
UCSARM-27

C-SPY® Debugging Guide

for Arm Limited’s
Arm® cores

AFE1_AFE2-1:1

2
C-SPY® Debugging Guide
for Arm

COPYRIGHT NOTICE
© 1999–2024 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, Embedded Trust, C-Trust, IAR Connect,
C-SPY, C-RUN, C-STAT, IAR Visual State, IAR KickStart Kit, I-jet, I-jet Trace,
I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or
registered trademarks owned by IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Arm, Cortex, Thumb, and TrustZone are registered trademarks of Arm Limited.
EmbeddedICE is a trademark of Arm Limited. uC/OS-II and uC/OS-III are trademarks
of Micrium, Inc. CMX-RTX is a trademark of CMX Systems, Inc. Azure RTOS
ThreadX is a trademark of Microsoft Corporation. RTXC is a trademark of Quadros
Systems. Fusion is a trademark of Unicoi Systems.

Renesas Synergy is a trademark of Renesas Electronics Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
Twenty-seventh edition: June 2024

Part number: UCSARM-27

This guide applies to version 9.60.x of IAR Embedded Workbench® for Arm.

Internal reference: BB17, FF9.3.x, ISOC.

AFE1_AFE2-1:1

3

Brief contents
Tables ... 27

Preface .. 29

Part 1. Basic debugging .. 37

The IAR C-SPY Debugger ... 39

Getting started using C-SPY ... 55

Executing your application .. 75

Variables and expressions .. 97

Breakpoints .. 125

Memory and registers .. 163

Part 2. Analyzing your application 207

Trace ... 209

The application timeline .. 257

Profiling .. 293

Code coverage ... 307

Performance monitoring .. 313

Power debugging .. 321

C-RUN runtime error checking ... 349

Part 3. Advanced debugging ... 389

Multicore debugging .. 391

Interrupts .. 401

C-SPY macros ... 427

AFE1_AFE2-1:1

4
C-SPY® Debugging Guide
for Arm

The C-SPY command line utility—cspybat 515

Flash loaders ... 575

Part 4. Additional reference information 581

Debugger options ... 583

Additional information on C-SPY drivers .. 631

Index ... 661

AFE1_AFE2-1:1

5

Contents
Tables ... 27

Preface .. 29

Who should read this guide ... 29

Required knowledge .. 29

How to use this guide ... 29

What this guide contains ... 30

Part 1. Basic debugging ... 30

Part 2. Analyzing your application .. 30

Part 3. Advanced debugging .. 31

Part 4. Additional reference information ... 31

Other documentation ... 31

User and reference guides .. 32

The online help system .. 32

Web sites .. 32

Document conventions .. 33

Typographic conventions ... 33

Naming conventions .. 34

Part 1. Basic debugging .. 37

The IAR C-SPY Debugger ... 39

Introduction to C-SPY .. 39

An integrated environment ... 39

General C-SPY debugger features ... 40

RTOS awareness .. 41

Debugger concepts .. 42

C-SPY and target systems .. 43

The debugger .. 43

The target system ... 43

The application ... 43

C-SPY debugger systems ... 44

AFE1_AFE2-1:1

6
C-SPY® Debugging Guide
for Arm

The ROM-monitor program ... 44

Third-party debuggers .. 44

C-SPY plugin modules ... 44

Execution modes .. 45

C-SPY drivers overview ... 45

Differences between the C-SPY drivers ... 46

The IAR C-SPY Simulator .. 48

Two simulator drivers .. 48

Supported features .. 48

The C-SPY hardware debugger drivers .. 49

Communication overview .. 49

Hardware installation ... 50

USB driver installation ... 51

Getting started using C-SPY ... 55

Setting up C-SPY .. 55

Setting up for debugging .. 55

Executing from reset .. 56

Using a setup macro file ... 57

Selecting a device description file ... 57

Loading plugin modules ... 57

Starting C-SPY ... 58

Starting a debug session ... 58

Loading executable files built outside of the IDE 58

Starting a debug session with source files missing 59

Loading multiple debug images .. 59

Editing in C-SPY windows .. 60

Adapting for target hardware ... 61

Modifying a device description file ... 61

Initializing target hardware before C-SPY starts 62

Remapping memory ... 63

Using predefined C-SPY macros for device support 63

Debug authentication ... 63

AFE1_AFE2-1:1

Contents

7

An overview of the debugger startup .. 64

Debugging code in flash .. 65

Debugging code in RAM ... 66

Reference information on starting C-SPY 66

C-SPY Debugger main window ... 67

Images window .. 72

Get Alternative File dialog box .. 73

Executing your application .. 75

Introduction to application execution ... 75

Briefly about application execution ... 75

Source and disassembly mode debugging ... 75

Single stepping ... 76

Troubleshooting slow stepping speed .. 78

Running the application ... 79

Highlighting ... 80

Viewing the call stack .. 81

Terminal input and output .. 81

Debug logging .. 82

Reference information on application execution 82

Disassembly window ... 83

Call Stack window ... 88

Terminal I/O window ... 90

Terminal I/O Log File dialog box .. 91

Debug Log window .. 92

Fault exception viewer window ... 93

Report Assert dialog box .. 94

Autostep settings dialog box .. 95

Variables and expressions .. 97

Introduction to working with variables and expressions 97

Briefly about working with variables and expressions 97

C-SPY expressions ... 98

Limitations on variable information .. 101

AFE1_AFE2-1:1

8
C-SPY® Debugging Guide
for Arm

Working with variables and expressions 102

Using the windows related to variables and expressions 102

Viewing assembler variables ... 102

Reference information on working with variables and
expressions .. 103

Auto window .. 104

Locals window ... 106

Watch window ... 109

Live Watch window ... 112

Statics window ... 115

Quick Watch window ... 118

Symbols window .. 121

Resolve Symbol Ambiguity dialog box ... 124

Breakpoints .. 125

Introduction to setting and using breakpoints 125

Reasons for using breakpoints ... 125

Briefly about setting breakpoints ... 126

Breakpoint types .. 126

Breakpoint icons .. 129

Breakpoints in the C-SPY simulator .. 129

Breakpoints in the C-SPY hardware debugger drivers 129

Breakpoint consumers .. 130

Breakpoint options ... 131

Setting breakpoints .. 131

Various ways to set a breakpoint ... 131

Toggling a simple code breakpoint .. 132

Setting breakpoints using the dialog box ... 132

Setting a data breakpoint in the Memory window 133

Setting breakpoints using system macros .. 134

Setting a breakpoint on an exception vector 135

Setting breakpoints in __ramfunc declared functions 136

Useful breakpoint hints .. 136

AFE1_AFE2-1:1

Contents

9

Reference information on breakpoints 138

Breakpoints window .. 138

Breakpoint Usage window ... 140

Code breakpoints dialog box .. 141

JTAG Watchpoints dialog box ... 143

Log breakpoints dialog box .. 146

Data breakpoints dialog box .. 147

Data Log breakpoints dialog box ... 151

Data Log breakpoints dialog box (C-SPY hardware drivers) 152

Breakpoints options .. 154

Immediate breakpoints dialog box ... 156

Vector Catch dialog box .. 157

Flash breakpoints dialog box ... 158

Enter Location dialog box .. 159

Resolve Source Ambiguity dialog box .. 161

Memory and registers .. 163

Introduction to monitoring memory and registers 163

Briefly about monitoring memory and registers 163

C-SPY memory zones .. 165

Memory configuration for the C-SPY simulator 165

Memory configuration for C-SPY hardware debugger drivers 166

Monitoring memory and registers .. 167

Defining application-specific register groups 167

Monitoring stack usage .. 168

Reference information on memory and registers 171

Memory window .. 172

Memory Save dialog box ... 176

Memory Restore dialog box ... 177

Fill dialog box .. 178

Symbolic Memory window .. 179

Stack window ... 182

Registers window ... 186

Register User Groups Setup window ... 189

AFE1_AFE2-1:1

10
C-SPY® Debugging Guide
for Arm

SFR Setup window ... 191

Edit SFR dialog box ... 194

Memory Configuration dialog box for the C-SPY simulator 196

Edit Memory Range dialog box for the C-SPY simulator 198

Memory Configuration dialog box

for C-SPY hardware debugger drivers ... 200

Edit Memory Range dialog box

for C-SPY hardware debugger drivers ... 203

Part 2. Analyzing your application 207

Trace ... 209

Introduction to using trace .. 209

Reasons for using trace .. 209

Briefly about trace .. 210

Requirements for using trace ... 212

Collecting and using trace data .. 213

Getting started with ETM trace .. 214

Getting started with SWO trace ... 214

Getting started with MTB trace ... 215

Setting up concurrent use of ETM and SWO 216

Trace data collection using breakpoints ... 216

Searching in trace data ... 217

Browsing through trace data .. 217

Reference information on trace ... 218

ETM Trace Settings dialog box (I-jet) ... 219

ETM Trace Settings dialog box (J-Link/J-Trace) 221

SWO Trace Window Settings dialog box .. 223

SWO Configuration dialog box ... 225

Trace window ... 229

Function Trace window ... 238

Trace Start Trigger breakpoint dialog box 239

Trace Stop Trigger breakpoint dialog box 240

Trace Start breakpoints dialog box (I-jet and CMSIS-DAP) 241

AFE1_AFE2-1:1

Contents

11

Trace Stop breakpoints dialog box (I-jet and CMSIS-DAP) 243

Trace Filter breakpoints dialog box (I-jet) 245

Trace Start breakpoints dialog box (J-Link/J-Trace) 246

Trace Stop breakpoints dialog box (J-Link/J-Trace) 249

Trace Filter breakpoints dialog box (J-Link/J-Trace) 251

Find in Trace dialog box ... 253

Find in Trace window .. 255

Trace Save dialog box .. 256

The application timeline .. 257

Introduction to analyzing your application’s timeline 257

Briefly about analyzing the timeline .. 257

Requirements for timeline support .. 259

Analyzing your application’s timeline .. 259

Displaying a graph in the Timeline window 260

Navigating in the graphs .. 261

Analyzing performance using the graph data 261

Getting started using data logging ... 262

Getting started using event logging ... 264

Reference information on application timeline 265

Data Log window ... 266

Data Log Summary window .. 269

Event Log window ... 271

Event Log Summary window .. 274

Timeline window—Call Stack graph .. 277

Timeline window—Data Log graph .. 282

Timeline window—Events graph ... 286

Viewing Range dialog box ... 290

Profiling .. 293

Introduction to the profiler .. 293

Reasons for using the profiler .. 293

Briefly about the profiler .. 293

Requirements for using the profiler ... 294

AFE1_AFE2-1:1

12
C-SPY® Debugging Guide
for Arm

Using the profiler .. 295

Getting started using the profiler on function level 296

Analyzing the profiling data .. 296

Getting started using the profiler on instruction level 298

Selecting a time interval for profiling information 299

Reference information on the profiler .. 300

Function Profiler window .. 301

Code coverage ... 307

Introduction to code coverage ... 307

Reasons for using code coverage ... 307

Briefly about code coverage .. 307

Requirements and restrictions for using code coverage 307

Reference information on code coverage 308

Code Coverage window ... 308

Performance monitoring .. 313

Introduction to performance monitoring 313

Briefly about performance monitoring .. 313

Requirements and restrictions for using performance monitoring ... 313

Event types ... 314

Detecting counter overflow .. 315

Setting up performance monitoring .. 315

Reference information on performance monitoring 316

Performance Monitoring window .. 316

Power debugging .. 321

Introduction to power debugging .. 321

Reasons for using power debugging .. 321

Briefly about power debugging .. 321

Requirements and restrictions for power debugging 323

Optimizing your source code for power consumption 323

Waiting for device status .. 324

Software delays .. 324

DMA versus polled I/O .. 324

AFE1_AFE2-1:1

Contents

13

Low-power mode diagnostics .. 324

CPU frequency ... 325

Detecting mistakenly unattended peripherals 325

Peripheral units in an event-driven system 326

Finding conflicting hardware setups .. 327

Analog interference .. 327

Debugging in the power domain .. 328

Displaying a power profile and analyzing the result 328

Detecting unexpected power usage during application execution ... 329

Changing the graph resolution ... 330

Reference information on power debugging 330

Power Log Setup window .. 331

Power Log window .. 334

Timeline window—Power graph ... 338

State Log window .. 339

State Log Summary window .. 341

Timeline window—State Log graph .. 344

C-RUN runtime error checking ... 349

Introduction to runtime error checking 349

Runtime error checking .. 349

Runtime error checking using C-RUN ... 350

The checked heap provided by the library 351

Using C-RUN in the IAR Embedded Workbench IDE 351

Using C-RUN in non-interactive mode ... 352

Requirements for runtime error checking .. 352

Using C-RUN .. 353

Getting started using C-RUN runtime error checking 353

Creating rules for messages ... 355

Detecting various runtime errors ... 355

Detecting implicit or explicit integer conversion 355

Detecting signed or unsigned overflow ... 357

Detecting bit loss or undefined behavior when shifting 359

Detecting division by zero ... 360

AFE1_AFE2-1:1

14
C-SPY® Debugging Guide
for Arm

Detecting unhandled cases in switch statements 360

Detecting accesses outside the bounds of arrays and other objects . 361

Detecting heap usage error ... 367

Detecting heap memory leaks .. 368

Detecting heap integrity violations .. 370

Reference information on runtime error checking 373

C-RUN Runtime Checking options ... 373

C-RUN Messages window ... 376

C-RUN Messages Rules window ... 378

Compiler and linker reference for C-RUN 379

--bounds_table_size ... 380

--debug_heap .. 381

--generate_entries_without_bounds ... 381

--ignore_uninstrumented_pointers ... 381

--ignore_uninstrumented_pointers ... 382

--runtime_checking .. 382

#pragma default_no_bounds .. 383

#pragma define_with_bounds .. 383

#pragma define_without_bounds ... 383

#pragma disable_check .. 384

#pragma generate_entry_without_bounds 384

#pragma no_arith_checks .. 385

#pragma no_bounds ... 385

__as_get_base .. 385

__as_get_bound ... 385

__as_make_bounds .. 386

cspybat options for C-RUN .. 386

--rtc_enable .. 387

--rtc_output ... 387

--rtc_raw_to_txt ... 387

--rtc_rules ... 388

AFE1_AFE2-1:1

Contents

15

Part 3. Advanced debugging ... 389

Multicore debugging .. 391

Introduction to multicore debugging .. 391

Briefly about multicore debugging .. 391

Symmetric multicore debugging .. 391

Asymmetric multicore debugging .. 392

Requirements and restrictions for multicore debugging 393

Debugging multiple cores ... 393

Setting up for symmetric multicore debugging 393

Setting up for asymmetric multicore debugging 393

Starting and stopping a multicore debug session 396

Reference information on multicore debugging 396

Cores window .. 397

Multicore toolbar .. 399

The multicore session file .. 399

Interrupts .. 401

Introduction to interrupts .. 401

Briefly about the interrupt simulation system 401

Interrupt characteristics .. 402

Interrupt simulation states .. 403

C-SPY system macros for interrupt simulation 404

Target-adapting the interrupt simulation system 405

Briefly about interrupt logging .. 405

Using the interrupt system .. 406

Simulating a simple interrupt ... 406

Simulating an interrupt in a multi-task system 408

Getting started using interrupt logging .. 409

Reference information on interrupts ... 409

Interrupt Configuration window .. 410

Available Interrupts window .. 413

Interrupt Status window ... 414

Interrupt Log window .. 416

AFE1_AFE2-1:1

16
C-SPY® Debugging Guide
for Arm

Interrupt Log Summary window .. 420

Timeline window—Interrupt Log graph .. 422

C-SPY macros ... 427

Introduction to C-SPY macros ... 427

Reasons for using C-SPY macros .. 427

Briefly about using C-SPY macros .. 428

Briefly about setup macro functions and files 428

Briefly about the macro language .. 429

Using C-SPY macros ... 429

Registering C-SPY macros—an overview 430

Executing C-SPY macros—an overview ... 430

Registering and executing using setup macros and setup files 431

Executing macros using Quick Watch .. 432

Executing a macro by connecting it to a breakpoint 432

Aborting a C-SPY macro ... 434

Reference information on the macro language 434

Macro functions ... 434

Macro variables ... 435

Macro parameters ... 435

Macro strings .. 436

Macro statements ... 436

Formatted output .. 438

Reference information on reserved setup macro function
names ... 439

execConfigureTraceETM ... 440

execConfigureTraceSWO .. 440

execUserAttach .. 441

execUserPreload ... 441

execUserExecutionStarted ... 441

execUserExecutionStopped ... 441

execUserFlashInit ... 442

execUserSetup .. 442

execUserFlashReset ... 442

AFE1_AFE2-1:1

Contents

17

execUserPreReset ... 443

execUserReset .. 443

execUserExit .. 443

execUserFlashExit ... 443

execUserCoreConnect .. 444

Reference information on C-SPY system macros 444

__abortLaunch ... 448

__cancelAllInterrupts .. 449

__cancelInterrupt ... 449

__clearBreak .. 450

__closeFile ... 450

__delay ... 450

__disableInterrupts .. 451

__driverType .. 451

__emulatorSpeed ... 452

__emulatorStatusCheckOnRead .. 453

__enableInterrupts ... 453

__evaluate .. 454

__expandVar ... 454

__fillMemory8 .. 455

__fillMemory16 .. 456

__fillMemory32 .. 457

__fillMemory64 .. 458

__gdbserver_exec_command .. 459

__getNumberOfCores .. 459

__getSelectedCore ... 459

__getTracePortSize .. 460

__hasDAPRegs .. 461

__hwJetResetWithStrategy .. 461

__hwReset .. 462

__hwResetRunToBp .. 462

__hwResetWithStrategy .. 464

__hwRunToBreakpoint .. 464

__isBatchMode .. 465

AFE1_AFE2-1:1

18
C-SPY® Debugging Guide
for Arm

__isMacroSymbolDefined ... 466

__jlinkExecCommand ... 466

__jlinkExecMacro .. 467

__jtagCommand ... 467

__jtagCP15IsPresent .. 468

__jtagCP15ReadReg .. 468

__jtagCP15WriteReg ... 468

__jtagData .. 469

__jtagRawRead .. 469

__jtagRawSync .. 470

__jtagRawWrite ... 471

__jtagResetTRST ... 472

__loadImage .. 472

__memoryRestore .. 473

__memorySave .. 474

__messageBoxYesCancel .. 475

__messageBoxYesNo .. 476

__openFile ... 476

__orderInterrupt ... 477

__popSimulatorInterruptExecutingStack .. 478

__probeType .. 479

__readAPReg ... 480

__readDPReg ... 480

__readFile .. 481

__readFileByte ... 481

__readMemory8, __readMemoryByte .. 482

__readMemory16 ... 482

__readMemory32 ... 483

__readMemory64 .. 483

__registerMacroFile ... 484

__resetFile .. 484

__restoreSoftwareBreakpoints ... 484

__selectCore .. 485

__setCodeBreak ... 486

AFE1_AFE2-1:1

Contents

19

__setDataBreak .. 487

__setDataLogBreak ... 489

__setLogBreak ... 490

__setSimBreak ... 492

__setTraceStartBreak ... 493

__setTraceStopBreak ... 495

__sourcePosition .. 496

__strFind .. 497

__subString .. 497

__system1 .. 498

__system2 .. 499

__system3 .. 500

__targetDebuggerVersion .. 500

__toLower .. 501

__toString .. 501

__toUpper .. 502

__unloadImage .. 502

__wallTime_ms ... 503

__whichCore .. 503

__writeAPReg .. 504

__writeDPReg .. 505

__writeFile ... 505

__writeFileByte ... 506

__writeMemory8, __writeMemoryByte ... 506

__writeMemory16 ... 506

__writeMemory32 ... 507

__writeMemory64 .. 508

Graphical environment for macros .. 508

Macro Registration window ... 509

Debugger Macros window ... 511

Macro Quicklaunch window .. 513

AFE1_AFE2-1:1

20
C-SPY® Debugging Guide
for Arm

The C-SPY command line utility—cspybat 515

Using C-SPY in batch mode ... 515

Starting cspybat .. 515

Output ... 516

Invocation syntax ... 516

Summary of C-SPY command line options 517

General cspybat options .. 517

Options available for all C-SPY drivers .. 519

Options available for the simulator driver 520

Options available for the C-SPY GDB Server driver 520

Options available for the C-SPY I-jet driver 521

Options available for the C-SPY CMSIS-DAP driver 522

Options available for the C-SPY J-Link/J-Trace driver 524

Options available for the C-SPY TI MSP-FET driver 525

Options available for the C-SPY TI Stellaris driver 525

Options available for the C-SPY TI XDS driver 525

Options available for the C-SPY ST-LINK driver 526

Options available for the C-SPY third-party drivers 527

Reference information on C-SPY command line options ... 527

--application_args ... 527

--attach_to_running_target ... 528

--backend .. 528

--code_coverage_file .. 529

--cycles ... 529

--debug_auth_enforce .. 530

--debug_auth_settings .. 530

--debug_auth_type ... 531

--debug_file .. 531

--device ... 532

--device_macro ... 532

--disable_interrupts .. 532

--download_only .. 533

--drv_catch_exceptions .. 533

AFE1_AFE2-1:1

Contents

21

--drv_communication ... 534

--drv_communication_log .. 538

--drv_debugger_cache .. 538

--drv_default_breakpoint ... 539

--drv_enforce_mem_config ... 540

--drv_exclude_from_verify .. 540

--drv_interface .. 541

--drv_interface_speed ... 542

--drv_mem_ap .. 543

--drv_reset_to_cpu_start .. 543

--drv_restore_breakpoints .. 544

--drv_swo_clock_setup .. 544

--drv_trace_settings .. 545

--drv_vector_table_base ... 546

-f ... 547

--flash_loader ... 547

--function_profiling .. 548

--gdbserv_exec_command ... 548

--jet_board_cfg ... 548

--jet_board_did ... 549

--jet_cpu_clock ... 550

--jet_disable_pmu ... 550

--jet_disable_pmu_dap ... 551

--jet_ir_length ... 551

--jet_power_from_probe .. 551

--jet_probe .. 552

--jet_script_file ... 552

--jet_standard_reset .. 553

--jet_startup_connection_timeout .. 554

--jet_swo_on_d0 ... 555

--jet_swo_prescaler .. 555

--jet_swo_protocol ... 555

--jet_tap_position ... 556

--jlink_dcc_timeout .. 556

AFE1_AFE2-1:1

22
C-SPY® Debugging Guide
for Arm

--jlink_device_select .. 557

--jlink_exec_command ... 557

--jlink_initial_speed ... 558

--jlink_ir_length ... 558

--jlink_reset_strategy ... 559

--jlink_script_file ... 559

--jlink_trace_source ... 560

--leave_target_running ... 560

--lmiftdi_reset_strategy .. 561

--macro ... 561

--macro_param ... 562

--mapu .. 562

--mspfet_erase_flash .. 562

--mspfet_interface_speed ... 563

--mspfet_reset_strategy .. 563

--mspfet_settlingtime ... 564

--mspfet_vccvoltage ... 564

--multicore_nr_of_cores ... 564

-p .. 565

--plugin ... 565

--proc_stack_stack ... 566

--reset_style .. 566

--sdm_debug_architecture .. 568

--sdm_library .. 568

--sdm_library_hint ... 569

--sdm_manifest ... 569

--semihosting .. 570

--silent .. 570

--sockets ... 571

--stlink_reset_strategy .. 571

--suppress_entrypoint_warning .. 572

--timeout ... 572

--xds_board_file ... 572

--xds_reset_strategy ... 573

AFE1_AFE2-1:1

Contents

23

--xds_rootdir ... 574

Flash loaders ... 575

Introduction to the flash loader ... 575

Using flash loaders .. 575

Setting up the flash loader(s) ... 575

The flash loading mechanism .. 576

Aborting a flash loader ... 576

Reference information on the flash loader 577

Flash Loader Overview dialog box .. 577

Flash Loader Configuration dialog box ... 579

Part 4. Additional reference information 581

Debugger options ... 583

Setting debugger options .. 583

Reference information on general debugger options 584

Setup ... 585

Download ... 586

Images .. 587

Multicore .. 588

Authentication .. 590

Extra Options ... 591

Plugins .. 592

Reference information on C-SPY hardware debugger driver
options ... 593

CADI — Setup ... 594

CMSIS-DAP — Setup ... 595

CMSIS-DAP — Interface .. 598

E2 — Setup .. 600

GDB Server .. 601

G+LINK — Setup .. 601

I-jet — Setup .. 602

I-jet — Interface ... 605

AFE1_AFE2-1:1

24
C-SPY® Debugging Guide
for Arm

I-jet — Trace .. 607

J-Link/J-Trace — Setup ... 611

J-Link/J-Trace — Connection .. 615

Nu-Link — Setup ... 617

PE micro — Setup .. 617

ST-LINK — Setup ... 618

ST-LINK — Communication .. 621

ST-LINK — Multicore .. 622

TI MSP-FET — Setup ... 623

TI MSP-FET — Download .. 624

TI Stellaris — Setup ... 625

TI XDS — Setup .. 627

TI XDS — Communication ... 629

Third-Party Driver options ... 630

Additional information on C-SPY drivers .. 631

Reference information on C-SPY driver menus 631

C-SPY driver .. 631

Simulator menu (IAR native) ... 632

Simulator menu (Imperas) ... 634

Reference information on the C-SPY simulator 635

Simulated Frequency dialog box .. 635

Reference information on the C-SPY hardware debugger
drivers .. 635

CADI menu .. 636

CMSIS-DAP menu .. 637

E2 menu ... 639

GDB Server menu .. 640

G+LINK menu ... 641

I-jet menu ... 642

J-Link menu ... 646

Nu-Link menu .. 650

ST-Link menu .. 650

TI MSP-FET menu ... 653

AFE1_AFE2-1:1

Contents

25

TI Stellaris menu .. 655

TI XDS menu ... 656

Resolving problems .. 659

No contact with the target hardware .. 659

Index ... 661

AFE1_AFE2-1:1

26
C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

27

Tables
1: Typographic conventions used in this guide ... 33

2: Naming conventions used in this guide .. 34

3: Driver differences—Simulator, I-jet, J-Link/J-Trace, ST-LINK,TI XDS, etc 46

4: Driver differences—other drivers ... 47

5: Terminal I/O in real time ... 90

6: C-SPY assembler symbols expressions .. 100

7: Handling name conflicts between hardware registers and assembler labels 100

8: Live watch for the different devices .. 112

9: C-SPY macros for breakpoints .. 134

10: C-SPY macros for breakpoints .. 134

11: Support for timeline information .. 259

12: C-SPY driver profiling support ... 295

13: Project options for enabling the profiler ... 296

14: Timer interrupt settings ... 408

