Introduction to the IAR Assembler for Arm

Name Size Description
FPSCR 32 hits Floating-point coprocessor, status and control register
FPSID 32 bits Floating-point coprocessor, system ID register

00-015 128 bits Advanced SIMD registers
RO-R12 32 bits General purpose registers
R13 (SP) 32bits Stack pointer

R14 (LR) 32bits Link register

R15 (PC) 32bits Program counter

S0-831 32 bits Floating-point coprocessor registers for single precision

SPSR 32 bits Saved program status register

Table 9. Predefined register symbols in 32-bit mode

In addition, specific cores might allow you to use other registers, for example APSR for the Cortex-M3, if
available in the instruction syntax.

This table shows the predefined register symbols available in 64-bit mode:

Name Size Description

X0-X30 64 bits 64 bits in 64-bits general purpose registers R0-R30

WO-W30 32 bits 32 bits in 64-hits general purpose registers R0-R30

SP 64 bits Stack pointer

WSP 32 bits Stack pointer

V0-V31 128 bits 128-bit SIMD and floating-point registers vO-v31

00-031 128 bits 128-bit entity in 128-bit SIMD and floating-point registers vO-v31

DO-D31 64 bits Double-precision floating-point in 128-bit SIMD and floating-point registers vO-v31
S0-S31 32bits Single-precision floating-point in 128-bit SIMD and floating-point registers vO-v31
HO-H31 16bits Half-precision floating-point in 128-bit SIMD and floating-point registers v0-v31
BO-B31 8 hits 8-bit entity in 128-bit SIMD and floating-point registers vO-v31

IPO 64 bits First intra-procedure-call scratch register, alias to R16
NES | 64 bits Second intra-procedure-call scratch register, alias to R17
FP 64 bits Frame pointer, alias to R29

LR 64 bits Link register, alias to R30

XZR 64 bits Zero 64-bit register

WZR 32 bits Zero 32-bit register

Table 10. Predefined 64-bit register symbols in 64-bit mode

Predefined symbols

The IAR Assembler for Arm defines a set of symbols for use in assembler source files. The symbols
provide information about the current assembly, allowing you to test them in preprocessor directives or
include them in the assembled code.

These predefined symbols are available:

Symbol Value

__aarché64 This symbol is defined to 1 when assembling for the A64
instruction set in the AArch64 state.

IAR Assembler User Guide 19

Expressions, operands, and operators

Introduction to the IAR Assembler for Arm

Symbol
__ARM 32BIT STATE

__ARM 64BIT_STATE

__ARM ADVANCED SIMD

_ARM ARCH

__ARM ARCH ISA A64

__ARM ARCH_ISA ARM

__ARM ARCH ISA THUMB

__ARM ARCH PROFILE

__ARM BIG ENDIAN

__ARM FEATURE_AES

__ARM FEATURE CLZ

_ARM FEATURE CMSE

__ARM FEATURE CRC32

__ARM FEATURE CRYPTO

__ARM FEATURE DIRECTED ROUNDING

__ARM FEATURE DSP

__ARM FEATURE FMA

Value

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

An integer that is set based on the ——cpu option. The symbol is
set to 1 if the selected processor architecture has the Advanced
SIMD architecture extension. The symbol is undefined for other
cores.

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).
This symbol is defined according to the Arm C Language
Extensions (ACLE).
This symbol is defined according to the Arm C Language
Extensions (ACLE).
This symbol is defined according to the Arm C Language
Extensions (ACLE).
This symbol is defined according to the Arm C Language
Extensions (ACLE).

An integer that is set based on the assembler option —-cpu
and --cmse. The symbol is set to 3 if the selected processor
architecture has CMSE (Cortex-M security extensions) and the
assembler option —-cmse is specified.

The symbol is set to 1 if the selected processor architecture has
CMSE and the assembler option —-cmse is not specified.

The symbol is undefined for cores without CMSE.

This symbol is defined to 1 if the CRC32 instructions are
supported (optional in Armv8-A/R).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined to 1 if the cryptographic instructions are
supported (implies Armv8-A/R with Neon).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined to 1 if the directed rounding and
conversion instructions are supported.

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined to 1 if the FPU supports fused floating-
point multiply-accumulate.

IAR Assembler User Guide

20

Expressions, operands, and operators

Introduction to the IAR Assembler for Arm

Symbol

__ARM FEATURE FP16 FML

__ARM FEATURE IDIV

_ARM FEATURE NUMERIC MAXMIN

__ARM FEATURE_QBIT

__ARM FEATURE QRDMX

__ARM FEATURE_SAT

__ARM FEATURE SHA2

__ARM FEATURE SHA3

__ARM FEATURE_ SHA512

__ARM FEATURE SIMD32

__ARM FEATURE_SM3

__ARM FEATURE SM4

__ARM FP

__ARM MEDIA

__ARM MPCORE__

__ARM NEON

__ARM NEON_FP

__ARM PROFILE M

_ ARMVFP

Value

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined to 1 if the floating-point numeric
maximum and minimum instructions are supported.

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

An integer that is set based on the —-cpu option. The symbol
is set to 1 if the selected processor architecture has the ARMv6

SIMD extension for multimedia. The symbol is undefined for
other cores.

An integer that is set based on the —-cpu option. The symbol
is set to 1 if the selected processor architecture has the
Multiprocessing Extensions. The symbol is undefined for other
cores.

This symbol is defined according to the Arm C Language
Extensions (ACLE).

This symbol is defined according to the Arm C Language
Extensions (ACLE).

An integer that is set based on the ——cpu option. The symbol is

set to 1 if the selected processor is a profile M core. The symbol is
undefined for other cores.

An integer that is set based on the —- £pu option and

that identifies whether floating-point instructions for a vector
floating-point coprocessor have been enabled or not. The
symbol is definedto ARMVFPV2 , ARMVFPV3_,of
__ARMVEFPV4_ . These symbolic names can be used when

IAR Assembler User Guide

21

Expressions, operands, and operators

Introduction to the IAR Assembler for Arm

Symbol

__ ARMVFP D16

_ ARMVFP FP16

_ ARMVFP SP_

__BUILD NUMBER

__CORE__

__DATE
__ FILE

__IAR _SYSTEMS ASM

__IASMARM

_ ilp32

__ LINE

__ LITTLE_ENDIAN

_ 1p64

TID

_ TIME

VER

Value
testingthe ARMVEP _ symbol. If floating-point instructions
are disabled (default), the symbol is undefined.

An integer that is set based on the assembler option —-fpu. The
symbol is set to 1 if the selected FPU is a VFPv3 or VFPVv4 unit
with only 16 D registers. Otherwise, the symbol is undefined.

An integer that is set based on the assembler option —-fpu.
The symbol is set to 1 if the selected FPU only supports 16-bit
floating-point numbers. Otherwise, the symbol is undefined.

An integer that is set based on the assembler option —-fpu.
The symbol is set to 1 if the selected FPU only supports 32-bit
single-precision. Otherwise, the symbol is undefined.

A unique integer that identifies the build number of the assembler
currently in use. The build number does not necessarily increase
with an assembler that is released later.

An integer that identifies the chip core in use. The value reflects
the setting of the assembler option —-cpu. For information about
the possible values, see the /AR C/C++ Development Guide for
Arm.

The current date in dd/Mmm/ yyyy format (string).

The name of the current source file (string).

IAR assembler identifier (number). Note that the number could
be higher in a future version of the product. This symbol can be
tested with #ifdef to detect whether the code was assembled by
an assembler from IAR.

An integer that is set to 1 when the code is assembled with the
IAR Assembler for Arm.

This symbol is defined to 1 when assembling for the A64
instruction set in the AArch64 state, using the ILP32 data model.
The current source line number (number).

Identifies the byte order in use. Expands to the number 1 when
the code is compiled with the little-endian byte order, and to the

number 0 when big-endian code is generated. Little-endian is the
default.

This symbol is defined to 1 when assembling for the A64
instruction set in the AArch64 state, using the LP64 data model.

Target identity, consisting of two bytes (number). The high byte
is the target identity, which is 0x4F (=decimal 79) for the IAR
Assembler for Arm.

The current time in hh :mm: ss format (string).

The version number in integer format, for example, version 6.21.2
is returned as 6021002 (number).

Table 11. Predefined symbols

Several data definition directives make it possible to include a symbol value in the code. These directives
define values or reserve memory. To include a symbol value in the code, use the symbol in the appropriate

data definition directive.

For example, to include the time of assembly as a string for the program to display:

name timeOfAssembly

extern printStr

IAR Assembler User Guide

22

Expressions, operands, and operators Introduction to the IAR Assembler for Arm

section MYCODE:CODE (2)

adr r0, time ; Load address of time
; string in RO.
bl printStr ; Call string output routine.
bx 1r ; Return
data ; In data mode:
time dc8 ~ TIME ; String representing the

; time of assembly.
end

To test a symbol at assembly time, use one of the conditional assembly directives. These directives let you
control the assembly process at assembly time.

For example, if you want to assemble separate code sections depending on whether you are using an old
assembler version or a new assembler version, do as follows:

#if (_ VER > 6021000) ; New assembler version
#else ; 0ld assembler version
fendif

For more information, see Conditional assembly directives, page 86.

Absolute and relocatable expressions

Depending on what operands an expression consists of, the expression is either absolute or relocatable.
Absolute expressions are those expressions that only contain absolute symbols or relocatable symbols that
cancel each other out.

Expressions that include symbols in relocatable sections cannot be resolved at assembly time, because they
depend on the location of sections. These are referred to as relocatable expressions.

Such expressions are evaluated and resolved at link time, by the linker. They can only be built up out of a
maximum of one symbol reference and an offset after the assembler has reduced it.

For example, a program could define absolute and relocatable expressions as follows:

name simpleExpressions
section MYCONST:CONST (2)
first dc32 5 ; A relocatable label.
second equ 10 + 5 ; An absolute expression.
dc32 first ; Examples of some legal
dc32 first + 1 ; relocatable expressions.
dc32 first + second
end

l:? At assembly time, there is no range check. The range check occurs at link time and, if the values
are too large, there is a linker error.

Expression restrictions

Expressions can be categorized according to restrictions that apply to some of the assembler directives.
One such example is the expression used in conditional statements like TF, where the expression must be
evaluated at assembly time, and therefore cannot contain any external symbols.

The following expression restrictions are referred to in the description of each directive they apply to.

IAR Assembler User Guide 23

List file format Introduction to the IAR Assembler for Arm

All symbols referred to in the expression must be known, no forward references are allowed.
No external references in the expression are allowed.
The expression must evaluate to an absolute value, a relocatable value (section offset) is not allowed.

The expression must be fixed, which means that it must not depend on variable-sized instructions. A
variable-sized instruction is an instruction that might vary in size depending on the numeric value of its
operand.

LIST FILE FORMAT

Header

The header section contains product version information, the date and time when the file was created, and
which options were used.

Body

The body of the listing contains the following fields of information:

e The line number in the source file. Lines generated by macros, if listed, have a . (period) in the source
line number field.

e The address field shows the location in memory, which can be absolute or relative depending on the
type of section. The notation is hexadecimal.

e The data field shows the data generated by the source line. The notation is hexadecimal. Unresolved
values are represented by (periods), where two periods signify one byte. These unresolved values
are resolved during the linking process.

¢ The assembler source line.

Summary
The end of the file contains a summary of errors and warnings that were generated.

Symbol and cross-reference table

When you specify the Include cross-reference option, or if the LSTXRF+ directive was included in the
source file, a symbol and cross-reference table is produced.

This information is provided for each symbol in the table:

Information Description

Symbol The symbol’s user-defined name.
Mode ABS (Absolute), or REL (Relocatable).
Sections The name of the section that this symbol is defined relative to.

Value/Offset The value (address) of the symbol within the current module, relative to the beginning of the current
section.

Table 12. Symbol and cross-reference table

IAR Assembler User Guide 24

Programming hints Introduction to the IAR Assembler for Arm

PROGRAMMING HINTS

Accessing special function registers

Specific header files for several Arm devices are included in the IAR product package, in the arm\inc
directory. These header files define the processor-specific special function registers (SFRs) and in some
cases the interrupt vector numbers.

The UART read address 0x40050000 of the device is defined in the ionuc100.h file as:
_ IO REG32 BIT(UAO RBR,0x40050000, READ WRITE , uart rbr bits)
The declaration is converted by macros defined in the file 1o macros.h to:

UAQO_RBR DEFINE 0x40050000

Using C-style preprocessor directives

The C-style preprocessor directives are processed before other assembler directives. Therefore, do not
use preprocessor directives in macros, and do not mix them with assembler-style comments. For more
information about comments, see Assembler control directives, page 105.

C-style preprocessor directives like #define are valid in the remainder of the source code file, while
assembler directives like EQU only are valid in the current module.

TRACKING CALL FRAME USAGE

In this section, these topics are described:

e Call frame information overview, page 26
e Call frame information in more detail, page 26

These tasks are described:

e Defining a names block, page 26

e Defining a common block, page 27

* Annotating your source code within a data block, page 28

e Specifying rules for tracking resources and the stack depth, page 28
e Using CFI expressions for tracking complex cases, page 30

e Slack usage analysis directives, page 30

e Examples of using CFI directives, page 31

For reference information, see:

e Call frame information directives for names blocks, page 108

e Call frame information directives for common blocks, page 109

e Call frame information directives for data blocks, page 110

e Call frame information directives for tracking resources and CFAS, page 111
e Call frame information directives for stack usage analysis, page 113

IAR Assembler User Guide 25

Tracking call frame usage Introduction to the IAR Assembler for Arm

Call frame information overview

Call frame information (CFI) is information about the call frames. Typically, a call frame contains a return
address, function arguments, saved register values, compiler temporaries, and local variables. Call frame
information holds enough information about call frames to support two important features:

e C-SPY can use call frame information to reconstruct the entire call chain from the current pC
(program counter) and show the values of local variables in each function in the call chain. This
information is used, for example, in the Call Stack window.

e Call frame information can be used, together with information about possible calls for calculating the
total stack usage in the application. Note that this feature might not be supported by the product you
are using.

The compiler automatically generates call frame information for all C and C++ source code. Call frame
information is also typically provided for each assembler routine in the system library. However, if you
have other assembler routines and want to enable C-SPY to show the call stack when executing these
routines, you must add the required call frame information annotations to your assembler source code.
Stack usage can also be handled this way (by adding the required annotations for each function call), but
you can also specify stack usage information for any routines in a stack usage control file (see the IAR
C/C++ Development Guide for Arm), which is typically easier.

Call frame information in more detail
You can add call frame information to assembler files by using c£1i directives. You can use these to
specify:

e The start address of the call frame, which is referred to as the canonical frame address (CFA). There
are two different types of call frames:
e Onastack—stack frames. For stack frames the CFA is typically the value of the stack pointer
after the return from the routine.

» Instatic memory, as used in a static overlay system—static overlay frames. This type of call
frame is not required by the Arm core and is therefore not supported.

* How to find the return address.
e How to restore various resources, like registers, when returning from the routine.

When adding the call frame information for each assembler module, you must:

Provide a names block where you describe the resources to be tracked.

Provide a common block where you define the resources to be tracked and specify their default values.
This information must correspond to the calling convention used by the compiler.

3. Annotate the resources used in your source code, which in practice means that you describe the
changes performed on the call frame. Typically, this includes information about when the stack pointer
is changed, and when permanent registers are stored or restored on the stack.

To do this you must define a data block that encloses a continuous piece of source code where you
specify rulesfor each resource to be tracked. When the descriptive power of the rules is not enough,
you can instead use CF/ expressions.

A full description of the calling convention might require extensive call frame information. In many cases,
a more limited approach will suffice. The recommended way to create an assembler language routine that
handles call frame information correctly is to start with a C skeleton function that you compile to generate
assembler output. For an example, see the /AR C/C++ Development Guide for Arm.

Defining a names block

A names block is used for declaring the resources available for a processor. Inside the names block, all
resources that can be tracked are defined.

IAR Assembler User Guide 26

Tracking call frame usage Introduction to the IAR Assembler for Arm

Start and end a names block with the directives:

CFI NAMES name
CFI ENDNAMES name

where name is the name of the block.

Only one names block can be open at a time.

Inside a names block, four different kinds of declarations can appear—a resource declaration, a stack frame
declaration, a static overlay frame declaration, and a base address declaration:

¢ To declare a resource, use one of the directives:

CFI RESOURCE resource : bits
CFI VIRTUALRESOURCE resource : bits

The parameters are the name of the resource and the size of the resource in bits. The name must be
one of the register names defined in the AEABI document that corresponds to the device architecture,
either DWARF for the ARM architecture or DWARF for the Arm 64-bit architecture (AArch64). A
virtual resource is a logical concept, in contrast to a physical resource such as a processor register.
Virtual resources are usually used for the return address.

To declare more than one resource, separate them with commas.

A resource can also be a composite resource, made up of at least two parts. To declare the composition
of a composite resource, use the directive:

CFI RESOURCEPARTS resource part, part, ..

The parts are separated with commas. The resource and its parts must have been previously declared
as resources, as described above.

e To declare a stack frame CFA, use the directive:
CFI STACKFRAME cfa resource type
The parameters are the name of the stack frame CFA, the name of the associated resource (the stack

pointer), and the memory type (to get the address space). To declare more than one stack frame CFA,
separate them with commas.

When going back in the call stack, the value of the stack frame CFA is copied into the associated stack
pointer resource to get a correct value for the previous function frame.

¢ To declare a base address CFA, use the directive:

CFI BASEADDRESS cfa type

The parameters are the name of the CFA and the memory type. To declare more than one base address
CFA, separate them with commas.

A base address CFA is used for conveniently handling a CFA. In contrast to the stack frame CFA,
there is no associated stack pointer resource to restore.

Defining a common block

The common block is used for declaring the initial contents of all tracked resources. Normally, there is one
common block for each calling convention used.

Start a common block with the directive:

CFI COMMON name USING namesblock

where name is the name of the new block and namesblock is the name of a previously defined names
block.

Declare the return address column with the directive:

IAR Assembler User Guide 27

Tracking call frame usage Introduction to the IAR Assembler for Arm

CFI RETURNADDRESS resource type

where resource is a resource defined in namesblock and type is the memory in which the calling
function resides. You must declare the return address column for the common block.

Inside a common block, you can declare the initial value of a CFA or a resource by using the directives
available for common blocks, see Call frame information directives for common blocks, page 109. For
more information about how to use these directives, see Specifying rules for tracking resources and the
stack depth, page 28 and Using CFI expressions for tracking complex cases, page 30.

End a common block with the directive:

CFI ENDCOMMON name

where name is the name used to start the common block.

Annotating your source code within a data block
The data block contains the actual tracking information for one continuous piece of code.
Start a data block with the directive:

CFI BLOCK name USING commonblock

where name is the name of the new block and commonbIock is the name of a previously defined
common block.

If the piece of code for the current data block is part of a defined function, specify the name of the function
with the directive:

CFI FUNCTION label

where 1abel is the code label starting the function.

If the piece of code for the current data block is not part of a function, specify this with the directive:

CFI NOFUNCTION

End a data block with the directive:

CFI ENDBLOCK name

where name is the name used to start the data block.

Inside a data block, you can manipulate the values of the resources by using the directives available for data
blocks, see Call frame information directives for data blocks, page 110. For more information on how to
use these directives, see Specifying rules for tracking resources and the stack depth, page 28, and Using
CFl expressions for tracking complex cases, page 30.

Specifying rules for tracking resources and the stack depth

To describe the tracking information for individual resources, two sets of simple rules with specialized
syntax can be used:

* Rules for tracking resources
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }
CFI resource { resource | FRAME (cfa, offset) }
¢ Rules for tracking the stack depth (CFAS)
CFI cfa { NOTUSED | USED }

CFI cfa { resource | resource + constant | resource - constant }

IAR Assembler User Guide 28

Tracking call frame usage Introduction to the IAR Assembler for Arm

You can use these rules both in common blocks to describe the initial information for resources and CFAs,
and inside data blocks to describe changes to the information for resources or CFAs.

In those rare cases where the descriptive power of the simple rules are not enough, you can use a full CF/
expression with dedicated operatorsto describe the information, see Using CFI expressions for tracking
complex cases, page 30. However, whenever possible, you should always use a rule instead of a CFlI
expression.

The rules for resources conceptually describe where to find a resource when going back one call frame.
For this reason, the item following the resource name in a CFI directive is referred to as the /ocation of the
resource.

To declare that a tracked resource is restored, in other words, already correctly located, use SAMEVALUE

as the location. Conceptually, this declares that the resource does not have to be restored because it already
contains the correct value. For example, to declare that a register R11 is restored to the same value, use the
directive:

CFI R11 SAMEVALUE

To declare that a resource is not tracked, use UNDEFINED as location. Conceptually, this declares that the
resource does not have to be restored (when going back one call frame) because it is not tracked. Usually it
is only meaningful to use it to declare the initial location of a resource. For example, to declare that R11 is
a scratch register and does not have to be restored, use the directive:

CFI R11 UNDEFINED

To declare that a resource is temporarily stored in another resource, use the resource name as its location.
For example, to declare that a register R11 is temporarily located in a register R12 (and should be restored
from that register), use the directive:

CFI R11 R12

To declare that a resource is currently located somewhere on the stack, use FRAME (cfa, offset) as
location for the resource, where cfa is the CFA identifier to use as “frame pointer” and offset is an
offset relative the CFA. For example, to declare that a register R11 is located at offset —4 counting from the
frame pointer CFA_SP, use the directive:

CFI R11 FRAME (CFA SP,-4)

For a composite resource there is one additional location, CONCAT, which declares that the location of
the resource can be found by concatenating the resource parts for the composite resource. For example,
consider a composite resource RET with resource parts RETLO and RETHI. To declare that the value of

RET can be found by investigating and concatenating the resource parts, use the directive:
CFI RET CONCAT

This requires that at least one of the resource parts has a definition, using the rules described above.

In contrast to the rules for resources, the rules for CFAs describe the address of the beginning of the call
frame. The call frame often includes the return address pushed by the assembler call instruction. The CFA
rules describe how to compute the address of the beginning of the current stack frame.

Each stack frame CFA is associated with a stack pointer. When going back one call frame, the associated

stack pointer is restored to the current CFA. For stack frame CFAs, there are two possible rules—an offset
from a resource (not necessarily the resource associated with the stack frame CFA) or NOTUSED.

IAR Assembler User Guide 29

Tracking call frame usage Introduction to the IAR Assembler for Arm

To declare that a CFA is not used, and that the associated stack pointer should be tracked as a normal
resource, use NOTUSED as the address of the CFA. For example, to declare that the CFA with the name
CFA_SPisnot used in this code block, use the directive:

CFI CFA_SP NOTUSED

To declare that a CFA has an address that is offset relative the value of a resource, specify the stack pointer
and the offset. For example, to declare that the CFA with the name CFA_SP can be obtained by adding 4 to
the value of the SP resource, use the directive:

CFI CFA_SP SP + 4

Using CFI expressions for tracking complex cases

You can use call frame information expressions (CF1 expressions) when the descriptive power of the rules
for resources and CFAs is not enough. However, you should always use a simple rule if there is one.

CFI expressions consist of operands and operators. Three sets of operators are allowed in a CFl expression:

e Unary operators
e Binary operators
e Ternary operators

In most cases, they have an equivalent operator in the regular assembler expressions.

In this example, R12 is restored to its original value. However, instead of saving it, the effect of the two
post increments is undone by the subtract instruction.

AddTwo:
cfi block addTwoBlock using myCommon
cfi function addTwo
cfi nocalls
cfi rl2 samevalue
add @rl2+, rl3
cfi r1l2 sub(rl2, 2)
add @rl2+, rl13
cfi rl2 sub(rl2, 4)
sub #4, rl2
cfi rl2 samevalue
ret
cfi endblock addTwoBlock

For more information about the syntax for using the operators in CFIl expressions, see Call frame
information directives for tracking resources and CFAs, page 111.

Stack usage analysis directives

The stack usage analysis directives (CFT FUNCALL, CFI TAILCALL,CFI INDIRECTCALL, and CFI
NOCALLS) are used for building a call graph which is needed for stack usage analysis. These directives
can be used only in data blocks. When the data block is a function block (in other words, when the CFI
FUNCTION directive has been used in the data block), you should not specify a caller parameter. When
a stack usage analysis directive is used in code that is shared between functions, you must use the caller
parameter to specify which of the possible functions the information applies to.

The CFI FUNCALL, CFI TAILCALL, and CFI INDIRECTCALL directives must be placed immediately
before the instruction that performs the call. The CFI NOCALLS directive can be placed anywhere in the
data block.

IAR Assembler User Guide 30

Tracking call frame usage Introduction to the IAR Assembler for Arm

Examples of using CFl directives

The following is an example specific to the Armcore. More examples can be obtained by generating
assembler output when you compile a C source file.

Consider a Cortex-M3 device with its stack pointer R1 3, link register R14, and general purpose registers
RO-R12. Register RO, R2, R3, and R12 will be used as scratch registers—these registers may be
destroyed by a function call—whereas register R1 must be restored after the function call.

Consider the following short code sample with the corresponding call frame information. At entry, assume
that the register R14 contains a 32-bit return address. The stack grows from high addresses toward zero.
The CFA denotes the top of the call frame, in other words, the value of the stack pointer after returning
from the function.

Address CFA R1 R4-R11 R14 RO, R2, R3, R12 Assembler code
00000000 R13+0 SAME SAME SAME Undefined PUSH {rl,1lr}
00000002 R13+8 CFA-8 CFA-4 MOVS rl, #4
00000004 BL func2
00000008 POP {r0O,1r}
0000000C R13+0 RO SAME MOV rl,r0
0000000E SAME BX 1r

Table 13. Code sample with backtrace rows and columns

Each row describes the state of the tracked resources before the execution of the instruction. As an
example, for the MOV R1, RO instruction, the original value of the R1 register is located in the RO register,
and the top of the function frame (the CFA column) isR13 + 0. The row at address 0000 is the initial
row, and the result of the calling convention used for the function.

The R14 column is the return address column—in other words, the location of the return address. The R1
column has SAME in the initial row to indicate that the value of the R1 register will be restored to the same
value it already has. Some of the registers are undefined because they do not need to be restored on exit
from the function.

The names block for the small example above would be:

cfi names ArmCore

cfi stackframe cfa rl13 DATA

cfi resource r0:32, rl:32, r2:32, r3:32
cfi resource r4:32, r5:32, r6:32, «r7:32
cfi resource r8:32, r9:32, 1rl10:32, rll:32
cfi resource rl12:32, r13:32, rl1l4:32

cfi endnames ArmCore

cfi common trivialCommon using ArmCore

cfi codealign 2

cfi dataalign 4

cfi returnaddress rl4 CODE

cfi cfa r13+0

cfi default samevalue

cfi r0 undefined

cfi r2 undefined

cfi r3 undefined

cfi rl2 undefined

cfi endcommon trivialCommon

IAR Assembler User Guide 31

Tracking call frame usage Introduction to the IAR Assembler for Arm

lf? R13 cannot be changed using a CFI directive because it is the resource associated with CFA.

You should place the CFI directives at the point where the backtrace information has changed, in other
words, immediately afterthe instruction that changes the backtrace information.

section MYCODE:CODE (2)

cfi block trivialBlock using trivialCommon
cfi function funcl
thumb
funcl push {rl,1r}
cfi rl frame(cfa, -8)
cfi rl4 frame(cfa, -4)
cfi cfa rl3+8
movs rl, #4
cfi funcall func2
bl func2
pop {r0,1r}
cfi rl x0
cfi rl4 samevalue
cfi cfa rl3
mov rl,r0
cfi rl samevalue
bx 1r
cfi endblock trivialBlock
end

IAR Assembler User Guide 32

Assembler options Assembler options

Assembler options

Using command 1ine assembIer OPLIONScvuuivuniieiiieiiieiieiee e ie e e et e et e et eateeseeeaneeaneraneeneanaernaeanaees 34
Specifying options and their PAramMETErSoiiuiiieiiiieii et e e ie et et e e e e eaeer e et e e eaeaaaenns 34
Extended command 1iNe fIleooiiuiiiiii e 35

Summary of aSSEMDIET OPTIONSetuiiiiiiii ettt et et e e e e et e e 35

Descriptions of assembBIEr OPLIONSiuniieiie ettt e 36
B 3 (] 116 1 PPN 36
—mAATCHOA .o e e 36
10) N 37
1§ 10 PP P TP 37
B e 38
B PO P T UPTPPTPPIN 38
SmCITISE ettt ettt et ettt ettt et ettt et et et ettt ettt et a et e an e aneens 38
] ¢ 1) E PP PPN 39
B 1 1110 1« [P PTN 39
PRSPPI 40
==d1AGNOSLICS TOTTIIALiitit ittt et ettt e e e 40
—=AYNAMIC OULPUL .ottt et et ettt et et et e e et et et e e e e e eas 41
PPN 41
B ettt et e et et et et et et et et et et et et et e a et et et et et et et et e e e as 41
--enable_hardware WOrkaroUndcooouiiiiiiiii e 42
=3 14 1 Yo N 42
e PP PP PPINN 42
e (T PPN 43
B 1011 PPN 43
PP PPN 44
OO PPN 44
e PRSPPI 44
PPN 45
PPN 45
PPN 46
PPN 46
B 1T o) N 47
Y, PPN 47
e P PP PPINN 48
TR A2 o i T o i PPN 48
B ORI A4 o PPN 48
T L a ¥ (- 13 10) A PPN 48
TR 11 1 B o 1o) PPN 49
-0 _Path N fIle MACTOSuuiiiiiii e ettt e e e e e e e 49
O PSPPI 49
o T PPN 50
PPN 50
S ST PO PPN 51
T PPN 51
B PP P PPN 51
==SOULCE CINCOMINE vuniiniineii ettt et et et e et e et e et et eea e e e e e e e s e e s e et e et e an e eaneeaneeaneeneeneanesneen 52
B 18] 1 (oI (R 1 1216 L) PPN 52
==SYStEM INCIUAC Il ooeiiniiiii e a e 52
PSPPSRI 53
1 11101 1o PP PPN 53

IAR Assembler User Guide 33

Using command line assembler options Assembler options

U 53
L= 13 () 1 N 54
S ettt eee e e e eaeeaeaeaeteaeaeteeaeaeta et et et ettt ea et e ea et ettt et e et it et et et tetaaaraaanns 54
B SO PRPRPINt 55
) GO OO OUORPTNN 55
PPN 56

USING COMMAND LINE ASSEMBLER OPTIONS

Assembler options are parameters you can specify to change the default behavior of the assembler. You
can specify options from the command line—which is described in more detail in this section—and from
within the IAR Embedded Workbench® IDE.

m The /IDE Project Management and Building Guide for Arm describes how to set assembler
options in the IDE, and gives reference information about the available options.

Specifying options and their parameters
To set assembler options from the command line, include them after the i asmarm command:

iasmarm [options] [sourcefile] [options]
These items must be separated by one or more spaces, or tab characters.
Notice that a command line option has a short name or a long name:

< Ashort option name consists of one character, with or without parameters. You specify it with a single
dash, for example -r.

« Along name consists of one or several words joined by underscores, with or without parameters. You
specify it with double dashes, for example --source encoding.

If all the optional parameters are omitted, the assembler displays a list of available options a screenful at a
time. Press Enter to display the next screenful.

For example, when assembling the source file power2 . s, use this command to generate a list file to the
default filename (power2.1st):

iasmarm power2.s -L

Some options accept a filename (that may be prefixed by a path), included after the option letter with a
separating space. For example, to generate a list file with the name 1ist.1st:

iasmarm power2.s -1 list.lst

Some options accept a parameter that is not a filename. For options with a long name, the option and the
parameter can be separated with a space character, an = sign, or a #. For options with a short name, the
parameter is included after the option letter, but without a space. For example, to generate a list file to the
default filename but in the subdirectory named 1ist:

iasmarm power2.s -Llist)\

li? The subdirectory you specify must already exist. The trailing backslash is required to separate
the name of the subdirectory from the default filename.

If you use the page Extra Options to specify specific command line options, the IDE does
not perform an instant check for consistency problems like conflicting options, duplication of
options, or use of irrelevant options.

IAR Assembler User Guide 34

Summary of assembler options Assembler options

Extended command line file

In addition to accepting options and source filenames from the command line, the assembler can accept
them from an extended command line file.

By default, extended command line files have the extension xc1, and can be specified using the - £
command line option. For example, to read the command line options from extend. xc1, enter:

iasmarm -f extend.xcl

SUMMARY OF ASSEMBLER OPTIONS

This table summarizes the assembler options available from the command line:

Command line option

Description

--aarch32 Generates code using the A32 instruction set

--aarcho64 Generates code using the A64 instruction set

--abi Specifies a data model for generating code using the A64
instruction set

--arm Sets the default mode for the assembler directive CODE to Arm

-B Macro execution information

—c Conditional list

--code model

Enables CMSE secure object generation

--cpu Core configuration
--cpu_mode Sets the mode for the assembler directive CODE
-D Defines preprocessor symbols

--diagnostics format
--dynamic_ output

-E

=@

--enable hardware workaround

Specifies the format for printed diagnostics
Lists in a structured format all output files
Maximum number of errors

Generates code in big-endian byte order

Enables a specific hardware workaround

--endian Specifies the byte order for code and data

-f Extends the command line

-—fpu Floating-point coprocessor architecture configuration
-G Opens standard input as source

-9 Disables the automatic search for system include files
-1 Adds a search path for a header file

-1 Lists #included text

-J Enables alternative register names, mnemonics, and operators
-L Generates a list file to path

-1 Generates a list file

--legacy Generates code linkable with older toolchains

-M Macro quote characters

-N Omits header from the assembler listing

--no_it verification

--no _path in file macros

-0

Suppresses the verification of the condition of instructions
following an IT instruction

Removes the path from the return value of the symbols
__ FILE and BASE FILE

Sets the object filename to path

IAR Assembler User Guide

35

Descriptions of assembler options

Assembler options

Command line option

--source_encoding
--suppress vfe header

--system include dir

--use_unix directory separators

--version

Description

Sets the object filename

Sets the number of lines per page in the list file
Generates debug information.

Sets silent operation

Case-sensitive user symbols

Specifies the encoding for source files

Suppresses the generation of VFE header information
Specifies the path for system include files

Tab spacing

Sets the default mode for the assembler directive CODE to Thumb
Undefines a symbol

Uses / as directory separator in paths

Sends assembler output to the console and then exits.
Disables warnings

Includes cross-references

Generates a list of file dependencies to a path

Generates a list of file dependencies

Table 14. Assembler options summary

DESCRIPTIONS OF ASSEMBLER OPTIONS

The following sections give detailed reference information about each assembler option.

If you use the page Extra Options to specify specific command line options, the IDE does
not perform an instant check for consistency problems like conflicting options, duplication of

options, or use of irrelevant options.

--aarch32

-—aarch32

Use this option to generate code using the A32 instruction set in the AArch32 state for the assembler

directive CODE.

ﬁ This option has the same effect as the --cpu_mode=arm option.

--cpu_mode, page 39.

--aarch64

-—-aarcho4

IAR Assembler User Guide

™1™ To set this option, use Project>Options>General Options>Target>Execution mode

36

Descriptions of assembler options Assembler options

Use this option to generate code using the A64 instruction set in the AArch64 state for the assembler
directive CODE.

l:? This option has the same effect as the --cpu mode=a64 option.

--abi, page 37 and --cpu_mode, page 39.

m To set this option, use Project>Options>General Options>Target>Execution mode

--abi

——abi={ilp32|1p64}

11p32 Generates A64 code for the ILP32 data model. Defines the symbol __ i1p32_
1po4 Generates A64 code for the LP64 data model. Defines the symbol — 1p64 .

Use this option to specify a data model for the generation of code using the A64 instruction set in the
AArch64 environment.

--aarch64, page 36 and --cpu_mode, page 39.

~r™ To set related options, choose:

Project>Options>General Options>Target>Processor variant>Core
and

Project>Options>General Options>64-bit>Data model

==arm

——arm

Use this option to make Arm (A32 in 32-bit mode) the default mode for the assembler directive CODE.

--cpu_mode, page 39

™1™ To set this option, use Project>Options>Assembler>Extra Options.

IAR Assembler User Guide 37

Descriptions of assembler options Assembler options

-B

Use this option to make the assembler print macro execution information to the standard output stream for
every call to a macro. The information consists of:

e The name of the macro

e The definition of the macro

e The arguments to the macro

e The expanded text of the macro.

This option is mainly used in conjunction with the list file options -1 or -1.

-L, page 46.

™™ Project>Options>Assembler>List>Macro execution info

-c{DIMIE|A]|O}

Disables list file
Includes macro definitions
Excludes macro expansions

Includes assembled lines only

o » m X U

Includes multiline code

Use this option to control the contents of the assembler list file.

This option is mainly used in conjunction with the list file options - or -1.

-L, page 46.

~r™ To set related options, select:

Project>Options>Assembler>List

--cimse

——cmse

IAR Assembler User Guide 38

Descriptions of assembler options Assembler options

Use this option to target secure mode in TrustZone for ARMv8-M. This option enables access to system
registers with the suffix NS using the instructions MRS and MSR, and enables the use of the instructions

SG, TTA, TTAT, BLXNS, and BXNS. In 64-bit mode, this option has no effect.

G To use this option, you must first select the option Project>Options>General Options>32-
bit>TrustZone.

™ To set this option, use Project>Options>Assembler>Extra Options.

--cpu

--cpu target core

target core Can be values such as ARM7TDMI or architecture versions, for example 4T or 8-
a.AArch64. The default value in 32-bit mode is ARM7TDMI and in 64-bit mode it is
Cortex—-A53.

Use this option to specify the target core and get the correct instruction set.

The reference documentation for the compiler option ——cpu in the JAR C/C++ Development Guide for
Arm for a list of supported architectures and processor variants.

m Project>Options>General Options>Target>Processor variant>Core
--cpu_mode

--cpu _mode {arm|al|thumb|t|aarch64|a64}

aarché64 ora64 Uses the A64 instruction set in the AArch64 state
armor a Uses the A32 instruction set in 32-bit mode

thumb or t Uses the T32 or T instruction set in 32-bit mode

Use this option to select the mode for the assembler directive CODE.

--aarch64, page 36

™1™ To set this option, use Project>Options>Assembler>Extra Options.

IAR Assembler User Guide 39

Descriptions of assembler options Assembler options

-D

-Dsymbol [=value]

symbol The name of the symbol you want to define.

value The value of the symbol. If no value is specified, 1 is used.

Use this option to define a symbol to be used by the preprocessor.

You might want to arrange your source code to produce either the test version or the production version of
your application, depending on whether the symbol TESTVER was defined. To do this, use include sections
such as:

#ifdef TESTVER
. ; additional code lines for test version only
#endif

Then select the version required on the command line as follows:
Production version: iasmarm prog

Test version: iasmarm prog -DTESTVER

Alternatively, your source might use a variable that you must change often. You can then leave the variable
undefined in the source, and use -D to specify the value on the command line, for example:

iasmarm prog -DFRAMERATE=3

™™ Project>Options>Assembler>Preprocessor>Defined symbols

--diagnostics_format

--diagnostics format format

format can be one of:

text Console output. This is the default if no --~diagnostics format option is given on the
command line.

sarif stderr Outputin SARIF Version 2.1.0 formatto stderr.
sarif stdout Outputin SARIF Version 2.1.0 format to stdout.

sarif file Output in SARIF Version 2.1.0 format to a . sarif file named after the source file.

Use this option to choose the format of the printed diagnostics.

IAR Assembler User Guide 40

Descriptions of assembler options Assembler options

Dj This option is not available in the IDE.

--dynamic_output

--dynamic_output filename

Use this option to make the assembler list in a structured format the names of all output files from the
assembly, except for the generated dynamic output file itself.

m This option is not available in the IDE.

-E
-Enumber
number The number of errors before the assembler stops the assembly. numbe r must be a positive integer
—0 indicates no limit.
Use this option to specify the maximum number of errors that the assembler reports. By default, the
maximum number is 100.
™™ Project>Options>Assembler>Diagnostics>Max number of errors
-e

Use this option to cause the assembler to generate code and data in big-endian byte order. The default byte
order is little-endian.

In 64-bit mode, this option has no effect.

~r™ Project>Options>General Options>32-bit>Byte order

IAR Assembler User Guide 41

Descriptions of assembler options Assembler options

--enable_hardware_workaround

--enable hardware workaround=waid[,waid...]

waid The ID number of the workaround to enable. For a list of available workarounds to enable, see the
release notes.

Use this option to make the assembler generate a workaround for a specific hardware problem.

The release notes for the assembler for a list of available parameters.

~r To set this option, use Project>Options>Assembler>Extra Options.

-=-endian

--endian {little|l|big|b}

little, 1 (default) Specifies little-endian byte order.
big, b Specifies big-endian byte order.

Use this option to specify the byte order of the generated code and data.
In 64-bit mode, this option has no effect.

~r Project>Options>General Options>32-bit>Byte order

-f filename

filename The commands that you want to extend the command line with are read from the specified file.
Notice that there must be a space between the option itself and the filename.