15: Examples of C-SPY macro variables .. 435

16: Summary of system macros .. 444

17: __cancelInterrupt return values ... 449

18: __disableInterrupts return values .. 451

19: __driverType return values ... 452

20: __emulatorSpeed return values ... 452

21: __enableInterrupts return values ... 453

22: __evaluate return values ... 454

23: __expandVar return values ... 454

24: __getTracePortSize return values ... 460

25: __hasDAPRegs return values ... 461

26: __hwJetResetWithStrategy return values ... 461

27: __hwReset return values ... 462

28: __hwResetRunToBp return values ... 463

29: __hwResetWithStrategy return values .. 464

30: __hwRunToBreakpoint return values ... 465

31: __isBatchMode return values ... 465

AFE1_AFE2-1:1

28
C-SPY® Debugging Guide
for ARM

32: __jtagResetTRST return values .. 472

33: __loadImage return values .. 473

34: __messageBoxYesCancel return values ... 475

35: __messageBoxYesNo return values ... 476

36: __openFile return values ... 477

37: __probeType return values ... 479

38: __readAPReg return values .. 480

39: __readDPReg return values .. 480

40: __readFile return values ... 481

41: __setCodeBreak return values .. 486

42: __setDataBreak return values ... 488

43: __setDataLogBreak return values ... 490

44: __setLogBreak return values .. 491

45: __setSimBreak return values .. 492

46: __setTraceStartBreak return values .. 494

47: __setTraceStopBreak return values .. 496

48: __sourcePosition return values ... 496

49: __unloadImage return values .. 503

50: __writeAPReg return values ... 504

51: __writeDPReg return values ... 505

52: cspybat parameters .. 516

53: Options specific to the C-SPY drivers you are using .. 583

AFE1_AFE2-1:1

29

Preface
Welcome to the C-SPY® Debugging Guide for Arm. The purpose of this guide is
to help you fully use the features in the IAR C-SPY® Debugger for debugging
your application based on the Arm core.

Who should read this guide
Read this guide if you plan to develop an application using IAR Embedded Workbench
and want to get the most out of the features available in C-SPY.

REQUIRED KNOWLEDGE

To use the tools in IAR Embedded Workbench, you should have working knowledge of:

● The architecture and instruction set of the Arm core you are using (refer to the chip
manufacturer's documentation)

● The C or C++ programming language

● Application development for embedded systems

● The operating system of your host computer.

For more information about the other development tools incorporated in the IDE, refer
to their respective documentation, see Other documentation, page 31.

How to use this guide
If you are new to using IAR Embedded Workbench, we suggest that you first go through
the tutorials, which you can find in the Information Center, for an overview of the tools
and the features that the IDE offers.

The process of managing projects and building, as well as editing, is described in the
IDE Project Management and Building Guide for Arm, whereas information about how
to use C-SPY for debugging is described in this guide.

This guide describes a number of topics, where each topic section contains an
introduction which also covers concepts related to the topic. This will give you a good
understanding of the features in C-SPY. Furthermore, the topic section provides
procedures with step-by-step descriptions to help you use the features. Finally, each
topic section contains all relevant reference information.

AFE1_AFE2-1:1

30

What this guide contains

C-SPY® Debugging Guide
for Arm

We also recommend the Glossary, which you can find in the IDE Project Management
and Building Guide for Arm, if you should encounter any unfamiliar terms in the IAR
user and reference guides.

What this guide contains
Below is a brief outline and summary of the chapters in this guide.

Note: Some of the screenshots in this guide are taken from a similar product and not
from IAR Embedded Workbench for Arm.

PART 1. BASIC DEBUGGING

● The IAR C-SPY Debugger introduces you to the C-SPY debugger and to the
concepts that are related to debugging in general and to C-SPY in particular. The
chapter also introduces the various C-SPY drivers. The chapter briefly shows the
difference in functionality that the various C-SPY drivers provide.

● Getting started using C-SPY helps you get started using C-SPY, which includes
setting up, starting, and adapting C-SPY for target hardware.

● Executing your application describes the conceptual differences between source
and disassembly mode debugging, the facilities for executing your application, and
finally, how you can handle terminal input and output.

● Variables and expressions describes the syntax of the expressions and variables
used in C-SPY, as well as the limitations on variable information. The chapter also
demonstrates the various methods for monitoring variables and expressions.

● Breakpoints describes the breakpoint system and the various ways to set
breakpoints.

● Memory and registers shows how you can examine memory and registers.

PART 2. ANALYZING YOUR APPLICATION

● Trace describes how you can inspect the program flow up to a specific state using
trace data.

● The application timeline describes the Timeline window, and how to use the
information in it to analyze your application’s behavior.

● Profiling describes how the profiler can help you find the functions in your
application source code where the most time is spent during execution.

● Code coverage describes how the code coverage functionality can help you verify
whether all parts of your code have been executed, thus identifying parts which have
not been executed.

AFE1_AFE2-1:1

Preface

31

● Performance monitoring describes the Performance Monitoring window, and how
to use this window to view event counters or CPU clock cycles through the
Performance Monitoring Unit (PMU).

● Power debugging describes techniques for power debugging and how you can use
C-SPY to find source code constructions that result in unexpected power
consumption.

● C-RUN runtime error checking describes how to use C-RUN for runtime error
checking.

PART 3. ADVANCED DEBUGGING

● Multicore debugging describes how to debug a target with multiple cores.

● Interrupts contains detailed information about the C-SPY interrupt simulation
system and how to configure the simulated interrupts to make them reflect the
interrupts of your target hardware.

● C-SPY macros describes the C-SPY macro system, its features, the purposes of
these features, and how to use them.

● The C-SPY command line utility—cspybat describes how to use C-SPY in batch
mode.

● Flash loaders describes the flash loader, what it is and how to use it.

PART 4. ADDITIONAL REFERENCE INFORMATION

● Debugger options describes the options you must set before you start the C-SPY
debugger.

● Additional information on C-SPY drivers describes menus and features provided by
the C-SPY drivers not described in any dedicated topics.

Other documentation
User documentation is available as hypertext PDFs and as a context-sensitive online
help system in HTML format. You can access the documentation from the IAR
Information Center or from the Help menu in the IAR Embedded Workbench IDE. The
online help system is also available via the F1 key.

AFE1_AFE2-1:1

32

Other documentation

C-SPY® Debugging Guide
for Arm

USER AND REFERENCE GUIDES

The complete set of IAR development tools is described in a series of guides.
Information about:

● System requirements and information about how to install and register the IAR
products are available in the Installation and Licensing Quick Reference Guide and
the Licensing Guide.

● Using the IDE for project management and building, is available in the IDE Project
Management and Building Guide for Arm.

● Using the IAR C-SPY® Debugger and C-RUN runtime error checking, is available
in the C-SPY® Debugging Guide for Arm.

● Programming for the IAR C/C++ Compiler for Arm and linking, is available in the
IAR C/C++ Development Guide for Arm.

● Programming for the IAR Assembler for Arm, is available in the IAR Assembler
User Guide for Arm.

● Performing a static analysis using C-STAT and the required checks, is available in
the C-STAT® Static Analysis Guide.

● Using I-jet, refer to the IAR Debug Probes User Guide for I-jet®, I-jet Trace, and
I-scope.

● Using IAR J-Link and IAR J-Trace, refer to the J-Link/J-Trace User Guide.

● Porting application code and projects created with a previous version of the IAR
Embedded Workbench for Arm, is available in the IAR Embedded Workbench®
Migration Guide.

Note: Additional documentation might be available depending on your product
installation.

THE ONLINE HELP SYSTEM

The context-sensitive online help contains information about:

● IDE project management and building

● Debugging using the IAR C-SPY® Debugger

● The IAR C/C++ Compiler and Linker

● The IAR Assembler

● C-STAT

WEB SITES

Recommended web sites:

● The chip manufacturer’s web site.

AFE1_AFE2-1:1

Preface

33

● The Arm Limited web site, www.arm.com, that contains information and news
about the Arm cores.

● The IAR web site, www.iar.com, that holds application notes and other product
information.

● The web site of the C standardization working group,
www.open-std.org/jtc1/sc22/wg14.

● The web site of the C++ Standards Committee, www.open-std.org/jtc1/sc22/wg21.

● The C++ programming language web site, isocpp.org. This web site also has a list
of recommended books about C++ programming.

● The C and C++ reference web site, en.cppreference.com.

Document conventions
When, in the IAR documentation, we refer to the programming language C, the text also
applies to C++, unless otherwise stated.

When referring to a directory in your product installation, for example arm\doc, the full
path to the location is assumed, for example c:\Program Files\IAR
Systems\Embedded Workbench N.n\arm\doc, where the initial digit of the version
number reflects the initial digit of the version number of the IAR Embedded Workbench
shared components.

TYPOGRAPHIC CONVENTIONS

The IAR documentation set uses the following typographic conventions:

Style Used for

computer • Source code examples and file paths.
• Text on the command line.
• Binary, hexadecimal, and octal numbers.

parameter A placeholder for an actual value used as a parameter, for example
filename.h where filename represents the name of the file.

[option] An optional part of a linker or stack usage control directive, where [
and] are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

{option} A mandatory part of a linker or stack usage control directive, where {
and } are not part of the actual directive, but any [,], {, or } are part
of the directive syntax.

[option] An optional part of a command line option, pragma directive, or library
filename.

Table 1: Typographic conventions used in this guide

AFE1_AFE2-1:1

34

Document conventions

C-SPY® Debugging Guide
for Arm

NAMING CONVENTIONS

The following naming conventions are used for the products and tools from IAR, when
referred to in the documentation:

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured for the
instruction sets T32/T and A32.

[a|b|c] An optional part of a command line option, pragma directive, or library
filename with alternatives.

{a|b|c} A mandatory part of a command line option, pragma directive, or
library filename with alternatives.

bold Names of menus, menu commands, buttons, and dialog boxes that
appear on the screen.

italic • A cross-reference within this guide or to another guide.
• Emphasis.

… An ellipsis indicates that the previous item can be repeated an arbitrary
number of times.

Identifies instructions specific to the IAR Embedded Workbench® IDE
interface.

Identifies instructions specific to the command line interface.

Identifies helpful tips and programming hints.

Identifies warnings.

Brand name Generic term

IAR Embedded Workbench® for Arm IAR Embedded Workbench®

IAR Embedded Workbench® IDE for Arm the IDE

IAR C-SPY® Debugger for Arm C-SPY, the debugger

IAR C-SPY® Simulator the simulator

IAR C/C++ Compiler™ for Arm the compiler

IAR Assembler™ for Arm the assembler

IAR ILINK Linker™ ILINK, the linker

IAR DLIB Runtime Environment™ the DLIB runtime environment

Table 2: Naming conventions used in this guide

Style Used for

Table 1: Typographic conventions used in this guide (Continued)

AFE1_AFE2-1:1

Preface

35

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured for the
instruction set A64.

For more information, see Execution modes, page 45.

AFE1_AFE2-1:1

36

Document conventions

C-SPY® Debugging Guide
for Arm

37

Part 1. Basic debugging
This part of the C-SPY® Debugging Guide for Arm includes chapters:

● The IAR C-SPY Debugger

● Getting started using C-SPY

● Executing your application

● Variables and expressions

● Breakpoints

● Memory and registers

38

AFE1_AFE2-1:1

39

The IAR C-SPY Debugger
● Introduction to C-SPY

● Debugger concepts

● Execution modes

● C-SPY drivers overview

● The IAR C-SPY Simulator

● The C-SPY hardware debugger drivers

Introduction to C-SPY
These topics are covered:

● An integrated environment

● General C-SPY debugger features

● RTOS awareness

AN INTEGRATED ENVIRONMENT

C-SPY is a high-level-language debugger for embedded applications. It is designed for
use with the IAR compilers and assemblers, and is completely integrated in the IDE,
providing development and debugging within the same application. This gives you
possibilities such as:

● Editing while debugging
During a debug session, you can make corrections directly in the same source code
window that is used for controlling the debugging. Changes will be included in the
next project rebuild.

● Setting breakpoints at any point during the development cycle
You can inspect and modify breakpoint definitions also when the debugger is not
running, and breakpoint definitions flow with the text as you edit. Your debug
settings, such as watch properties, window layouts, and register groups will be
preserved between your debug sessions.

Note: Setting breakpoints when the debugger is running is not supported by the
C-SPY Simulator for all cores or devices.

AFE1_AFE2-1:1

40

Introduction to C-SPY

C-SPY® Debugging Guide
for Arm

All windows that are open in the IAR Embedded Workbench workspace will stay open
when you start the C-SPY Debugger. In addition, a set of C-SPY-specific windows are
opened.

GENERAL C-SPY DEBUGGER FEATURES

Because IAR provides an entire toolchain, the output from the compiler and linker can
include extensive debug information for the debugger, resulting in good debugging
possibilities for you.

C-SPY offers these general features:

● Source and disassembly level debugging
C-SPY allows you to switch between source and disassembly debugging as required,
for both C or C++ and assembler source code.

● Single-stepping on a function call level
Compared to traditional debuggers, where the finest granularity for source level
stepping is line by line, C-SPY provides a finer level of control by identifying every
statement and function call as a step point. This means that each function call—
inside expressions, and function calls that are part of parameter lists to other
functions—can be single-stepped. The latter is especially useful when debugging
C++ code, where numerous extra function calls are made, for example to object
constructors.

● Code and data breakpoints
The C-SPY breakpoint system lets you set breakpoints of various kinds in the
application being debugged, allowing you to stop at locations of particular interest.
For example, you set breakpoints to investigate whether your program logic is correct
or to investigate how and when the data changes.

● Monitoring variables and expressions
For variables and expressions there is a wide choice of facilities. You can easily
monitor values of a specified set of variables and expressions, continuously or on
demand. You can also choose to monitor only local variables, static variables, etc.

● Container awareness
When you run your application in C-SPY, you can view the elements of library data
types such as STL lists and vectors. This gives you a very good overview and
debugging opportunities when you work with C++ STL containers.

● Call stack information
The compiler generates extensive call stack information. This allows the debugger to
show, without any runtime penalty, the complete stack of function calls wherever the
program counter is. You can select any function in the call stack, and for each
function you get valid information for local variables and available registers.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

41

● Powerful macro system
C-SPY includes a powerful internal macro system, to allow you to define complex
sets of actions to be performed. C-SPY macros can be used on their own or in
conjunction with complex breakpoints and—for some cores or devices—the
interrupt simulation system to perform a wide variety of tasks.

Additional general C-SPY debugger features

This list shows some additional features:

● Threaded execution keeps the IDE responsive while running the target application

● Automatic stepping

● The source browser provides easy navigation to functions, types, and variables

● Extensive type recognition of variables

● Configurable registers (CPU and peripherals) and memory windows

● Graphical stack view with overflow detection

● Support for code coverage and function level profiling (not supported by the C-SPY
Simulator for all cores or devices)

● Support for performance monitoring of event counters and CPU clock cycles
through the Performance Monitoring Unit (PMU)

● The target application can access files on the host PC using file I/O

● Optional terminal I/O emulation

RTOS AWARENESS

C-SPY supports RTOS-aware debugging.

These operating systems are currently supported:

● AVIX-RT

● Azure RTOS ThreadX

● CMX-RTX

● CMX-Tiny+

● eForce mC3/Compact

● eSysTech X realtime kernel

● FreeRTOS, OpenRTOS, and SafeRTOS

● Freescale MQX

● Micrium uC/OS-II

● Micrium uC/OS-III

● Micro Digital SMX

AFE1_AFE2-1:1

42

Debugger concepts

C-SPY® Debugging Guide
for Arm

● MISPO NORTi

● OSEK Run Time Interface (ORTI)

● RTXC Quadros

● Segger embOS

● unicoi Fusion

RTOS plugin modules can be provided by IAR, and by third-party suppliers. Contact
your software distributor or IAR representative, alternatively visit the IAR web site, for
information about supported RTOS modules.

A C-SPY RTOS awareness plugin module gives you a high level of control and visibility
over an application built on top of an RTOS. It displays RTOS-specific items like task
lists, queues, semaphores, mailboxes, and various RTOS system variables. Task-specific
breakpoints and task-specific stepping make it easier to debug tasks.

A loaded plugin will add its own menu, set of windows, and buttons when a debug
session is started (provided that the RTOS is linked with the application). For
information about other RTOS awareness plugin modules, refer to the manufacturer of
the plugin module. For links to the RTOS documentation, see the release notes that are
available from the Help menu.

Debugger concepts
This section introduces some of the concepts and terms that are related to debugging in
general and to C-SPY in particular. This section does not contain specific information
related to C-SPY features. Instead, you will find such information in the other chapters
of this documentation. The IAR user documentation uses the terms described in this
section when referring to these concepts.

These topics are covered:

● C-SPY and target systems

● The debugger

● The target system

● The application

● C-SPY debugger systems

● The ROM-monitor program

● Third-party debuggers

● C-SPY plugin modules

AFE1_AFE2-1:1

The IAR C-SPY Debugger

43

C-SPY AND TARGET SYSTEMS

You can use C-SPY to debug either a software target system or a hardware target system.

This figure gives an overview of C-SPY and possible target systems:

THE DEBUGGER

The debugger, for instance C-SPY, is the program that you use for debugging your
applications on a target system.

THE TARGET SYSTEM

The target system is the system on which you execute your application when you are
debugging it. The target system can consist of hardware, either an evaluation board or
your own hardware design. It can also be completely or partially simulated by software.
Each type of target system needs a dedicated C-SPY driver.

THE APPLICATION

A user application is the software you have developed and which you want to debug
using C-SPY.

AFE1_AFE2-1:1

44

Debugger concepts

C-SPY® Debugging Guide
for Arm

C-SPY DEBUGGER SYSTEMS

C-SPY consists of both a general part which provides a basic set of debugger features,
and a target-specific back end. The back end consists of two components: a processor
module—one for every microcontroller, which defines the properties of the
microcontroller, and a C-SPY driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also provides the user
interface—menus, windows, and dialog boxes—to the functions provided by the target
system, for instance, special breakpoints.

Typically, there are three main types of C-SPY drivers:

● Simulator driver

● ROM-monitor driver

● Emulator driver

C-SPY is available with a simulator driver, and depending on your product package,
optional drivers for hardware debugger systems. For an overview of the available C-SPY
drivers and the functionality provided by each driver, see C-SPY drivers overview, page
45.

THE ROM-MONITOR PROGRAM

The ROM-monitor program is a piece of firmware that is loaded to non-volatile memory
on your target hardware—it runs in parallel with your application. The ROM-monitor
communicates with the debugger and provides services needed for debugging the
application, for instance stepping and breakpoints.

THIRD-PARTY DEBUGGERS

You can use a third-party debugger together with the IAR toolchain as long as the
third-party debugger can read ELF/DWARF, Intel-extended, or Motorola. For
information about which format to use with a third-party debugger, see the user
documentation supplied with that tool.

C-SPY PLUGIN MODULES

C-SPY is designed as a modular architecture with an open SDK that can be used for
implementing additional functionality to the debugger in the form of plugin modules.
These modules can be seamlessly integrated in the IDE.

Plugin modules are provided by IAR, or can be supplied by third-party vendors.
Examples of such modules are:

● The various C-SPY drivers for debugging using certain debug systems.

● RTOS plugin modules for support for real-time OS aware debugging.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

45

● C-SPYLink that bridges IAR Visual State and IAR Embedded Workbench to make
true high-level state machine debugging possible directly in C-SPY, in addition to
the normal C level symbolic debugging. For more information, see the
documentation provided with IAR Visual State.

For more information about the C-SPY SDK, contact IAR.

Execution modes
IAR Embedded Workbench for Arm supports the 32-bit and 64-bit Arm architectures by
means of execution modes.

In 32-bit mode refers to using IAR Embedded Workbench for Arm configured to
generate and debug code for the T32/T and A32 instruction sets, either on an
Armv4/5/6/7 core or in the AArch32 execution state on an Arm v8-A core. In 32-bit
mode, you can use both the A32 and T32/T instruction sets and switch between them.

In 64-bit mode refers to using IAR Embedded Workbench for Arm configured to
generate and debug code for the A64 instruction set in the AArch64 execution state on
an Arm v8-A core. Code in 64-bit mode can call code in 32-bit mode, and that code can
return back. However, the IAR translator tools do not support this switch being used in
a single linked image. Switching between A32/T32/T code and A64 code must be
performed by using several images. For example, an OS using 64-bit mode can start
applications in either 64-bit or in 32-bit mode.

The AArch32 execution state is compatible with the Arm v7 architecture. The AArch32
execution state is emulated inside the AArch64 execution state.

C-SPY drivers overview
At the time of writing this guide, the IAR C-SPY Debugger for Arm cores is available
with drivers for these target systems and evaluation boards:

● Simulator

● CADI (Cycle Accurate Debug Interface)

● CMSIS-DAP probes

● The Renesas E2/E2Lite probes (with a Cortex-M device)

● GDB Server

● The GeneralPlus G+LINK probe

● I-jet and I-jet Trace debug probes

● J-Link/J-Trace probes

AFE1_AFE2-1:1

46

C-SPY drivers overview

C-SPY® Debugging Guide
for Arm

● Nuvoton Technology Corporation’s Nu-Link debug adapter for Nuvoton’s N76E
Series MCUs. For information about the Nu-Link debug adapter, contact Nuvoton
Technology Corporation.

● P&E Microcomputer Systems. For information about this driver, see the file
PEMicroSettings.pdf, available in the arm\doc directory.

● ST-LINK JTAG/SWD probes (for ST Cortex-M devices only)

● TI MSP-FET probes

● TI Stellaris JTAG/SWD probes using FTDI or ICDI (for Stellaris Cortex devices
only)

● TI XDS probes (XDS100v2, XDS100v3, XDS110, and XDS200)

Note: In addition to the drivers supplied with IAR Embedded Workbench, you can also
load debugger drivers supplied by a third-party vendor, see Third-Party Driver options,
page 630.