For information about specifying a filename, see Using command line assembler options, page 34.

Use this option to extend the command line with text read from the specified file.

IAR Assembler User Guide 42

Descriptions of assembler options Assembler options

The - £ option is particularly useful if there are many options which are more conveniently placed in a file
than on the command line itself.

To run the assembler with further options taken from the file extend.xc1, use:

iasmarm prog -f extend.xcl

-1, page 42 and Extended command line file, page 35.

m To set this option, use:

Project>Options>Assembler>Extra Options

--f filename

filename The commands that you want to extend the command line with are read from the specified file.
Notice that there must be a space between the option itself and the filename.

For information about specifying a filename, see Specifying options and their parameters, page 34.

Use this option to make the assembler read command line options from the named file, with the default
filename extension xc1.

In the command file, you format the items exactly as if they were on the command line itself, except that
you may use multiple lines, because the newline character acts just as a space or tab character.

Both C and C++ style comments are allowed in the file. Double quotes behave in the same way as in the
Microsoft Windows command line environment.

If you use the assembler option -Y, extended command line files specified using ——f will generate a
dependency, but those specified using — £ will not generate a dependency.

-Y, page 55and -f, page 42.

ED To set this option, use Project>Options>Assembler>Extra Options.
--fpu
--fpu fpu variant

fpu variant A floating-point coprocessor architecture variant, such as VEPv3 or none (default).

IAR Assembler User Guide 43

Descriptions of assembler options Assembler options

Use this option to specify the floating-point coprocessor architecture variant, and get the correct instruction
set and registers.

l:? In 64-bit mode, and when a 64-bit device is used in 32-bit mode, this option has no effect.

The reference documentation for the compiler option -—cpu in the /AR C/C++ Development Guide for
Arm for a list of supported coprocessor architecture variants.

™1™ Project>Options>General Options>32-bit>FPU

-G
-G
Use this option to make the assembler read the source from the standard input stream, rather than from a
specified source file.
When -G is used, you cannot specify a source filename.
™™ This option is not available in the IDE.
-9

By default, the assembler automatically locates the system include files. Use this option to disable the
automatic search for system include files. In this case, you might need to set up the search path by using the
-T assembler option.

m Project>Options>Assembler>Preprocessor>Ignore standard include directories

-Ipath

path The search path for # include files.

IAR Assembler User Guide 44

Descriptions of assembler options Assembler options

Use this option to specify paths to be used by the preprocessor. This option can be used more than once on
the command line.

By default, the assembler searches for #include files in the current working directory, in the system
header directories, and in the paths specified in the IASMarm_ INC environment variable. The —I option
allows you to give the assembler the names of directories which it will also search if it fails to find the file
in the current working directory.

For example, using the options:
-Ic:\global\ -Ic:\thisproj\headers\
and then writing:

#include "asmlib.hdr"

in the source code, make the assembler search first in the current directory, then in the directory
c:\global\, and then inthe directory C: \thisproj\headers\. Finally, the assembler searches
the directories specified in the IASMarm_ INC environment variable, provided that this variable is set, and
in the system header directories.

m Project>Options>Assembler>Preprocessor>Additional include directories

Use this option to list # include files in the list file.

By default, the assembler does not list #inc1ude file lines because these often come from standard files,
and would waste space in the list file. The —i option allows you to list these file lines.

m Project>Options>Assembler >List>#included text

Use this option to enable alternative register names, mnemonics, and operators in order to increase
compatibility with other assemblers and, allow porting of code.

Operator synonyms, page 128 and the chapter Migrating to the IAR Assembler for Arm, page 126.

™1™ Project>Options>Assembler>Language>Allow alternative register names, mnemonics and
operands

IAR Assembler User Guide 45

Descriptions of assembler options Assembler options

-L

-L([path]
No parameter Generates a listing with the same name as the source file, but with the filename extension
1st.
path The path to the destination of the list file. Note that you must not include a space before the
path.

By default, the assembler does not generate a list file. Use this option to make the assembler generate one
and send it to the file [path] sourcename.lst.

-L cannot be used at the same time as - 1.

To send the list file to 1ist\prog. 1st rather than the default prog. 1st:
iasmarm prog -Llist\

™™ To set related options, select:

Project>Options>Assembler >L.ist

-1 {filenameldirectory}

filename The output is stored in the specified file. Note that you must include a space before the
filename. If no extension is specified, 1st is used.

directory The output is stored in a file (filename extension 1st) which is stored in the specified
directory.

For information about specifying a filename or directory, see Using command line assembler options, page
34.

Use this option to make the assembler generate a listing and send it to the file you specify. By default, the
assembler does not generate a list file.

To generate a list file with the default filename, use the -1 option instead.

m To set related options, select:

Project>Options>Assembler >List

IAR Assembler User Guide 46

Descriptions of assembler options Assembler options

--legacy

--legacy {RVCT3.0}

RVCT3.0 Specifies the linker in RVCT3.0. Use this parameter together with the ——aeabi option to
generate code that should be linked with the linker in RVCT3.0.

Use this option to generate object code that is compatible with the specified toolchain.
In 64-bit mode, this option has no effect.

™1™ To set this option, use Project>Options>Assembler>Extra Options.

-Mab

ab The characters to be used as left and right quotes of each macro argument, respectively.

Use this option to sets the characters to be used as left and right quotes of each macro argument to a and b
respectively.

By default, the characters are < and >. The —M option allows you to change the quote characters to suit an
alternative convention, or simply allows a macro argument to contain < or > themselves.

For example, using the option:

-M[]

in the source you would write, for example:
print [>]

to call a macro print with > as the argument.

ﬁ Depending on your host environment, it might be necessary to use quote marks with the macro
quote characters, for example:

iasmarm filename -M'<>'

™™ Project>Options>Assembler >Language>Macro quote characters

IAR Assembler User Guide 47

Descriptions of assembler options Assembler options

-N

Use this option to omit the header section that is printed by default in the beginning of the list file.

This option is useful in conjunction with the list file options -L or -1.

-L, page 46.

~r Project>Options>Assembler >List>Include header

--no_dwarf3_cfi

--no_dwarf3 cfi

Use this option to suppress generation of DWARF 3 call frame information instructions. This can lead to a
degraded debugging experience, but might allow loading in a debugger that a does not support DWARF 3.

™1™ To set this option, use Project>Options>Assembler>Extra Options.

--no_dwarf4

-—-no_dwarf4

Use this option to suppress generation of DWARF 4 debug information. This can lead to a degraded
debugging experience, but might allow loading in a debugger that a does not support DWARF 4.

™1™ To set this option, use Project>Options>Assembler>Extra Options.

--no_it_verification

--no_it verification

Use this option to suppress the verification of the condition of instructions following an IT instruction.

In 64-bit mode, this option has no effect.

™1™ To set this option, use Project>Options>Assembler>Extra Options.

IAR Assembler User Guide 48

Descriptions of assembler options Assembler options

--no_literal_pool

--no_literal pool

Use this option for code that should run from a memory address range where read access via the data bus is
prohibited.

With the option —--no_literal pool, the assembler uses the MOV32 pseudo-instruction instead of
using a literal pool for LDR. Note that other instructions can still cause read access via the data bus.

The option also affects the automatic library selection performed by the linker. An IAR-specific ELF
attribute is used for determining whether libraries compiled with the option --no_literal pool

should be used.

The option --no_literal pool isonly allowed for Armv6-M and Armv7 compatible cores (includes
Armv8-M, Armv8.1-M, Armv8-A and Armv8-R cores).

(? In 64-bit mode, this option has no effect.

The compiler and linker options with the same name in the /AR C/C++ Development Guide for Arm.

m To set this option, use Project>Options>Assembler>Extra Options.
--no_path_in_file_macros

--no_path_in_ file macros

Use this option to exclude the path from the return value of the predefined preprocessor symbols
__FILE and _BASE FILE .

m This option is not available in the IDE.

-O[path]

path The path to the destination of the object file. Note that you cannot include a space before the path.

Use this option to set the path to be used on the name of the object file.

IAR Assembler User Guide 49

Descriptions of assembler options Assembler options

By default, the path is null, so the object filename corresponds to the source filename. The -0 option lets
you specify a path, for example, to direct the object file to a subdirectory.

l:? -0 cannot be used at the same time as -o.

To send the object code to the file obj\prog. o rather than to the default file prog.o:
iasmarm prog -0obj\

m Project>Options>General Options>Output>Output directories>Object files

-o {filenameldirectory}

filename The object code is stored in the specified file.

directory The object code is stored in a file (filename extension o) which is stored in the specified
directory.

For information about specifying a filename or directory, see Using command line assembler options, page
34.

By default, the object code produced by the assembler is located in a file with the same name as the source
file, but with the extension o. Use this option to specify a different output filename for the object code.

The -o option cannot be used at the same time as the -0 option.

m Project>Options>General Options>Output>Output directories>Object files

-plines
lines The number of lines per page, which must be in the range 10 to 150.

Use this option to set the number of lines per page explicitly.

This option is used in conjunction with the list options -1 or -1.

-L, page 46

IAR Assembler User Guide 50

Descriptions of assembler options Assembler options

-1, page 46.

~r Project>Options>Assembler>List>Lines/page

Use this option to make the assembler generate debug information, which means the generated output can
be used in a symbolic debugger such as the IAR C-SPY® Debugger.

™~ Project>Options>Assembler >Output>Generate debug information

By default, the assembler sends various minor messages via the standard output stream. Use this option to
make the assembler operate without sending any messages to the standard output stream.

The assembler sends error and warning messages to the error output stream, so they are displayed
regardless of this setting.

™ This option is not available in the IDE.

-s{+]-}

+ Case-sensitive user symbols.
- Case-insensitive user symbols.

Use this option to control whether the assembler is sensitive to the case of user symbols. By default, case
sensitivity is on.

By default, for example LABEL and 1abel refer to different symbols. When -s- is used, LABEL and
label instead refer to the same symbol.

IAR Assembler User Guide 51

Descriptions of assembler options Assembler options

m Project>Options>Assembler>Language>User symbols are case sensitive

--source_encoding

--source_encoding {locale|utf8}

locale The default source encoding is the system locale encoding.
utfs The default source encoding is the UTF-8 encoding.

When reading a source file with no Byte Order Mark (BOM), use this option to specify the encoding. If
this option is not specified and the source file does not have a BOM, the Raw encoding will be used.

For more information about encodings, see the /AR C/C++ Development Guide for Arm.

™1™ To set this option, use Project>Options>Assembler>Extra Options.

--suppress_vfe header

--suppress vfe header

Use this option to suppress the automatic generation of VFE (Virtual Function Elimination) header
information in generated object code.

This option is useful in two cases:

e Making sure that the linker VFE optimization is not automatically turned on.
e Manually supplying VFE information in the assembler source code.

The linker option —-vfe in the /AR C/C++ Development Guide for Arm.

™~ To set this option, use Project>Options>Assembler>Extra Options.

--system_include_dir

--system_include dir path

path The path to the system include files.

IAR Assembler User Guide 52

Descriptions of assembler options Assembler options

By default, the assembler automatically locates the system include files. Use this option to explicitly
specify a different path to the system include files. This might be useful if you have not installed IAR
Embedded Workbench in the default location.

m This option is not available in the IDE.

-t
-tn
n The tab spacing—must be in the range 2 to 9.
By default, the assembler sets 8 character positions per tab stop. Use this option to specify a different tab
spacing.
This option is useful in conjunction with the list options -1 or -1.
-L, page 46
-1, page 46.
m Project>Options>Assembler>List>Tab spacing
--thumb
--thumb
Use this option to make Thumb (T32 or T in 32-bit mode) the default mode for the assembler directive
CODE.
--cpu_mode, page 39
™1™ To set this option, use Project>Options>Assembler>Extra Options.
-U

-Usymbol

IAR Assembler User Guide 53

Descriptions of assembler options Assembler options

symbol The predefined symbol to be undefined.

By default, the assembler provides certain predefined symbols.

Use this option to undefine such a predefined symbol to make its name available for your own use through
a subsequent -D option or source definition.

To use the name of the predefined symbol TIME for your own purposes, you could undefine it with:

iasmarm prog -U__ TIME

Predefined symbols, page 19.

m This option is not available in the IDE.

-=-version

--version

Use this option to make the assembler send version information to the console and then exit.

™™ This option is not available in the IDE.

-w[+|-|+n|-n|+m-n|-m-n] [s]

No parameter Disables all warnings.
+ Enables all warnings.

- Disables all warnings.

+n Enables just warning n.

-n Disables just warning n.

+m-n Enables warnings m to n.

-m-n Disables warnings m to n.

s Generates the exit code 1 if a warning message is produced. By default, warnings generate
exit code 0.

IAR Assembler User Guide 54

Descriptions of assembler options Assembler options

By default, the assembler displays a warning message when it detects an element of the source code which
is legal in a syntactical sense, but might contain a programming error.

Use this option to disable all warnings, a single warning, or a range of warnings.

l:? The —w option can only be used once on the command line.

To disable just warning 0 (unreferenced label), use this command:
iasmarm prog -w-0
To disable warnings 0 to 8, use this command:

iasmarm prog -w-0-8

Assembler diagnostics, page 124.
To set related options, select:

~r™ Project>Options>Assembler>Diagnostics

-x{D|I|2}

D Includes preprocessor #defines.
I Includes internal symbols.

2 Includes dual-line spacing.

Use this option to make the assembler include a cross-reference table at the end of the list file.

This option is useful in conjunction with the list options -L or -1.

-L, page 46
-1, page 46.

™1™ Project>Options>Assembler>List>Include cross reference

-Y[path]

IAR Assembler User Guide 55

Descriptions of assembler options Assembler options

path The path to the location of the output file that contains the list of dependency files. Note that you cannot
include a space bhefore the path.

Use this option to list each source file opened by the assembler in a file.

By default, the path is null, so the filename corresponds to the source filename. The -Y option lets you
specify a path, for example, to direct the file to a subdirectory.

0 -Y cannot be used at the same time as -v.

If —y or —Y is used, the output file will have one make rule. The object file will be dependent on all opened
input files, including the full path. For example:

objectfile: sourcefile \
inputfile \

m This option is not available in the IDE.

-y {filename|directory}

filename The list of dependency files is stored in the specified file.

directory The list of dependency files is stored in a file (filename extension &) which is stored in the specified
directory.

For information about specifying a filename or directory, see Using command line assembler options, page
34.

Use this option to list each source file opened by the assembler in a file. By default, the list is located in a
file with the same name as the source file, but with the extension d. Use this option to specify a different
output filename for the file.

The -y option cannot be used at the same time as the -y option.

If -y or -Y is used, the output file will have one make rule. The object file will be dependent on all opened
input files, including the full path. For example:

objectfile: sourcefile \
inputfile \

™ This option is not available in the IDE.

IAR Assembler User Guide 56

Assembler operators Assembler operators

Assembler operators

Precedence of aSSeMDICT OPEIATOISivuivniiineiieii ettt et et et et e et e et e et e et e et e e st e eaaeeaneraneeneenasneesnees 58
Summary of asSEMbBIET OPETALOLSivueiiiiiteii et e et e e et e et e e e it e et e et e et e ea e aneaanaesneeaneeaeanaranns 58
Lo 1S 1111 S 011 21 () U PSPPI 58
L0 b g 0] oo 10 PPN 58
Multiplicative arithmetiC OPEIATOLSueuuiin ittt e e e e e e et e e e e e e eeas 59
Additive arithmetic OPETALOTSiiuuiit ettt et e e e e e et et e e e e e ees 59
sV L) 1S N) P 59
AND OPETALOTS .. e.eniiii ittt et et et et et et et et et et et ettt et e ea e aas 59
OR OPETALOTS ...ttt et ettt et et et et e e et et e e e e e e e aaeens 59
COMPATISON OPETALOTS ..vvneveneeeern et eetnettnetteteaeaneeaneeaneee e eneanesneeaneenneasneaneaneanetaneenneeneenesneees 59
Description of assemMbIEr OPETALOLSiivneieeie ettt et e et e et et et e e et e et e et e et e et eanaeaneesneeaneenns 60
[323 (S 1101 () PPN 60
Rl L1810 (-1 o s RS RTRPPPR: 60
R 00T 1 o) L PPN 60
a2V (e 115 o) | KPP 61
LS 12 5728 111101 PP 61
el Lo ¢ To15 o) o NP 61
F D14 3 () & PPN 61
Bl 57T 4 3 o PN 62
<=Less than OF @qUAl T0iuiiiii e e 62
T TENOE @QUAL O Lottt aaa e 62
Sl 270 1D 1 o T PPN 62
D€ (1S a1 T o N PP 63
>= Greater than OF €QUAL Ooiuiiiiiiii et e et e e e e e et a e e aas 63
B A o4 o1 1N A\ D PPN 63
S BItWISE AND .o e 64
5213 11 [1 LU 64
| BIEWISE OR ..ottt ettt ettt e e 64
A BItwise eXCIUSIVE OR ..o e 64
B2 T LT 111 o RPN 65
L 19705 o721 [1 PN 65
[LOZICAL OR .oeiiiiii e ettt et et et et e et e e 65
<< Logical ShIftLETt ..oooun i et 65
>> Logical Shift FIGIEooeii e e 66
L2 0 B 2 1 A o) PPN 66
L A B AT 16 o) 1 PPN 66
BYTE3 Thild DYLEeeiieiiie ittt et et e e e e et e e e eaes 67
BYTEZ FOUIth DYLE ...ivuiiniiiiiiiiii ettt e e e e e e e e e e e e et e e b e et e eaeaaeeaneeanees 67
DATE Current time/Aateeiuuneiiiet ettt et et e e et et e e e e 67
HIGH High DYTE ..o ettt e e e e e 67
HWRD High WOrd ..o et et e e 68
LOW LOW DY .ot ettt ettt ettt et et et et e et et et et e e e e e e e e e ees 68
LO12 Lower 12 bits Of SYMDBOLiiniiiiii et et 68
LWRD LOW WOTA ...ttt et et et e e e e e et et e e e e e e e eaneees 68
121 2 21 U PPURPTUN 69
N2l S BTt (o) 1< 4 1 o PR 69
N 3 T o) 1<) 1 PP 70
SIZEOF SECLION SIZE ...ueevtneiitnteiii ettt et ettt et et e e et e et et e e et e e et et e e e et e eenaas 70
UGT Unsigned greater thanooveiiiiiiiiiiei et e e e e et e e e e et e ea e et e aneeaneeanees 71
ULT Unsigned 188S thaniiuiiiiiiiiiii e et e e e e et e et e et e et e et e e e e e e ernees 71

IAR Assembler User Guide 57

Precedence of assembler operators Assembler operators

XOR Logical XCIUSIVE ORiiiiiiiiiiii e e e 71

PRECEDENCE OF ASSEMBLER OPERATORS

Each operator has a precedence number assigned to it that determines the order in which the operator and
its operands are evaluated. The precedence numbers range from 1 (the highest precedence, that is, first
evaluated) to 7 (the lowest precedence, that is, last evaluated).

These rules determine how expressions are evaluated:

* The highest precedence operators are evaluated first, then the second highest precedence operators,
and so on until the lowest precedence operators are evaluated.

e Operators of equal precedence are evaluated from left to right in the expression.

e Parentheses (and) can be used for grouping operators and operands, and for controlling the order in
which the expressions are evaluated. For example, this expression evaluates to 1:

T/ (1+(2*3))

SUMMARY OF ASSEMBLER OPERATORS

The following tables give a summary of the operators, in order of precedence. Synonyms, where available,
are shown after the operator name.

(? The operator synonyms are enabled by the option -7. See also the chapter Migrating to the IAR
Assembler for Arm, page 126.

Parenthesis operator
Precedence: 1
() Parenthesis.

Unary operators
Precedence: 1

+ Unary plus

- Unary minus

!, :LNOT: Logical NOT

~, :NOT: Bitwise NOT
Low Low byte

HIGH High byte
BYTE1 First byte

BYTE2 Second byte
BYTE3 Third byte
BYTE4 Fourth byte
L1012 Lower 12 bits of a symbol
LWRD Low word

HWRD High word

DATE Current time/date

IAR Assembler User Guide 58

Summary of assembler operators Assembler operators

SBREL The offset to a symbol from the addressing origin of its output segment.
SFB Section begin

SFE Section end

SIZEOF Section size

Multiplicative arithmetic operators
Precedence: 2

* Multiplication
/ Division
%, :MOD: Modulo

Additive arithmetic operators
Precedence: 3

+ Addition

- Subtraction

Shift operators
Precedence: 2.5-4

>> Logical shift right (4)
:SHR: Logical shift right (2.5)
<< Logical shift left (4)
:SHL: Logical shift left (2.5)

AND operators

Precedence: 3-8

&& Logical AND (5)
:LAND: Logical AND (8)
& Bitwise AND (5)
:AND: Bitwise AND (3)

OR operators
Precedence: 3-8

||, :LOR: Logical OR (6)
\ Bitwise OR (6)
:0R: Bitwise OR (3)
XOR Logical exclusive OR (6)
:LEOR: Logical exclusive OR (8)
~ Bitwise exclusive OR (6)
:EOR: Bitwise exclusive OR (3)

Com parison operators
Precedence: 7

IAR Assembler User Guide 59

Description of assembler operators Assembler operators

=, == Equal to

<>, 1= Not equal to

> Greater than

< Less than

UGT Unsigned greater than
ULT Unsigned less than

>= Greater than or equal to
<= Less than or equal to

DESCRIPTION OF ASSEMBLER OPERATORS

This section gives detailed descriptions of each assembler operator.

See also Expressions, operands, and operators, page 16.

() Parenthesis

(and) group expressions to be evaluated separately, overriding the default precedence order.

1+42*3 => 17
(1+2)*3 -> 9

* Multiplication

* produces the product of its two operands. The operands are taken as signed 32-bit integers, and the result
is also a signed 32-bit integer.

2%2 =>4
-2*%2 -> -4

+ Unary plus

Unary plus operator; performs nothing.

+3 —> 3
3*+2 -> 6

IAR Assembler User Guide 60

Description of assembler operators Assembler operators

+ Addition

The + addition operator produces the sum of the two operands which surround it. The operands are taken
as signed 32-bit integers, and the result is also a signed 32-bit integer.

92+19 -> 111
-242 —> 0
-24-2 -> -4

— Unary minus

The unary minus operator performs arithmetic negation on its operand.

The operand is interpreted as a 32-bit signed integer, and the result of the operator is the two’s complement
negation of that integer.

-3 -> -3
3*-2 —> -6
4--5 -> 9

— Subtraction

The subtraction operator produces the difference when the right operand is taken away from the left
operand. The operands are taken as signed 32-bit integers, and the result is also signed 32-bit integer.

92-19 —> 73
-2-2 -> -4
-2--2 => 0

/ Division

/ produces the integer quotient of the left operand divided by the right operator. The operands are taken as
signed 32-bit integers, and the result is also a signed 32-bit integer.

IAR Assembler User Guide 61

Description of assembler operators Assembler operators

9/2 -> 4
-12/3 -> -4
9/2*6 —> 24

< Less than

< evaluates to 1 (true) if the left operand has a numeric value that is less than the right operand, otherwise it
is 0 (false).

-1 <2 —>1
2<1->0
2<2-—>0

<= Less than or equal to

<= evaluates to 1 (true) if the left operand has a numeric value that is less than or equal to the right
operand, otherwise it is O (false).

1 <=2 ->1
2<=1->0
1 <=1->1

<>, I= Not equal to

<> evaluates to 0 (false) if its two operands are identical in value or to 1 (true) if its two operands are not
identical in value.

1 <>2 —>1
2 <>2 >0
'A' <> 'B' > 1

=, == Equal to

IAR Assembler User Guide 62

Description of assembler operators Assembler operators

= evaluates to 1 (true) if its two operands are identical in value, or to 0 (false) if its two operands are not
identical in value.

1=2->0
2 =2 ->1
'ABC' = '"ABCD' -> 0

> Greater than

> evaluates to 1 (true) if the left operand has a higher numeric value than the right operand, otherwise it is 0
(false).

-1>1->0
2>1-—>1
1>1->0

>= Greater than or equal to

>=evaluates to 1 (true) if the left operand is equal to or has a greater numeric value than the right operand,
otherwise it is O (false).

1 >2 >0
2> 1 ->1
1>1->1

&& Logical AND

5

The precedence of : LAND: is 8.

&& or the synonym : LAND: performs logical AND between its two integer operands. If both operands are
non-zero the result is 1 (true), otherwise it is 0 (false).

1010B && 0011B -> 1
1010B && 0101B -> 1
1010B && 0000B —> O

IAR Assembler User Guide 63

Description of assembler operators Assembler operators
& Bitwise AND

5

The precedence of : AND: is 3.

& or the synonym :AND: performs bitwise AND between the integer operands. Each bit in the 32-bit result
is the logical AND of the corresponding bits in the operands.

1010B & 0011B -> 0010B
1010B & 0101B -> 0000B
1010B & 0000B —-> 0000B

~ Bitwise NOT

~ or the synonym :NOT : performs bitwise NOT on its operand. Each bit in the 32-bit result is the
complement of the corresponding bit in the operand.

~ 1010B -> 11111111111111111111111111110101B

| Bitwise OR

6

The precedence of : OR: is 3.

| or the synonym :OR: performs bitwise OR on its operands. Each bit in the 32-bit result is the inclusive
OR of the corresponding bits in the operands.

1010B | 0101B -> 1111B
1010B | 0000B —> 1010B

A Bitwise exclusive OR

6

The precedence of : EOR: is 3.

~ or the synonym : EOR: performs bitwise XOR on its operands. Each bit in the 32-bit result is the
exclusive OR of the corresponding bits in the operands.

IAR Assembler User Guide 64

Description of assembler operators Assembler operators

1010B ~ 0101B -> 1111B
1010B ~ 0011B —-> 1001B

% Modulo

% or the synonym :MOD: produces the remainder from the integer division of the left operand by the right
operand. The operands are taken as signed 32-bit integers, and the result is also a signed 32-bit integer.

X % Yisequivalentto Xx-Y* (X/Y) using integer division.

! Logical NOT

! or the synonym : LNOT : negates a logical argument.

! 0101B —> 0
! 0000B -> 1

|| Logical OR

| | orthe synonym :LOR: performs a logical OR between two integer operands.

1010B || 0000B —> 1
0000B || 0000B —> 0

<< Logical shift left

<< or the synonym : SHL: shifts the left operand, which is always treated as unsigned, to the left. The
number of bits to shift is specified by the right operand, interpreted as an integer value between 0 and 32.

IAR Assembler User Guide 65

Description of assembler operators Assembler operators

(? The precedence of : SHL: is 2.5.

00011100B << 3 -> 11100000B
00000111111111111B << 5 —-> 11111111111100000B
14 << 1 -> 28

>> Logical shift right

>> or the synonym : SHR: shifts the left operand, which is always treated as unsigned, to the right. The
number of bits to shift is specified by the right operand, interpreted as an integer value between 0 and 32.

G The precedence of : SHR: is 2.5.

01110000B >> 3 -> 00001110B
1111111111111111B >> 20 -> 0
14 >> 1 -> 7

BYTE1 First byte

BYTE1 takes a single operand, which is interpreted as an unsigned 32-bit integer value. The result is the
unsigned, 8-bit integer value of the lower order byte of the operand.

BYTE1 OxABCD -> 0xCD

BYTE2 Second byte

BYTE?2 takes a single operand, which is interpreted as an unsigned 32-bit integer value. The result is the
middle-low byte (bits 15 to 8) of the operand.

BYTE2 0x12345678 -> 0x56

IAR Assembler User Guide 66

Description of assembler operators Assembler operators

BYTE3 Third byte

BYTES3 takes a single operand, which is interpreted as an unsigned 32-bit integer value. The result is the
middle-high byte (bits 23 to 16) of the operand.

BYTE3 0x12345678 -> 0x34

BYTE4 Fourth byte

BYTE4 takes a single operand, which is interpreted as an unsigned 32-bit integer value. The result is the
high byte (bits 31 to 24) of the operand.

BYTE4 0x12345678 -> 0x12

DATE Current time/date

DATE gets the time when the current assembly began.

The DATE operator takes an absolute argument (expression) and returns:

DATE 1 Current second (0-59).

DATE 2 Current minute (0-59).

DATE 3 Current hour (0-23).

DATE 4 Current day (1-31).

DATE 5 Current month (1-12).

DATE 6 Current year MOD 100 (1998 —>98, 2000 —>00, 2002 —>02).

To specify the date of assembly:

today: DC8 DATE 5, DATE 4, DATE 3

HIGH High byte

IAR Assembler User Guide 67

Description of assembler operators Assembler operators

HIGH takes a single operand to its right which is interpreted as an unsigned, 16-bit integer value. The result
is the unsigned 8-bit integer value of the higher order byte of the operand.

HIGH O0xABCD -> 0xAB

HWRD High word

HWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value. The result is the
high word (bits 31 to 16) of the operand.

HWRD 0x12345678 -> 0x1234

LOW Low byte

LOW takes a single operand, which is interpreted as an unsigned, 32-bit integer value. The result is the
unsigned, 8-bit integer value of the lower order byte of the operand.

LOW O0xABCD -> 0xCD

LO12 Lower 12 bits of symbol

L.OW uses the lower 12 bits of a symbol. This operator is only available in 64-bit mode.

LO12 (0x1234) -> 0x234

LWRD Low word

LWRD takes a single operand, which is interpreted as an unsigned, 32-bit integer value. The result is the low
word (bits 15 to 0) of the operand.

IAR Assembler User Guide 68

Description of assembler operators Assembler operators

LWRD 0x12345678 -> 0x5678

SBREL

SBREL expr

The expression must evaluate to a symbol s, with a possible addend a, written as s+a.

The result is the offset to s from the addressing origin of its output segment, plus the addend.
The result is s+a-base, if the origin of the output segment for s is base.

The normal usage is for the symbol s to be in . data, and to have base address of . data in RO.

SBREL (array+4) ->4 if array is placed first in its output segment.

SFB section begin

SFB(section [{+|-}offset]

section The name of a section, which must be defined before SFB is used.

offset An optional offset from the start address. The parentheses are optional if offset is omitted.

SFB accepts a single operand to its right. The operator evaluates to the absolute address of the first byte of
that section. This evaluation occurs at linking time.

name sectionBegin
section MYCODE:CODE (2) ; Forward declaration
; of MYCODE.
section MYCONST:CONST (2)
data
start dc32 sfb (MYCODE)
end

Even if this code is linked with many other modules, start is still set to the address of the first byte of the
section MYCODE.

IAR Assembler User Guide 69

Description of assembler operators Assembler operators

SFE section end

SFE (section [{+ | -} offset]
1
section The name of a section, which must be defined before SFE is used.
offset An optional offset from the start address. The parentheses are optional if of fset is omitted.

SFE accepts a single operand to its right. The operator evaluates to the address of the first byte after the
section end. This evaluation occurs at linking time.

name sectionEnd
section MYCODE:CODE (2) ; Forward declaration
; of MYCODE.
section MYCONST:CONST (2)
data
end dc32 sfe (MYCODE)
end

Even if this code is linked with many other modules, end is still set to the first byte after the section
MYCODE.

The size of the section MYCODE can be achieved by using the STZEOF operator.

SIZEOF section size

SIZEOF section

section The name of a relocatable section, which must be defined before STIZEOF is used.

SIZEOF generates SFE-SFEB for its argument. That is, it calculates the size in bytes of a section. This is
done when modules are linked together.

These two files set size to the size of the section MYCODE.

Table.s:

module table
section MYCODE:CODE ; Forward declaration of MYCODE.

IAR Assembler User Guide 70

Description of assembler operators Assembler operators

section SEGTAB:CONST (2)
data

size dc32 sizeof (MYCODE)
end

Application.s:

module application

section MYCODE:CODE (2)

code

nop ; Placeholder for application.
end

UGT Unsigned greater than

UGT evaluates to 1 (true) if the left operand has a larger value than the right operand, otherwise it is 0
(false). The operation treats the operands as unsigned values.

2 UGT 1 —>1
-1 UGT 1 > 1

ULT Unsigned less than

ULT evaluates to 1 (true) if the left operand has a smaller value than the right operand, otherwise it is 0
(false). The operation treats the operands as unsigned values.

1 ULT 2 > 1
-1 ULT 2 -> O

XOR Logical exclusive OR

XOR or the synonym : LEOR : evaluates to 1 (true) if either the left operand or the right operand is non-zero,
but to 0 (false) if both operands are zero or both are non-zero. Use XOR to perform logical XOR on its two
operands.

(? The precedence of : LEOR: is 8.

IAR Assembler User Guide 71

Description of assembler operators Assembler operators

0101B XOR 1010B -> O
0101B XOR 0000B -> 1

IAR Assembler User Guide 72

Assembler directives Assembler directives

Assembler directives

Summary of asSeMDbIET AITECTIVESuivuniiiiiiieii ettt et e et e et e e et e et e et e et eea e eaneaaneesneaaneeneanaesenns 73
Description 0f aSsSemMDIEr AITECHIVESivuiitiiiiiiei ettt e e e e e e et e et e et e et e et e eaeanaeanaeanees 76
Module CONIOLl AITECLIVESeeuneiii ettt et et e et e et e e e e eeaanes 76
SYMDbOL CONLIOL AITECTIVES ..euiit ittt ettt ettt e e e e 78
MOdE CONLIOL QITECTIVES ... et ettt et et e et et et et e e e e e e e e eaneees 80
Section CONLIOL AITECTIVESiui ittt ettt et et e e et e e e e e e e e e e eanaas 81
Value assignmeNt AITCCHIVESocuuiitneiteii it e ettt e e e e e e e et e e e e e e e eeen 84
Conditional assembly dITECTIVESciuuuiiiiiiiie ittt e e e eaas 86
MaCTO PIrOCESSING AITECTIVES ...vvueiineiieii et et et et et et e e e e e e e e et e et e e e e e e e e ea e eaeeen e aneeaneeanees 87
Listing CONIOl QIT@CLIVESvuivneiieiieeii et et et et et e e e e e e e e e e e e e et e e e e et e eaeen e aneeaneesnees 95
C-Style PreproCESSOT QITECHIVES ...i.u.ivniineiteiteii et et e et et et e et e ean e et e et e et eaneeaneeanetaneeneenneaneesneees 98
Data definition or allocation dif€CHIVEScvuueieiiiriiieiieii et et e et et et et e e e eaneeaneeaeeaeaeaeaenns 102
ASSEMDIET CONIOL AITECTIVESuiiiieiii ettt ettt et e e e e e e e e eees 105
FUNCHON QITECLIVES ...ttt ettt et et ettt e e et e et e et e e e e eanaeeees 108
Call frame information directives for names blocksoeiviiiiiiiiiiiiii e, 108
Call frame information directives for common blockscooeoiiiiiiiiiiiiiiiiii e, 109
Call frame information directives for data bloCKSc.ooiiiiiiiiiiii 110
Call frame information directives for tracking resources and CFAScooiiiiiiiiiiiiiiiii, 111
Call frame information directives for stack usage analysiscoceoviiiiiiiiiiiiieiiieeee e, 113

This chapter gives a summary of the assembler directives and provides detailed reference information for
each category of directives.

SUMMARY OF ASSEMBLER DIRECTIVES

The assembler directives are classified into these groups according to their function:

e Moadule control directives, page 76

e Symbol control directives, page 78

e Mode control directives, page 80

e Section control directives, page 81

. Value assignment directives, page 84

e Conditional assembly directives, page 86

e Macro processing directives, page 87

e Listing control directives, page 95

e C-style preprocessor directives, page 98

e Data definition or allocation directives, page 102

e Assembler control directives, page 105

e Function directives, page 108

e Call frame information directives for names blocks, page 108.

o Call frame information directives for common blocks, page 109

e Call frame information directives for data blocks, page 110

e Call frame information directives for tracking resources and CFAS, page 111
e Call frame information directives for stack usage analysis, page 113

IAR Assembler User Guide 73

Summary of assembler directives

This table gives a summary of all the assembler directives:

Assembler directives

Directive
_args

$
#define
felif
#else
fendif
ferror
#if
#ifdef
#ifndef
#include
fmessage
#pragma
#undef
/*comment*/

//

AAPCS
ALIAS
ALIGN

ALIGNRAM
ALIGNROM

ARM

ASEGN
ASSIGN

CASEOFF
CASEON
CFI
CODE

CODE16

CODE32

COL

DATA
DATAG64

CALL GRAPH ROOT

Description

Is set to number of arguments passed to macro.
Includes a file.

Assigns a value to a label.

Introduces a new condition in an #1 f...#endi £ block.
Assembles instructions if a condition is false.
Endsan #if, #ifdef, or #ifndef block.
Generates an error.

Assembles instructions if a condition is true.
Assembles instructions if a symbol is defined.
Assembles instructions if a symbol is undefined.
Includes a file.

Generates a message on standard output.
Recognized but ignored.

Undefines a label.

C-style comment delimiter.

C++ style comment delimiter.

Assigns a permanent value local to a module.
Sets module attributes.

Assigns a permanent value local to a module.

Aligns the program location counter by inserting zero-
filled bytes.

Aligns the program location counter.

Aligns the program location counter by inserting zero-
filled bytes.

Interprets subsequent instructions as 32-bit (Arm)
instructions.

Begins a named absolute segment.

Assigns a temporary value.

Specifies that a function is a call graph root.
Disables case sensitivity.

Enables case sensitivity.

Specifies call frame information.

Interprets subsequent instructions as Arm, Thumb, or
A64 instructions, depending on the setting of related
assembler options.

Interprets subsequent instructions as 16-bit (Thumb)
instructions. Replaced by THUMB.

Interprets subsequent instructions as 32-bit (Arm)
instructions. Replaced by ARM.

Sets the number of columns per page. Retained
for backward compatibility reasons—recognized but
ignored.

Defines an area of data within a code section.

Defines an area with 64-bit alignment data within a code
section.

Section

Macro processing
Assembler control
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
C-style preprocessor
Assembler control
Assembler control
Value assignment
Module control
Value assignment
Section control

Section control
Section control

Mode control

Segment control

Value assignment
Function

Assembler control
Assembler control

Call frame information
Mode control

Mode control

Mode control

Listing control

Mode control

Mode control

IAR Assembler User Guide

74

Summary of assembler directives

Assembler directives

Directive
DC8
DC1l6
DC24
DC32
DC64
DCB

DCD

DCQ

DCW

DEFINE
DF16
DF32
DF64
DS8
DS16
DS24
DS32
DS64
ELSE
ELSEIF
END
ENDIF
ENDM
ENDR
EQU
EVEN
EXITM
EXTERN
EXTWEAK
IF
IMPORT
INCLUDE
LOCAL
LSTCND
LSTCOD
LSTEXP
LSTMAC
LSTOUT
LSTPAG

LSTREP

LSTXRF

Description

Generates 8-bit constants, including strings.

Generates 16-bit constants.

Generates 24-bit constants.

Generates 32-bit constants.

Generates 64-bit constants.

Generates 8-bit byte constants, including strings.
Generates 32-bit long word constants. Alias for DC32.
Generates 64-bit long constants. Alias for DC64.

Generates 16-bit word constants, including strings. Alias
for DC16.

Defines a file-wide value.

Generates 16-bit half precision floating point constants.
Generates 32-bit floating-point constants.
Generates 64-bit floating-point constants.
Allocates space for 8-bit integers.

Allocates space for 16-bit integers.

Allocates space for 24-bit integers.

Allocates space for 32-bit integers.

Allocates space for 64-bit integers.

Assembles instructions if a condition is false.
Specifies a new condition inan TF...ENDIF block.
Ends the assembly of the last module in a file.
Ends an IF block.

Ends a macro definition.

Ends a repeat structure.

Assigns a permanent value local to a module.
Aligns the program counter to an even address.
Exits prematurely from a macro.

Imports an external symbol.

Imports an external symbol (which can be undefined.
Assembles instructions if a condition is true.
Imports an external symbol.

Includes a file.

Creates symbols local to a macro.

Controls conditional assembler listing.

Controls multi-line code listing.

Controls the listing of macro generated lines.
Controls the listing of macro definitions.

Controls assembler-listing output.

Retained for backward compatibility reasons.
Recognized but ignored.

Controls the listing of lines generated by repeat
directives.

Generates a cross-reference table.

Section

Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation

Data definition or allocation

Value assignment

Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Data definition or allocation
Conditional assembly
Conditional assembly
Module control

Conditional assembly
Macro processing

Macro processing

Value assignment

Section control

Macro processing

Symbol control

Symbol control

Conditional assembly
Symbol control

Assembler control

Macro processing

Listing control

Listing control

Listing control

Listing control

Listing control

Listing control

Listing control

Listing control

IAR Assembler User Guide

75

Description of assembler directives

Assembler directives

Directive
LTORG

MACRO

ODD
OVERLAY
PAGE
PAGSIZ
PRESERVES
PUBLIC
PUBWEAK

RADIX
REPT
REPTC
REPTI
REQUIRE
REQUIRES
RSEG
RTMODEL
SECTION
SECTION TYPE
SETA
THUMB

Description

Directs the current literal pool to be assembled
immediately following the directive.