DIFFERENCES BETWEEN THE C-SPY DRIVERS

This table summarizes the key differences between the Simulator, I-jet, J-Link/J-Trace,
ST-LINK, TI XDS, CMSIS-DAP and TI MSP-FET drivers:

Feature Simulator I-jet
J-Link/

J-Trace
ST-LINK TI XDS CMSIS-DAP

TI

MSP-FET

Code
breakpoints

Yes Yes Yes Yes Yes Yes Yes

Data breakpoints Yes3 Yes Yes Yes3 Yes Yes Yes

Interrupt logging1 Yes3 Yes Yes Yes3 Yes — —

Data logging1 Yes3 Yes Yes Yes3 Yes — —

State logging1 — — — — Yes — Yes

Call stack trace1 Yes3 Yes Yes — — — —

Event logging1 — Yes Yes Yes3 Yes — —

Live watch1 Yes Yes Yes Yes3 Yes Yes —

Cycle counter1 Yes Yes Yes Yes3 Yes Yes —

Code coverage1 Yes3 Yes Yes Yes3 Yes Yes —

Data coverage Yes3 — — — — — —

Function
/instruction
profiler1

Yes3 Yes Yes Yes3 Yes — —

Trace1 Yes3 Yes Yes Yes3 Yes — —

Table 3: Driver differences—Simulator, I-jet, J-Link/J-Trace, ST-LINK,TI XDS, etc

AFE1_AFE2-1:1

The IAR C-SPY Debugger

47

1 With specific requirements or restrictions, see the respective chapter in this guide.

2 Limited support.

3 Not for all cores and devices.

4 See the manufacturer’s documentation.

This table summarizes the key differences between the Simulator and other supported
hardware debugger drives—GDB Server, TI Stellaris, CADI, Nu-Link, E2/E2Lite, and
G+LINK:

Multicore
debugging1

Yes3 Yes Yes Yes4 — Yes2 —

Performance
monitoring1

— Yes Yes — — — —

Power
debugging1

— Yes Yes Yes3 Yes — Yes

Feature Simulator
GDB

Server

TI

Stellaris
CADI Nu-Link E2/E2Lite G+LINK

Code breakpoints Yes Yes Yes Yes Yes Yes Yes

Data breakpoints Yes3 Yes Yes — — — Yes

Interrupt logging1 Yes3 — — — — — —

Data logging1 Yes3 — — — — — —

State logging — — — — — — —

Call stack trace1 Yes3 — — — — — —

Event logging — — — — — — —

Live watch Yes — — — — — Yes

Cycle counter1 Yes — — — — — —

Code coverage1 Yes3 — — — — — —

Data coverage Yes3 — — — — — —

Function/instruction
profiler1

Yes3 — — — — — —

Trace1 Yes3 — — — — — —

Multicore
debugging1

Yes3 — — — — — —

Table 4: Driver differences—other drivers

Feature Simulator I-jet
J-Link/

J-Trace
ST-LINK TI XDS CMSIS-DAP

TI

MSP-FET

Table 3: Driver differences—Simulator, I-jet, J-Link/J-Trace, ST-LINK,TI XDS, etc (Continued)

AFE1_AFE2-1:1

48

The IAR C-SPY Simulator

C-SPY® Debugging Guide
for Arm

1 With specific requirements or restrictions, see the respective chapter in this guide.

2 Limited support.

3 Not for all cores and devices.

The IAR C-SPY Simulator
The C-SPY simulator simulates the functions of the target processor entirely in
software, which means that you can debug the program logic long before any hardware
is available. Because no hardware is required, it is also the most cost-effective solution
for many applications.

TWO SIMULATOR DRIVERS

The C-SPY simulator uses one of two debugger drivers. Which driver depends on which
core or device you have selected for your application project. For some cores and
devices, the C-SPY simulator uses the IAR C-SPY simulator driver, a feature-rich
debugger driver. For other cores and devices, the C-SPY Simulator uses the Imperas
Instruction Set Simulator, a very fast debugger driver. Both simulators are fully
integrated into the C-SPY framework. You can see which one C-SPY is using by
inspecting the debug log.

SUPPORTED FEATURES

The C-SPY simulator supports:

● Instruction-level simulation

● Memory configuration and validation

● Interrupt simulation (not supported by the Imperas driver)

● Peripheral simulation (using the C-SPY macro system in conjunction with
immediate breakpoints).

Simulating hardware instead of using a hardware debugging system means that some
limitations do not apply, but that there are other limitations instead. For example:

● You can set an unlimited number of breakpoints in the simulator.

Performance
monitoring

— — — — — — —

Power debugging — — — — — — —

Feature Simulator
GDB

Server

TI

Stellaris
CADI Nu-Link E2/E2Lite G+LINK

Table 4: Driver differences—other drivers (Continued)

AFE1_AFE2-1:1

The IAR C-SPY Debugger

49

● When you stop executing your application, time actually stops in the simulator.
When you stop application execution on a hardware debugging system, there might
still be activities in the system. For example, peripheral units might still be active
and reading from or writing to SFR ports.

● Application execution is significantly much slower in a simulator compared to when
using a hardware debugging system. However, during a debug session, this might
not necessarily be a problem.

● The simulator is not cycle accurate.

● Peripheral simulation is limited in the C-SPY Simulator and therefore the simulator
is suitable mostly for debugging code that does not interact too much with
peripheral units.

The C-SPY hardware debugger drivers
C-SPY can connect to a hardware debugger using a C-SPY hardware debugger driver as
an interface.

When a debug session is started, your application is automatically downloaded and
programmed into target memory. You can disable this feature, if necessary.

These topics are covered:

● Communication overview

● Hardware installation

● USB driver installation

COMMUNICATION OVERVIEW

There are two main communication setups, depending on the type of target system.
Many of the Arm cores have built-in, on-chip debug support. Because the hardware
debugger logic is built into the core, no ordinary ROM-monitor program or extra
specific hardware is needed to make the debugging work, other than the debug probe.
For some devices that do not have such built-in, on-chip debug support, there is instead
a ROM-monitor debugger solution that can be used.

AFE1_AFE2-1:1

50

The C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Overview of a target system with a debug probe or emulator

Most target systems have an emulator, a debug probe or a debug adapter connected
between the host computer and the evaluation board:

When a USB connection is used, a specific USB driver must be installed before you can
use the probe over the USB port. You can find the driver on the IAR Embedded
Workbench for Arm installation media.

HARDWARE INSTALLATION

For best results, follow these steps.

Recommended power-up sequence

For information about the hardware installation, see the documentation supplied with
the target system from the manufacturer. The following power-up sequence is
recommended to ensure proper communication between the target board, debug probe,
and C-SPY:

1 Connect the probe to the target board.

2 Connect the USB cable to the debug probe.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

51

3 Power up the debug probe, if it is not powered via USB.

4 Power up the target board, if it is not powered via the debug probe.

5 Start the C-SPY debug session.

6 If more than one debug probe is connected to your computer, the Debug Probe
Selection dialog box is displayed. In the dialog box, select the probe to use and click
OK. For more information, see --drv_communication, page 534.

To give the probe a nickname, select the probe in the dialog box and click the Edit
Nickname button. The nickname is saved locally on your computer and is available
when opening other projects.

Note: The Edit Nickname button might not be available for the C-SPY driver you are
using.

USB DRIVER INSTALLATION

C-SPY needs a USB driver, which for some probes, is automatically installed. If the
USB driver is not installed automatically, you will need to install it manually.

Installing the I-jet USB driver

I-jet does not require any special driver software installation. Normally, all drivers for
I-jet are automatically installed as part of the installation of IAR Embedded Workbench.

If you need to install the USB driver manually, navigate to
\arm\drivers\jet\USB\64-bit (in the installation directory). Start the
dpinst.exe application. This will install the USB driver.

Installing the I-jet Trace USB driver

I-jet Trace does not require any special driver software installation. Normally, all drivers
for I-jet Trace are automatically installed as part of the installation of IAR Embedded
Workbench.

AFE1_AFE2-1:1

52

The C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

If you need to install the USB driver manually, navigate to
\arm\drivers\jet\USB\64-bit (in the installation directory). Start the
dpinst.exe application. This will install the USB driver.

The USB LED will flash twice after enumerating on the USB2 ports, and three times on
USB3 ports.

Installing the J-Link USB driver

Before you can use the J-Link JTAG probe over the USB port, the Segger J-Link USB
driver must be installed.

1 Install IAR Embedded Workbench for Arm.

2 Use the USB cable to connect the computer and J-Link. Do not connect J-Link to the
target board yet. The green LED on the front panel of J-Link will blink for a few
seconds while Windows searches for a USB driver.

Run the InstDrivers.exe application, which is located in the product installation in
the arm\drivers\JLink directory.

Once the initial setup is completed, you will not have to install the driver again.

Note: J-Link will continuously blink until the USB driver has established contact with
the J-Link probe. When contact has been established, J-Link will start with a steady light
to indicate that it is connected.

Installing the ST-LINK USB driver for ST-LINK version 2

Before you can use the ST-LINK version 2 JTAG probe over the USB port, the ST-LINK
USB driver must be installed.

1 Install IAR Embedded Workbench for Arm.

2 Use the USB cable to connect the computer and ST-LINK. Do not connect ST-LINK to
the target board yet.

Because this is the first time ST-LINK and the computer are connected, Windows will
open a dialog box and ask you to locate the USB driver. The USB driver can be found
in the product installation in the arm\drivers\ST-Link\Win_7-8 directory—
dpinst_amd64.exe.

Once the initial setup is completed, you will not have to install the driver again.

Installing the TI Stellaris USB driver

Before you can use the TI Stellaris JTAG interface using FTDI or ICDI over the USB
port, the Stellaris USB driver must be installed.

1 Install IAR Embedded Workbench for Arm.

AFE1_AFE2-1:1

The IAR C-SPY Debugger

53

2 Use the USB cable to connect the computer to the TI board.

Because this is the first time the Stellaris JTAG interface and the computer are
connected, Windows will open a dialog box and ask you to locate the USB driver. There
are different USB drivers for FTDI and ICDI. The drivers can be found in the product
installation in the arm\drivers\StellarisFTDI and the
arm\drivers\StellarisICDI directories, respectively.

Once the initial setup is completed, you will not have to install the driver again.

Installing the TI XDS USB driver

Before you can use the TI XDS JTAG interface over the USB port, the TI XDS package
must be installed.

1 Install IAR Embedded Workbench for Arm.

2 Install the TI XDS package using the run_installer.bat file which can be found in
the arm\drivers\ti-xds\win64 directory. It is recommended to choose the
suggested installation directory. See also TI XDS — Setup, page 627.

3 Use the USB cable to connect the computer to the TI board.

Configuring the OpenOCD Server

For more information, see the gdbserv_quickstart.html file, available in the
arm\doc\infocenter directory, or refer to the manufacturer’s documentation.

Installing the TI MSP-FET USB driver

Before you can use the TI MSP-FET driver, the TI MSP-FET USB driver must be
installed.

1 Install IAR Embedded Workbench for Arm.

2 The USB driver can be found in the product installation in the
arm\drivers\ti-mspfet\USB_CDC directory—DPInst64.exe.

3 Use the USB cable to connect to the TI MSP-FET probe.

Installing the PE Micro USB driver

To install the USB driver for the PE Micro driver manually, navigate to the
arm\drivers\pemicro directory and start the PEDrivers_install.exe
application. This will install the USB driver. For information about this driver, see the
file PEMicroSettings.pdf, available in the arm\doc directory.

AFE1_AFE2-1:1

54

The C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Installing the Nu-Link USB driver

To install the USB driver for the Nu-Link driver manually, navigate to the
arm\drivers\Nu-Link directory and start the Nu-Link_USB_Driver.exe
application. This will install the USB driver. For information about this driver, see the
file NuMicro Cortex-M IAR ICE driver user manual.pdf available in the
arm\bin\Nu-Link directory.

Installing the E2/E2Lite USB driver

To install the USB driver for the Renesas E2 C-SPY driver manually, navigate to the
arm\drivers\RenesasE2 directory and start the
USB_Driver_x64_for_Renesas_MCU_Tools.exe application. This will install the
USB driver. For information about this probe, see the documentation from Renesas
supplied with the probe.

AFE1_AFE2-1:1

55

Getting started using
C-SPY
● Setting up C-SPY

● Starting C-SPY

● Adapting for target hardware

● An overview of the debugger startup

● Reference information on starting C-SPY

Setting up C-SPY
These tasks are covered:

● Setting up for debugging

● Executing from reset

● Using a setup macro file

● Selecting a device description file

● Loading plugin modules

SETTING UP FOR DEBUGGING

1 Install a USB driver or some other communication driver, if your C-SPY driver
requires it.

For more information, see:

● Installing the I-jet USB driver, page 51

● Installing the I-jet Trace USB driver, page 51

● Installing the J-Link USB driver, page 52

● Installing the ST-LINK USB driver for ST-LINK version 2, page 52

● Installing the TI Stellaris USB driver, page 52

● Installing the TI XDS USB driver, page 53

● Configuring the OpenOCD Server, page 53

● Installing the TI MSP-FET USB driver, page 53

AFE1_AFE2-1:1

56

Setting up C-SPY

C-SPY® Debugging Guide
for Arm

● Installing the PE Micro USB driver, page 53

● Installing the Nu-Link USB driver, page 54

● Installing the E2/E2Lite USB driver, page 54

2 Before you start C-SPY, choose Project>Options>Debugger>Setup and select the
C-SPY driver that matches your debugger system—simulator or hardware debugger
system.

3 In the Category list, select the appropriate C-SPY driver and make your settings. For
information about these options, see Debugger options, page 583.

4 Click OK.

5 Choose Tools>Options to open the IDE Options dialog box:

● Select Debugger to configure the debugger behavior

● Select Stack to configure the debugger’s tracking of stack usage.

For more information about these options, see the IDE Project Management and
Building Guide for Arm. See also Adapting for target hardware, page 61.

EXECUTING FROM RESET

The Run to option—available on the Debugger>Setup page—specifies a location you
want C-SPY to run to when you start a debug session as well as after each reset. C-SPY
will place a temporary breakpoint at this location and all code up to this point is executed
before stopping at the location. Note that this temporary breakpoint is removed when the
debugger stops, regardless of how. If you stop the execution before the Run to location
has been reached, the execution will not stop at that location when you start the
execution again.

The default location to run to is the main function. Type the name of the location if you
want C-SPY to run to a different location. You can specify assembler labels or whatever
can be evaluated to such, for instance function names.

If you leave the check box empty, the program counter will contain the regular hardware
reset address at each reset. The reset address is set by C-SPY.

If no breakpoints are available when C-SPY starts, a warning message notifies you that
single stepping will be required and that this is time consuming. You can then continue
execution in single-step mode or stop at the first instruction. If you choose to stop at the
first instruction, the debugger starts executing with the PC (program counter) at the
default reset location instead of the location you typed in the Run to box.

Note: This message will never be displayed in the C-SPY simulator, where breakpoints
are unlimited.

AFE1_AFE2-1:1

Getting started using C-SPY

57

USING A SETUP MACRO FILE

A setup macro file is a macro file that you choose to load automatically when C-SPY
starts. You can define the setup macro file to perform actions according to your needs,
using setup macro functions and system macros. Thus, if you load a setup macro file you
can initialize C-SPY to perform actions automatically.

For more information about setup macro files and functions, see Introduction to C-SPY
macros, page 427.

For an example of how to use a setup macro file, see Initializing target hardware before
C-SPY starts, page 62.

To register a setup macro file:
1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Select Use macro file and type the path and name of your setup macro file, for
example Setup.mac. If you do not type a filename extension, the extension mac is
assumed.

SELECTING A DEVICE DESCRIPTION FILE

C-SPY uses device description files to handle device-specific information.

A default device description file—either an IAR-specific ddf file or a CMSIS System
View Description file—is automatically used based on your project settings. If you want
to override the default file, you must select your device description file. Device
description files from IAR are provided in the arm\config directory and they have the
filename extension ddf.

For more information about device description files, see Adapting for target hardware,
page 61.

To override the default device description file:
1 Before you start C-SPY, choose Project>Options>Debugger>Setup.

2 Select the Override default option, and choose a file using the Device description file
browse button.

Note: You can easily view your device description files that are used for your project.
Choose Project>Open Device Description File and select the file you want to view.

LOADING PLUGIN MODULES

On the Plugins page you can specify C-SPY plugin modules to load and make available
during debug sessions. Plugin modules can be provided by IAR, and by third-party
suppliers. Contact your software distributor or IAR representative, or visit the IAR web
site, for information about available modules.

AFE1_AFE2-1:1

58

Starting C-SPY

C-SPY® Debugging Guide
for Arm

For more information, see Plugins, page 592.

Starting C-SPY
When you have set up the debugger, you are ready to start a debug session.

These tasks are covered:

● Starting a debug session

● Loading executable files built outside of the IDE

● Starting a debug session with source files missing

● Loading multiple debug images

● Editing in C-SPY windows

STARTING A DEBUG SESSION

You can choose to start a debug session with or without loading the current executable
file.

To start C-SPY and download the current executable file, click the Download and
Debug button. Alternatively, choose Project>Download and Debug.

To start C-SPY without downloading the current executable file, click the Debug
without Downloading button. Alternatively, choose Project>Debug without
Downloading.

LOADING EXECUTABLE FILES BUILT OUTSIDE OF THE IDE

You can also load C-SPY with an application that was built outside the IDE, for example
applications built on the command line. To load an externally built executable file and
to set build options you must first create a project for it in your workspace.

To create a project for an externally built file:
1 Choose Project>Create New Project, and specify a project name.

2 To add the executable file to the project, choose Project>Add Files and make sure to
choose All Files in the file type drop-down list. Locate the executable file.

3 To start the executable file, click the Download and Debug button. The project can be
reused whenever you rebuild your executable file.

The only project options that are meaningful to set for this kind of project are options in
the General Options and Debugger categories. Make sure to set up the general project
options in the same way as when the executable file was built.

AFE1_AFE2-1:1

Getting started using C-SPY

59

STARTING A DEBUG SESSION WITH SOURCE FILES MISSING

Normally, when you use the IAR Embedded Workbench IDE to edit source files, build
your project, and start the debug session, all required files are available and the process
works as expected.

However, if C-SPY cannot automatically find the source files, for example if the
application was built on another computer, the Get Alternative File dialog box is
displayed:

Typically, you can use the dialog box like this:

● The source files are not available—Select If possible, don’t show this dialog again
and then click Skip. C-SPY will assume that there is no source file available. The
dialog box will not appear again, and the debug session will not try to display the
source code.

● Alternative source files are available at another location—Specify an alternative
source code file, select If possible, don’t show this dialog again, and then click
Use this file. C-SPY will assume that the alternative file should be used. The dialog
box will not appear again, unless a file is needed for which there is no alternative
file specified and which cannot be located automatically.

If you restart the IAR Embedded Workbench IDE, the Get Alternative File dialog box
will be displayed again once even if you have selected If possible, don’t show this
dialog again. This gives you an opportunity to modify your previous settings.

For more information, see Get Alternative File dialog box, page 73.

LOADING MULTIPLE DEBUG IMAGES

Normally, a debuggable application consists of a single file that you debug. However,
you can also load additional debug files (debug images). This means that the complete
program consists of several debug images.

Typically, this is useful if you want to debug your application in combination with a
prebuilt ROM image that contains an additional library for some platform-provided
features. The ROM image and the application are built using separate projects in the
IAR Embedded Workbench IDE and generate separate output files.

AFE1_AFE2-1:1

60

Starting C-SPY

C-SPY® Debugging Guide
for Arm

If more than one debug image has been loaded, you will have access to the combined
debug information for all the loaded debug images. In the Images window you can
choose whether you want to have access to debug information for a single debug image
or for all images.

To load additional debug images at C-SPY startup:
1 Choose Project>Options>Debugger>Images and specify up to three additional

debug images to be loaded. For more information, see Images, page 587.

2 Start the debug session.

To load additional debug images at a specific moment:

Use the __loadImage system macro and execute it using either one of the methods
described in Using C-SPY macros, page 429.

To display a list of loaded debug images:

Choose Images from the View menu. The Images window is displayed, see Images
window, page 72.

EDITING IN C-SPY WINDOWS

You can edit the contents of these windows:

● Memory window

● Symbolic Memory window

● Registers window

● Register User Groups Setup window

● Auto window

● Watch window

● Locals window

● Statics window

● Live Watch window

● Quick Watch window

Use these keyboard keys to edit the contents of these windows:

In windows where you can edit the Expression field and in the Quick Watch window,
you can specify the number of elements to be displayed in the field by adding a
semicolon followed by an integer. For example, to display only the three first elements

Enter Makes an item editable and saves the new value.

Esc Cancels a new value.

AFE1_AFE2-1:1

Getting started using C-SPY

61

of an array named myArray, or three elements in sequence starting with the element
pointed to by a pointer, write:

myArray;3

To display three elements pointed to by myPtr, myPtr+1, and myPtr+2, write:

myPtr;3

Optionally, add a comma and another integer that specifies which element to start with.
For example, to display elements 10–14, write:

myArray;5,10

To display myPtr+10, myPtr+11, myPtr+12, myPtr+13, and myPtr+14, write:

myPtr;5,10

Note: For pointers, there are no built-in limits on displayed element count, and no
validation of the pointer value.

Adapting for target hardware
These tasks are covered:

● Modifying a device description file

● Initializing target hardware before C-SPY starts

● Remapping memory

● Using predefined C-SPY macros for device support

● Debug authentication

See also Memory configuration for C-SPY hardware debugger drivers, page 166.

MODIFYING A DEVICE DESCRIPTION FILE

C-SPY uses device description files provided with the product to handle several of the
target-specific adaptations, see Selecting a device description file, page 57. Device
description files contain device-specific information such as:

● Definitions of registers in peripheral units and groups of these.

● Interrupt definitions (for Cortex-M devices only), see Interrupts, page 401.

Normally, you do not need to modify the device description file. However, if the
predefinitions are not sufficient for some reason, you can edit the file. Note, however,
that the format of these descriptions might be updated in future upgrades of the product.

AFE1_AFE2-1:1

62

Adapting for target hardware

C-SPY® Debugging Guide
for Arm

Make a copy of the device description file that best suits your needs, and modify it
according to the description in the file. Reload the project to make the changes take
effect.

If you are using an I-jet debug probe, and the modified device description file contains
modified memory ranges, make sure to select the option Use Factory in the Memory
Configuration dialog box.

The syntax of the device description files is described in the IAR Embedded Workbench
for Arm device description file format guide (EWARM_DDFFormat.pdf) located in the
arm\doc directory.

For information about how to load a device description file, see Selecting a device
description file, page 57.

INITIALIZING TARGET HARDWARE BEFORE C-SPY STARTS

You can use C-SPY macros to initialize target hardware before C-SPY starts. For
example, if your hardware uses external memory that must be enabled before code can
be downloaded to it, C-SPY needs a macro to perform this action before your
application can be downloaded.

1 Create a new text file and define your macro function.

By using the built-in execUserPreload setup macro function, your macro function
will be executed directly after the communication with the target system is established
but before C-SPY downloads your application.

For example, a macro that enables external SDRAM could look like this:

/* Your macro function. */
enableExternalSDRAM()
{
 __message "Enabling external SDRAM\n";
 __writeMemory32(...);
}

/* Setup macro determines time of execution. */
execUserPreload()
{
 enableExternalSDRAM();
}

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the Setup tab.

4 Select the Use macro file option, and choose the macro file you just created.

Your setup macro will now be loaded during the C-SPY startup sequence.

AFE1_AFE2-1:1

Getting started using C-SPY

63

REMAPPING MEMORY

A common feature of many Arm-based processors is the ability to remap memory. After
a reset, the memory controller typically maps address zero to non-volatile memory, such
as flash. By configuring the memory controller, the system memory can be remapped to
place RAM at zero and non-volatile memory higher up in the address map. By doing
this, the exception table will reside in RAM and can be easily modified when you
download code to the target hardware.

You must configure the memory controller before you download your application code.
You can do this best by using a C-SPY macro function that is executed before the code
download takes place—execUserPreload. The macro function __writeMemory32
will perform the necessary initialization of the memory controller.