Defines a macro.

Aligns the program location counter to an odd address.
Recognized but ignored.

Retained for backward compatibility reasons.

Retained for backward compatibility reasons.

Sets a module attribute.

Exports symbols to other modules.

Exports symbols to other modules, multiple definitions
allowed.

Sets the default base.

Assembles instructions a specified number of times.
Repeats and substitutes characters.
Repeats and substitutes strings.
Forces a symbol to be referenced.
Sets a module attribute.

Begins a section.

Declares runtime model attributes.
Begins a section.

Sets ELF type and flags for a section.
Assigns a temporary value.

Interprets subsequent instructions as Thumb execution-
mode instructions.

Section
Assembler control

Macro processing
Section control
Symbol control
Listing control
Listing control
Module control
Symbol control

Symbol control

Assembler control
Macro processing
Macro processing
Macro processing
Symbol control
Module control
Section control
Module control
Section control
Section control
Value assignment
Mode control

Table 15. Assembler directives summary

DESCRIPTION OF ASSEMBLER DIRECTIVES

The following pages give reference information about the assembler directives.

Module control directives

AAPCS [modifier [..

.11

END

PRESERVES8

REQUIRES8

RTMODEL key , value
key A text string specifying the key.
modifier An AAPCS extension—possible values are INTERWORK, VFP, VEP_COMPATIBLE, ROPI,

RWPI, RWPI_ COMPATIBLE. Modifiers can be combined to specify AAPCS variants.

value A text string specifying the value.

IAR Assembler User Guide

76

Description of assembler directives Assembler directives

Module control directives are used for marking the beginning and end of source program modules, and for
assigning names and types to them. For information about the restrictions that apply when using a directive
in an expression, see Expression restrictions, page 23.

Directive = Description Expression restrictions
END Ends the assembly of the module in a file. Locally defined symbols plus offset or integer constants
RTMODEL Declares runtime model attributes. Not applicable

Table 16. Module control directives

Use END to indicate the end of the source file. Any lines after the END directive are ignored. The END
directive also ends the module in the file.

In 32-bit mode, you can set specific attributes on a module to inform the linker that the exported functions
in the module are compliant to certain parts of the AEABI standard.

Use AAPCS, optionally with modifiers, to indicate that a module is compliant with the AAPCS
specification. Use PRESERVES if the module preserves an 8-byte aligned stack and REQUIRES if an
8-byte aligned stack is expected.

l:? It is up to you to verify that the module is compliant to these parts, as the assembler does not
verify this. In 64-bit mode, these directives have no effect.

IAR Assembler User Guide 77

Description of assembler directives Assembler directives

Use RTMODEL to enforce consistency between modules. All modules that are linked together and define
the same runtime attribute key must have the same value for the corresponding key value, or the special
value *. Using the special value * is equivalent to not defining the attribute at all. It can however be useful
to explicitly state that the module can handle any runtime model.

A module can have several runtime model definitions.

li? The compiler runtime model attributes start with double underscores. In order to avoid
confusion, this style must not be used in the user-defined assembler attributes.

If you are writing assembler routines for use with C or C++ code, and you want to control the module

consistency, refer to the /AR C/C++ Development Guide for Arm.

The following examples define three modules in one source file each, where:

*+ MOD 1 andMOD_2 cannot be linked together since they have different values for runtime model CAN.

* MOD_1 andMOD 3 can be linked together since they have the same definition of runtime model
RTOS and no conflict in the definition of CAN.

* MOD_2andMOD_3 can be linked together since they have no runtime model conflicts. The value *
matches any runtime model value.

Assembler source file £1.s:
module mod 1

rtmodel "CAN", "IS011519"
rtmodel "Platform", "M7"

end
Assembler source file £2.s:
module mod 2

rtmodel "CAN", "IS011898"
rtmodel "Platform", "*"

’

end
Assembler source file £3.s:

module mod 3
rtmodel "Platform", "M7"

7

end

Symbol control directives

EXTERN symbol [,symbol]
EXTWEAK symbol [,symbol]
IMPORT symbol [,symbol]
PUBLIC symbol [,symbol]

PUBWEAK symbol [,symbol]

IAR Assembler User Guide 78

Description of assembler directives Assembler directives

REQUIRE symbol

symbol Symbol to be imported or exported.

These directives control how symbols are shared between modules:

Directive Description

EXTERN, IMPORT Imports an external symbol.

EXTWEAK Imports an external symbol. The symbol can be undefined.
OVERLAY Recognized but ignored.

PUBLIC Exports symbols to other modules.

PUBWEAK Exports symbols to other modules, multiple definitions allowed.
REQUIRE Forces a symbol to be referenced.

Table 17. Symbol control directives

Use PUBLIC to make one or more symbols available to other modules. Symbols defined PUBLIC can be
relocatable or absolute, and can also be used in expressions (with the same rules as for other symbols).

The PUBLIC directive always exports full 32-bit values, which makes it feasible to use global 32-bit
constants also in assemblers for 8-bit and 16-bit processors. With the L.OW, HIGH, >>, and << operators,
any part of such a constant can be loaded in an 8-bit or 16-bit register or word.

There can be any number of PUBLIC-defined symbols in a module.

PUBWEAK is similar to PUBLIC except that it allows the same symbol to be defined in more than one
module. Only one of those definitions is used by the linker. If a module containing a PUBLIC definition
of a symbol is linked with one or more modules containing PUBWEAK definitions of the same symbol, the
linker uses the PUBLIC definition.

Library modules are only linked if a reference to a symbol in that module is made, and

0 that symbol was not already linked. During the module selection phase, no distinction is
made between PUBLIC and PUBWEAK definitions. This means that to ensure that the module
containing the PUBLIC definition is selected, you should link it before the other modules, or
make sure that a reference is made to some other PUBLIC symbol in that module.

Use EXTERN or IMPORT to import an untyped external symbol.

The REQUIRE directive marks a symbol as referenced. This is useful if the section containing the symbol
must be loaded even if the code is not referenced.

The following example defines a subroutine to print an error message, and exports the entry address err
so that it can be called from other modules. Because the message is enclosed in double quotes, the string
will be followed by a zero byte.

It defines print as an external routine—the address is resolved at link time.

IAR Assembler User Guide 79

Description of assembler directives Assembler directives

name errorMessage
extern print
public err

section MYCODE:CODE (2)

arm
err adr r0,msg
bl print
bx 1r
data
msg dc8 "x* Error **"
end

Mode control directives

ARM

CODE

CODE16

CODE32

DATA

DATA64

THUMB

These directives provide control over the processor mode:

Directive

ARM, CODE32

CODE

CODE16

DATA

DATA6G4

THUMB

Description
Subsequent instructions are assembled as 32-bit (Arm) instructions. Labels within a CODE32 area
have bit 0 set to 0. Force 4-byte alignment.

Subsequent instructions are interpreted as Arm or Thumb instructions, depending on the setting
of the assembler option ~-arm, -—cpu_mode, or —-thumb, or as A64 instructions in AArch64

state, if any of the options -~aarch64, --abi, or --cpu _mode a64 have been used.

Subsequent instructions are assembled as 16-bit (Thumb) instructions, using the traditional
CODEL16 syntax. Labels within a CODE16 area have bit 0 set to 1. Force 2-byte alignment.

Defines an area of data within a code section, where labels work as in a CODE32 area.

Defines an area of 64-bit aligned data within a code section, where labels work as in a CODE area
for the A64 instruction set in the AArch64 state.

Subsequent instructions are assembled either as 16-bit Thumb instructions, or as 32-bit Thumb-2
instructions if the specified core supports the Thumb-2 instruction set. The assembler syntax
follows the Unified Assembler syntax as specified by Arm Limited.

Table 18. Mode control directives

To change between the Thumb and Arm processor modes, use the CODE16/THUMB and CODE32/ARM
directives with the BX instruction (Branch and Exchange) or some other instruction that changes the
execution mode. The CODE16/THUMB and CODE32/ARM mode directives do not assemble to instructions
that change the mode, they only instruct the assembler how to interpret the following instructions.

The use of the mode directives CODE32 and CODE1 6 is deprecated. Instead, use ARM and THUMB,

respectively.

IAR Assembler User Guide

80

Description of assembler directives

Always use the DATA directive when defining data in a Thumb code section with DC8, DC16, or DC32,
otherwise labels on the data will have bit 0 set. Note that there is no way of changing between the Arm or
Thumb processor modes to the A64 instruction set in the AArch64 state, or back.

(? Be careful when porting assembler source code written for other assemblers. The IAR
Assembler always sets bit 0 on Thumb code labels (local, external or public). See the chapter
Migrating to the IAR Assembler for Arm, page 126 for details.

The assembler will initially be in Arm mode, except if you specified a core which does not support Arm
mode. In this case, the assembler will initially be in Thumb mode.

The following example shows how a Thumb entry to an Arm function can be implemented:

name modeChange
section MYCODE:CODE (2)
thumb
thumbEntry
bx pc ; Branch to armEntry, and
; change execution mode.
nop ; For alignment only.
arm
armEntry
end

The following example shows how 32-bit labels are initialized after the DATA directive. The labels can be
used within a Thumb section.

name dataDirective
section MYCODE:CODE (2)
thumb
thumbLabel 1dr r0,dataLabel
bx 1r
data ; Change to data mode, so
; that bit 0 is not set
; on labels.
datalabel dc32 0x12345678

dc32 0x12345678

end

Section control directives

ALIGN align [, value]

ALIGNRAM align

ALIGNROM align [, value]

ASEGN section [: type] [: flag] [, address]
EVEN [value]

ODD [value]

RSEG section [: type] [: flag] [(align)]

SECTION section [: type] [: flag] [(align)]

IAR Assembler User Guide 81

Assembler directives

Description of assembler directives

SECTION TYPE type-expr {, flags—-expr }

address

align

flag

section

type

value

type-expr

flags-
expr

Address where this section part is placed.

Assembler directives

The power of two to which the address should be aligned. The permitted range is 0 to 8. The
default align value is 0, except for code sections where the default is 1.

ROOT, NOROOT

ROOT (the default mode) indicates that the section fragment must not be discarded.

NOROOT means that the section fragment is discarded by the linker if no symbols in this
section fragment are referred to. Normally, all section fragments except startup code and

interrupt vectors should set this flag.
REORDER, NOREORDER

NOREORDER (the default mode) starts a new fragment in the section with the given name, or a

new section if no such section exists.

REORDER starts a new section with the given name.

The name of the section. The section name is a user-defined symbol that follows the rules

described in Symbols, page 18.
The memory type, which can be either CODE, CONST, or DATA.

4-byte value used for padding. The default is zero. The padding demand determines how

many bytes are used from the value, starting from the lowest byte.
A constant expression that identifies the ELF type of the section.

A constant expression that identifies the ELF flags of the section.

The section directives control how code and data are located. For information about the restrictions that
apply when using a directive in an expression, see £xpression restrictions, page 23.

Directive

ALIGN

ALIGNRAM

ALIGNROM

ASEGN

EVEN

ODD

RSEG

Description

Aligns the program location counter by inserting zero-filled
bytes.

Aligns the program location counter by incrementing it.
Aligns the program location counter by inserting zero-filled
bytes.

Begins a named absolute section.

Aligns the program counter to an even address.

Aligns the program counter to an odd address.

Begins an ELF section—alias to SECTION.

Expression restrictions

No external references

Absolute

No external references

Absolute

No external references

Absolute

No external references

Absolute
No external references

Absolute
No external references

Absolute
No external references

Absolute

IAR Assembler User Guide

82

Description of assembler directives Assembler directives

Directive Description Expression restrictions
SECTION Begins an ELF section. No external references
Absolute

SECTION TYPE Sets ELF type and flags for a section.

STACK Begins a stack segment.

Table 19. Section control directives

Use ASEGN to start a named absolute section located at the address address.

This directive has the advantage of allowing you to specify the memory type of the section.

Use SECTION (or RSEG) to start a new section. The assembler maintains separate location counters

(initially set to zero) for all sections, which makes it possible to switch sections and mode anytime without

having to save the current program location counter.

ﬁ The first instance of a SECTION or RSEG directive must not be preceded by any code
generating directives, such as DC8 or DS8, or by any assembler instructions.
To set the ELF type, and possibly the ELF flags for the newly created section, use SECTION TYPE.

By default, the values of the flags are zero. For information about valid values, refer to the ELF
documentation.

In the following example, the data following the first SECTION directive is placed in a relocatable section

called MYDATA.

The code following the second SECTION directive is placed in a relocatable section called MYCODE:

name calculate
extern subrtn,divrtn

section MYDATA:DATA (2)

data
funcTable dc32 subrtn
dc32 divrtn

section MYCODE:CODE (2)
arm

main 1ldr r0,=funcTable ; Get address, and
1dr pc, [r0] ; Jjump to it.
end

IAR Assembler User Guide 83

Description of assembler directives Assembler directives

Use ALTIGNROM to align the program location counter to a specified address boundary. You do this by

specifying an expression for the power of two to which the program counter should be aligned. That is, a
value of 1 aligns to an even address, and a value of 2 aligns to an address evenly divisible by 4.

The alignment is made relative to the section start—normally this means that the section alignment must be
at least as large as that of the alignment directive to give the desired result.

ALIGNROM aligns by inserting zero/filled bytes, up to a maximum of 255. The EVEN directive aligns the
program counter to an even address (which is equivalent to ALIGNROM 1), and the ODD directive aligns

the program location counter to an odd address. The value used for padding bytes must be within the range
0 to 255.

Use ALIGNRAM to align the program location counter to a specified address boundary. The expression
gives the power of two to which the program location counter should be aligned. ALIGNRAM aligns by
incrementing the program location counter—no data is generated.

For both RAM and ROM, the parameter a1ign can be within the range 0 to 30.

This example starts a section, and adds some data. It then aligns to a 64-byte boundary before creating a
64-byte table. The section has an alignment of 64 bytes to ensure the 64-byte alignment of the table.

name alignment
section MYDATA:DATA(6) ; Start a relocatable data
; section aligned to a
; 64-byte boundary.
data
targetl dslé6 1 ; Two bytes of data.
alignram 6 ; Align to a 64-byte boundary
results ds8 64 ; Create a 64-byte table, and
target2 dslé6 1 ; two more bytes of data.
alignram 3 ; Align to an 8-byte boundary
ages ds8 64 ; and create another 64-byte
; table.
end

Value assignment directives

label = expr

label ALIAS expr

label ASSIGN expr

label DEFINE const expr
label EQU expr

label SET expr

label SETA expr

label VAR expr

IAR Assembler User Guide 84

Description of assembler directives Assembler directives

const_expr Constant value assigned to symbol.
expr Value assigned to symbol or value to be tested.
label Symbol to be defined.

These directives are used for assigning values to symbols:

Directive Description
=, EQU Assigns a permanent value local to a module.
ALIAS Assigns a permanent value local to a module.

ASSIGN, SET, SETA,VAR Assigns a temporary value.

DEFINE Defines a file-wide value.

Table 20. Value assignment directives

Use ASSIGN, SET, or VAR to define a symbol that might be redefined, such as for use with macro
variables. Symbols defined with ASSIGN, SET, or VAR cannot be declared PUBLIC.

This example uses SET to redefine the symbol cons in a loop to generate a table of the first 8 powers of 3:

name table
cons set 1

; Generate table of powers of 3.

cr_tabl macro times
dc32 cons

cons set cons * 3
if times > 1
cr_tabl times - 1
endif
endm

section .text:CODE (2)
table cr_tabl 4
end

Use EQU or = to create a local symbol that denotes a number or offset. The symbol is only valid in the
module in which it was defined, but can be made available to other modules with a PUBLIC directive (but
not with a PUBWEAK directive).

Use EXTERN to import symbols from other modules.

IAR Assembler User Guide 85

Description of assembler directives Assembler directives

Use DEFINE to define symbols that should be known to the module containing the directive. After the
DEFINE directive, the symbol is known.

A symbol which was given a value with DEFINE can be made available to modules in other files with the
PUBLIC directive.

Symbols defined with DEFINE cannot be redefined within the same file. Also, the expression assigned to
the defined symbol must be constant.

Conditional assembly directives

ELSE
ELSEIF condition
ENDIF

IF condition

condition One of these:
An absolute expression The expression must not contain forward or external references,
and any non-zero value is considered as true.
stringl=string2 The condition is true if stringl and string2 have the same
length and contents.
stringl<>string2 The condition is true if stringl and string2 have different

length or contents.

Use the IF, ELSE, and ENDIF directives to control the assembly process at assembly time. If the
condition following the IF directive is not true, the subsequent instructions do not generate any code (that
is, it is not assembled or syntax checked) until an ELSE or ENDIF directive is found.

Use ELSEIF to introduce a new condition after an IF directive. Conditional assembly directives can be
used anywhere in an assembly, but have their greatest use in conjunction with macro processing.

All assembler directives (except for END) as well as the inclusion of files can be disabled by the conditional
directives. Each TF directive must be terminated by an ENDIF directive. The ELSE directive isand

ENDIF directives are optional, and if used, must be inside an IF. . .ENDIF block. IF...ENDIF and
IF...ELSE...ENDIF blocks can be nested to any level.

This example uses a macro to add a constant to a register

?add macro a,b,c
if _args == 2
adds a,a, #b
elseif _args ==
adds a,b, #c

IAR Assembler User Guide 86

Description of assembler directives

main

Assembler directives

endif

endm

name addWithMacro

section MYCODE:CODE (2)

arm

?add rl, OxFF ; This,

?add rl,rl, OxFF ; and this,

adds rl,rl, #0xFF ; are the same as this.
end

Macro processing directives

_args

ENDM

ENDR

EXITM

LOCAL symbol [,symbol]

name MACRO [argument] [,argument]

REPT expr

REPTC formal,actual

REPTI formal,actual [,actuall]

actual
argument
expr

formal

name

symbol

Strings to be substituted.
Symbolic argument names.

An expression.

An argument into which each character of actual (REPTC) or each string of actual

(REPTTI) is substituted.

The name of the macro.
Symbols to be local to the macro.

These directives allow user macros to be defined. For information about the restrictions that apply when
using a directive in an expression, see Expression restrictions, page 23.

Directive
_args
ENDM
ENDR
EXITM

LOCAL

MACRO

Description

Is set to number of arguments passed to macro.
Ends a macro definition.

Ends a repeat structure.

Exits prematurely from a macro.

Creates symbols local to a macro.

Defines a macro.

Expression restrictions

IAR Assembler User Guide 87

Description of assembler directives Assembler directives

Directive Description Expression restrictions
REPT Assembles instructions a specified number of times. No forward references

No external references
Absolute

Fixed
REPTC Repeats and substitutes characters.

REPTI Repeats and substitutes text.

Table 21. Macro processing directives

A macro is a user-defined symbol that represents a block of one or more assembler source lines. Once you
have defined a macro, you can use it in your program like an assembler directive or assembler mnemonic.

When the assembler encounters a macro, it looks up the macro’s definition, and inserts the lines that the
macro represents as if they were included in the source file at that position.

Macros perform simple text substitution effectively, and you can control what they substitute by supplying
parameters to them.

The macro process consists of three distinct phases:

1. The assembler scans and saves macro definitions. The text between MACRO and ENDM is saved but not
syntax checked. Include-file references $ £i 1e are recorded and included during macro expansion.

2. A macro call forces the assembler to invoke the macro processor (expander). The macro expander
switches (if not already in a macro) the assembler input stream from a source file to the output from
the macro expander. The macro expander takes its input from the requested macro definition.

The macro expander has no knowledge of assembler symbols since it only deals with text substitutions
at source level. Before a line from the called macro definition is handed over to the assembler, the
expander scans the line for all occurrences of symbolic macro arguments, and replaces them with their
expansion arguments.

3. The expanded line is then processed as any other assembler source line. The input stream to the
assembler continues to be the output from the macro processor, until all lines of the current macro
definition have been read.

IAR Assembler User Guide 88

Description of assembler directives Assembler directives

You define a macro with the statement:
name MACRO [argument] [,argument]

Here name is the name you are going to use for the macro, and argument is an argument for values that
you want to pass to the macro when it is expanded.

For example, you could define a macro errMacro as follows:

name errMacro

extern abort
errMac macro text

bl abort

data

dc8 text, 0

endm

This macro uses a parameter text (passed in LR) to set up an error message for a routine abort. You
would call the macro with a statement such as:

section MYCODE:CODE (2)

arm
errMac 'Disk not ready'

The assembler expands this to:

section MYCODE:CODE (2)
arm

bl abort

data

dc8 'Disk not ready',O0
end

If you omit a list of one or more arguments, the arguments you supply when calling the macro are called
\1to\9and \Ato\Z.

The previous example could therefore be written as follows:

name errMacro

extern abort
errMac macro text

bl abort

data

dc8 \1,0

endm

Use the EXITM directive to generate a premature exit from a macro.
EXITM is not allowed inside REPT...ENDR, REPTC...ENDR, or REPTI...ENDR blocks.

Use LOCAL to create symbols local to a macro. The LOCAL directive must be used before the symbol is
used.

Each time that a macro is expanded, new instances of local symbols are created by the LOCAL directive.
Therefore, it is legal to use local symbols in recursive macros.

l:? It is illegal to redefine a macro.

IAR Assembler User Guide 89

Description of assembler directives Assembler directives

Macro arguments that include commas or white space can be forced to be interpreted as one argument by
using the matching quote characters < and > in the macro call.

For example:

name cmpMacro
cmp_reg macro op

CMP op

endm

The macro can be called using the macro quote characters:
section MYCODE:CODE (2)
cmp reg <r3,r4>

end

You can redefine the macro quote characters with the -M command line option, see -, page 47.

IAR Assembler User Guide 90

Description of assembler directives Assembler directives

The symbol _args is set to the number of arguments passed to the macro. This example shows how
_args can be used:

fill macro
if _args ==
rept \2
dc8 \1
endr
else
dc8 \1
endif
endm

module filler
section .text:CODE (2)

fill 3
fill 4, 3
end

It generates this code:

19 module fill

20 section .text:CODE (2)
21 fill 3

21.1 if _args ==
21.2 rept

21.3 dc8 3

21.4 endr

21.5 else

21 00000000 03 fill 3

21.1 endif

21.2 endm

22 fill 4, 3
22.1 if _args ==
22.2 rept 3

22.3 dc8 4

22.4 endr

22 00000001 04 dc8 4

22 00000002 04 dc8 4

22 00000003 04 dc8 4

22.1 else

22.2 dc8 4

22.3 endif

22.4 endm

23 end

IAR Assembler User Guide 91

Description of assembler directives

Assembler directives

Use the REPT. . . ENDR structure to assemble the same block of instructions several times. If expr
evaluates to 0 nothing is generated.

Use REPTC to assemble a block of instructions once for each character in a string. If the string contains a
comma it should be enclosed in quotation marks.

Double quotes have a special meaning—their only use is to enclose the characters to iterate over. Single
quotes have no special meaning and are treated as ordinary characters.

Use REPTT to assemble a block of instructions once for each string in a series of strings. Strings

containing commas should be enclosed in quotation marks.

This example assembles a series of calls to a subroutine plotc to plot each character in a string:

name reptc
extern plotc
section

banner reptc
movs r0,#'chr'
bl plotc
endr
end

MYCODE : CODE (2)

chr, "Welcome"

This produces this code:

9
10
11
12
13 ban
14
15
16
16.1 00000000
16.2 00000004
16.3 00000008
16.4 0000000C
16.5 00000010
16.6 00000014
16.7 00000018
16.8 0000001C
16.9 00000020
16.10 00000024
16.11 00000028
16.12 0000002C
16.13 00000030
16.14 00000034
17

18

This example uses REPTI to clear several memory locations:

name
extern

ner

5700BOE3

repti
a,b,c

name
extern

section MYCODE:CODE (2)

reptc
movs
bl
endr
movs
bl
movs
bl
movs
bl
movs
bl
movs
bl
movs
bl
movs
bl

end

section MYCODE:CODE (2)

clearABC movs
repti
ldr
str
endr

IAR Assembler User Guide

r0, #0

location,a,b,c
rl,=location

r0, [rl]

; Pass char as parameter.

reptc
plotc

chr, "Welcome"

r0,#'chr'
plotc

rO, #'W'
plotc
r0,#'e’
plotc
r0,#'1"'
plotc
r0,#'c’
plotc
r0,#'o"'
plotc
r0, #'m'
plotc
r0,#'e"
plotc

92

Pass

Pass

Pass

Pass

Pass

Pass

char

char

char

char

char

char

as

as

as

as

as

as

Pass char as parameter

Pass char as parameter

parameter.

parameter.

parameter.

parameter.

parameter.

Description of assembler directives

end

This produces this code:

9
10
11
12
13
14
15
16
17

17.
17.
17.
17.
17.
17.

18
19

o U W N

00000000

00000004
00000008
0000000C
00000010
00000014
00000018

IAR Assembler User Guide

0000BOE3

10109FES
000081ES
0C109FES
000081ES
08109FES
000081ES

name
extern

repti
a,b,c

section MYCODE:CODE (2)

clearABC
repti
1ldr
str
endr
1ldr
str
ldr
str
ldr
str

end

movs r0, #0
location,a,b,c
rl,=location
r0, [rl]

rl,=a
r0, [rl]
rl,=b
r0, [rl]
rl,=c
r0, [rl]

93

Assembler directives

Description of assembler directives Assembler directives

In time-critical code it is often desirable to code routines inline to avoid the overhead of a subroutine call
and return. Macros provide a convenient way of doing this.

This example outputs bytes from a buffer to a port:

name ioBufferSubroutine
section MYCODE:CODE (2)
arm
play ldr rl,=buffer ; Pointer to buffer.
1ldr r2,=ioPort ; Pointer to ioPort.
1ldr r3,=512 ; Size of buffer.
add r3,r3,rl ; Address of first byte
; after buffer.
loop 1drb rd, [r1l],#1 ; Read a byte of data, and
strb rd, [r2] ; write it to the ioPort.
cmp rl,r3 ; Reached first byte after?
bne loop ; No: repeat.
bx 1r ; Return.
ioPort equ 0x0100
section MYDATA:DATA (2)
data
buffer ds8 512 ; Reserve 512 Dbytes.
section MYCODE:CODE (2)
arm
main bl play
done b done
end

For efficiency we can recode this using a macro:

name ioBufferInline
play macro buf,size,port
local loop
ldr rl,=buf ; Pointer to buffer.
ldr r2,=port ; Pointer to ioPort.
1ldr r3,=size ; Size of buffer.
add r3,r3,rl ; Address of first byte
; after buffer.
loop 1ldrb rd, [r1l],#1 ; Read a byte of data, and
strb rd, [r2] ; write it to the ioPort.
cmp rl, r3 ; Reached first byte after?
bne loop ; No: repeat.
endm
ioPort equ 0x0100
section MYDATA:DATA (2)
data
buffer ds8 512 ; Reserve 512 bytes.
section MYCODE:CODE (2)
arm
main play buffer,512,ioPort
done b done
end

Notice the use of the LOCATL directive to make the label 1oop local to the macro—otherwise an error is
generated if the macro is used twice, as the 1oop label already exists.

IAR Assembler User Guide

94

Description of assembler directives Assembler directives

Listing control directives

COL columns
LSTCND{+ |-}
LSTCOD{+ |-}
LSTEXP{+|-}
LSTMAC{+ |-}
LSTOUT{+ |-}
LSTPAG{+|-}
LSTREP{+ |-}
LSTXRE{+ |-}
PAGE

PAGSIZ lines

columns An absolute expression in the range 80 to 132. The default is 80.

lines An absolute expression in the range 10 to 150. The default is 44.

These directives provide control over the assembler list file:

Directive Description

COoL Sets the number of columns per page.

LSTCND Controls conditional assembly listing.

LSTCOD Controls multi-line code listing.

LSTEXP Controls the listing of macro-generated lines.

LSTMAC Controls the listing of macro definitions.

LSTOUT Controls assembly-listing output.

LSTPAG Controls the formatting of output into pages.

LSTREP Controls the listing of lines generated by repeat directives.
LSTXREF Generates a cross-reference table.

PAGE Generates a new page.

PAGSIZ Setsthe number of lines per page.

Table 22. Listing control directives

IAR Assembler User Guide 95

Description of assembler directives Assembler directives

Use LSTOUT- to disable all list output except error messages. This directive overrides all other listing
control directives.

The default is LSTOUT+, which lists the output (if a list file was specified).

To disable the listing of a debugged section of program:

lstout-

; This section has already been debugged.
lstout+

; This section is currently being debugged.
end

Use LSTCND+ to force the assembler to list source code only for the parts of the assembly that are not
disabled by previous conditional IF statements.

The default setting is LSTCND-, which lists all source lines.
Use LSTCOD- to restrict the listing of output code to just the first line of code for a source line.

The default setting is LSTCOD+, which lists more than one line of code for a source line, if needed—that
is, long ASCII strings produce several lines of output. Code generation is not affected.

This example shows how LSTCND+ hides a call to a subroutine that is disabled by an IF directive:
name lstcndTest

extern print
section FLASH:CODE (2)

debug set 0
if debug
bl print
endif
lstcnd+
begin2 if debug
bl print
endif
end

This generates the following listing:

9 name lstcndTest
10 extern print
11 section FLASH:CODE (2)
12
13 debug set 0
14 begin if debug
15 bl print
16 endif
17
18 lstcnd+
19 begin2 if debug
21 endif
22
23 end

IAR Assembler User Guide 96

Description of assembler directives

Assembler directives

Use LSTEXP- to disable the listing of macro-generated lines. The default is LSTEXP+, which lists all
macro-generated lines.

Use LSTMAC+ to list macro definitions. The default is LSTMAC-, which disables the listing of macro
definitions.

This example shows the effect of LSTMAC and LSTEXP:

dec2

inc2

begin

name lstmacTest
extern memLoc

section FLASH:CODE (2)

macro arg
subs rl,rl, #arg
subs rl,rl, #arg
endm

lstmac+

macro arg

adds rl,rl, #arg
adds rl,rl, #arg
endm

dec2 memLoc
lstexp-

inc2 memLoc

bx 1r

; Restore default values for
; listing control directives.

lstmac-
lstexp+

end

This produces the following output:

13
14
15
16
21
22
23
24
25
26
27
28

28.
28.
28.

29
30
31
32
33
34
35
36
37
38
39

N

inc2

00000000
00000004

00000010 1EFF2FEL

name
extern
section

lstmac+
macro
adds
adds
endm

dec2
subs
subs
endm
lstexp-
inc2

bx

lstmacTest
memLoc
FLASH:CODE (2)

arg
rl,rl, #arg
rl,rl, #arg

memLoc
rl,rl, #memLoc
rl,rl, #memLoc

memLoc
1r

; Restore default values for
; listing control directives.

IAR Assembler User Guide

lstmac-
lstexp+

end

97

Description of assembler directives Assembler directives

Use LSTREP- to turn off the listing of lines generated by the directives REPT, REPTC, and REPTI.

The default is LSTREP+, which lists the generated lines.

Use LSTXRF+ to generate a cross-reference table at the end of the assembler list for the current module.
The table shows values and line numbers, and the type of the symbol.

The default is LSTXRF -, which does not give a cross-reference table.

Use COL to set the number of columns per page of the assembler list. The default number of columns is 80.

Use PAGSIZ to set the number of printed lines per page of the assembler list. The default number of lines
per page is 44.

Use LSTPAG+ to format the assembler output list into pages.
The default is LSTPAG-, which gives a continuous listing.

Use PAGE to generate a new page in the assembler list file if paging is active.

C-style preprocessor directives

#define symbol text

#elif condition

#else

#endif

#error "message"

#if condition

#ifdef symbol

#ifndef symbol

#include {"filename" | <filename>}
#message "message"

#undef symbol

IAR Assembler User Guide 98

Description of assembler directives

condition

filename
message
symbol
text

The assembler has a C-style preprocessor that is similar to the C89 standard.

Assembler directives

An absolute assembler expression, see Expressions, operands, and operators, page 16.

The expression must not contain any assembler labels or symbols, and any non-zero value is
considered as true. The C preprocessor operator defined can be used.

Name of file to be included or referred.
Text to be displayed.
Preprocessor symbol to be defined, undefined, or tested.

Value to be assigned.

l:? The preprocessor expressions use the same precedence rules as the assembler operators.

These C-language preprocessor directives are available:

Directive
#define
#elif
#else
#endif
ferror
#if
#ifdef
#ifndef
#include
#message

fpragma

#undef

Description

Assigns a value to a preprocessor symbol.

Introduces a new condition inan #if. . . #endif block.
Assembles instructions if a condition is false.

Endsan #1if, #ifdef, or #ifndef block.

Generates an error.

Assembles instructions if a condition is true.

Assembles instructions if a preprocessor symbol is defined.
Assembles instructions if a preprocessor symbol is undefined.
Includes a file.

Generates a message on standard output.

This directive is recognized but ignored.

Undefines a preprocessor symbol.

Table 23. C-style preprocessor directives

You must not mix assembler language and C-style preprocessor directives. Conceptually, they are different
languages and mixing them might lead to unexpected behavior, as an assembler directive is not necessarily
accepted as a part of the C preprocessor language.

0 The preprocessor directives are processed before other directives. As an example, avoid
constructs like:

redef

macro ; Avoid the following!

fdefine \1 \2

endm

because the \ 1 and \ 2 macro arguments are not available during the preprocessing phase.

IAR Assembler User Guide 99

Description of assembler directives

Use #define to define a value of a preprocessor symbol.
#define symbol value

Use #undef to undefine a symbol—the effect is as if it had not been defined.

Use the #1f...#else..#endif directives to control the assembly process at assembly time. If the
condition following the #1 £ directive is not true, the subsequent instructions will not generate any code
(that is, it will not be assembled or syntax checked) until an #endi £ or #e1lse directive is found.

All assembler directives (except for END) and file inclusion can be disabled by the conditional directives.
Each #1i £ directive must be terminated by an #endi £ directive. The #e1se directive is optional and, if
used, must be inside an #1i f...#endi £ block.

#if..#endif and #if..#else..fendif blocks can be nested to any level.

Use #1ifdef to assemble instructions up to the next #e1se or #endi £ directive only if a symbol is
defined.

Use #1ifndef to assemble instructions up to the next #e1se or #endi £ directive only if a symbol is
undefined.

This example defines the labels tweak and adjust. If adjust is defined, then register RO is
decremented by an amount that depends on adjust, for example 30 when adjust is 3.

name calibrate
extern calibrationConstant
section MYCODE:CODE (2)

arm
#define tweak 1
#define adjust 3
calibrate 1dr r0,calibrationConstant
#ifdef tweak
#1if adjust==
subs r0,r0, #4
felif adjust==
subs r0,r0, #20
#elif adjust==3
subs r0,r0, #30
fendif
#endif /* ifdef tweak */
str r0,calibrationConstant
bx 1r
end

IAR Assembler User Guide 100

Assembler directives

Description of assembler directives Assembler directives

Use #include to insert the contents of a header file into the source file at a specified point.
#include" filename" and #include <filename> search these directories in the specified order:

1. The source file directory. (This step is only valid for #include "filename".)

2. The directories specified by the —I option, or options. The directories are searched in the same order
as specified on the command line, followed by the ones specified by environment variables.

3. The current directory, which is the same as where the assembler executable file is located.

4. The automatically set up library system include directories. See -g, page 44.

This example uses #include to include a file defining macros into the source file. For example, these
macros could be defined in Macros. inc:

; Exchange registers a and b.
; Use the register c for temporary storage.

xch macro a,b,c
movs c,a
movs a,b
movs b,c
endm

The macro definitions can then be included, using #include, as in this example:

name includeFile
section MYCODE:CODE (2)
arm

; Standard macro definitions.
finclude "Macros.inc"

xchRegs xch r0,rl, r2
bx 1r
end

Use #error to force the assembler to generate an error, such as in a user-defined test.

A #pragma line is ignored by the assembler, making it easier to have header files common to C and
assembler.

IAR Assembler User Guide 101

Description of assembler directives Assembler directives

If you make a comment within a define statement, use:

e the C comment delimiters /* ... */tocomment sections

* the C++ comment delimiter // to mark the rest of the line as comment.

Do not use assembler comments within a define statement as it leads to unexpected behavior.

This expression evaluates to 3 because the comment character is preserved by #define:
#define x 3 ; This is a misplaced comment.

module misplacedCommentl
expression equ x * 8 + 5

Joe e

end

This example illustrates some problems that might occur when assembler comments are used in the C-style

preprocessor:
#define five 5 ; This comment is not OK.
#define six 6 // This comment is OK.
#define seven 7 /* This comment is OK. */
module misplacedComment2
section MYCONST:CONST (2)
DC32 five, 11, 12
; The previous line expands to:
; "DC32 5 ; This comment is not OK., 11, 12"
DC32 six + seven, 11, 12
; The previous line expands to:
; "DC32 6 + 7, 11, 12"
end

Data definition or allocation directives

DC8 expr [,expr]
DC16 expr [,expr]
DC24 expr [,expr]
DC32 expr [,expr]
DC64 expr [,expr]
DCB expr [,expr]
DCD expr [,expr]
DCQ expr [,expr]
DCW expr [,expr]
DFl6 value [,value]

DF32 value [,value]

IAR Assembler User Guide 102

Description of assembler directives

DF64 value

DS count

DS8 count

DS16 count

DS24 count

DS32 count

DS64 count

count

expr

value

[, value]

Assembler directives

A valid absolute expression specifying the number of elements to be reserved.

A valid absolute, relocatable, or external expression, or an ASCII string. ASCII strings are zero
filled to a multiple of the data size implied by the directive. Double-quoted strings are zero-

terminated. For DC64, expr cannot be relocatable or external.

A valid absolute expression or floating-point constant.

These directives define values or reserve memory.

Use DC8, DC16, DC24, DC32, DC64,DCB, DCD, DCQ, DCW, DF16, DF32, or DF64 to create a constant,

which means an area of bytes is reserved big enough for the constant.

Use DS8, DS16, DS24, DS32, or DS64 to reserve a number of uninitialized bytes.

For information about the restrictions that apply when using a directive in an expression, see Expression

restrictions, page 23.

The column A/jas in the following table shows the Arm Limited directive that corresponds to the IAR

directive.

DC8

DC16
DC24
DC32
DC64
DF16
DF32
DF64
DS8

DS16
DS24
DS32

DS64

DCB

DCW

DCD
DCQ

DS

Directive Alias Description

Generates 8-bit constants, including strings.
Generates 16-bit constants.

Generates 24-bit constants.

Generates 32-bit constants.

Generates 64-bit constants.

Generates 16-bit floating-point constants.
Generates 32-bit floating-point constants.
Generates 64-bit floating-point constants.
Allocates space for 8-bit integers.
Allocates space for 16-bit integers.
Allocates space for 24-bit integers.
Allocates space for 32-hit integers.

Allocates space for 64-bit integers.

Table 24. Data definition or allocation directives

IAR Assembler User Guide

103

Description of assembler directives Assembler directives

lf? Relocatable expressions cannot be used in a DC8 directive.

This example sums up the entries of a constant table of 8-bit data.

module sumTableAndIndex
section MYDATA:CONST

data

table dc8 12
dc8 15
dc8 17
dc8 16
dc8 14
dc8 11
dc8 9

section MYCODE:CODE (2)

arm
count set 0
addTable movs r0, #0
ldr rl,=table
rept 7
if count ==
exitm
endif
1drb r2, [rl, #count]
adds r0,r0,xr2
count set count + 1
endr
bx 1r
end

To define a string:

myMsg DC8 'Please enter your name'

To define a string which includes a trailing zero:

myCstr DC8 "This is a string.”

To include a single quote in a string, enter it twice, for example:

errMsg DC8 'Don''t understand!'’

To reserve space for 10 bytes:

table DS8 10

IAR Assembler User Guide 104

Description of assembler directives Assembler directives

Assembler control directives

Sfilename

/* comment */

// comment
CASEQFF

CASEON

INCLUDE filename
LTORG

RADIX expr

comment Comment ignored by the assembler.
expr Default base—default 10 (decimal).
filename Name of file to be included. The $ character must be the first character on the line.

These directives provide control over the operation of the assembler. For information about the restrictions
that apply when using a directive in an expression, see Expression restrictions, page 23.

Directive Description Expression restrictions
$ Includes a file.

/*comment*/ C-style comment delimiter.

// C++ style comment delimiter.

CASEOFF Disables case sensitivity.

CASEON Enables case sensitivity.

INCLUDE Includes a file.

LTORG Directs the current literal pool to be assembled immediately after

the directive.
RADIX Sets the default base on all numeric values. No forward references

No external references
Absolute

Fixed

Table 25. Assembler control directives

Use $ to insert the contents of a file into the source file at a specified point. $ £iIename is an alias for
#include "filename", see the section /ncluding source files under C-style preprocessor directives,
page 98. The $ character must be the first character on the line.

Use /*...*/to comment sections of the assembler listing.

Use // to mark the rest of the line as comment.