The following example illustrates a macro used for remapping memory on the
Microchip AT91SAM7S256 chip, similar mechanisms exist in processors from other
Arm vendors.

execUserPreload()
{
 // REMAP command
 // Writing 1 to MC_RCR (MC Remap Control Register)
 // will toggle remap bit.
 __writeMemory32(0x00000001, 0xFFFFFF00, "Memory");
}

Note: The setup macro execUserReset might have to be defined in the same way to
reinitialize the memory mapping after a C-SPY reset. This can be needed if you have set
up your hardware debugger system to do a hardware reset on C-SPY reset, for example
by adding __hwReset to the execUserReset macro.

For instructions on how to install a macro file in C-SPY, see Registering and executing
using setup macros and setup files, page 431. For information about the macro functions
used, see Reference information on C-SPY system macros, page 444.

USING PREDEFINED C-SPY MACROS FOR DEVICE SUPPORT

For some Arm devices, there are predefined C-SPY macros available for specific device
support, typically provided by the chip manufacturer. These macros are useful for
performing certain device-specific tasks,

You can easily access and execute these macros using the Macro Quicklaunch window.

DEBUG AUTHENTICATION

The purpose of debug authentication is to reduce the risk that an attacker uses debug
capabilities to compromise the target system. IAR Embedded Workbench supports
debug authentication using the open-source Secure Debug Manager (SDM) mechanism.

AFE1_AFE2-1:1

64

An overview of the debugger startup

C-SPY® Debugging Guide
for Arm

If the target device has been locked reversibly, the debug authentication mechanism
unlocks the device for debugging, if you provide the correct credentials,

If authentication is enabled, it is performed when the debug session starts. The
authentication is revoked by a target reset. The type of reset that revokes the
authentication is hardware-specific.

When authentication is configured, IAR Embedded Workbench tries to determine
whether it is actually needed so that the authentication procedure is not executed if the
device is not locked. For example, if a power-on-reset is what revokes the authentication,
restarting a debug session does not require a new authentication if no power cycle has
taken place. If the device has never been locked, or has been unlocked in such a way that
it does not go back to a locked state, no authentication is required either.

Any input dialog boxes displayed during the authentication process come from the SDM
library used to drive the authentication process, not from IAR Embedded Workbench.

The SDM mechanism requires a library that implements the authentication protocol in
terms of the SDM interface.

Note: Authentication is only available if the hardware supports it, if the correct library,
corresponding to the hardware, is used, and if the hardware debugger driver supports it.

An overview of the debugger startup
To make it easier to understand and follow the startup flow, the following figures show
the flow of actions performed by C-SPY, and by the target hardware, as well as the
execution of any predefined C-SPY setup macros. There is one figure for debugging
code located in flash and one for debugging code located in RAM.

These topics are covered:

● Debugging code in flash

● Debugging code in RAM

For more information about C-SPY system macros, see the chapter C-SPY macros in
this guide.

AFE1_AFE2-1:1

Getting started using C-SPY

65

DEBUGGING CODE IN FLASH

This figure illustrates the debugger startup when debugging code in flash memory:

AFE1_AFE2-1:1

66

Reference information on starting C-SPY

C-SPY® Debugging Guide
for Arm

DEBUGGING CODE IN RAM

This figure illustrates the debugger startup when debugging code in RAM:

Reference information on starting C-SPY
Reference information about:

● C-SPY Debugger main window, page 67

● Images window, page 72

● Get Alternative File dialog box, page 73

See also:

● Tools options for the debugger in the IDE Project Management and Building Guide
for Arm.

AFE1_AFE2-1:1

Getting started using C-SPY

67

C-SPY Debugger main window
When you start a debug session, these debugger-specific items appear in the main IAR
Embedded Workbench IDE window:

● A dedicated Debug menu with commands for executing and debugging your
application

● Depending on the C-SPY driver you are using, a driver-specific menu, often
referred to as the Driver menu in this documentation. Typically, this menu contains
menu commands for opening driver-specific windows and dialog boxes.

● A special debug toolbar

● A special multicore debugging toolbar

● Several windows and dialog boxes specific to C-SPY

The C-SPY main window might look different depending on which components of the
product installation you are using.

Menu bar

These menus are available during a debug session:

Debug
Provides commands for executing and debugging the source application. Most
of the commands are also available as icon buttons on the debug toolbar.

C-SPY driver menu
Provides commands specific to a C-SPY driver. The driver-specific menu is only
available when the driver is used. For information about the driver-specific
menu commands, see Reference information on C-SPY driver menus, page 631.

Disassembly
Provides commands for controlling how the disassembler operates.

AFE1_AFE2-1:1

68

Reference information on starting C-SPY

C-SPY® Debugging Guide
for Arm

Debug menu

The Debug menu is available during a debug session. The Debug menu provides
commands for executing and debugging the source application. Most commands are
also available as icon buttons on the debug toolbar.

These commands are available:

Go (F5)
Executes from the current statement or instruction until a breakpoint or program
exit is reached.

Note: If you are using symmetric multicore debugging, the Go command starts
only the core in focus.

Break
Stops the application execution.

Note: If you are using symmetric multicore debugging, the Break command
stops only the core in focus.

Reset
Resets the target processor. Click the drop-down button to access a menu with
additional commands.

Enable Run to 'label', where label typically is main. Enables and disables
the project option Run to without exiting the debug session. This menu
command is only available if you have selected Run to in the Options dialog
box.

AFE1_AFE2-1:1

Getting started using C-SPY

69

Reset strategies, which contains a list of reset strategies supported by the C-SPY
driver you are using. This means that you can choose a different reset strategy
than the one used initially without exiting the debug session. Reset strategies are
only available if the C-SPY driver you are using supports alternate reset
strategies.

Stop Debugging (Ctrl+Shift+D)
Stops the debugging session and returns you to the project manager.

Step Over (F10)
Executes the next statement, function call, or instruction, without entering C or
C++ functions or assembler subroutines.

Step Into (F11)
Executes the next statement or instruction, or function call, entering C or C++
functions or assembler subroutines.

Step Out (Shift+F11)
Executes from the current statement up to the statement after the call to the
current function.

Next Statement
Executes directly to the next statement without stopping at individual function
calls.

Run to Cursor
Executes from the current statement or instruction up to a selected statement or
instruction.

Autostep
Displays a dialog box where you can customize and perform autostepping, see
Autostep settings dialog box, page 95.

Set Next Statement
Moves the program counter directly to where the cursor is, without executing
any source code. Note, however, that this creates an anomaly in the program
flow and might have unexpected effects.

C++ Exceptions>Break on Throw
Specifies that the execution shall break when the target application executes a
throw statement.

To use this feature, your application must be built with the option Library
low-level interface implementation selected and the language option C++
With exceptions.

AFE1_AFE2-1:1

70

Reference information on starting C-SPY

C-SPY® Debugging Guide
for Arm

C++ Exceptions>Break on Uncaught Exception
Specifies that the execution shall break when the target application throws an
exception that is not caught by any matching catch statement.

To use this feature, your application must be built with the option Library
low-level interface implementation selected and the language option C++
With exceptions.

Memory>Save
Displays a dialog box where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 176.

Memory>Restore
Displays a dialog box where you can load the contents of a file in, for example
Intel-extended or Motorola s-record format to a specified memory zone, see
Memory Restore dialog box, page 177.

Refresh
Refreshes the contents of all debugger windows. Because window updates are
automatic, this is needed only in unusual situations, such as when target memory
is modified in ways C-SPY cannot detect. It is also useful if code that is
displayed in the Disassembly window is changed.

Logging>Set Terminal I/O Log file
Displays a dialog box where you can choose to log simulated target access
communication to a file. You can select the destination of the log file. See
Terminal I/O Log File dialog box, page 91.

Disassembly menu

The Disassembly menu is available when C-SPY is running. This menu provides
commands for controlling how the disassembler operates.

Use the commands on the menu to select which disassembly mode to use.

These commands are available:

Disassemble in Thumb
mode

Disassembles your application in Thumb mode.

Disassemble in Arm
mode

Disassembles your application in Arm mode.

AFE1_AFE2-1:1

Getting started using C-SPY

71

See also Disassembly window, page 83.

C-SPY windows

Depending on the C-SPY driver you are using, these windows specific to C-SPY are
available during a debug session:

● C-SPY Debugger main window

● Disassembly window

● Memory window

● Symbolic Memory window

● Registers window

● Watch window

● Locals window

● Auto window

● Live Watch window

● Quick Watch window

● Statics window

● Call Stack window

● Trace window

● Function Trace window

● Timeline window, see Reference information on application timeline, page 265

● Terminal I/O window

● Code Coverage window

● Function Profiler window

● Performance Monitoring window

● Images window

● Stack window

● Symbols window

Additional windows are available depending on which C-SPY driver you are using.

Disassemble in Arm64
mode

Disassembles your application in 64-bit mode.

Disassemble in Current
processor mode

Disassembles your application in the current processor
mode.

Disassemble in Auto
mode

Disassembles your application in automatic mode. This is
the default option.

AFE1_AFE2-1:1

72

Reference information on starting C-SPY

C-SPY® Debugging Guide
for Arm

Images window
The Images window is available from the View menu.

This window lists all currently loaded debug images (debug files).

Normally, a source application consists of a single debug image that you debug.
However, you can also load additional images. This means that the complete debuggable
unit consists of several debug images. See also Loading multiple debug images, page 59.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

C-SPY can use debug information from one or more of the loaded debug images
simultaneously. Double-click on a row to make C-SPY use debug information from that
debug image. The current choices are highlighted.

This area lists the loaded debug images in these columns:

Name
The name of the loaded debug image.

Core N
Double-click in this column to toggle using debug information from the debug
image when that core is in focus.

Path
The path to the loaded debug image.

Related information

For related information, see:

● Loading multiple debug images, page 59

● Images, page 587

● __loadImage, page 472

AFE1_AFE2-1:1

Getting started using C-SPY

73

Get Alternative File dialog box
The Get Alternative File dialog box is displayed if C-SPY cannot automatically find
the source files to be loaded, for example if the application was built on another
computer.

See also Starting a debug session with source files missing, page 59.

Could not find the following source file

The missing source file.

Suggested alternative

Specify an alternative file.

Use this file

After you have specified an alternative file, Use this file establishes that file as the alias
for the requested file. Note that after you have chosen this action, C-SPY will
automatically locate other source files if these files reside in a directory structure similar
to the first selected alternative file.

The next time you start a debug session, the selected alternative file will be preloaded
automatically.

Skip

C-SPY will assume that the source file is not available for this debug session.

If possible, don’t show this dialog again

Instead of displaying the dialog box again for a missing source file, C-SPY will use the
previously supplied response.

Related information

For related information, see Starting a debug session with source files missing, page 59.

AFE1_AFE2-1:1

74

Reference information on starting C-SPY

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

75

Executing your application
● Introduction to application execution

● Reference information on application execution

Introduction to application execution
These topics are covered:

● Briefly about application execution

● Source and disassembly mode debugging

● Single stepping

● Troubleshooting slow stepping speed

● Running the application

● Highlighting

● Viewing the call stack

● Terminal input and output

● Debug logging

BRIEFLY ABOUT APPLICATION EXECUTION

C-SPY allows you to monitor and control the execution of your application. By
single-stepping through it, and setting breakpoints, you can examine details about the
application execution, for example the values of variables and registers. You can also use
the call stack to step back and forth in the function call chain.

The terminal I/O and debug log features let you interact with your application.

You can find commands for execution on the Debug menu and on the toolbar.

SOURCE AND DISASSEMBLY MODE DEBUGGING

C-SPY allows you to switch between source mode and disassembly mode debugging as
needed.

Source debugging provides the fastest and easiest way of developing your application,
without having to worry about how the compiler or assembler has implemented the
code. In the editor windows you can execute the application one statement at a time
while monitoring the values of variables and data structures.

AFE1_AFE2-1:1

76

Introduction to application execution

C-SPY® Debugging Guide
for Arm

Disassembly mode debugging lets you focus on the critical sections of your application,
and provides you with precise control of the application code. You can open a
disassembly window which displays a mnemonic assembler listing of your application
based on actual memory contents rather than source code, and lets you execute the
application exactly one machine instruction at a time.

Regardless of which mode you are debugging in, you can display registers and memory,
and change their contents.

SINGLE STEPPING

C-SPY allows more stepping precision than most other debuggers because it is not
line-oriented but statement-oriented. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function call. That
is, source code locations where you might consider whether to execute a step into or a
step over command. Because the step points are located not only at each statement but
also at each function call, the step functionality allows a finer granularity than just
stepping on statements.

There are several factors that can slow down the stepping speed. If you find it too slow,
see Troubleshooting slow stepping speed, page 78 for some tips.

The step commands

There are four step commands:

● Step Into
● Step Over
● Next Statement
● Step Out

Using the Autostep settings dialog box, you can automate the single stepping. For more
information, see Autostep settings dialog box, page 95.

If your application contains an exception that is caught outside the code which would
normally be executed as part of a step, C-SPY terminates the step at the catch
statement.

AFE1_AFE2-1:1

Executing your application

77

Consider this example and assume that the previous step has taken you to the f(i)
function call (highlighted):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

Step Into

While stepping, you typically consider whether to step into a function and continue
stepping inside the function or subroutine. The Step Into command takes you to the first
step point within the subroutine g(n-1):

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

The Step Into command executes to the next step point in the normal flow of control,
regardless of whether it is in the same or another function.

Step Over

The Step Over command executes to the next step point in the same function, without
stopping inside called functions. The command would take you to the g(n-2) function
call, which is not a statement on its own but part of the same statement as g(n-1). Thus,
you can skip uninteresting calls which are parts of statements and instead focus on
critical parts:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

AFE1_AFE2-1:1

78

Introduction to application execution

C-SPY® Debugging Guide
for Arm

Next Statement

The Next Statement command executes directly to the next statement, in this case
return value, allowing faster stepping:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) + g(n-3);
 return value;
}

Step Out

When inside the function, you can—if you wish—use the Step Out command to step
out of it before it reaches the exit. This will take you directly to the statement
immediately after the function call:

extern int g(int);
int f(int n)
{
 value = g(n-1) + g(n-2) g(n-3);
 return value;
}
int main()
{
 ...
 f(i);
 value ++;
}

The possibility of stepping into an individual function that is part of a more complex
statement is particularly useful when you use C code containing many nested function
calls. It is also very useful for C++, which tends to have many implicit function calls,
such as constructors, destructors, assignment operators, and other user-defined
operators.

This detailed stepping can in some circumstances be either invaluable or unnecessarily
slow. For this reason, you can also step only on statements, which means faster stepping.

TROUBLESHOOTING SLOW STEPPING SPEED

If you find that stepping speed is slow, these troubleshooting tips might speed up
stepping:

● If you are using a hardware debugger system, keep track of how many hardware
breakpoints that are used and make sure some of them are left for stepping.

AFE1_AFE2-1:1

Executing your application

79

Stepping in C-SPY is normally performed using breakpoints. When C-SPY performs
a step command, a breakpoint is set on the next statement and the application
executes until it reaches this breakpoint. If you are using a hardware debugger
system, the number of hardware breakpoints—typically used for setting a stepping
breakpoint in code that is located in flash/ROM memory—is limited. If you, for
example, step into a C switch statement, breakpoints are set on each branch; this
might consume several hardware breakpoints. If the number of available hardware
breakpoints is exceeded, C-SPY switches into single stepping on assembly level,
which can be very slow.

For more information, see Breakpoints in the C-SPY hardware debugger drivers,
page 129 and Breakpoint consumers, page 130.

● Disable trace data collection, using the Enable/Disable button in both the Trace
and the Function Profiling windows. Trace data collection might slow down
stepping because the collected trace data is processed after each step. Note that it is
not sufficient to just close the corresponding windows to disable trace data
collection.

● Choose to view only a limited selection of SFR registers. You can choose between
two alternatives. Either type #SFR_name (where SFR_name reflects the name of the
SFR you want to monitor) in the Watch window, or create your own filter for
displaying a limited group of SFRs in the Registers window. Displaying many SFR
registers might slow down stepping because all registers must be read from the
hardware after each step. See Defining application-specific register groups, page
167.

● Close the Memory and Symbolic Memory windows if they are open, because the
visible memory must be read after each step and that might slow down stepping.

● Close any window that displays expressions such as Watch, Live Watch, Locals,
Statics if it is open, because all these windows read memory after each step and that
might slow down stepping.

● Close the Stack window if it is open. Choose Tools>Options>Stack and disable the
Enable graphical stack display and stack usage tracking option if it is enabled.

● If possible, increase the communication speed between C-SPY and the target
board/emulator.

RUNNING THE APPLICATION

Go

The Go command continues execution from the current position until a breakpoint or
program exit is reached.

Note: If you are using symmetric multicore debugging, the Go command starts only the
core in focus.

AFE1_AFE2-1:1

80

Introduction to application execution

C-SPY® Debugging Guide
for Arm

Run to Cursor

The Run to Cursor command executes to the position in the source code where you
have placed the cursor. The Run to Cursor command also works in the Disassembly
window and in the Call Stack window.

HIGHLIGHTING

At each stop, C-SPY highlights the corresponding C or C++ source or instruction with
a green color, in the editor and the Disassembly window respectively. In addition, a
green arrow appears in the editor window when you step on C or C++ source level, and
in the Disassembly window when you step on disassembly level. This is determined by
which of the windows is the active window. If none of the windows are active, it is
determined by which of the windows was last active.

For simple statements without function calls, the whole statement is typically
highlighted. When stopping at a statement with function calls, C-SPY highlights the first
call because this illustrates more clearly what Step Into and Step Over would mean at
that time.

Occasionally, you will notice that a statement in the source window is highlighted using
a pale variant of the normal highlight color. This happens when the program counter is
at an assembler instruction which is part of a source statement but not exactly at a step
point. This is often the case when stepping in the Disassembly window. Only when the
program counter is at the first instruction of the source statement, the ordinary highlight
color is used.

Code coverage

From the context menu in the Code Coverage window, you can toggle highlight colors
and icons in the editor window that show code coverage analysis for the source code,
see Code Coverage window, page 308.

These are the colors and icons that are used:

● Red highlight color and a red diamond—the code range has not been executed.

● Green highlight color—100% of the code range has been executed.

● Yellow highlight color and a red diamond—parts of the code range have been
executed.

AFE1_AFE2-1:1

Executing your application

81

This figure illustrates all three code coverage highlight colors:

VIEWING THE CALL STACK

The compiler generates extensive call frame information. This allows C-SPY to show,
without any runtime penalty, the complete function call chain at any time.

Typically, this is useful for two purposes:

● Determining in what context the current function has been called

● Tracing the origin of incorrect values in variables and in parameters, thus locating
the function in the call chain where the problem occurred.

The Call Stack window shows a list of function calls, with the current function at the
top. When you inspect a function in the call chain, the contents of all affected windows
are updated to display the state of that particular call frame. This includes the editor,
Locals, Register, Watch, and Disassembly windows. A function would normally not
make use of all registers, so these registers might have undefined states and be displayed
as dashes (---).

In the editor and Disassembly windows, a green highlight indicates the topmost, or
current, call frame; a yellow highlight is used when inspecting other frames.

For your convenience, it is possible to select a function in the call stack and click the
Run to Cursor command to execute to that function.

Assembler source code does not automatically contain any call frame information. To
see the call chain also for your assembler modules, you can add the appropriate CFI
assembler directives to the assembler source code. For more information, see the IAR
Assembler User Guide for Arm.

Note: For highly optimized code, C-SPY might not be able to identify all calls. This
means that for highly optimized code, the call stack is not entirely trustworthy.

TERMINAL INPUT AND OUTPUT

Sometimes you might have to debug constructions in your application that use stdin
and stdout without an actual hardware device for input and output. The Terminal I/O

AFE1_AFE2-1:1

82

Reference information on application execution

C-SPY® Debugging Guide
for Arm

window lets you enter input to your application, and display output from it. You can also
direct terminal I/O to a file, using the Terminal I/O Log Files dialog box.

This facility is useful in two different contexts:

● If your application uses stdin and stdout

● For producing debug trace printouts

For more information, see Terminal I/O window, page 90 and Terminal I/O Log File
dialog box, page 91.

DEBUG LOGGING

The Debug Log window displays debugger output, such as diagnostic messages,
macro-generated output, and information about trace.

It can sometimes be convenient to log the information to a file where you can easily
inspect it, see Debug Log window, page 92. The two main advantages are:

● The file can be opened in another tool, for instance an editor, so you can navigate
and search within the file for particularly interesting parts.

● The file provides history about how you have controlled the execution, for instance,
which breakpoints that have been triggered etc.

Reference information on application execution
Reference information about:

● Disassembly window, page 83

● Call Stack window, page 88

● Terminal I/O window, page 90

● Terminal I/O Log File dialog box, page 91

● Debug Log window, page 92

● Fault exception viewer window, page 93

● Report Assert dialog box, page 94

● Autostep settings dialog box, page 95

See also Terminal I/O options in the IDE Project Management and Building Guide for
Arm.

AFE1_AFE2-1:1

Executing your application

83

Disassembly window
The C-SPY Disassembly window is available from the View menu.

This window shows the application being debugged as disassembled application code.

To change the default color of the source code in the Disassembly window:
1 Choose Tools>Options>Debugger.

2 Set the default color using the Source code color in disassembly window option.

To view the corresponding assembler code for a function, you can select it in the editor
window and drag it to the Disassembly window.

See also Source and disassembly mode debugging, page 75.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

AFE1_AFE2-1:1

84

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Toggle Mixed-Mode
Toggles between displaying only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Display area

The display area shows the disassembled application code. This area contains these
graphic elements:

If instruction profiling has been enabled from the context menu, an extra column in the
left-side margin appears with information about how many times each instruction has
been executed. For debug probes that support it, C-SPY can capture full instruction trace
in real time.

Green highlight color Indicates the current position, that is the next assembler
instruction to be executed. To move the cursor to any line
in the Disassembly window, click the line. Alternatively,
move the cursor using the navigation keys.

Yellow highlight color Indicates a position other than the current position, such
as when navigating between frames in the Call Stack
window or between items in the Trace window.

Red dot Indicates a breakpoint. Double-click in the gray left-side
margin of the window to set a breakpoint. For more
information, see Breakpoints, page 125.

Green diamond Code coverage icon—indicates code that has been
executed.

Red diamond Code coverage icon—indicates code that has not been
executed.

Red/yellow diamond (red
top/yellow bottom)

Code coverage icon—indicates a branch that is never
taken.

Red/yellow diamond (red left
side/yellow right side)

Code coverage icon—indicates a branch that is always
taken.

AFE1_AFE2-1:1

Executing your application

85

Context menu

This context menu is available:

Note: The contents of this menu are dynamic, which means that the commands on the
menu might depend on your product package.

These commands are available:

Move to PC
Displays code at the current program counter location.

Run to Cursor
Executes the application from the current position up to the line containing the
cursor.

Code Coverage
Displays a submenu that provides commands for controlling code coverage.
This command is only enabled if the driver you are using supports it.

Enable Toggles code coverage on or off.

Show Toggles the display of code coverage on or off. Code
coverage is indicated by a red, green, and red/yellow
diamonds in the left margin.

Clear Clears all code coverage information.

AFE1_AFE2-1:1

86

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Instruction Profiling
Displays a submenu that provides commands for controlling instruction
profiling. This command is only enabled if the driver you are using supports it.

Toggle Breakpoint (Code)
Toggles a code breakpoint. Assembler instructions and any corresponding label
at which code breakpoints have been set are highlighted in red. For more
information, see Code breakpoints dialog box, page 141.

Toggle Breakpoint (Log)
Toggles a log breakpoint for trace printouts. Assembler instructions at which log
breakpoints have been set are highlighted in red. For more information, see Log
breakpoints dialog box, page 146.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, the trace
data collection starts. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Start Trigger breakpoint dialog box, page 239.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, the trace
data collection stops. Note that this menu command is only available if the
C-SPY driver you are using supports trace. For more information, see Trace
Stop Trigger breakpoint dialog box, page 240.

Next Different
Coverage >

Moves the insertion point to the next line in the
window with a different code coverage status than
the selected line.