IAR Assembler User Guide 105

Description of assembler directives

Assembler directives

Use INCLUDE to insert the contents of a file into the source file at a specified point. INCLUDE
filenameisan alias for #include <filename>, see the section /ncluding source filesunder C-style
preprocessor directives, page 98. Note that INCLUDE only searches in the system header directories.

Use LTORG to direct where the current literal pool is to be assembled. By default, this is performed at

every END and RSEG directive. For an example, see LDR (ARM), page 119.

Use RADIX to set the default base for constants. The default base is 10.

Use CASEON or CASEOFF to turn case sensitivity on or off for user-defined symbols. By default, case

sensitivity is off.

When CASEOFF is active all symbols are stored in upper case, and all symbols used by ilink should be

written in upper case in the ilink definition file.
When CASEOFF is set, label and LABEL are identical in this example:

module caseSensitivityl
section MYCODE:CODE (2)

caseoff

label nop
b LABEL
end

; Stored as

The following will generate a duplicate label error:

module caseSensitivity2

caseoff
label nop
LABEL nop

end

IAR Assembler User Guide

; Stored as
"LABEL" already defined.

106

Description of assembler directives Assembler directives

This example uses $ to include a file defining macros into the source file. For example, these macros could
be defined in Macros. inc:

; Exchange registers a and b.
; Use register c for temporary storage.

xch macro a,b,c
movs c,a
movs a,b
movs b,c
endm

The macro definitions can be included with a $ directive, as in:

name includeFile
section MYCODE:CODE (2)

; Standard macro definitions.
SMacros.inc

xchRegs xch rO,rl,r2
bx 1r
end

This example shows how /* . . . */ can be used for a multi-line comment:

/*

Program to read serial input.
Version 1: 19.2.11

Author: mjp

*/

See also the section Comments in C-style preprocessor directives under C-style preprocessor directives,
page 98.

To set the default base to 16:

module radix
section MYCODE:CODE (2)

radix 16 ; With the default base set

movs r0, #12 ; to 16, the immediate value

H ; of the mov instruction is
; interpreted as 0x12.

; To reset the base from 16 to 10 again, the argument must be
; written in hexadecimal format.

radix 0x0a ; Reset the default base to 10.
movs r0,#12 ; Now, the immediate value of
PR ; the mov instruction is

; interpreted as 0x0c.
end

IAR Assembler User Guide 107

Description of assembler directives Assembler directives

Function directives

CALL GRAPH ROOT function [,category]

function The function, a symbol.

category An optional call graph root category, a string.

Use this directive to specify that, for stack usage analysis purposes, the function function isa call graph
root. You can also specify an optional category, a quoted string.

The compiler will generate this directive in assembler list files, when needed.

CALL GRAPH ROOT my interrupt, "interrupt"

Call frame information directives for stack usage analysis, page 113, for information about CFI directives
required for stack usage analysis.

IAR C/C++ Development Guide for Arm for information about how to enable and use stack usage analysis.

Call frame information directives for names blocks

Names block directives:

CFI

CFI

CFI

CFI

CFI

CFI

CFI

NAMES name

ENDNAMES name

RESOURCE resource : bits [, resource : bits]
VIRTUALRESOURCE resource : bits [, resource : bits]
RESOURCEPARTS resourcepart, part[, part] ...
STACKFRAME cfa resource type [, cfa resource type]

BASEADDRESS cfa type [, cfa type]

bits The size of the resource in bits.
crfa The name of a CFA (canonical frame address).
name The name of the block.

namesblock The name of a previously defined names block.

offset The offset relative the CFA. An integer with an optional sign.
part A part of a composite resource. The name of a previously declared resource.
resource The name of a resource.

IAR Assembler User Guide 108

Description of assembler directives Assembler directives

size The size of the frame cell in bytes.

type The segment memory type, such as CODE, CONST, or DATA. In addition, any of the memory
types supported by the linker. It is only used for denoting an address space.

Use these directives to define a names block:

Directive Description

CFI BASEADDRESS Declares a base address CFA (Canonical Frame Address).
CFI ENDNAMES Ends a names block.

CFI FRAMECELL Creates a reference into the caller’s frame.

CFI NAMES Starts a names block.

CFI RESOURCE Declares a resource.

CFI RESOURCEPARTS Declares a composite resource.

CFI STACKFRAME Declares a stack frame CFA.

CFI VIRTUALRESOURCE Declares a virtual resource.

Table 26. Call frame information directives names block

Examples of using CFI directives, page 31

Tracking call frame usage, page 25

Call frame information directives for common blocks

Common block directives:

CFI COMMON name USING namesblock

CFI ENDCOMMON name

CFI CODEALIGN codealignfactor

CFI DATAALIGN dataalignfactor

CFI DEFAULT { UNDEFINED | SAMEVALUE }

CFI RETURNADDRESS resource type

codealignfactor The smallest common factor of all instruction sizes. Each CFI directive for a data
block must be placed according to this alignment. 1 is the default and can always
be used, but a larger value reduces the produced call frame information in size. The
possible range is 1-256.

commonblock The name of a previously defined common block.

dataalignfactor The smallest common factor of all frame sizes. If the stack grows toward higher
addresses, the factor is negative; if it grows toward lower addresses, the factor
is positive. 1 is the default, but a larger value reduces the produced call frame
information in size. The possible ranges are —256 to —1 and 1 to 256.

IAR Assembler User Guide 109

Description of assembler directives Assembler directives

name The name of the block.

namesblock The name of a previously defined names block.

resource The name of a resource.

type The memory type, such as CODE, CONST, or DATA. In addition, any of the segment

memory types supported by the linker. It is only used for denoting an address space.

Use these directives to define a common block:

Directive Description

CFI CODEALIGN Declares code alignment.

CFI COMMON Starts or extends a common block.

CFI DATAALIGN Declares data alignment.

CFI DEFAULT Declares the default state of all resources.
CFI ENDCOMMON Ends a common block.

CFI RETURNADDRESS Declares a return address column.

Table 27. Call frame information directives common block

In addition to these directives you might also need the call frame information directives for specifying
rules, or CFI expressions for resources and CFAs, see Call frame information directives for tracking
resources and CFAS, page 111.

Examples of using CFl directives, page 31

Tracking call frame usage, page 25

Call frame information directives for data blocks

CFI BLOCK name USING commonblock
CFI ENDBLOCK name

CFI { NOFUNCTION | FUNCTION label }
CFI { INVALID | VALID }

CFI { REMEMBERSTATE | RESTORESTATE }
CFI PICKER

CFI CONDITIONAL lIabel [, label]

commonblock The name of a previously defined common block.
label A function label.
name The name of the block.

IAR Assembler User Guide 110

Description of assembler directives Assembler directives

These directives allow call frame information to be defined in the assembler source code:

Directive Description

CFI BLOCK Starts a data block.

CFI CONDITIONAL Declares a data block to be a conditional thread.

CFI ENDBLOCK Ends a data block.

CFI FUNCTION Declares a function associated with a data block.

CFI INVALID Starts a range of invalid call frame information.

CFI NOFUNCTION Declares a data block to not be associated with a function.

CFI PICKER Declares a data block to be a picker thread. Used by the compiler for keeping track of
execution paths when code is shared within or between functions.

CFI REMEMBERSTATE Remembers the call frame information state.

CFI RESTORESTATE Restores the saved call frame information state.

CFI VALID Ends a range of invalid call frame information.

Table 28. Call frame information directives for data blocks

In addition to these directives, you might also need the call frame information directives for specifying
rules, or CFI expressions for resources and CFASs, see Call frame information directives for tracking
resources and CFAs, page 111.

Examples of using CFl directives, page 31

Tracking call frame usage, page 25

Call frame information directives for tracking resources and CFAs

CFI cfa { resource | resource + constant | resource - constant }
CFI cfacfiexpr
CFI resource { UNDEFINED | SAMEVALUE | CONCAT }
CFI resource { resource | FRAME (cfa, offset) }
CFI resourcecfiexpr
cfa The name of a CFA (canonical frame address).
cfiexpr A CFI expression, which can be one of these:
e A CFl operator with operands
e A numeric constant
¢ ACFAname
e Aresource name.
constant A constant value or an assembler expression that can be evaluated to a constant value.
offset The offset relative the CFA. An integer with an optional sign.

IAR Assembler User Guide 111

Description of assembler directives Assembler directives

resource The name of a resource.

Overall syntax: OPERATOR (operand)

CFl operator Operand Description

COMPLEMENT cfiexpr Performs a bitwise NOT on a CFI expression.

LITERAL expr Get the value of the assembler expression. This can insert the value of a regular
assembler expression into a CFl expression.

NOT cfiexpr Negates a logical CFI expression.

UMINUS cfiexpr Performs arithmetic negation on a CFI expression.

Table 29. Unary operators in CFI expressions

Overall syntax: OPERATOR (operandl , operand?2)

CFl operator Operands Description

ADD cfiexpr,cfiexpr Addition

AND cfiexpr,cfiexpr Bitwise AND

DIV cfiexpr,cfiexpr Division

EQ cfiexpr,cfiexpr Equalto

GE cfiexpr,cfiexpr Greater than or equal to

GT cfiexpr,cfiexpr Greater than

LE cfiexpr,cfiexpr Lessthan or equal to

LSHIFT cfiexpr,cfiexpr Logical shift left of the left operand. The number of bits to shift is
specified by the right operand. The sign bit will not be preserved when
shifting.

LT cfiexpr,cfiexpr Lessthan

MOD cfiexpr,cfiexpr Modulo

MUL cfiexpr,cfiexpr Multiplication

NE cfiexpr,cfiexpr Notequal to

OR cfiexpr,cfiexpr Bitwise OR

RSHIFTA cfiexpr,cfiexpr Arithmetic shift right of the left operand. The number of bits to shift is
specified by the right operand. In contrast with RSHIFTL, the sign bit is
preserved when shifting.

RSHIFTL cfiexpr,cfiexpr Logical shift right of the left operand. The number of bits to shift is
specified by the right operand. The sign bit will not be preserved when
shifting.

SUB cfiexpr,cfiexpr Subtraction

XOR cfiexpr,cfiexpr Bitwise XOR

Table 30. Binary operators in CFI expressions

Overall syntax: OPERATOR (operandl, operand2, operand3)

Operator Operands Description

FRAME cfa,size,offset

Gets the value from a stack frame. The operands are:

IAR Assembler User Guide 112

Description of assembler directives Assembler directives

Operator Operands Description
cfa, an identifier that denotes a previously declared CFA.

s1ze, a constant expression that denotes a size in bytes.
offset, a constant expression that denotes a size in bytes.

Gets the value at address cfa+offset of size size.

IF cond, true,false Conditional operator. The operands are:
cond, a CFI expression that denotes a condition.
true, any CFI expression.
false, any CFI expression.

If the conditional expression is non-zero, the result is the value of the t rue
expression; otherwise the result is the value of the false expression.

LOAD size,type,addr Gets the value from memory. The operands are:
s1ze, aconstant expression that denotes a size in bytes.
type, a memory type.
addr, a CFI expression that denotes a memory address.

Gets the value at address addr in the segment memory type type of size

size.

Table 31. Ternary operators in CFI expressions

Use these directives to track resources and CFAs in common blocks and data blocks:

Directive Description
CFI cfa Declares the value of a CFA.

CFI resource Declares the value of a resource.

Table 32. Call frame information directives for tracking resources and CFAs

Examples of using CFI directives, page 31

Tracking call frame usage, page 25

Call frame information directives for stack usage analysis
CFI FUNCALL { caller } callee
CFI INDIRECTCALL { caller }

CFI NOCALLS { caller }

CFI TAILCALL { callee }

IAR Assembler User Guide 113

Description of assembler directives Assembler directives

callee The label of the called function.

caller The label of the calling function.

These directives allow call frame information to be defined in the assembler source code:

Directive Description
CFI FUNCALL Declares function calls for stack usage analysis.
CFI INDIRECTCALL Declares indirect calls for stack usage analysis.

CFI NOCALLS Declares absence of calls for stack usage analysis.

CFI TAILCALL Declares tail calls for stack usage analysis.

Table 33. Call frame information directives for stack usage analysis

Tracking call frame usage, page 25

The IAR C/C++ Development Guide for Arm for information about stack usage analysis.

IAR Assembler User Guide 114

Assembler pseudo-instructions Assembler pseudo-instructions

Assembler pseudo-instructions

N 10110100 F: o OOt 115
Descriptions Of PSEUAO-INSIIUCTIONSvu.iiniineiieiieii et eie et et et et et e eane et e et e et e et eaeesnersneerneenneenns 116
ADR (ARM) e e 116
ADR (CODETB) ..ttt ettt et et e e e et e e et e e e e eaes 117
ADR (THUMB) ..ottt ettt e e e et e e e e e e e e eaneeeees 117
F N D) T (7 o 8 10T e [TN 118
F N B] N 2.1 TN 118
F N D] T (N = 1010 1 2 2 TN 119
LDR (64-Dit TNOAE) ...evveneiiineiiin et e et et e et e et e e e et e e et e et e e et e e et e e eaa e eat e e st e e st eeesnaeasneeaen 119
LDR (ARM) ittt 119
31 N (G0) 2) I PP PPNt 120
LDR (THUMB) .ttt ettt et e e e ettt e e e e e e 120
MOV (CODETG) ..ottt ettt et et e et et e e e e e e 121
MOV32 (THUMB) oottt e e e e 122
MOVL (64-DIt TNOAE) ...ttt et et et e e et e et e e e e e e ean e eaes 122
INOP (ARM) oottt et e aanns 123
A0 S (1015 23 1<) PP 123

The IAR Assembler for Arm accepts a number of pseudo-instructions, which are translated into correct
code. This chapter lists the pseudo-instructions and gives examples of their use.

SUMMARY

In the following table, as well as in the following descriptions:

e ARM denotes pseudo-instructions available after the ARM directive
e CODE16™* denotes pseudo-instructions available after the CODE1 6 directive
e THUMB denotes pseudo-instructions available after the THUMB directive.

The properties of THUMB pseudo-instructions depend on whether the used core has the Thumb-2
instruction set or not.

In Thumb mode (and CODE16), the syntax LDR register, =expression can, for values
0 from 0 to 255, be translated into a MOVS instruction. This instruction modifies the program
status register.
This is a summary of the available pseudo-instructions for the A32 and T32 instruction sets:

Pseudo-in- Directive Translated to Description

struction

ADR ARM ADD, SUB Loads a program-relative address into a register.
ADR CODE16* ADD Loads a program-relative address into a register.
ADR THUMB ADD, SUB Loads a program-relative address into a register.
ADRL ARM ADD, SUB Loads a program-relative address into a register.
ADRL THUMB ADD, SUB Loads a program-relative address into a register.
LDR ARM MOV, MVN, LDR Loads a register with any 32-bit expression.

IAR Assembler User Guide 115

Descriptions of pseudo-instructions

Assembler pseudo-instructions

Pseudo-in- Directive Translated to

struction

LDR CODE16* MOV, MOVS, LDR

LDR THUMB MOV, MOVS, MVN,
LDR

MOV CODEl6* ADD

MOV32 THUMB MOV, MOVT

NOP ARM MOV

NOP CODEl6* MOV

Description

Loads a register with any 32-bit expression.

Loads a register with any 32-bit expression.

Moves the value of a low register to another low register
(RO-R7).

Loads a register with any 32-bit value.
Generates the preferred Arm no-operation code.
Generates the preferred Thumb no-operation code.

Table 34. Pseudo-instructions for A32 and T32

* Deprecated. Use THUMB instead.

This is a summary of the available pseudo-instructions for the A64 instruction set:

Loads a program-relative address into a register.

Loads a register with any 32-bit expression.

Pseudo-instruction Translated to Description
ADRL ADRP, ADD

LDR LDR

MOVL MOV Z(, MOVK)

Loads a register with a 32-bit or 64-bit value.

Table 35. Pseudo-instructions for A64

DESCRIPTIONS OF PSEUDO-INSTRUCTIONS

The following section gives reference information about each pseudo-instruction.

ADR (ARM)

ADR{condition} register,expression

{condition}

and AL.
register The register to load.

expression

Can be one of the following—EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE,

A program location counter-relative expression that evaluates to an address that is not

word-aligned within the range -247 to +263 bytes, or a word-aligned address within the
range -1012 to +1028 bytes. Unresolved expressions (for example expressions that contain
external labels, or labels in other sections) must be within the range -247 to +263 bytes.

ADR always assembles to one instruction. The assembler attempts to produce a single ADD or SUB

instruction to load the address:

name armAdr
section MYCODE:CODE (2)
arm

adr r0, thumbLabel
bx r0

thumb

thumbLabel ;

IAR Assembler User Guide

; Becomes "add rO0,pc,#1".

Descriptions of pseudo-instructions Assembler pseudo-instructions

end

ADR (CODE16)

ADR register, expression

register The register to load.

expression A program-relative expression that evaluates to a word-aligned address within the range +4
to +1024 bytes.

This Thumb-1 ADR can generate word-aligned addresses only (that is, addresses divisible by 4). Use
the ALTGNROM directive to ensure that the address is aligned (unless DC32 is used, because it is always
word-aligned).

ADR (THUMB)

ADR{condition} register,expression

{condition} An optional condition code if the instruction is placed after an IT instruction.

register The register to load.

expression A program-relative expression that evaluates to an address within the range -4095 to 4095
bytes.

Similar to ADR (CODE16), but the address range can be larger if a 32-bit Thumb-2 instruction is
available in the architecture used.

If the address offset is positive and the address is word-aligned, the 16-bit ADR (CODE16) version will be
generated by default.

The 16-bit version can be specified explicitly with the ADR . N instruction. The 32-bit version can be
specified explicitly with the ADR . W instruction.

name thumbAdr
section MYCODE:CODE (2)

thumb
adr r0,datalLabel ; Becomes "add r0,pc, #4".
add r0,r0,rl
bx 1r
data
alignrom 2
dataLabel dc32 OxABCD19
end

IAR Assembler User Guide 117

Descriptions of pseudo-instructions Assembler pseudo-instructions

ADR (CODE16), page 117 if only 16-bit Thumb instructions are available.

ADRL (64-bit mode)

ADRL register,expression

register The register to load, X0-X30.

expression A program-relative expression that evaluates to an address within the range -4 Gbytes to
+4 Gbytes from the instruction.

The ADRL pseudo-instruction loads a program-relative address into a register. It is similar to the ADR
instruction. ADRL can load a wider range of addresses than ADR because it generates two data processing

instructions. The assembler will not attempt to determine if the expression is within range. If the address is
not within the range -4 Gbytes to +4 Ghytes, the linker will generate an error message and linking will fail.

ADRL (ARM)

ADRL{condition} register,expression

{condition} Can be one of the following—EQ, NE, CS, CC, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE,
and AL.

register The register to load.

expression A register-relative expression that evaluates to an address that is not word-aligned within 64

Kbytes, or a word-aligned address within 256 Kbytes. Unresolved expressions (for example
expressions that contain external labels, or labels in other sections) must be within 64
Kbytes. The address can be either before or after the address of the instruction.

The ADRL pseudo-instruction loads a program-relative address into a register. It is similar to the ADR
pseudo-instruction. ADRL can load a wider range of addresses than ADR because it generates two data
processing instructions. ADRL always assembles to two instructions. Even if the address can be reached

in a single instruction, a second, redundant instruction is produced. If the assembler cannot construct the
address in two instructions, it generates an error message and the assembly fails.

name armAdrL
section MYCODE:CODE (2)

arm
adrl rl,label+0x2345 ; Becomes "add rl,pc, #0x45"
; and "add rl,rl,#0x2300"
data
label dc32 0
end

IAR Assembler User Guide 118

Descriptions of pseudo-instructions Assembler pseudo-instructions

ADRL (THUMB)

ADRL{condition} register,expression

{condition} An optional condition code if the instruction is placed after an IT instruction.
register The register to load.
expression A program-relative expression that evaluates to an address within the range + 1 Mbyte.

Similar to ADRL (ARM), but the address range can be larger. This instruction is only available in a core
supporting the Thumb-2 instruction set.

LDR (64-bit mode)

LDRregister,=expression

register The register to load, X0-X30 or W0O-W30.

expression Any 32-bit or 64-bit expression. A 64-bit expression can be loaded into X0-x30 and a 32-bit
expression can be loaded into WO-W30.

The LDR pseudo-instruction loads a register with any 32-bit or 64-bit expression. The assembler places the
constant in a literal pool and generates a program-relative LDR instruction that reads the constant from the
literal pool. The offset from the instruction to the constant must be within the range -1 Mbyte to +1 Mbyte.