Previous Different
Coverage <

Moves the insertion point to the closest preceding
line in the window with a different code coverage
status than the selected line.

Enable Toggles instruction profiling on or off.

Show Toggles the display of instruction profiling on or off.
For each instruction, the left-side margin displays
how many times the instruction has been executed.

Clear Clears all instruction profiling information.

AFE1_AFE2-1:1

Executing your application

87

Enable/Disable Breakpoint
Enables and Disables a breakpoint. If there is more than one breakpoint at a
specific line, all those breakpoints are affected by the Enable/Disable
command.

Edit Breakpoint
Displays the breakpoint dialog box to let you edit the currently selected
breakpoint. If there is more than one breakpoint on the selected line, a submenu
is displayed that lists all available breakpoints on that line.

Set Next Statement
Sets the program counter to the address of the instruction at the insertion point.

Copy Window Contents
Copies the selected contents of the Disassembly window to the clipboard.

Mixed-Mode
Toggles between showing only disassembled code or disassembled code
together with the corresponding source code. Source code requires that the
corresponding source file has been compiled with debug information.

Find in Trace
Searches the contents of the Trace window for occurrences of the given
location—the position of the insertion point in the source code—and reports the
result in the Find in Trace window. This menu command requires support for
Trace in the C-SPY driver you are using, see Differences between the C-SPY
drivers, page 46.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

AFE1_AFE2-1:1

88

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Call Stack window
The Call Stack window is available from the View menu.

This window displays the C function call stack with the current function at the top. To
inspect a function call, double-click it. C-SPY now focuses on that call frame instead.

If the next Step Into command would step to a function call, the name of the function is
displayed in the gray bar at the top of the window. This is especially useful for implicit
function calls, such as C++ constructors, destructors, and operators.

See also Viewing the call stack, page 81.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

Each entry in the display area is formatted in one of these ways:

function(values)*** A C/C++ function with debug information.

Provided that Show Arguments is enabled, values
is a list of the current values of the parameters, or
empty if the function does not take any parameters.

***, if present, indicates that the function has been
inlined by the compiler. For information about
function inlining, see the IAR C/C++ Development
Guide for Arm.

[label + offset] An assembler function, or a C/C++ function without
debug information.

<exception_frame> An interrupt.

AFE1_AFE2-1:1

Executing your application

89

Context menu

This context menu is available:

These commands are available:

Go to Source
Displays the selected function in the Disassembly or editor windows.

Show Arguments
Shows function arguments.

Run to Cursor
Executes until return to the function selected in the call stack.

Copy Window Contents
Copies the contents of the Call Stack window and stores them on the clipboard.

Toggle Breakpoint (Code)
Toggles a code breakpoint.

Toggle Breakpoint (Log)
Toggles a log breakpoint.

Toggle Breakpoint (Trace Start)
Toggles a Trace Start breakpoint. When the breakpoint is triggered, trace data
collection starts. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Toggle Breakpoint (Trace Stop)
Toggles a Trace Stop breakpoint. When the breakpoint is triggered, trace data
collection stops. Note that this menu command is only available if the C-SPY
driver you are using supports it.

Enable/Disable Breakpoint
Enables or disables the selected breakpoint.

AFE1_AFE2-1:1

90

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Terminal I/O window
The Terminal I/O window is available from the View menu.

Use this window to enter input to your application, and display output from it.

To use this window, you must:
1 Link your application with the option Semihosted or IAR breakpoint.

C-SPY will then direct stdin, stdout and stderr to this window. If the Terminal I/O
window is closed, C-SPY will open it automatically when input is required, but not for
output.

The following possibilities for using Terminal I/O in real time apply:

See also Terminal input and output, page 81.

Device Description

Cortex-M The stdout of your application is routed via SWO. See SWO
Configuration dialog box, page 225, specifically the ITM Stimulus Port
option.

Arm7/Arm9,
including Armxxx-S,
and when using the
C-SPY J-Link/J-Trace
driver

DCC can be used for Terminal I/O output by adding the file
arm\src\debugger\dcc\DCC_Write.c to your project.
DCC_write.c overrides the library function write. Functions such as
printf can then be used to output text to the Terminal I/O window.
In this case, you can disable semihosting which means that the
breakpoint it uses is freed for other purposes. To disable semihosting,
choose General Options>Library Configuration>Library
low-level interface implementation>None.

Table 5: Terminal I/O in real time

AFE1_AFE2-1:1

Executing your application

91

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

Input
Type the text that you want to input to your application.

Ctrl codes
Opens a menu for input of special characters, such as EOF (end of file) and NUL.

Opens the IDE Options dialog box where you can set options for terminal I/O.
For information about the options available in this dialog box, see Terminal I/O
options in IDE Project Management and Building Guide for Arm.

Opens the Terminal I/O Log File dialog box, where you can configure and
toggle logging on/off, see Terminal I/O Log File dialog box, page 91.

Terminal I/O Log File dialog box
The Terminal I/O Log File dialog box is available by choosing Debug>Logging>Set
Terminal I/O Log File.

Use this dialog box to select a destination log file for terminal I/O from C-SPY.

See also Terminal input and output, page 81.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Terminal I/O Log File

Controls the logging of terminal I/O. To enable logging of terminal I/O to a file, select
Enable Terminal I/O log file and specify a filename. The default filename extension is
log. A browse button is available for your convenience.

AFE1_AFE2-1:1

92

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Debug Log window
The Debug Log window is available by choosing View>Messages>Debug Log.

This window displays debugger output, such as diagnostic messages, macro-generated
output, and information about trace. When opened, this window is, by default, grouped
together with the other message windows, see IDE Project Management and Building
Guide for Arm.

Double-click any rows in one of the following formats to display the corresponding
source code in the editor window:

<path> (<row>):<message>
<path> (<row>,<column>):<message>

See also Debug logging, page 82.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Context menu

This context menu is available:

These commands are available:

All
Shows all messages sent by the debugging tools and drivers.

AFE1_AFE2-1:1

Executing your application

93

Messages
Shows all C-SPY messages.

Warnings
Shows warnings and errors.

Errors
Shows errors only.

Copy
Copies the contents of the window.

Select All
Selects the contents of the window.

Clear All
Clears the contents of the window.

Live Log to File
Displays a submenu with commands for writing the debug messages to a log file
and setting filter levels for the log.

Fault exception viewer window
The Fault exception viewer window is available by choosing View>Fault exception
viewer. The window is automatically opened when the execution stops and a fault
exception was encountered.

Requirements

Can be used with all C-SPY hardware debugger drivers and debug probes.

To display exception messages in this window, the selected device must be a Cortex-M
device.

AFE1_AFE2-1:1

94

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Display area

This area contains a description of the most recent fault exception that was encountered
during application execution.

Context menu

This context menu is available:

Copy exception address
Copies the address that the program counter, PC, had at the time of the
exception. The address is copied to the clipboard.

Copy exception return address
Copies the address that the link register, LR, had at the time of the exception. The
address is copied to the clipboard.

Copy selected line
Copies the selected line to the clipboard.

Clear
Clears the messages displayed in the Fault exception viewer window.

Report Assert dialog box
The Report Assert dialog box appears if you have a call to the assert function in your
application source code, and the assert condition is false. In this dialog box you can
choose how to proceed.

AFE1_AFE2-1:1

Executing your application

95

To output the assert message as text:
1 Add this function to your application source code:

void __aeabi_assert(char const * msg, char const *file, int
line)
{
 printf("%s:%d %s -- assertion failed\n", file, line, msg);
 abort();
}

2 An assert message is displayed.

Abort

The application stops executing and the runtime library function abort, which is part
of your application on the target system, will be called. This means that the application
itself terminates its execution.

Debug

C-SPY stops the execution of the application and returns control to you.

Ignore

The assertion is ignored and the application continues to execute.

Autostep settings dialog box
The Autostep settings dialog box is available by choosing Debug>Autostep.

Use this dialog box to configure autostepping.

Select the step command you want to automate from the drop-down menu. The step will
be performed with the specified interval. For a description of the available step
commands, see Single stepping, page 76. You can stop the autostepping by clicking the
Break button on the debug toolbar.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

96

Reference information on application execution

C-SPY® Debugging Guide
for Arm

Delay (milliseconds)

The delay between each step command in milliseconds. The step is repeated with this
interval.

AFE1_AFE2-1:1

97

Variables and expressions
● Introduction to working with variables and expressions

● Working with variables and expressions

● Reference information on working with variables and expressions

Introduction to working with variables and expressions
This section introduces different methods for looking at variables and introduces some
related concepts.

These topics are covered:

● Briefly about working with variables and expressions

● C-SPY expressions

● Limitations on variable information

BRIEFLY ABOUT WORKING WITH VARIABLES AND
EXPRESSIONS

There are several methods for looking at variables and calculating their values. These
methods are suitable for basic debugging:

● Tooltip watch—in the editor window—provides the simplest way of viewing the
value of a variable or more complex expressions. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

● The Auto window displays a useful selection of variables and expressions in, or
near, the current statement. The window is automatically updated when execution
stops.

● The Locals window displays the local variables, that is, auto variables and function
parameters for the active function. The window is automatically updated when
execution stops.

● The Watch window allows you to monitor the values of C-SPY expressions and
variables. The window is automatically updated when execution stops.

● The Live Watch window repeatedly samples and displays the values of expressions
while your application is executing. Variables in the expressions must be statically
located, such as global variables.

● The Statics window displays the values of variables with static storage duration.
The window is automatically updated when execution stops.

AFE1_AFE2-1:1

98

Introduction to working with variables and expressions

C-SPY® Debugging Guide
for Arm

● The Macro Quicklaunch window and the Quick Watch window give you precise
control over when to evaluate an expression.

● The Symbols window displays all symbols with a static location, that is, C/C++
functions, assembler labels, and variables with static storage duration, including
symbols from the runtime library.

These additional methods for looking at variables are suitable for more advanced
analysis:

● The Data Log window and the Data Log Summary window display logs of
accesses to up to four different memory locations you choose by setting data log
breakpoints. Data logging can help you locate frequently accessed data. You can
then consider whether you should place that data in more efficient memory.

● The Event Log window and the Event Log Summary window display event logs
produced when the execution passes specific positions in your application code. The
Timeline window graphically displays these event logs correlated to a common
time-axis. Event logging can help you to analyze program flow and inspect data
correlated to a certain position in your application code.

The Cortex ITM communication channels are used for passing events from a running
application to the C-SPY Event log system. There are predefined preprocessor
macros that you can use in your application source code. An Event log will be
generated every time such macros are passed during program execution. You can
pass a value with each event. Typically, this value can be either an identifier or the
content of a variable or a register (for example, the stack pointer). The value can be
written in 8, 16, or 32-bit format. Using a smaller size will reduce the bandwidth
needed on the SWO wire. Events can be generated with or without an associated PC
(program counter) value, the PC value makes it possible for the debugger to correlate
the event to the executed code.

For more information about these windows, see The application timeline, page 257.

C-SPY EXPRESSIONS

C-SPY expressions can include any type of C expression, except for calls to functions.
The following types of symbols can be used in expressions:

● C/C++ symbols

● Assembler symbols (register names and assembler labels)

● C-SPY macro functions

● C-SPY macro variables

AFE1_AFE2-1:1

Variables and expressions

99

Expressions that are built with these types of symbols are called C-SPY expressions and
there are several methods for monitoring these in C-SPY. Examples of valid C-SPY
expressions are:

i + j
i = 42
myVar = cVar
cVar = myVar + 2
#asm_label
#R2
#PC32
my_macro_func(19)

If you have a static variable with the same name declared in several different functions,
use the notation function::variable to specify which variable to monitor.

Note: On 64-bit architectures, the expression #PC becomes ambiguous in C-SPY
macros. Therefore, when you debug a 64-bit MCU, you must use #PC32 for AArch32
and #PC64 for AArch64 in C-SPY macros. When debugging a 32-bit MCU, use #PC.

C/C++ symbols

C symbols are symbols that you have defined in the C source code of your application,
for instance variables, constants, and functions (functions can be used as symbols but
cannot be executed). C symbols can be referenced by their names. Note that C++
symbols might implicitly contain function calls which are not allowed in C-SPY
symbols and expressions.

Note: Some attributes available in C/C++, like volatile, are not fully supported by
C-SPY. For example, this line will not be accepted by C-SPY:

sizeof(unsigned char volatile __memattr *)

However, this line will be accepted:

sizeof(unsigned char __memattr *)

Assembler symbols

Assembler symbols can be assembler labels or registers, for example the program
counter, the stack pointer, or other CPU registers. If a device description file is used, all
memory-mapped peripheral units, such as I/O ports, can also be used as assembler
symbols in the same way as the CPU registers. See Modifying a device description file,
page 61.

AFE1_AFE2-1:1

100

Introduction to working with variables and expressions

C-SPY® Debugging Guide
for Arm

Assembler symbols can be used in C-SPY expressions if they are prefixed by #.

In case of a name conflict between a hardware register and an assembler label, hardware
registers have a higher precedence. To refer to an assembler label in such a case, you
must enclose the label in back quotes ` (ASCII character 0x60). For example:

Which processor-specific symbols are available by default can be seen in the Registers
window, using the CPU Registers register group. See Registers window, page 186.

C-SPY macro functions

Macro functions consist of C-SPY macro variable definitions and macro statements
which are executed when the macro is called.

For information about C-SPY macro functions and how to use them, see Briefly about
the macro language, page 429.

C-SPY macro variables

Macro variables are defined and allocated outside your application, and can be used in
a C-SPY expression. In case of a name conflict between a C symbol and a C-SPY macro
variable, the C-SPY macro variable will have a higher precedence than the C variable.
Assignments to a macro variable assign both its value and type.

For information about C-SPY macro variables and how to use them, see Reference
information on the macro language, page 434.

Using sizeof

According to standard C, there are two syntactical forms of sizeof:

sizeof(type)
sizeof expr

Example What it does

#PC32++ Increments the value of the program counter.

myVar = #SP Assigns the current value of the stack pointer register to your
C-SPY variable.

myVar = #label Sets myVar to the value of an integer at the address of label.

myptr = &#label7 Sets myptr to an int * pointer pointing at label7.

Table 6: C-SPY assembler symbols expressions

Example What it does

#PC32 Refers to the program counter.

#‘PC32‘ Refers to the assembler label PC32.

Table 7: Handling name conflicts between hardware registers and assembler labels

AFE1_AFE2-1:1

Variables and expressions

101

The former is for types and the latter for expressions.

Note: In C-SPY, do not use parentheses around an expression when you use the sizeof
operator. For example, use sizeof x+2 instead of sizeof (x+2).

LIMITATIONS ON VARIABLE INFORMATION

The value of a C variable is valid only on step points, that is, the first instruction of a
statement and on function calls. This is indicated in the editor window with a bright
green highlight color. In practice, the value of the variable is accessible and correct more
often than that.

When the program counter is inside a statement, but not at a step point, the statement or
part of the statement is highlighted with a pale variant of the ordinary highlight color.

Effects of optimizations

The compiler is free to optimize the application software as much as possible, as long
as the expected behavior remains. The optimization can affect the code so that
debugging might be more difficult because it will be less clear how the generated code
relates to the source code. Typically, using a high optimization level can affect the code
in a way that will not allow you to view a value of a variable as expected.

Consider this example:

myFunction()
{
 int i = 42;
 ...
 x = computer(i); /* Here, the value of i is known to C-SPY */
 ...
}

From the point where the variable i is declared until it is actually used, the compiler
does not need to waste stack or register space on it. The compiler can optimize the code,
which means that C-SPY will not be able to display the value until it is actually used. If
you try to view the value of a variable that is temporarily unavailable, C-SPY will
display the text:

Unavailable

If you need full information about values of variables during your debugging session,
you should use the lowest optimization level during compilation, that is, None.

AFE1_AFE2-1:1

102

Working with variables and expressions

C-SPY® Debugging Guide
for Arm

Working with variables and expressions
These tasks are covered:

● Using the windows related to variables and expressions

● Viewing assembler variables

See also Analyzing your application’s timeline, page 259.

USING THE WINDOWS RELATED TO VARIABLES AND
EXPRESSIONS

Where applicable, you can add, modify, and remove expressions, and change the display
format in the windows related to variables and expressions.

To add a value you can also click in the dotted rectangle and type the expression you
want to examine. To modify the value of an expression, click the Value field and modify
its content. To remove an expression, select it and press the Delete key.

For text that is too wide to fit in a column—in any of these windows, except the Trace
window—and thus is truncated, just point at the text with the mouse pointer and tooltip
information is displayed.

Right-click in any of the windows to access the context menu which contains additional
commands. Convenient drag-and-drop between windows is supported, except for in the
Locals window, data logging windows, and the Quick Watch window where it is not
relevant.

VIEWING ASSEMBLER VARIABLES

An assembler label does not convey any type information at all, which means C-SPY
cannot easily display data located at that label without getting extra information. To
view data conveniently, C-SPY by default treats all data located at assembler labels as
variables of type int. However, in the Watch, Live Watch, and Quick Watch
windows, you can select a different interpretation to better suit the declaration of the
variables.

AFE1_AFE2-1:1

Variables and expressions

103

In this figure, you can see four variables in the Watch window and their corresponding
declarations in the assembler source file to the left:

Note that asmvar4 is displayed as an int, although the original assembler declaration
probably intended for it to be a single byte quantity. From the context menu you can
make C-SPY display the variable as, for example, an 8-bit unsigned variable. This has
already been specified for the asmvar3 variable.

Reference information on working with variables and expressions
Reference information about:

● Auto window, page 104

● Locals window, page 106

● Watch window, page 109

● Live Watch window, page 112

● Statics window, page 115

● Quick Watch window, page 118

● Symbols window, page 121

● Resolve Symbol Ambiguity dialog box, page 124

AFE1_AFE2-1:1

104

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

See also:

● Reference information on trace, page 218 for trace-related reference information

● Macro Quicklaunch window, page 513

Auto window
The Auto window is available from the View menu.

This window displays a useful selection of variables and expressions in, or near, the
current statement. Every time execution in C-SPY stops, the values in the Auto window
are recalculated. Values that have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 60.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Expression
The name of the variable. This column is not editable.

A name in square brackets, for example [fieldname], is either the name of a
base class for a struct/class object or—if shown in gray and italic)—a pointer
to the full object when of a class type derived from the original class.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

AFE1_AFE2-1:1

Variables and expressions

105

Type
The data type of the variable.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

AFE1_AFE2-1:1

106

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

The display format setting affects different types of expressions in these ways:

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Locals window
The Locals window is available from the View menu.

This window displays the local variables and parameters for the current function. Every
time execution in C-SPY stops, the values in the window are recalculated. Values that
have changed since the last stop are highlighted in red.

See also Editing in C-SPY windows, page 60.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Variables and expressions

107

Display area

This area contains these columns:

Variable
The name of the variable. This column is not editable.

A name in square brackets, for example [fieldname], is either the name of a
base class for a struct/class object or—if shown in gray and italic)—a pointer
to the full object when of a class type derived from the original class.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

AFE1_AFE2-1:1

108

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

Variables and expressions

109

Watch window
The Watch window is available from the View menu.

Use this window to monitor the values of C-SPY expressions or variables. You can open
up to four instances of this window, where you can view, add, modify, and remove
expressions. Tree structures of arrays, structs, and unions are expandable, which means
that you can study each item of these.

Every time execution in C-SPY stops, the values in the Watch window are recalculated.
Values that have changed since the last stop are highlighted in red.

Be aware that expanding very large arrays can cause an out-of-memory crash. To avoid
this, expansion is automatically performed in steps of 5000 elements.

See also Editing in C-SPY windows, page 60.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Expression
The name of the variable.

A name in square brackets, for example [fieldname], is either the name of a
base class for a struct/class object or—if shown in gray and italic—a pointer
to the full object when of a class type derived from the original class.

Value
The value of the variable. Values that have changed are highlighted in red.

AFE1_AFE2-1:1

110

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

AFE1_AFE2-1:1

Variables and expressions

111

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

112

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Live Watch window
The Live Watch window is available from the View menu.

This window repeatedly samples and displays the value of expressions while your
application is executing. Variables in the expressions must be statically located, such as
global variables.

Live watch is available for these cores, with the following restrictions:

See also Editing in C-SPY windows, page 60.

Core Restrictions

Cortex-M Live watch is fully supported for Cortex-M. Access to memory or
setting breakpoints is always possible during execution.

Cortex-A/R Live watch is only possible when you use the C-SPY I-jet driver or
J-Link/J-Trace driver, and only when you use the option
--drv_mem_ap, see --drv_mem_ap, page 543.

Armxxx-S The support for live watch is limited for Armxxx-S cores, see below.
Setting hardware breakpoints during execution is always possible for all
supported C-SPY drivers.

Arm7/Arm9, including
Armxxx-S, when you
use the C-SPY
J-Link/J-Trace driver

Memory accesses must be made by your application. By adding a small
program—a DCC handler—that communicates with the debugger
through the DCC unit to your application, memory can be read/written
during execution. Software breakpoints can also be set by the DCC
handler.
Just add the files JLINKDCC_Process.c and
JLINKDCC_HandleDataAbort.s located in
arm\src\debugger\dcc to your project and call the
JLINKDCC_Process function regularly, for example every
millisecond.
In your local copy of the cstartup file, modify the interrupt vector
table so that data aborts will call the
JLINKDCC_HandleDataAbort handler. See also --jlink_dcc_timeout,
page 556.

Table 8: Live watch for the different devices

AFE1_AFE2-1:1

Variables and expressions

113

Requirements

This window is available for all combinations of C-SPY drivers and devices, except for
the C-SPY Stellaris driver. However, note that the actual support for live watch is limited
for all cores except Cortex-M, see the table above.

Display area

This area contains these columns:

Expression
The name of the variable.

A name in square brackets, for example [fieldname], is either the name of a
base class for a struct/class object or—if shown in gray and italic—a pointer
to the full object when of a class type derived from the original class.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

AFE1_AFE2-1:1

114

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

AFE1_AFE2-1:1

Variables and expressions

115

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Statics window
The Statics window is available from the View menu.

This window displays the values of variables with static storage duration that you have
selected. Typically, that is variables with file scope but it can also be static variables in
functions and classes. Note that volatile declared variables with static storage
duration will not be displayed.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

116

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Every time execution in C-SPY stops, the values in the Statics window are recalculated.
Values that have changed since the last stop are highlighted in red.

Click any column header (except for Value) to sort on that column.

See also Editing in C-SPY windows, page 60.

To select variables to monitor:
1 In the window, right-click and choose Select Statics from the context menu. The

window now lists all variables with static storage duration.

2 Either individually select the variables you want to display, or choose one of the Select
commands from the context menu.

3 When you have made your selections, choose Select Statics from the context menu to
toggle back to normal display mode.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Variable
The name of the variable. The base name of the variable is followed by the full
name, which includes module, class, or function scope. This column is not
editable.

A name in square brackets, for example [fieldname], is either the name of a
base class for a struct/class object or—if shown in gray and italic)—a pointer
to the full object when of a class type derived from the original class.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

AFE1_AFE2-1:1

Variables and expressions

117

Module
The module of the variable.

Context menu

This context menu is available:

These commands are available:

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

118

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves the content of the Statics window to a log file.

Select Statics
Selects all variables with static storage duration—this command also enables all
Select commands below. Select the variables you want to monitor. When you
have made your selections, select this menu command again to toggle back to
normal display mode.

Select All
Selects all variables.

Select None
Deselects all variables.

Select All in module
Selects all variables in the selected module.

Select None in module
Deselects all variables in the selected module.

Quick Watch window
The Quick Watch window is available from the View menu and from the context menu
in the editor window.

Use this window to watch the value of a variable or expression and evaluate expressions
at a specific point in time.

In contrast to the Watch window, the Quick Watch window gives you precise control
over when to evaluate the expression. For single variables this might not be necessary,

AFE1_AFE2-1:1

Variables and expressions

119

but for expressions with possible side effects, such as assignments and C-SPY macro
functions, it allows you to perform evaluations under controlled conditions.

See also Editing in C-SPY windows, page 60.

To evaluate an expression:
1 In the editor window, right-click on the expression you want to examine and choose

Quick Watch from the context menu that appears.

2 The expression will automatically appear in the Quick Watch window.

Alternatively:

3 In the Quick Watch window, type the expression you want to examine in the
Expressions text box.

4 Click the Recalculate button to calculate the value of the expression.

For an example, see Using C-SPY macros, page 429.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Expression
The name of the variable.

A name in square brackets, for example [fieldname], is either the name of a
base class for a struct/class object or—if shown in gray and italic—a pointer
to the full object when of a class type derived from the original class.

Value
The value of the variable. Values that have changed are highlighted in red.

Dragging text or a variable from another window and dropping it on the Value
column will assign a new value to the variable in that row.

This column is editable.

Location
The location in memory where this variable is stored.

Type
The data type of the variable.

AFE1_AFE2-1:1

120

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Remove
Removes the selected expression from the window.

Remove All
Removes all expressions listed in the window.

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Variables The display setting affects only the selected variable, not
other variables.

AFE1_AFE2-1:1

Variables and expressions

121

Show As
Displays a submenu that provides commands for changing the default type
interpretation of variables. The commands on this submenu are mainly useful
for assembler variables—data at assembler labels—because these are, by
default, displayed as integers. For more information, see Viewing assembler
variables, page 102.

Save to File
Saves content to a file in a tab-separated format.

Right Align ‘Value’ Column
Right-aligns the contents of the Value column.

Options
Displays the IDE Options dialog box where you can set various options for
C-SPY windows.

Symbols window
The Symbols window is available from the View menu.

This window displays all symbols with a static location, that is, C/C++ functions,
assembler labels, and variables with static storage duration, including symbols from the
runtime library.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

122

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

You can drag the contents of cells in the Symbol, Location, and Full Name columns
and drop in some other windows in the IDE.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

<filter by name>
Type the first characters of the symbol names that you want to find, and press
Enter. All symbols (of the types you have selected on the context menu) whose
name starts with these characters will be displayed. If you have chosen not to
display some types of symbols, the window will list how many of those that
were found but are not displayed.

Use the drop-down list to use old search strings. The search box has a history
depth of eight search entries.

Clear
Cancels the effects of the search filter and restores all symbols in the window.

Display area

This area contains these columns:

Symbol
The symbol name.

Location
The memory address.

Full name
The symbol name—often the same as the contents of the Symbol column but
differs for example for C++ member functions.

Module
The program module where the symbol is defined.

Type
The symbol type, whether it is a function, label, or variable.

Click the column headers to sort the list by symbol name, location, full name, module,
or type.

AFE1_AFE2-1:1

Variables and expressions

123

Context menu

This context menu is available:

These commands are available:

Functions
Toggles the display of function symbols on or off in the list.

Variables
Toggles the display of variables on or off in the list.

Labels
Toggles the display of labels on or off in the list.

Add to Watch
Adds the selected symbol to the Watch window.

Add to Live Watch
Adds the selected symbol to the Live Watch window.

Copy
Copies the contents of the cells on the selected line.

Row Copies all contents of the selected line.

Symbol Copies the contents of the Symbol cell on the selected line.

Location Copies the contents of the Location cell on the selected line.

Full Name Copies the contents of the Full Name cell on the selected line.

Module Copies the contents of the Module cell on the selected line.

Type Copies the contents of the Type cell on the selected line.

AFE1_AFE2-1:1

124

Reference information on working with variables and expressions

C-SPY® Debugging Guide
for Arm

Resolve Symbol Ambiguity dialog box
The Resolve Symbol Ambiguity dialog box appears, for example, when you specify a
symbol in the Disassembly window to go to, and there are several instances of the same
symbol due to templates or function overloading.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Ambiguous symbol

Indicates which symbol that is ambiguous.

Please select one symbol

A list of possible matches for the ambiguous symbol. Select the one you want to use.

AFE1_AFE2-1:1

125

Breakpoints
● Introduction to setting and using breakpoints

● Setting breakpoints

● Reference information on breakpoints

Introduction to setting and using breakpoints
These topics are covered:

● Reasons for using breakpoints

● Briefly about setting breakpoints

● Breakpoint types

● Breakpoint icons

● Breakpoints in the C-SPY simulator

● Breakpoints in the C-SPY hardware debugger drivers

● Breakpoint consumers

● Breakpoint options

REASONS FOR USING BREAKPOINTS

C-SPY® lets you set various types of breakpoints in the application you are debugging,
allowing you to stop at locations of particular interest. You can set a breakpoint at a code
location to investigate whether your program logic is correct, or to get trace printouts.
In addition to code breakpoints, and depending on what C-SPY driver you are using,
additional breakpoint types might be available. For example, you might be able to set a
data breakpoint, to investigate how and when the data changes.

You can let the execution stop under certain conditions, which you specify. You can also
let the breakpoint trigger a side effect, for instance executing a C-SPY macro function,
by transparently stopping the execution and then resuming. The macro function can be
defined to perform a wide variety of actions, for instance, simulating hardware behavior.

All these possibilities provide you with a flexible tool for investigating the status of your
application.

AFE1_AFE2-1:1

126

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for Arm

BRIEFLY ABOUT SETTING BREAKPOINTS

You can set breakpoints in many various ways, allowing for different levels of
interaction, precision, timing, and automation. All the breakpoints you define will
appear in the Breakpoints window. From this window you can conveniently view all
breakpoints, enable and disable breakpoints, and open a dialog box for defining new
breakpoints. The Breakpoint Usage window also lists all internally used breakpoints,
see Breakpoint consumers, page 130.

Breakpoints are set with a higher precision than single lines, using the same mechanism
as when stepping. For more information about the precision, see Single stepping, page
76.

You can set breakpoints while you edit your code even if no debug session is active. The
breakpoints will then be validated when the debug session starts. Breakpoints are
preserved between debug sessions.

Note: For most hardware debugger systems it is only possible to set breakpoints when
the application is not executing.

BREAKPOINT TYPES

Depending on the C-SPY driver you are using, C-SPY supports different types of
breakpoints.

Code breakpoints

Code breakpoints are used for code locations to investigate whether your program logic
is correct or to get trace printouts. Code breakpoints are triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will stop, before the
instruction is executed.

Log breakpoints

Log breakpoints provide a convenient way to add trace printouts without having to add
any code to your application source code. Log breakpoints are triggered when an
instruction is fetched from the specified location. If you have set the breakpoint on a
specific machine instruction, the breakpoint will be triggered and the execution will
temporarily stop and print the specified message in the C-SPY Debug Log window.

Trace Start/Stop Trigger breakpoints

Trace Start Trigger and Trace Stop Trigger breakpoints start and stop trace data
collection—a convenient way to analyze instructions between two execution points.

AFE1_AFE2-1:1

Breakpoints

127

Data breakpoints

Data breakpoints are primarily useful for variables that have a fixed address in memory.
If you set a breakpoint on an accessible local variable, the breakpoint is set on the
corresponding memory location. The validity of this location is only guaranteed for
small parts of the code. Data breakpoints are triggered when data is accessed at the
specified location.

The execution will usually stop directly after the instruction that accessed the data has
been executed. However, on some newer Arm devices like Cortex-M55, data
breakpoints might not stop the execution until several instructions later. Moreover, if the
CPU is halted for any reason, any such “delayed” data breakpoint will never have any
effect. Examples: If two consecutive instructions read from two different locations that
both have a data breakpoint, the second one will not have any effect. Likewise, if a data
breakpoint is immediately followed by a code breakpoint, then that data breakpoint will
not have any effect.

Data Log breakpoints

Data log breakpoints are triggered when a specified variable is accessed. A log entry is
written in the SWO Trace window (Trace window in the simulator) for each access. A
log message can also be displayed in the Data Log window. Data logs can also be
displayed on the Data Log graph in the Timeline window, if that window is enabled.
However, these log messages require that you have set up trace data in the SWO
Configuration dialog box, see SWO Configuration dialog box, page 225.

You can set data log breakpoints using the Breakpoints window, the Memory window,
and the editor window.

Using a single instruction, the microcontroller can only access values that are four bytes
or less. If you specify a data log breakpoint on a memory location that cannot be
accessed by one instruction, for example a double or a too large area in the Memory
window, the result might not be what you intended.

Immediate breakpoints

For some cores and devices, the C-SPY simulator lets you set immediate breakpoints,
which will halt instruction execution only temporarily. This allows a C-SPY macro
function to be called when the simulated processor is about to read data from a location
or immediately after it has written data. Instruction execution will resume after the
action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the simulated processor reads from a
memory-mapped location, a C-SPY macro function can intervene and supply

AFE1_AFE2-1:1

128

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for Arm

appropriate data. Conversely, when the simulated processor writes to a memory-mapped
location, a C-SPY macro function can act on the value that was written.

JTAG watchpoints

The C-SPY J-Link/J-Trace driver can take advantage of the JTAG watchpoint
mechanism in Arm7/9 cores.

The watchpoints are implemented using the functionality provided by the Arm
EmbeddedICE™ macrocell. The macrocell is part of every Arm core that supports the
JTAG interface. The EmbeddedICE watchpoint comparator compares the address bus,
data bus, CPU control signals and external input signals with the defined watchpoint in
real time. When all defined conditions are true, the program will break.

The watchpoints are implicitly used by C-SPY to set code breakpoints or data
breakpoints in the application. When setting breakpoints in read/write memory, only one
watchpoint is needed by the debugger. When setting breakpoints in read-only memory,
one watchpoint is needed for each breakpoint. Because the macrocell only implements
two hardware watchpoints, the maximum number of breakpoints in read-only memory
is two.

For a more detailed description of the Arm JTAG watchpoint mechanism, refer to these
documents from Arm Limited:

● ARM7TDMI (rev 3) Technical Reference Manual: Chapter 5, Debug Interface, and
Appendix B, Debug in Depth

● Application Note 28, The ARM7TDMI Debug Architecture

Flash breakpoints

Software code breakpoints (breakpoints that rely on writing breakpoint instructions into
memory) can be set in flash memory or other non-volatile executable memory using the
flash breakpoint mechanism. This involves programming of the flash memory using a
flash loader in the same way as is done when downloading an application.

This breakpoint type is only available for the C-SPY I-jet driver.

AFE1_AFE2-1:1

Breakpoints

129

BREAKPOINT ICONS

A breakpoint is marked with an icon in the left margin of the editor window, and the icon
varies with the type of breakpoint:

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected, see Editor options in the IDE Project Management and Building Guide for
Arm.

Just point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used for
implementing the user breakpoint. The latter information can also be seen in the
Breakpoint Usage window.

Note: The breakpoint icons might look different for the C-SPY driver you are using.

BREAKPOINTS IN THE C-SPY SIMULATOR

For some cores and devices, the C-SPY simulator supports all breakpoint types. The
C-SPY simulator always supports code, data, and log breakpoints for all cores and
devices. The number of breakpoints is unlimited.

BREAKPOINTS IN THE C-SPY HARDWARE DEBUGGER
DRIVERS

Using the C-SPY drivers for hardware debugger systems you can set various breakpoint
types. The amount of breakpoints you can set depends on the number of hardware
breakpoints available on the target system or whether you have enabled software
breakpoints, in which case the number of breakpoints you can set is unlimited.

When software breakpoints are enabled, the debugger will first use any available
hardware breakpoints before using software breakpoints. Exceeding the number of
available hardware breakpoints, when software breakpoints are not enabled, causes the
debugger to single step. This will significantly reduce the execution speed. For this
reason you must be aware of the different breakpoint consumers.

AFE1_AFE2-1:1

130

Introduction to setting and using breakpoints

C-SPY® Debugging Guide
for Arm

For information about the characteristics of breakpoints for the different target systems,
see the manufacturer’s documentation.

BREAKPOINT CONSUMERS

A debugger system includes several consumers of breakpoints.

User breakpoints

The breakpoints you define in the breakpoint dialog box or by toggling breakpoints in
the editor window often consume one physical breakpoint each, but this can vary greatly.
Some user breakpoints consume several physical breakpoints and conversely, several
user breakpoints can share one physical breakpoint. User breakpoints are displayed in
the same way both in the Breakpoint Usage window and in the Breakpoints window,
for example Data @[R] callCount.

C-SPY itself

C-SPY itself also consumes breakpoints. C-SPY will set a breakpoint if:

● The debugger option Run to has been selected, and any step command is used.
These are temporary breakpoints which are only set during a debug session. This
means that they are not visible in the Breakpoints window.

● The linker option Semihosted or IAR breakpoint has been selected.

In the DLIB runtime environment, C-SPY will set a system breakpoint on the
__DebugBreak label.

These types of breakpoint consumers are displayed in the Breakpoint Usage window,
for example, C-SPY Terminal I/O & libsupport module.

C-SPY plugin modules

For example, modules for real-time operating systems can consume additional
breakpoints. Specifically, by default, the Stack window consumes one physical
breakpoint.

To disable the breakpoint used by the Stack window:
1 Choose Tools>Options>Stack.

2 Deselect the Stack pointer(s) not valid until program reaches: label option.

To disable the Stack window entirely, choose Tools>Options>Stack and make sure all
options are deselected.

AFE1_AFE2-1:1

Breakpoints

131

BREAKPOINT OPTIONS

For the following C-SPY drivers it is possible to set some driver-specific breakpoint
options before you start C-SPY:

● GDB Server

● I-jet

● J-Link/J-Trace

● CMSIS-DAP

● ST-LINK

● TI XDS

For more information, see Breakpoints options, page 154.

Setting breakpoints
These tasks are covered:

● Various ways to set a breakpoint

● Toggling a simple code breakpoint

● Setting breakpoints using the dialog box

● Setting a data breakpoint in the Memory window

● Setting breakpoints using system macros

● Setting a breakpoint on an exception vector

● Setting breakpoints in __ramfunc declared functions

● Useful breakpoint hints

VARIOUS WAYS TO SET A BREAKPOINT

You can set a breakpoint in various ways:

● Toggling a simple code breakpoint.

● Using the New Breakpoints dialog box and the Edit Breakpoints dialog box
available from the context menus in the editor window, Breakpoints window, and
in the Disassembly window. The dialog boxes give you access to all breakpoint
options.

● Setting a data breakpoint on a memory area directly in the Memory window.

● Using predefined system macros for setting breakpoints, which allows automation.

The different methods offer different levels of simplicity, complexity, and automation.

AFE1_AFE2-1:1

132

Setting breakpoints

C-SPY® Debugging Guide
for Arm

TOGGLING A SIMPLE CODE BREAKPOINT

Toggling a code breakpoint is a quick method of setting a breakpoint. The following
methods are available both in the editor window and in the Disassembly window:

● Click in the gray left-side margin of the window

● Place the insertion point in the C source statement or assembler instruction where
you want the breakpoint, and click the Toggle Breakpoint button in the toolbar

● Choose Edit>Toggle Breakpoint
● Right-click and choose Toggle Breakpoint from the context menu.

SETTING BREAKPOINTS USING THE DIALOG BOX

The advantage of using a breakpoint dialog box is that it provides you with a graphical
interface where you can interactively fine-tune the characteristics of the breakpoints.
You can set the options and quickly test whether the breakpoint works according to your
intentions.

All breakpoints you define using a breakpoint dialog box are preserved between debug
sessions.

You can open the dialog box from the context menu available in the editor window,
Breakpoints window, and in the Disassembly window.

To set a new breakpoint:
1 Choose View>Breakpoints to open the Breakpoints window.

2 In the Breakpoints window, right-click, and choose New Breakpoint from the context
menu.

3 On the submenu, choose the breakpoint type you want to set. Depending on the C-SPY
driver you are using, different breakpoint types are available.

4 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

To modify an existing breakpoint:
1 In the Breakpoints window, editor window, or in the Disassembly window, select the

breakpoint you want to modify and right-click to open the context menu.

AFE1_AFE2-1:1

Breakpoints

133

If there are several breakpoints on the same source code line, the breakpoints will be
listed on a submenu.

2 On the context menu, choose the appropriate command.

3 In the breakpoint dialog box that appears, specify the breakpoint settings and click OK.

The breakpoint is displayed in the Breakpoints window.

SETTING A DATA BREAKPOINT IN THE MEMORY WINDOW

You can set breakpoints directly on a memory location in the Memory window.
Right-click in the window and choose the breakpoint command from the context menu
that appears. To set the breakpoint on a range, select a portion of the memory contents.

The breakpoint is not highlighted in the Memory window—instead, you can see, edit,
and remove it using the Breakpoints window, which is available from the View menu.
The breakpoints you set in the Memory window will be triggered for both read and
write accesses. All breakpoints defined in this window are preserved between debug
sessions.

AFE1_AFE2-1:1

134

Setting breakpoints

C-SPY® Debugging Guide
for Arm

Note: Setting breakpoints directly in the Memory window is only possible if the driver
you use supports this.

SETTING BREAKPOINTS USING SYSTEM MACROS

You can set breakpoints, not only in the breakpoint dialog box, but also by using built-in
C-SPY system macros. When you use system macros for setting breakpoints, the
breakpoint characteristics are specified as macro parameters.

Macros are useful when you have already specified your breakpoints so that they fully
meet your requirements. You can define your breakpoints in a macro file, using built-in
system macros, and execute the file at C-SPY startup. The breakpoints will then be set
automatically each time you start C-SPY. Another advantage is that the debug session
will be documented, and that several engineers involved in the development project can
share the macro files.

Note: If you use system macros for setting breakpoints, you can still view and modify
them in the Breakpoints window. In contrast to using the dialog box for defining
breakpoints, all breakpoints that are defined using system macros are removed when you
exit the debug session.

1. Not for all cores and devices.

C-SPY macro for breakpoints Simulator I-jet J-Link/J-Trace CMSIS-DAP CADI E2

__setCodeBreak Yes Yes Yes Yes Yes Yes

__setDataBreak Yes Yes — Yes — —

__setLogBreak Yes Yes Yes Yes — Yes

__setDataLogBreak Yes1 Yes — — — —

__setSimBreak Yes1 — — — — —

__setTraceStartBreak Yes1 Yes — — — —

__setTraceStopBreak Yes1 Yes — — — —

__clearBreak Yes1 Yes Yes Yes Yes Yes

Table 9: C-SPY macros for breakpoints

C-SPY macro for breakpoints
GDB

Server

ST-LINK and

TI MSP-FET
PE micro

TI

Stellaris /

TI XDS

Nu-Link G+Link

__setCodeBreak Yes Yes Yes Yes Yes Yes

__setDataBreak — — — — — Yes

__setLogBreak Yes Yes Yes Yes Yes Yes

Table 10: C-SPY macros for breakpoints

AFE1_AFE2-1:1

Breakpoints

135

For information about each breakpoint macro, see Reference information on C-SPY
system macros, page 444.

Setting breakpoints at C-SPY startup using a setup macro file

You can use a setup macro file to define breakpoints at C-SPY startup. Follow the
procedure described in Using C-SPY macros, page 429.

SETTING A BREAKPOINT ON AN EXCEPTION VECTOR

You can set breakpoints on exception vectors for ARM9, Cortex-R4, and Cortex-M3
devices. Use the Vector Catch dialog box to set a breakpoint directly on a vector in the
interrupt vector table, without using a hardware breakpoint. For more information, see
Vector Catch dialog box, page 157.

For the C-SPY I-jet driver and the C-SPY J-Link/J-Trace driver, it is also possible to set
breakpoints directly on a vector already in the options dialog box, see J-Link/J-Trace —
Setup, page 611.

This procedure applies to the C-SPY I-jet driver and the C-SPY J-Link/J-Trace driver.

To set a breakpoint on an exception vector:
1 Select the correct device. Before starting C-SPY, choose Project>Options and select

the General Options category. Choose the appropriate core or device from one of the
Processor variant drop-down lists available on the Target page.

2 Start C-SPY.

3 Choose C-SPY driver>Vector Catch. By default, vectors are selected according to
your settings on the Breakpoints options page, see Breakpoints options, page 154.

4 In the Vector Catch dialog box, select the vector you want to set a breakpoint on, and
click OK. The breakpoint will only be triggered at the beginning of the exception.

__setDataLogBreak — — — — — —

__setSimBreak — — — — — —

__setTraceStartBreak — — — — — —

__setTraceStopBreak — — — — — —

__clearBreak Yes Yes Yes Yes Yes Yes

C-SPY macro for breakpoints
GDB

Server

ST-LINK and

TI MSP-FET
PE micro

TI

Stellaris /

TI XDS

Nu-Link G+Link

Table 10: C-SPY macros for breakpoints (Continued)

AFE1_AFE2-1:1

136

Setting breakpoints

C-SPY® Debugging Guide
for Arm

SETTING BREAKPOINTS IN __RAMFUNC DECLARED
FUNCTIONS

To set a breakpoint in a __ramfunc declared function, the program execution must have
reached the main function. The system startup code moves all __ramfunc declared
functions from their stored location—normally flash memory—to their RAM location,
which means the __ramfunc declared functions are not in their proper place and
breakpoints cannot be set until you have executed up to the main function. Use the
Restore software breakpoints option to solve this problem, see Breakpoints options,
page 154, specifically the Restore software breakpoints option.

In addition, breakpoints in __ramfunc declared functions added from the editor have
to be disabled prior to invoking C-SPY and prior to exiting a debug session.

For information about the __ramfunc keyword, see the IAR C/C++ Development
Guide for Arm.

USEFUL BREAKPOINT HINTS

Below are some useful hints related to setting breakpoints.

Tracing incorrect function arguments

If a function with a pointer argument is sometimes incorrectly called with a NULL
argument, you might want to debug that behavior. These methods can be useful:

● Set a breakpoint on the first line of the function with a condition that is true only
when the parameter is 0. The breakpoint will then not be triggered until the
problematic situation actually occurs. The advantage of this method is that no extra
source code is needed. The drawback is that the execution speed might become
unacceptably low.

● You can use the assert macro in your problematic function, for example:

int MyFunction(int * MyPtr)
{
 assert(MyPtr != 0); /* Assert macro added to your source
 code. */
 /* Here comes the rest of your function. */
}

The execution will break whenever the condition is true. The advantage is that the
execution speed is only slightly affected, but the drawback is that you will get a small
extra footprint in your source code. In addition, the only way to get rid of the
execution stop is to remove the macro and rebuild your source code.

AFE1_AFE2-1:1

Breakpoints

137

● Instead of using the assert macro, you can modify your function like this:

int MyFunction(int * MyPtr)
{
 if(MyPtr == 0)
 MyDummyStatement; /* Dummy statement where you set a
 breakpoint. */
 /* Here comes the rest of your function. */
}

You must also set a breakpoint on the extra dummy statement, so that the execution
will break whenever the condition is true. The advantage is that the execution speed
is only very slightly affected, but the drawback is that you will still get a small extra
footprint in your source code. However, in this way you can get rid of the execution
stop by just removing the breakpoint.

Performing a task and continuing execution

You can perform a task when a breakpoint is triggered and then automatically continue
execution.

You can use the Action text box to associate an action with the breakpoint, for instance
a C-SPY macro function. When the breakpoint is triggered and the execution of your
application has stopped, the macro function will be executed. In this case, the execution
will not continue automatically.

Instead, you can set a condition which returns 0 (false). When the breakpoint is
triggered, the condition—which can be a call to a C-SPY macro that performs a task—
is evaluated and because it is not true, execution continues.

Consider this example where the C-SPY macro function performs a simple task:

__var my_counter;

count()
{
 my_counter += 1;
 return 0;
}

To use this function as a condition for the breakpoint, type count() in the Expression
text box under Conditions. The task will then be performed when the breakpoint is
triggered. Because the macro function count returns 0, the condition is false and the
execution of the program will resume automatically, without any stop.

AFE1_AFE2-1:1

138

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Reference information on breakpoints
Reference information about:

● Breakpoints window, page 138

● Breakpoint Usage window, page 140

● Code breakpoints dialog box, page 141

● JTAG Watchpoints dialog box, page 143

● Log breakpoints dialog box, page 146

● Data breakpoints dialog box, page 147

● Data Log breakpoints dialog box, page 151

● Data Log breakpoints dialog box (C-SPY hardware drivers), page 152

● Breakpoints options, page 154

● Immediate breakpoints dialog box, page 156

● Vector Catch dialog box, page 157

● Flash breakpoints dialog box, page 158

● Enter Location dialog box, page 159

● Resolve Source Ambiguity dialog box, page 161

See also:

● Reference information on C-SPY system macros, page 444

● Reference information on trace, page 218

Breakpoints window
The Breakpoints window is available from the View menu.