LDR (ARM)

LDR{condition} register,=expressionl
or

LDR{condition} register,expression2

condition An optional condition code.
register The register to load.
expressionl Any 32-bit expression.

expressionZ2 A program location counter-relative expression in the range -4087 to +4103 from the
program location counter.

The first form of the LDR pseudo-instruction loads a register with any 32-bit expression. The second form
of the instruction reads a 32-bit value from an address specified by the expression.

IAR Assembler User Guide 119

Descriptions of pseudo-instructions

Assembler pseudo-instructions

If the value of expressionl is within the range of a MOV or MVN instruction, the assembler generates the
appropriate instruction. If the value of expressionl is not within the range of a MOV or MVN instruction,
orif the expressionl is unsolved, the assembler places the constant in a literal pool and generates a
program-relative LDR instruction that reads the constant from the literal pool. The offset from the program
location counter to the constant must be less than 4 Kbytes.

name armLdr
section MYCODE:CODE (2)
arm
ldr rl,=0x12345678
1ldr r2,label
data

label dc32 OxFFEEDDCC
ltorg
end

; Becomes "1ldr rl, [pc,#4]1":

loads 0x12345678 from the
literal pool.

; Becomes "1ldr r2, [pc,#-41":

loads OxFFEEDDCC into r2.

; The literal pool is placed
; here.

LTORG in Assembler control directives, page 105.

LDR (CODE16)

LDRregister,=expressionl
or

LDRregister, expression2

register The register to load. LDR can access the low registers (R0O-R7) only.

expressionl Any 32-bit expression.

expression2 A program location counter-relative expression +4 to +1024 from the program location

counter.

As in Arm mode, the first form of the LDR pseudo-instruction in Thumb mode loads a register with any
32-bit expression. Note that the first form can be translated into a MOVS instruction, which modifies the

program status register.

The second form of the instruction reads a 32-bit value from an address specified by the expression.
However, the offset from the program location counter to the constant must be positive and less than 1

Kbyte.

LDR (THUMB)

LDR{condition} register,=expression

IAR Assembler User Guide

120

Descriptions of pseudo-instructions Assembler pseudo-instructions

condition An optional condition code if the instruction is placed after an IT instruction.
register The register to load.
expression Any 32-bit expression.

Similar to the LDR (CODE16) instruction, but by using a 32-bit instruction, a larger value can be loaded
directly with a MOV or MVN instruction without requiring the constant to be placed in a literal pool.

By specifying a 16-bit version explicitly with the LDR . N instruction, a 16-bit instruction is always
generated. This may lead to the constant being placed in the literal pool, even though a 32-bit instruction
could have loaded the value directly using MOV or MVN.

By specifying a 32-bit version explicitly with the LDR . W instruction, a 32-bit instruction is always
generated.

If you do not specify either . N or .w, the 16-bit LDR (CODE16) instruction will be generated, unless Rd
is R8-R15, which leads to the 32-bit variant being generated.

As for LDR (CODEL16), the 16-bit variant can be translated into a MOVS instruction, which modifies the
program status register.

l:? The syntax LDR{condition} register, expression2,asdescribed for LDR (ARM)
and LDR (CODE16), is no longer considered a pseudo-instruction. It is part of the normal
instruction set as specified in the Unified Assembler syntax from Advanced RISC Machines Ltd.

name thumbLdr
extern extLabel

section MYCODE:CODE (2)

thumb
ldr rl,=extLabel ; Becomes "ldr rl, [pc,#8]1":
nop ; loads extLabel from the
; literal pool.
ldr r2,label ; Becomes "ldr r2, [pc,#0]":
nop ; loads OxFFEEDDCC into r2.
data
label dc32 OxFFEEDDCC
ltorg ; The literal pool is placed
; here.
end

LDR (CODE16), page 120if only 16-bit Thumb instructions are available.

MOV (CODE16)

MOV Rd, Rs

Rd The destination register.

IAR Assembler User Guide 121

Descriptions of pseudo-instructions Assembler pseudo-instructions

Rs The source register.

The Thumb MoV pseudo-instruction moves the value of a low register to another low register (RO-R7) .
The Thumb MOV instruction cannot move values from one low register to another.

0 The ADD immediate instruction generated by the assembler has the side-effect of updating the
condition codes.

The MOV pseudo-instruction uses an ADD immediate instruction with a zero immediate value.

ﬁ This description is only valid when using the CODE1 6 directive. After the THUMB directive,

the interpretation of the instruction syntax is defined by the Unified Assembler syntax from
Advanced RISC Machines Ltd.

MOV r2,r3 ; generates the opcode for ADD r2,r3,#0

MOV32 (THUMB)

MOV32{condition} register,expression

condition An optional condition code if the instruction is placed after an IT instruction.
register The register to load.
expression Any 32-bit expression.

Similar to the LDR (THUMB) instruction, but will load the constant by generating a pair of the MOV
(MOVW) and the MOVT instructions.

This pseudo-instruction always generates two 32-bit instructions. It is only available in a core supporting
the Thumb-2 instruction set.

MOVL (64-bit mode)

MOVL register, #expression

register The register to load, X0-X30 or W0O-W30.

expression Any 32-bit or 64-bit expression. A 64-bit expression can be loaded into X0-x30 and a 32-bit
expression can be loaded into WO-W30.

Similar to the DR pseudo-instruction, but will load the constant by generating a pair of a MOV instruction
and a MOVK instruction (for a 32-bit expression), or a MOV instruction and three MOVK instructions (for a
64-bit expression). Unresolved expressions are not supported.

IAR Assembler User Guide 122

Descriptions of pseudo-instructions Assembler pseudo-instructions

NOP (ARM)

NOP

NOP generates the preferred Arm no-operation code:

MOV r0,r0

lfj-') NOP is not a pseudo-instruction in architecture versions that include a NOP instruction (Armv6K,
ArmveT2, Armv7, Armv8-M).

NOP (CODE16)

NOP

NOP generates the preferred Thumb no-operation code:

MOV r8,r8

I{)J__) NOP is not a pseudo-instruction in architecture versions that include a NOP instruction
(ArmveT2, Armv7, Armv8-M).

IAR Assembler User Guide 123

Assembler diagnostics Assembler diagnostics

Assembler diagnostics

1Y (Y T 2o 4 11T Y APPSR 124
NI S a8 () PPN 124
OPHIONS FOT QIAZNOSTICS ..vuevneinein ettt e e e e et e et e et et et e e et et et e e et e e e ane e eaneanesneeneans 124
ASSEMDIET WATNING MESSAZES .. uevtetnttn ettt et e et ettt et et et et et et e ea e et e tn e an e et e et eeteeneennas 124
Command liNE EITOT INESSAZESvuuernneentti ettt et e et et et e e e e e e e et e et e et e et e an e e e eaneeaneenns 124
F S 10 0] (S W 0 0] 1 ST Yo PPN 125
Assembler fatal EITOr MESSAZESuvuuuienti ittt e e e e e et e e e e e e e e e eanaas 125
Assembler internal ErTOr MESSAZESvvutunieneie et ettt et et e e et et e e e ea e tn e ean e eaneeaeeneanaennns 125

The following pages describe the format of diagnostic messages, and explains how diagnostic messages are
divided into different levels of severity.

MESSAGE FORMAT

All diagnostic messages are displayed on the screen, and printed in the optional list file.

All messages are issued as complete, self-explanatory messages. The message consists of the incorrect
source line, with a pointer to where the problem was detected, followed by the source line number and the
diagnostic message. If include files are used, error messages are preceded by the source line number and
the name of the current file:

"subfile.h",4 Error[40]: bad instruction

SEVERITY LEVELS

The diagnostic messages produced by the IAR Assembler for Arm reflect problems or errors that are found
in the source code or occur at assembly time.

Options for diagnostics
There are two assembler options for diagnostics. You can:

» Disable or enable all warnings, ranges of warnings, or individual warnings, see -w, page 54
e Set the number of maximum errors before the assembly stops, see -£, page 41.

Assembler warning messages

Assembler warning messages are produced when the assembler finds a construct which is probably the
result of a programming error or omission.

Command line error messages

Command line errors occur when the assembler is invoked with incorrect parameters. The most common
situation is when a file cannot be opened, or with duplicate, misspelled, or missing command line options.

IAR Assembler User Guide 124

Severity levels Assembler diagnostics

Assembler error messages

Assembler error messages are produced when the assembler finds a construct which violates the language
rules.

Assembler fatal error messages

Assembler fatal error messages are produced when the assembler finds a user error so severe that
further processing is not considered meaningful. After the diagnostic message is issued, the assembly
is immediately ended. These error messages are identified as Fatal in the error messages list.

Assembler internal error messages

An internal error is a diagnostic message that signals that there was a serious and unexpected failure due to
a fault in the assembler.

During assembly, several internal consistency checks are performed and if any of these checks fail, the
assembler terminates after giving a short description of the problem. Such errors should normally not
occur. However, if you should encounter an error of this type, it should be reported to your software
distributor or to IAR Technical Support. Please include information enough to reproduce the problem. This
would typically include:

e The product name

e The version number of the assembler, which can be seen in the header of the list files generated by the
assembler

e Your license number

e The exact internal error message text

e The source file of the program that generated the internal error

e Alist of the options that were used when the internal error occurred.

IAR Assembler User Guide 125

Migrating to the IAR Assembler for Arm Migrating to the IAR Assembler for Arm

Migrating to the IAR Assembler for
Arm

513 U041 o1 5 o) N PP 126
Thumb code 1aDEIS e 126
AItErnative TEZISEET MAMESuitneit ittt ettt et et e et e et et et e et e et e e en e et e et e et e eneeneenaas 127
AtCrNatiVe MNEIMOMNICSeuuitn ittt ettt et et e et e e e e et e et et et et e e e e ea e e en e e e e ean e eaeeaeeneennas 127
(0318 & 110l 4 110 11 11 L PO OO P PPN 128
WaATNING MESSAZES .. evueentineite et et et et et et et et e e e e e e et e et e ae e e e e e e e e e e eaeensean s e s e eaneeaneeneeneennns 129
The first register operand OMIttedoeeuuiiiiiiiiiiiii e 129
The first register operand duplicatedoeiuiiiiiiiiiiei e 129
Immediate #0 omitted in Load/Storeooiiiiiiiiiiiii e 129

Assembler source code that was originally written for assemblers from other vendors can also be used with
the IAR Assembler for Arm. The assembler option -j allows you to use a number of alternative register
names, mnemonics and operators.

This chapter contains information that is useful when migrating from using an existing product to using the
IAR Assembler for Arm in 32-bit mode.

INTRODUCTION

The IAR Assembler for Arm (IASMARM) was designed using the same look and feel as other IAR
assemblers, while still making it easy to translate source code written for the ARMASM assembler from
Arm Limited.

When the option -5 (Allow alternative register names, mnemonics and operands) is selected, the

instruction syntax is the same in IASMARM as in ARMASM. Many features, such as directives and
macros, are, however, incompatible and cause syntax errors. There are also differences in Thumb code
labels that can cause problems without generating errors or warnings. Be extra careful when you use such
labels in situations other than jumps.

For new code, use the IAR Assembler for Arm register names, mnemonics and operators.

ﬁ The instructions and descriptions in this chapter apply only to using the IAR Assembler for Arm
in 32-bit mode.

Thumb code labels

Labels placed in Thumb code, i.e. that appear after a CODE1 6 directive, always have bit 0 set (i.e. an odd
label) in IASMARM. ARMASM, on the other hand, does not set bit 0 on symbols in expressions that are
solved at assembly time. In the following example, the symbol T is local and placed in Thumb code. It will
have bit 0 set when assembled with IASMARM, but not when assembled with ARMASM—except in DCD,
since it is solved at link time for relocatable sections. Thus, the instructions will be assembled differently.

section MYCODE:CODE (2)
arm

IAR Assembler User Guide 126

Alternative register names Migrating to the IAR Assembler for Arm

The two instructions below are interpreted differently by ARMASM and IASMARM. ICCARM interprets
a reference to T as an odd address (with the Thumb mode bit set), but in ARMASM it is even (the Thumb
mode bit is not set).

adr r0,T+1
mov rl, #T-.

To achieve the same interpretation for both ARMASM and ICCARM, use : OR: to set the Thumb mode
bit, or : AND: to clear it:

add r0,pc, #(T-.-8) :0R: 1
mov rl,#(T-.) :AND: ~1
thumb

T nop
end

ALTERNATIVE REGISTER NAMES

The IAR Assembler for Arm will translate the register names below used in other assemblers when the
option -7 is selected. These alternative register names are allowed in both Arm and Thumb modes. The
following table lists alternative register names and assembler register names:

Alternative register name Assembler register name
Al RO
A2 R1
A3 R2
A4 R3
V1 R4
\ R5
V3 R6
v R7
V5 R8
V6 R9
V7 R10
SB R9
SL R10
FP R11
IP R12

Table 36. Alternative register names

For further descriptions of the registers, see Register symbols, page 18.

ALTERNATIVE MNEMONICS

A number of mnemonics used by other assemblers will be translated by the assembler when the option -5

is specified. These alternative mnemonics are allowed in CODE16 mode only. The following table lists the
alternative mnemonics:

Alternative mnemonic Assembler mnemonic
ADCS ADC
ADDS ADD

IAR Assembler User Guide 127

Operator synonyms Migrating to the IAR Assembler for Arm

Alternative mnemonic Assembler mnemonic
ANDS AND

ASLS LSL

ASRS ASR

BICS BIC

BNCC BCS

BNCS BCC

BNEQ BNE

BNGE BLT

BNGT BLE

BNHI BLS

BNLE BGT

BNLO BCS

BNLS BHI

BNLT BGE

BNMI BPL

BNNE BEQ

BNPL BMI

BNVC BVS

BNVS BVC
CMN{cond}S CMN{cond}
CMP{cond}S CMP{cond}
EORS EOR

LSLS LSL

LSRS LSR

MOVS MOV

MULS MUL

MVNS MVN

NEGS NEG

ORRS ORR

RORS ROR

SBCS SBC

SUBS SUB
TEQ{cond}S TEQ{cond}
TST{cond}S TST{cond}

Table 37. Alternative mnemonics
Refer to the ARM Architecture Reference Manual (Prentice-Hall) for full descriptions of the mnemonics.

OPERATOR SYNONYMS

A number of operators used by other assemblers will be translated by the assembler when the option -7 is
specified. The following operator synonyms are allowed in both Arm and Thumb modes:

Operator synonym Assembler operator
:AND: &

IAR Assembler User Guide 128

Warning messages Migrating to the IAR Assembler for Arm

Operator synonym Assembler operator
:EOR: ~
:LAND: &&
:LEOR: XOR
:LNQOT: !
:LOR: |
:MOD: %
:NOT: =
:OR: |

8 SRl 8 <<
:SHR: >>

Table 38. Operator synonyms

l:? In some cases, assembler operators and operator synonyms have different precedence levels. For
further descriptions of the operators, see Assembler operators, page 57.

WARNING MESSAGES

Unless the option - is specified, the assembler will issue warning messages when the alternative names

are used, or when illegal combinations of operands are encountered. The following sections list the warning
messages:

The first register operand omitted

The first register operand was missing in an instruction that requires three operands, where the first two are
unindexed registers (ADD, SUB, LSI, LSR, and ASR).

The first register operand duplicated

The first register operand was a register that was included in the operation, and was also a destination
register.

Example of incorrect code:

MUL RO, RO, R1

Example of correct code:

MUL RO, R1

Immediate #0 omitted in Load/Store

Immediate #0 was missing in a load/store instruction.

Example of incorrect code:

LDR RO, [R1]

Example of correct code:

LDR RO, [R1,#0]

IAR Assembler User Guide 129

	Table of Contents
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	User and reference guides

	Document conventions
	Typographic conventions
	Naming conventions

	Introduction to the IAR Assembler for Arm
	Introduction to assembler programming
	Getting started

	Modular programming
	External interface details
	Assembler invocation syntax
	Passing options
	Environment variables
	Error return codes

	Source format
	Assembler instructions
	Execution modes
	Expressions, operands, and operators
	Integer constants
	ASCII character constants
	Floating-point constants
	True and false
	Symbols
	Labels
	Program location counter (PLC)

	Register symbols
	Predefined symbols
	Including symbol values in code
	Testing symbols for conditional assembly

	Absolute and relocatable expressions
	Expression restrictions
	No forward
	No external
	Absolute
	Fixed

	List file format
	Header
	Body
	Summary
	Symbol and cross-reference table

	Programming hints
	Accessing special function registers
	Example

	Using C-style preprocessor directives

	Tracking call frame usage
	Call frame information overview
	Call frame information in more detail
	Defining a names block
	Defining a common block
	Annotating your source code within a data block
	Specifying rules for tracking resources and the stack depth
	Rules for tracking resources
	Rules for tracking the stack depth (CFAs)

	Using CFI expressions for tracking complex cases
	Stack usage analysis directives
	Examples of using CFI directives
	Defining the names block
	Defining the common block
	Defining the data block

	Assembler options
	Using command line assembler options
	Specifying options and their parameters
	Extended command line file

	Summary of assembler options
	Descriptions of assembler options
	‑‑aarch32
	‑‑aarch64
	‑‑abi
	‑‑arm
	-B
	-c
	‑‑cmse
	‑‑cpu
	‑‑cpu_mode
	-D
	--diagnostics_format
	‑‑dynamic_output
	-E
	-e
	‑‑enable_hardware_workaround
	‑‑endian
	-f
	‑‑f
	‑‑fpu
	-G
	-g
	-I
	-i
	-j
	-L
	-l
	‑‑legacy
	-M
	-N
	‑‑no_dwarf3_cfi
	‑‑no_dwarf4
	‑‑no_it_verification
	‑‑no_literal_pool
	‑‑no_path_in_file_macros
	-O
	-o
	-p
	-r
	-S
	-s
	‑‑source_encoding
	‑‑suppress_vfe_header
	‑‑system_include_dir
	-t
	‑‑thumb
	-U
	‑‑version
	-w
	-x
	-Y
	-y

	Assembler operators
	Precedence of assembler operators
	Summary of assembler operators
	Parenthesis operator
	Unary operators
	Multiplicative arithmetic operators
	Additive arithmetic operators
	Shift operators
	AND operators
	OR operators
	Comparison operators

	Description of assembler operators
	() Parenthesis
	* Multiplication
	+ Unary plus
	+ Addition
	– Unary minus
	– Subtraction
	/ Division
	< Less than
	<= Less than or equal to
	<>, != Not equal to
	=, == Equal to
	> Greater than
	>= Greater than or equal to
	&& Logical AND
	& Bitwise AND
	~ Bitwise NOT
	| Bitwise OR
	^ Bitwise exclusive OR
	% Modulo
	! Logical NOT
	|| Logical OR
	<< Logical shift left
	>> Logical shift right
	BYTE1 First byte
	BYTE2 Second byte
	BYTE3 Third byte
	BYTE4 Fourth byte
	DATE Current time/date
	HIGH High byte
	HWRD High word
	LOW Low byte
	LO12 Lower 12 bits of symbol
	LWRD Low word
	SBREL
	SFB section begin
	SFE section end
	SIZEOF section size
	UGT Unsigned greater than
	ULT Unsigned less than
	XOR Logical exclusive OR

	Assembler directives
	Summary of assembler directives
	Description of assembler directives
	Module control directives
	Symbol control directives
	Mode control directives
	Section control directives
	Value assignment directives
	Conditional assembly directives
	Macro processing directives
	Listing control directives
	C-style preprocessor directives
	Data definition or allocation directives
	Assembler control directives
	Function directives
	Call frame information directives for names blocks
	Call frame information directives for common blocks
	Call frame information directives for data blocks
	Call frame information directives for tracking resources and CFAs
	Call frame information directives for stack usage analysis

	Assembler pseudo-instructions
	Summary
	Descriptions of pseudo-instructions
	ADR (ARM)
	ADR (CODE16)
	ADR (THUMB)
	ADRL (64-bit mode)
	ADRL (ARM)
	ADRL (THUMB)
	LDR (64-bit mode)
	LDR (ARM)
	LDR (CODE16)
	LDR (THUMB)
	MOV (CODE16)
	MOV32 (THUMB)
	MOVL (64-bit mode)
	NOP (ARM)
	NOP (CODE16)

	Assembler diagnostics
	Message format
	Severity levels
	Options for diagnostics
	Assembler warning messages
	Command line error messages
	Assembler error messages
	Assembler fatal error messages
	Assembler internal error messages

	Migrating to the IAR Assembler for Arm
	Introduction
	Thumb code labels
	Example

	Alternative register names
	Alternative mnemonics
	Operator synonyms
	Warning messages
	The first register operand omitted
	The first register operand duplicated
	Immediate #0 omitted in Load/Store