This window lists all breakpoints you define.

Use this window to conveniently monitor, enable, and disable breakpoints—you can
also define new breakpoints and modify existing breakpoints.

AFE1_AFE2-1:1

Breakpoints

139

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area lists all breakpoints you define. For each breakpoint, information about the
breakpoint type, source file, source line, and source column is provided.

Context menu

This context menu is available:

These commands are available:

Go to Source
Moves the insertion point to the location of the breakpoint, if the breakpoint has
a source location. Double-click a breakpoint in the Breakpoints window to
perform the same command.

Edit
Opens the breakpoint dialog box for the breakpoint you selected.

Delete
Deletes the breakpoint. Press the Delete key to perform the same command.

Enable
Enables the breakpoint. The check box at the beginning of the line will be
selected. You can also perform the command by manually selecting the check
box. This command is only available if the breakpoint is disabled.

Disable
Disables the breakpoint. The check box at the beginning of the line will be
deselected. You can also perform this command by manually deselecting the
check box. This command is only available if the breakpoint is enabled.

Enable All
Enables all defined breakpoints.

AFE1_AFE2-1:1

140

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Disable All
Disables all defined breakpoints.

Delete All
Deletes all defined breakpoints.

New Breakpoint
Displays a submenu where you can open the breakpoint dialog box for the
available breakpoint types. All breakpoints you define using this dialog box are
preserved between debug sessions.

Breakpoint Usage window
The Breakpoint Usage window is available from the menu specific to the C-SPY driver
you are using.

This window lists all breakpoints currently set in the target system, both the ones you
have defined and the ones used internally by C-SPY. The format of the items in this
window depends on the C-SPY driver you are using.

The window gives a low-level view of all breakpoints, related but not identical to the list
of breakpoints displayed in the Breakpoints window.

C-SPY uses breakpoints when stepping. Use the Breakpoint Usage window for:

● Identifying all breakpoint consumers

● Checking that the number of active breakpoints is supported by the target system

● Configuring the debugger to use the available breakpoints in a better way, if
possible.

For more information, see Breakpoints in the C-SPY hardware debugger drivers, page
129.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

Breakpoints

141

Display area

For each breakpoint in the list, the address and access type are displayed. Each
breakpoint in the list can also be expanded to show its originator.

Code breakpoints dialog box
The Code breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Code breakpoints dialog box to set a code breakpoint, see Setting breakpoints
using the dialog box, page 132.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 159.

Breakpoint type

Overrides the default breakpoint type. Select the Override default check box and
choose between the Software and Hardware options.

You can specify the breakpoint type for these C-SPY drivers:

● The C-SPY I-jet driver

● The C-SPY CMSIS-DAP driver

AFE1_AFE2-1:1

142

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

● The C-SPY GDB Server driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI XDS driver

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will be set automatically, typically to 1.

Manual
Specify the size of the breakpoint range in the text box.

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 136.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count
The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

AFE1_AFE2-1:1

Breakpoints

143

JTAG Watchpoints dialog box
The JTAG Watchpoints dialog box is available from the driver-specific menu.

Use this dialog box to directly control the two hardware watchpoint units. If the number
of needed watchpoints (including implicit watchpoints used by the breakpoint system)
exceeds two, an error message will be displayed when you click the OK button. This
check is also performed for the C-SPY Go button.

To cause a trigger for accesses in the range 0x20-0xFF:
1 Set Break Condition to Range.

2 Set the address value of watchpoint 0 to 0 and the mask to 0xFF.

3 Set the address value of watchpoint 1 to 0 and the mask to 0x1F.

Requirements

The J-Link/J-Trace driver and a supported device.

Break Condition

Selects how the defined watchpoints will be used. Choose between:

Normal Uses the two watchpoints individually (OR).

AFE1_AFE2-1:1

144

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Address

Specify the address to watch for.

Access Type

Selects the access type of the data to watch for:

Range Combines both watchpoints to cover a range where
watchpoint 0 defines the start of the range and watchpoint 1
the end of the range. Selectable ranges are restricted to
being powers of 2.

Chain Makes a trigger of watchpoint 1 and watchpoint 0. A
program break will then occur when watchpoint 0 is
triggered.

Value Specify an address or a C-SPY expression that evaluates to
an address. Alternatively, you can select an address you
have previously watched for from the drop-down list. For
detailed information about C-SPY expressions, see C-SPY
expressions, page 98.

Mask Qualifies each bit in the value. A zero bit in the mask will
cause the corresponding bit in the value to be ignored in the
comparison. To match any address, enter 0. Note that the
mask values are inverted with respect to the notation used in
the Arm hardware manuals.

Address Bus Pattern Shows the bit pattern to be used by the address comparator.
Ignored bits as specified in the mask are shown as x.

Any Matches any access type.

OP Fetch Matches an operation code (instruction) fetch.

Read Reads from location.

Write Writes to location.

R/W Reads from or writes to location.

AFE1_AFE2-1:1

Breakpoints

145

Data

Specifies the data to watch for. For size, choose between:

You can specify a value to watch for. Choose between:

Extern

Defines the state of the external input. Choose between:

Mode

Selects which CPU mode that must be active for a match. Choose between:

Any Size Matches data accesses of any size.

Byte Matches byte size accesses.

Halfword Matches halfword size accesses.

Word Matches word size accesses.

Value Specify a value or a C-SPY expression. Alternatively, you
can select a value you have previously watched for from the
drop-down list. For detailed information about C-SPY
expressions, see C-SPY expressions, page 98.

Mask Qualifies each bit in the value. A zero bit in the mask will
cause the corresponding bit in the value to be ignored in the
comparison. To match any address, enter 0. Note that the
mask values are inverted with respect to the notation used in
the Arm hardware manuals.

Data Bus Pattern Shows the bit pattern to be used by the address comparator.
Ignored bits as specified in the mask are shown as x.

Any Ignores the state.

0 Defines the state as low.

1 Defines the state as high.

User Selects the CPU mode USER.

Non User Selects one of the CPU modes SYSTEM SVC, UND,
ABORT, IRQ, or FIQ.

Any Ignores the CPU mode.

AFE1_AFE2-1:1

146

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Log breakpoints dialog box
The Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Log breakpoints dialog box to set a log breakpoint, see Setting breakpoints
using the dialog box, page 132.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 159.

Message

Specify the message you want to be displayed in the C-SPY Debug Log window. The
message can either be plain text, or—if you also select the option C-SPY macro
"__message" style—a comma-separated list of arguments.

C-SPY macro "__message" style

Select this option to make a comma-separated list of arguments specified in the Message
text box be treated exactly as the arguments to the C-SPY macro language statement
__message, see Formatted output, page 438.

AFE1_AFE2-1:1

Breakpoints

147

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Data breakpoints dialog box
The Data breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

This figure reflects the C-SPY simulator.

Use the Data breakpoints dialog box to set a data breakpoint, see Setting breakpoints
using the dialog box, page 132. Data breakpoints never stop execution within a single
instruction. They are recorded and reported after the instruction is executed.

Requirements

One of these alternatives:

● The C-SPY simulator

● The C-SPY CMSIS-DAP driver

● The C-SPY GDB Server driver

AFE1_AFE2-1:1

148

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

● The C-SPY G+LINK driver

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI Stellaris driver

● The C-SPY TI XDS driver and a Cortex-M device

Break At

Specify the data location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 159.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual
Specify the size of the breakpoint range in the text box.

AFE1_AFE2-1:1

Breakpoints

149

For data breakpoints, this can be useful if you want the breakpoint to be triggered on
accesses to data structures, such as arrays, structs, and unions.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 136.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Condition true
The breakpoint is triggered if the value of the expression is true.

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count
The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Trigger range

Shows the requested range and the effective range to be covered by the trace. The range
suggested is either within or exactly the area specified by the Break At and the Size
options.

The Trigger range option is available for all C-SPY hardware drivers that support data
breakpoints.

Extend to cover
requested range

Extends the breakpoint so that a whole data structure is
covered. For data structures that do not fit the size of the
possible breakpoint ranges supplied by the hardware
breakpoint unit, for example three bytes, the breakpoint
range will not cover the whole data structure. Note that the
breakpoint range will be extended beyond the size of the
data structure, which might cause false triggers at adjacent
data.

AFE1_AFE2-1:1

150

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Match data

Enables matching of the accessed data. Use the Match data options in combination with
the access types for data. This option can be useful when you want a trigger when a
variable has a certain value.

Value
Specify a data value.

Mask
Specify which part of the value to match (word, halfword, or byte).

For Cortex-M, the data mask is limited to one of these exact values:

0xFFFFFFFF, which means that the complete word must match.

0xFFFF, which means that the match can be either the upper or lower 16-bit part
of a word or halfword.

0xFF, which means that the match can be either the upper, middle, or lower 8-bit
part of a word, halfword, or byte. For example, for the data 0xVV, any 32-bit
access matching a xxxxxxVV, xxxxVVxx, xxVVxxxx, or VVxxxxxx pattern, and
any 16-bit access matching xxVV or VVxx, and an 8-bit access with exact match
triggers the breakpoint.

The Match data options are only available for I-jet, I-jet Trace, J-Link/J-Trace and
ST-LINK, and when using an Arm7/9 or a Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two hardware breakpoints.

Note: The Match Data options are not available for Cortex-M0, Cortex-M1, or
Cortex-M0+, and they are not available for ARMv8 devices.

AFE1_AFE2-1:1

Breakpoints

151

Data Log breakpoints dialog box
The Data Log breakpoints dialog box is available from the context menu in the
Breakpoints window.

This figure reflects the C-SPY simulator.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints
on memory addresses, see Setting breakpoints using the dialog box, page 132.

See also Data Log breakpoints, page 127 and Getting started using data logging, page
262.

Requirements

The C-SPY simulator.

Break At

Specify a memory location as a variable (with static storage duration) or as an address.

Access Type

Selects the type of access to the variable that generates a log entry:

Read/Write
Read and write accesses from or writes to location of the variable.

Read
Read accesses from the location of the variable.

Write
Write accesses to location of the variable.

AFE1_AFE2-1:1

152

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Data Log breakpoints dialog box (C-SPY hardware drivers)
The Data Log breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

Use the Data Log breakpoints dialog box to set a maximum of four data log breakpoints.

You can set a data log breakpoint on 8, 16, and 32-bit variables.

See also Data Log breakpoints, page 127 and Getting started using data logging, page
262.

Requirements

A device and a debug probe with support for SWO.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 159.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location; except for Cortex-M3, revision 1 devices.

Write
Writes to location; except for Cortex-M3, revision 1 devices.

AFE1_AFE2-1:1

Breakpoints

153

Size

Determines whether there should be a size—in practice, a range—of locations where the
breakpoint will trigger. Each fetch access to the specified memory range will trigger the
breakpoint. Select how to specify the size:

Auto
The size will automatically be based on the type of expression the breakpoint is
set on. For example, if you set the breakpoint on a 12-byte structure, the size of
the breakpoint will be 12 bytes.

Manual
Specify the size of the breakpoint range in the text box.

Trigger range

Shows the requested range and the effective range to be covered by the trace. The range
suggested is either within or exactly the area specified by the Trigger at and the Size
options.

Extend to cover
requested range

Extends the breakpoint so that a whole data structure is
covered. For data structures that do not fit the size of the
possible breakpoint ranges supplied by the hardware
breakpoint unit, for example three bytes, the breakpoint
range will not cover the whole data structure. Note that the
breakpoint range will be extended beyond the size of the
data structure, which might cause false triggers at adjacent
data.

AFE1_AFE2-1:1

154

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Breakpoints options
The Breakpoints options page is available in the Options dialog box. Choose
Project>Options, select the category specific to the debugger system you are using, and
click the Breakpoints tab.

Use this dialog box to set driver-specific breakpoint options.

Requirements

One of these alternatives:

● The C-SPY CMSIS-DAP driver

● The C-SPY GDB Server driver

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

AFE1_AFE2-1:1

Breakpoints

155

Default breakpoint type

Selects the type of breakpoint resource to be used when setting a breakpoint. Choose
between:

Restore software breakpoints at

Restores software breakpoints that were overwritten during system startup.

This can be useful if you have an application that is copied to RAM during startup and
is then executing in RAM. This can, for example, be the case if you use the initialize
by copy linker directive for code in the linker configuration file or if you have any
__ramfunc declared functions in your application.

In this case, all breakpoints will be destroyed during the RAM copying when the C-SPY
debugger starts. By using the Restore software breakpoints at option, C-SPY will
restore the destroyed breakpoints.

Use the text field to specify the location in your application at which point you want
C-SPY to restore the breakpoints. The default location is the label _call_main.

Catch exceptions

Sets a breakpoint directly on a vector in the interrupt vector table, without using a
hardware breakpoint. This option is available for Arm9/10/11 and all Cortex devices.
The settings you make will work as default settings for the project. However, you can
override these default settings during the debug session by using the Vector Catch
dialog box, see Setting a breakpoint on an exception vector, page 135.

The settings you make will be preserved during debug sessions.

This option is supported by the C-SPY I-jet driver and the C-SPY J-Link/J-Trace driver.

Auto Uses a software breakpoint. If this is not possible, a
hardware breakpoint will be used. The debugger will use
read/write sequences to test for RAM; in that case, a
software breakpoint will be used. The Auto option works
for most applications. However, there are cases when the
performed read/write sequence will make the flash memory
malfunction. In that case, use the Hardware option.

Hardware Uses hardware breakpoints. If it is not possible, no
breakpoint will be set.

Software Uses software breakpoints. If it is not possible, no
breakpoint will be set.

AFE1_AFE2-1:1

156

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Immediate breakpoints dialog box
The Immediate breakpoints dialog box is available from the context menu in the editor
window, Breakpoints window, the Memory window, and in the Disassembly window.

In the C-SPY simulator, you can use the Immediate breakpoints dialog box to set an
immediate breakpoint, see Setting breakpoints using the dialog box, page 132.
Immediate breakpoints do not stop execution at all—they only suspend it temporarily.

Note: Immediate breakpoints are not available for all cores and devices.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Trigger at

Specify the data location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 159.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read
Reads from location.

Write
Writes to location.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 136.

AFE1_AFE2-1:1

Breakpoints

157

Vector Catch dialog box
The Vector Catch dialog box is available from the C-SPY driver menu.

Use this dialog box to set a breakpoint directly on a vector in the interrupt vector table,
without using a hardware breakpoint. You can set breakpoints on vectors for
Arm9/10/11 and all Cortex devices.

Note that the settings you make here will not be preserved between debug sessions.

This figure reflects a Cortex-M device. If you are using another device, the contents of
this dialog box might look different.

Note: For the C-SPY I-jet driver and the C-SPY J-Link/J-Trace driver, it is also possible
to set breakpoints directly on a vector already in the options dialog box, see
J-Link/J-Trace — Setup, page 611.

Requirements

One of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY CMSIS-DAP driver

AFE1_AFE2-1:1

158

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Flash breakpoints dialog box
The Flash breakpoints dialog box is available from the context menu in the editor
window, the Breakpoints window, the Memory window, and in the Disassembly
window.

Use the Flash breakpoints dialog box to set a flash breakpoint.

Requirements

The C-SPY I-jet driver.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 159.

Action

Specify a valid C-SPY expression, which is evaluated when the breakpoint is triggered
and the condition is true. For more information, see Useful breakpoint hints, page 136.

Conditions

Specify simple or complex conditions:

Expression
Specify a valid C-SPY expression, see C-SPY expressions, page 98.

Condition true
The breakpoint is triggered if the value of the expression is true.

AFE1_AFE2-1:1

Breakpoints

159

Condition changed
The breakpoint is triggered if the value of the expression has changed since it
was last evaluated.

Skip count
The number of times that the breakpoint condition must be fulfilled before the
breakpoint starts triggering. After that, the breakpoint will trigger every time the
condition is fulfilled.

Enter Location dialog box
The Enter Location dialog box is available from the breakpoints dialog box, either
when you set a new breakpoint or when you edit a breakpoint.

Use the Enter Location dialog box to specify the location of the breakpoint.

Note: This dialog box looks different depending on the Type you select.

Type

Selects the type of location to be used for the breakpoint, choose between:

Expression
A C-SPY expression, whose value evaluates to a valid code or data location.

A code location, for example the function main, is typically used for code
breakpoints.

A data location is the name of a variable and is typically used for data
breakpoints. For example, my_var refers to the location of the variable my_var,
and arr[3] refers to the location of the fourth element of the array arr. For
static variables declared with the same name in several functions, use the syntax
my_func::my_static_variable to refer to a specific variable.

For more information about C-SPY expressions, see C-SPY expressions, page
98.

AFE1_AFE2-1:1

160

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

Absolute address
An absolute location on the form zone:hexaddress or simply hexaddress
(for example Memory:0x42). zone refers to C-SPY memory zones and
specifies in which memory the address belongs, see C-SPY memory zones, page
165.

Source location
A location in your C source code using the syntax:
{filename}.row.column.

filename specifies the filename and full path.

row specifies the row in which you want the breakpoint.

column specifies the column in which you want the breakpoint.

For example, {C:\src\prog.c}.22.3 sets a breakpoint on the third character
position on row 22 in the source file prog.c. Note that in quoted form, for
example in a C-SPY macro, you must instead write
{C:\\src\\prog.c}.22.3.

Note that the Source location type is usually meaningful only for code locations in code
breakpoints. Depending on the C-SPY driver you are using, Source location might not
be available for data and immediate breakpoints.

AFE1_AFE2-1:1

Breakpoints

161

Resolve Source Ambiguity dialog box
The Resolve Source Ambiguity dialog box appears, for example, when you try to set a
breakpoint on templates and the source location corresponds to more than one function.

To resolve a source ambiguity, perform one of these actions:

● In the text box, select one or several of the listed locations and click Selected.

● Click All.

All

The breakpoint will be set on all listed locations.

Selected

The breakpoint will be set on the source locations that you have selected in the text box.

Cancel

No location will be used.

Automatically choose all

Determines that whenever a specified source location corresponds to more than one
function, all locations will be used.

Note that this option can also be specified in the IDE Options dialog box, see Debugger
options in the IDE Project Management and Building Guide for Arm.

AFE1_AFE2-1:1

162

Reference information on breakpoints

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

163

Memory and registers
● Introduction to monitoring memory and registers

● Monitoring memory and registers

● Reference information on memory and registers

Introduction to monitoring memory and registers
These topics are covered:

● Briefly about monitoring memory and registers

● C-SPY memory zones

● Memory configuration for the C-SPY simulator

● Memory configuration for C-SPY hardware debugger drivers

BRIEFLY ABOUT MONITORING MEMORY AND REGISTERS

C-SPY provides many windows for monitoring memory and registers, most of them
available from the View menu:

● The Memory window

Gives an up-to-date display of a specified area of memory—a memory zone—and
allows you to edit it. Data coverage along with execution of your application is
highlighted with different colors. You can fill specified areas with specific values and
you can set breakpoints directly on a memory location or range. You can open several
instances of this window, to monitor different memory areas. The content of the
window can be regularly updated while your application is executing.

● The Symbolic Memory window

Displays how variables with static storage duration are laid out in memory. This can
be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example by buffer overruns.

● The Stack window

Displays the contents of the stack, including how stack variables are laid out in
memory. In addition, integrity checks of the stack can be performed to detect and
warn about problems with stack overflow. For example, the Stack window is useful
for determining the optimal size of the stack. You can open up to two instances of
this window, each showing different stacks or different display modes of the same
stack.

AFE1_AFE2-1:1

164

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
for Arm

● The Registers window

Gives an up-to-date display of the contents of the processor registers and SFRs, and
allows you to edit them. Except for the hardwired group of CPU registers, additional
registers are defined in the device description file. These registers are the
device-specific memory-mapped control and status registers for the peripheral units
on the Arm devices. Because of the large amount of registers—memory-mapped
peripheral unit registers and CPU registers—it is inconvenient to show all registers
concurrently in the Registers window. Instead you can divide registers into
application-specific groups. You can choose to load either predefined register groups
or define your own groups. You can open several instances of this window, each
showing a different register group.

● The SFR Setup window

Displays the currently defined SFRs that C-SPY has information about, both
factory-defined (retrieved from the device description file) and custom-defined
SFRs. If required, you can use the Edit SFR dialog box to customize the SFR
definitions.

To view the memory contents for a specific variable, simply drag the variable to the
Memory window or the Symbolic Memory window. The memory area where the
variable is located will appear.

Reading the value of some registers might influence the runtime behavior of your
application. For example, reading the value of a UART status register might reset a
pending bit, which leads to the lack of an interrupt that would have processed a received
byte. To prevent this from happening, make sure that the Registers window containing
any such registers is closed when debugging a running application.

AFE1_AFE2-1:1

Memory and registers

165

C-SPY MEMORY ZONES

In C-SPY, the term zone is used for a named memory area. A memory address, or
location, is a combination of a zone and a numerical offset into that zone. The Arm
architecture has only one zone, Memory, which covers the whole Arm memory range.

Memory zones are used in several contexts, most importantly in the Memory and
Disassembly windows, and in C-SPY macros. In the windows, use the Zone box to
choose which memory zone to display.

For normal memory, the default zone Memory can be used, but certain I/O registers
might require to be accessed as 8, 16, 32, or 64 bits to give correct results. By using
different memory zones, you can control the access width used for reading and writing
in, for example, the Memory window. When using the zone Memory, the debugger
automatically selects the most suitable access width.

Note: For the C-SPY I-jet driver, you can specify the automatic selection of access
width in the Edit Memory Range dialog box, see Edit Memory Range dialog box for
C-SPY hardware debugger drivers, page 203.

MEMORY CONFIGURATION FOR THE C-SPY SIMULATOR

To simulate the target system properly, the C-SPY simulator needs information about
the memory configuration. By default, C-SPY uses a configuration based on
information retrieved from the device description file.

The C-SPY simulator provides various mechanisms to improve the configuration
further:

● If the default memory configuration does not specify the required memory address
ranges, you can specify the memory address ranges shall be based on:

● The zones predefined in the device description file

● The section information available in the debug file

 Default zone Memory

0x0000'0000

0xFFFF'FFFF (32-bit mode)
0xFFFF'FFFF'FFFF'FFFF (64-bit mode)

AFE1_AFE2-1:1

166

Introduction to monitoring memory and registers

C-SPY® Debugging Guide
for Arm

● Or, you can define your own memory address ranges, which you typically might
want to do if the files do not specify memory ranges for the specific device that
you are using, but instead for a family of devices (perhaps with various amounts
of on-chip RAM).

● For each memory address range, you can specify an access type. If a memory access
occurs that does not agree with the specified access type, C-SPY will regard this as
an illegal access and warn about it. In addition, an access to memory that is not
defined is regarded as an illegal access. The purpose of memory access checking is
to help you to identify memory access violations.

For more information, see Memory Configuration dialog box for the C-SPY simulator,
page 196.

MEMORY CONFIGURATION FOR C-SPY HARDWARE
DEBUGGER DRIVERS

To handle memory as efficiently as possible during debugging, C-SPY needs
information about the memory configuration. By default, C-SPY uses a configuration
based on information retrieved from the device description file.

You should make sure the memory address ranges match the memory available on your
device. Providing C-SPY with information about the memory layout of the target system
is helpful in terms of both performance and functionality:

● Reading (and writing) memory (if your debug probe is connected through a USB
port) can be fast, but is usually the limiting factor when C-SPY needs to update
many debugger windows. C-SPY can cache memory contents to speed up
performance, provided it has correct information about the target memory.

● You can inform C-SPY that the content of certain memory address ranges will not
be changed during a debug session. C-SPY can keep a copy of that memory
readable even when the target system does not normally allow reading (such as
when it is executing).

Note that if you specify the cache type ROM/Flash, C-SPY treats such memory as
constant during the whole debug session (which improves efficiency, when updating
some C-SPY windows). If your application modifies flash memory during runtime,
do not use the ROM/Flash cache type.

● You can prevent C-SPY from accessing memory outside specified memory address
ranges, which can be important for certain hardware.

The Memory Configuration dialog box is automatically displayed the first time you
start the C-SPY driver for a given project, unless the device description file contains a
memory description which is explicitly tagged as correct and complete. Subsequent
starts will not display the dialog box unless you have made project changes that might

AFE1_AFE2-1:1

Memory and registers

167

cause the memory configuration to change, for example if you have selected another
device description file.

For more information, see Memory Configuration dialog box for C-SPY hardware
debugger drivers, page 200.

Monitoring memory and registers
These tasks are covered:

● Defining application-specific register groups

● Monitoring stack usage

DEFINING APPLICATION-SPECIFIC REGISTER GROUPS

Defining application-specific register groups minimizes the amount of registers
displayed in the Registers windows and makes the debugging easier.

To define application-specific register groups:
1 Choose View>Registers>Register User Groups Setup during a debug session.

Right-clicking in the window displays a context menu with commands. For information
about these commands, see Register User Groups Setup window, page 189.

2 Click on <click to add group> and specify the name of your group, for example
My Timer Group and press Enter.

AFE1_AFE2-1:1

168

Monitoring memory and registers

C-SPY® Debugging Guide
for Arm

3 Underneath the group name, click on <click to add reg> and type the name of a
register, and press Enter. You can also drag a register name from another window in the
IDE. Repeat this for all registers that you want to add to your group.

4 As an optional step, right-click any registers for which you want to change the integer
base, and choose Format from the context menu to select a suitable base.

5 When you are done, your new group is now available in the Registers windows.

If you want to define more application-specific groups, repeat this procedure for each
group you want to define.

Note: If a certain SFR that you need cannot be added to a group, you can register your
own SFRs. For more information, see SFR Setup window, page 191.

MONITORING STACK USAGE

These are the two main use cases for the Stack window:

● Monitoring stack memory usage

● Monitoring the stack memory content.

In both cases, C-SPY retrieves information about the defined stack size and its allocation
from the definition in the linker configuration file of the section holding the stack. If you,
for some reason, have modified the stack initialization in the system startup code,
cstartup, you should also change the section definition in the linker configuration file
accordingly, otherwise the Stack window cannot track the stack usage. For more
information, see the IAR C/C++ Development Guide for Arm.

To monitor stack memory usage:
1 Before you start C-SPY, choose Tools>Options. On the Stack page:

● Select Enable graphical stack display and stack usage tracking. This option also
enables the option Warn when exceeding stack threshold. Specify a suitable
threshold value.

● Note also the option Warn when stack pointer is out of bounds. Any such
warnings are displayed in the Debug Log window.

AFE1_AFE2-1:1

Memory and registers

169

2 Start C-SPY.

When your application is first loaded, and upon each reset, the memory for the stack area
is filled with the dedicated byte value 0xCD before the application starts executing.

3 Choose View>Stack>Stack 1 to open the Stack window.

Note that you can open up to two Stack windows, each showing a different stack—if
several stacks are available—or the same stack with different display settings.

4 Start executing your application.

Whenever execution stops, the stack memory is searched from the end of the stack until
a byte whose value is not 0xCD is found, which is assumed to be how far the stack has
been used. The light gray area of the stack bar represents the unused stack memory area,
whereas the dark gray area of the bar represents the used stack memory.

AFE1_AFE2-1:1

170

Monitoring memory and registers

C-SPY® Debugging Guide
for Arm

For this example, you can see that only 44% of the reserved memory address range was
used, which means that it could be worth considering decreasing the size of memory:

Note: Although this is a reasonably reliable way to track stack usage, there is no
guarantee that a stack overflow is detected. For example, a stack can incorrectly grow
outside its bounds, and even modify memory outside the stack area, without actually
modifying any of the bytes near the end of the stack range. Likewise, your application
might modify memory within the stack area by mistake.

To monitor the stack memory content:
1 Before you start monitoring stack memory, you might want to disable the option

Enable graphical stack display and stack usage tracking to improve performance
during debugging.

2 Start C-SPY.

3 Choose View>Stack>Stack 1 to open the Stack window.

Note that you can access various context menus in the display area from where you can
change display format, etc.

4 Start executing your application.

AFE1_AFE2-1:1

Memory and registers

171

Whenever execution stops, you can monitor the stack memory, for example to see
function parameters that are passed on the stack:

Reference information on memory and registers
Reference information about:

● Memory window, page 172

● Memory Save dialog box, page 176

● Memory Restore dialog box, page 177

● Fill dialog box, page 178

● Symbolic Memory window, page 179

● Stack window, page 182

● Registers window, page 186

● Register User Groups Setup window, page 189

● SFR Setup window, page 191

● Edit SFR dialog box, page 194

● Memory Configuration dialog box for the C-SPY simulator, page 196

● Edit Memory Range dialog box for the C-SPY simulator, page 198

● Memory Configuration dialog box for C-SPY hardware debugger drivers, page 200

● Edit Memory Range dialog box for C-SPY hardware debugger drivers, page 203

AFE1_AFE2-1:1

172

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Memory window
The Memory window is available from the View menu.

This window gives an up-to-date display of a specified area of memory—a memory
zone—and allows you to edit it. You can open several instances of this window, which
is very convenient if you want to keep track of several memory or register zones, or
monitor different parts of the memory.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Memory window.

See also Editing in C-SPY windows, page 60.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

Context menu button
Displays the context menu.

AFE1_AFE2-1:1

Memory and registers

173

Update Now
Updates the content of the Memory window while your application is
executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing.

Live Update
Updates the contents of the Memory window regularly while your application
is executing. This button is only enabled if the C-SPY driver you are using has
access to the target system memory while your application is executing. To set
the update frequency, specify an appropriate frequency in the IDE
Options>Debugger dialog box.

Display area

The display area shows the addresses currently being viewed, the memory contents in
the format you have chosen, and—provided that the display mode is set to 1x Units—
the memory contents in ASCII format. You can edit the contents of the display area, both
in the hexadecimal part and the ASCII part of the area.

Data coverage is displayed with these colors:

Note: Data coverage is not supported by all C-SPY drivers. Data coverage is supported
by the C-SPY simulator for many cores and devices.

Yellow Indicates data that has been read.

Blue Indicates data that has been written

Green Indicates data that has been both read and written.

AFE1_AFE2-1:1

174

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

These commands are available:

Copy
Paste

Standard editing commands.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

1x Units
Displays the memory contents as single bytes.

2x Units
Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

8x Units
Displays the memory contents as 8-byte groups.

Little Endian
Displays the contents in little-endian byte order.

AFE1_AFE2-1:1

Memory and registers

175

Big Endian
Displays the contents in big-endian byte order.

Data Coverage
Choose between:

Enable toggles data coverage on or off.

Show toggles between showing or hiding data coverage.

Clear clears all data coverage information.

These commands are only available if your C-SPY driver supports data
coverage.

Find
Displays a dialog box where you can search for text within the Memory
window—read about the Find dialog box in the IDE Project Management and
Building Guide for Arm.

Replace
Displays a dialog box where you can search for a specified string and replace
each occurrence with another string—read about the Replace dialog box in the
IDE Project Management and Building Guide for Arm.

Memory Fill
Displays a dialog box, where you can fill a specified area with a value, see Fill
dialog box, page 178.

Memory Save
Displays a dialog box, where you can save the contents of a specified memory
area to a file, see Memory Save dialog box, page 176.

Memory Restore
Displays a dialog box, where you can load the contents of a file in Intel-hex or
Motorola s-record format to a specified memory zone, see Memory Restore
dialog box, page 177.

Set Data Breakpoint
Sets breakpoints directly in the Memory window. The breakpoint is not
highlighted—you can see, edit, and remove it in the breakpoint dialog box. The
breakpoints you set in this window will be triggered for both read and write
access. For more information, see Setting a data breakpoint in the Memory
window, page 133.

AFE1_AFE2-1:1

176

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Set Data Log Breakpoint
Sets a breakpoint on the start address of a memory selection directly in the
Memory window. The breakpoint is not highlighted—you can see, edit, and
remove it in the breakpoint dialog box. The breakpoints you set in this window
will be triggered by both read and write accesses—to change this, use the
Breakpoints window. For more information, see Data Log breakpoints, page
127 and Getting started using data logging, page 262.

Memory Save dialog box
The Memory Save dialog box is available by choosing Debug>Memory>Save or from
the context menu in the Memory window.

Use this dialog box to save the contents of a specified memory area to a file.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Zone

Selects a memory zone, see C-SPY memory zones, page 165.

Start address

Specify the start address of the memory range to be saved.

End address

Specify the end address of the memory range to be saved.

File format

Selects the file format to be used, which is Intel-extended by default.

AFE1_AFE2-1:1

Memory and registers

177

Filename

Specify the destination file to be used. A browse button is available.

Save

Saves the selected range of the memory zone to the specified file.

Memory Restore dialog box
The Memory Restore dialog box is available by choosing Debug>Memory>Restore
or from the context menu in the Memory window.

Use this dialog box to load the contents of a file in Intel-extended or Motorola S-record
format to a specified memory zone.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Zone

Selects a memory zone, see C-SPY memory zones, page 165.

Filename

Specify the file to be read. A browse button is available.

Restore

Loads the contents of the specified file to the selected memory zone.

AFE1_AFE2-1:1

178

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Fill dialog box
The Fill dialog box is available from the context menu in the Memory window.

Use this dialog box to fill a specified area of memory with a value.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Start address

Type the start address—in binary, octal, decimal, or hexadecimal notation.

Length

Type the length—in binary, octal, decimal, or hexadecimal notation.

Zone

Selects a memory zone, see C-SPY memory zones, page 165.

Value

Type the 8-bit value to be used for filling each memory location.

Operation

These are the available memory fill operations:

Copy
Value will be copied to the specified memory area.

AND
An AND operation will be performed between Value and the existing contents of
memory before writing the result to memory.

XOR
An XOR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

AFE1_AFE2-1:1

Memory and registers

179

OR
An OR operation will be performed between Value and the existing contents of
memory before writing the result to memory.

Symbolic Memory window
The Symbolic Memory window is available from the View menu during a debug
session.

This window displays how variables with static storage duration, typically variables
with file scope but also static variables in functions and classes, are laid out in memory.
This can be useful for better understanding memory usage or for investigating problems
caused by variables being overwritten, for example buffer overruns. Other areas of use
are spotting alignment holes or for understanding problems caused by buffers being
overwritten.

To view the memory corresponding to a variable, you can select it in the editor window
and drag it to the Symbolic Memory window.

See also Editing in C-SPY windows, page 60.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Toolbar

The toolbar contains:

Go to
The memory location or symbol you want to view.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

AFE1_AFE2-1:1

180

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Previous
Highlights the previous symbol in the display area.

Next
Highlights the next symbol in the display area.

Display area

This area contains these columns:

Location
The memory address.

Data
The memory contents in hexadecimal format. The data is grouped according to
the size of the symbol. This column is editable.

Variable
The variable name—requires that the variable has a fixed memory location.
Local variables are not displayed.

Value
The value of the variable. This column is editable.

Type
The type of the variable.

There are several different ways to navigate within the memory space:

● Text that is dropped in the window is interpreted as symbols

● The scroll bar at the right-side of the window

● The Next and Previous toolbar buttons

● The Go to toolbar list box can be used for locating specific locations or symbols.

Note: Rows are marked in red when the corresponding value has changed.

AFE1_AFE2-1:1

Memory and registers

181

Context menu

This context menu is available:

These commands are available:

Next Symbol
Highlights the next symbol in the display area.

Previous Symbol
Highlights the previous symbol in the display area.

1x Units
Displays the memory contents as single bytes. This applies only to rows that do
not contain a variable.

2x Units
Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

Add to Watch
Adds the selected symbol to the Watch window.

Add to Live Watch
Adds the selected symbol to the Live Watch window.

Default format
Displays the memory contents in the default format.

Binary format
Displays the memory contents in binary format.

AFE1_AFE2-1:1

182

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Octal format
Displays the memory contents in octal format.

Decimal format
Displays the memory contents in decimal format.

Hexadecimal format
Displays the memory contents in hexadecimal format.

Char format
Displays the memory contents in char format.

Stack window
The Stack window is available from the View menu.

This window is a memory window that displays the contents of the stack. The graphical
stack bar shows stack usage.

This window retrieves information about the stack size and placement from the
definition in the linker configuration file of the sections holding the stacks. The sections
are described in the IAR C/C++ Development Guide for Arm. For applications that set
up the stacks using other mechanisms, you can to override the default mechanism. Use
one of the C-SPY command line option variants, see --proc_stack_stack, page 566.

Note: By default, this window uses one physical breakpoint. For more information, see
Breakpoint consumers, page 130.

For information about options specific to the Stack window, see the IDE Project
Management and Building Guide for Arm.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

Memory and registers

183

Toolbar

The toolbar contains:

Stack
Selects which stack to view. This applies to cores with multiple stacks.

The graphical stack bar

Displays the state of the stack graphically.

The left end of the stack bar represents the bottom of the stack, in other words, the
position of the stack pointer when the stack is empty. The right end represents the end
of the memory address range reserved for the stack. The graphical stack bar turns red
when the stack usage exceeds a threshold that you can specify.

To enable the stack bar, choose Tools>Options>Stack>Enable graphical stack
display and stack usage tracking. This means that the functionality needed to detect
and warn about stack overflows is enabled.

Place the mouse pointer over the stack bar to get tooltip information about stack usage.

Display area

This area contains these columns:

Location
Displays the location in memory. The addresses are displayed in increasing
order. The address referenced by the stack pointer, in other words the top of the
stack, is highlighted in a green color.

Data
Displays the contents of the memory unit at the given location. From the Stack
window context menu, you can select how the data should be displayed—as a
1-, 2-, or 4-byte group of data.

Variable
Displays the name of a variable, if there is a local variable at the given location.
Variables are only displayed if they are declared locally in a function, and
located on the stack and not in registers.

Value
Displays the value of the variable.

Type
Displays the data type of the variable.

AFE1_AFE2-1:1

184

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Frame
Displays the name of the function that the call frame corresponds to.

Context menu

This context menu is available:

These commands are available:

Show Variables
Displays separate columns named Variables, Value, and Frame in the Stack
window. Variables located at memory addresses listed in the Stack window are
displayed in these columns.

Show Offsets
Displays locations in the Location column as offsets from the stack pointer.
When deselected, locations are displayed as absolute addresses.

1x Units
Displays the memory contents as single bytes.

2x Units
Displays the memory contents as 2-byte groups.

4x Units
Displays the memory contents as 4-byte groups.

AFE1_AFE2-1:1

Memory and registers

185

Default Format
Binary Format
Octal Format
Decimal Format
Hexadecimal Format
Char Format

Changes the display format of expressions. The display format setting affects
different types of expressions in different ways. Your selection of display format
is saved between debug sessions. These commands are available if a selected
line in the window contains a variable.

The display format setting affects different types of expressions in these ways:

Options
Opens the IDE Options dialog box where you can set options specific to the
Stack window, see the IDE Project Management and Building Guide for Arm.

Variables The display setting affects only the selected variable, not
other variables.

Array elements The display setting affects the complete array, that is, the
same display format is used for each array element.

Structure fields All elements with the same definition—the same field
name and C declaration type—are affected by the
display setting.

AFE1_AFE2-1:1

186

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Registers window
The Registers windows are available from the View menu.

These windows give an up-to-date display of the contents of the processor registers and
special function registers, and allow you to edit the contents of some of the registers.
Optionally, you can choose to load either predefined register groups or your own
user-defined groups.

You can open up to four instances of this window, which is convenient for keeping track
of different register groups.

See also Editing in C-SPY windows, page 60.

To enable predefined register groups:
1 Select a device description file that suits your device, see Selecting a device description

file, page 57. These files contain predefined register groups.

2 Display the registers of a register group by selecting it from the Group drop-down
menu on the toolbar, or by right-clicking in the window and choosing View Group
from the context menu.

For information about creating your own user-defined register groups, see Defining
application-specific register groups, page 167.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

Memory and registers

187

Toolbar

The toolbar contains:

Find
Specify the name, or part of a name, of a register (or group) that you want to
find. Press the Enter key and the first matching register, or group with a
matching register, is displayed. User-defined register groups are not searched.
The search box preserves a history of previous searches. To repeat a search,
select it from the search history and press Enter.

Group
Selects which predefined register group to display. By default, there are two
register groups in the debugger. If some of your SFRs are missing, you can
register your own SFRs in a Custom group, see SFR Setup window, page 191.

Current CPU Registers contains the registers that are available in the current
processor mode.

CPU Registers contains both the current registers and their banked counterparts
available in other processor modes.

Additional register groups are predefined in the device description files—
available in the arm\config directory—that make all SFR registers available
in the Registers windows. The device description file contains a section that
defines the special function registers and their groups.

Display area

Displays registers and their values. Some registers are expandable, which means that the
register contains interesting bits or subgroups of bits.

If you drag a numerical value, a valid expression, or a register name from another part
of the IDE to an editable value cell in a Registers window, the value will be changed to
that of what you dragged. If you drop a register name somewhere else in the window,
the window contents will change to display the first register group where this register is
found.

Name
The name of the register.

Value
The current value of the register. Every time C-SPY stops, a value that has
changed since the last stop is highlighted. Some of the registers are editable. To
edit the contents of an editable register, click on the register and modify its
value. Press Esc to cancel the change.

AFE1_AFE2-1:1

188

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

To change the display format of the value, right-click on the register and choose
Format from the context menu.

Access
The access type of the register. Some of the registers are read-only, while others
are write-only.

For the C-SPY Simulator (and some C-SPY hardware debugger drivers), these
additional support registers are available in the CPU Registers group:

Context menu

This context menu is available:

These commands are available:

View Group
Selects which predefined register group to display.

View User Group
Selects which user-defined register group to display. For information about
creating your own user-defined register groups, see Defining
application-specific register groups, page 167.

CYCLECOUNTER Cleared when an application is started or reset, and is
incremented with the number of used cycles during
execution.

CCSTEP Shows the number of used cycles during the last performed
C/C++ source or assembler step.

CCTIMER1 and
CCTIMER2

Two trip counts that can be cleared manually at any given
time. They are incremented with the number of used cycles
during execution.

AFE1_AFE2-1:1

Memory and registers

189

Format
Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Open User Groups Setup Window
Opens a window where you can create your own user-defined register groups,
see Register User Groups Setup window, page 189.

Save to File
Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

Find Next Register
Finds the predefined register or register group that comes immediately after
what your search found. After the last register was found, this search wraps
around and finds the first register again.

Find Previous Register
Finds the matching predefined register or register group that comes immediately
before what your search found. After the first register was found, this search
wraps around and finds the last register again.

Register User Groups Setup window
The Register User Groups Setup window is available from the View menu or from the
context menu in the Registers windows.

AFE1_AFE2-1:1

190

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Use this window to define your own application-specific register groups. These register
groups can then be viewed in the Registers windows.

Defining application-specific register groups means that the Registers windows can
display just those registers that you need to watch for your current debugging task. This
makes debugging much easier.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Group
The names of register groups and the registers they contain. Clicking on <click
to add group> or <click to add reg> and typing the name of a register
group or register, adds new groups and registers, respectively. You can also drag
a register name from another window in the IDE. Click a name to change it.

A dimmed register name indicates that it is not supported by the selected device.

Format
Shows the display format for the register’s value. To change the display format
of the value, right-click on the register and choose Format from the context
menu. The selected format is used in all Registers windows.

Context menu

This context menu is available:

These commands are available:

Format
Changes the display format for the contents of the register you clicked on. The
display format setting affects different types of registers in different ways. Your
selection of display format is saved between debug sessions.

Remove
Removes the register or group you clicked on.

AFE1_AFE2-1:1

Memory and registers

191

Clear Group
Removes all registers from the group you clicked on.

Remove All Groups
Deletes all user-defined register groups from your project.

Save to File
Opens a standard Save dialog box to save the contents of the window to a
tab-separated text file.

SFR Setup window
The SFR Setup window is available from the Project menu.

This window displays the currently defined SFRs that C-SPY has information about.
You can choose to display only factory-defined or custom-defined SFRs, or both. If
required, you can use the Edit SFR dialog box to customize the SFR definitions, see
Edit SFR dialog box, page 194. For factory-defined SFRs (that is, retrieved from the ddf
file in use), you can only customize the access type.

To quickly find an SFR, drag a text or hexadecimal number string and drop in this
window. If what you drop starts with a 0 (zero), the Address column is searched,
otherwise the Name column is searched.

Any custom-defined SFRs are added to a dedicated register group called Custom, which
you can choose to display in the Registers window. Your custom-defined SFRs are
saved in projectCustomSFR.sfr. This file is automatically loaded in the IDE when
you start C-SPY with a project whose name matches the prefix of the filename of the
sfr file.

You can only add or modify SFRs when the C-SPY debugger is not running.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

192

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Display area

This area contains these columns:

Status
A character that signals the status of the SFR, which can be one of:

blank, a factory-defined SFR.

C, a factory-defined SFR that has been modified.

+, a custom-defined SFR.

?, an SFR that is ignored for some reason. An SFR can be ignored when a
factory-defined SFR has been modified, but the SFR is no longer available, or it
is located somewhere else or with a different size. Typically, this might happen
if you change to another device.

Name
A unique name of the SFR.

Address
The memory address of the SFR.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

Size
The size of the register, which can be any of 8, 16, 32, or 64.

Access
The access type of the register, which can be one of Read/Write, Read only,
Write only, or None.

You can click a name or an address to change the value. The hexadecimal 0x prefix for
the address can be omitted, the value you enter will still be interpreted as hexadecimal.
For example, if you enter 4567, you will get 0x4567.

You can click a column header to sort the SFRs according to the column property.

Color coding used in the display area:

● Green, which indicates that the corresponding value has changed

● Red, which indicates an ignored SFR.

AFE1_AFE2-1:1

Memory and registers

193

Context menu

This context menu is available:

These commands are available:

Show All
Shows all SFR.

Show Custom SFRs only
Shows all custom-defined SFRs.

Show Factory SFRs only
Shows all factory-defined SFRs retrieved from the ddf file.

Add
Displays the Edit SFR dialog box where you can add a new SFR, see Edit SFR
dialog box, page 194.

Edit
Displays the Edit SFR dialog box where you can edit an SFR, see Edit SFR
dialog box, page 194.

Delete
Deletes an SFR. This command only works on custom-defined SFRs.

Delete/Revert All Custom SFRs
Deletes all custom-defined SFRs and reverts all modified factory-defined SFRs
to their factory settings.

AFE1_AFE2-1:1

194

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Save Custom SFRs
Opens a standard Save dialog box to save all custom-defined SFRs.

8|16|32|64 bits
Selects display format for the selected SFR, which can be 8, 16, 32, or 64 bits.
Note that the display format can only be changed for custom-defined SFRs.

Read/Write|Read only|Write only|None
Selects the access type of the selected SFR, which can be Read/Write, Read
only, Write only, or None. Note that for factory-defined SFRs, the default
access type is indicated.

Edit SFR dialog box
The Edit SFR dialog box is available from the context menu in the SFR Setup window.

Definitions of the SFRs are retrieved from the device description file in use. Use this
dialog box to either modify these factory-defined definitions or define new SFRs. See
also SFR Setup window, page 191.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Name

Specify the name of the SFR that you want to add or edit.

AFE1_AFE2-1:1

Memory and registers

195

Address

Specify the address of the SFR that you want to add or edit. The hexadecimal 0x prefix
for the address can be omitted, the value you enter will still be interpreted as
hexadecimal. For example, if you enter 4567, you will get 0x4567.

Zone

Selects the memory zone for the SFR you want to add or edit. The list of zones is
retrieved from the ddf file that is currently used.

Size

Selects the size of the SFR. Choose between 8, 16, 32, or 64 bits. Note that the display
format can only be changed for custom-defined SFRs.

Access

Selects the access type of the SFR. Choose between Read/Write, Read only, Write
only, or None. Note that for factory-defined SFRs, the default access type is indicated.

AFE1_AFE2-1:1

196

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Memory Configuration dialog box for the C-SPY simulator
The Memory Configuration dialog box is available from the C-SPY driver menu.

Use this dialog box to specify which set of memory address ranges to be used by C-SPY
during debugging.

See also Memory configuration for the C-SPY simulator, page 165.

Requirements

The C-SPY simulator.

Use ranges based on

Specify if the memory configuration should be retrieved from a predefined
configuration. Choose between:

Device description file
Retrieves the memory configuration from the device description file that you
have specified. See Selecting a device description file, page 57.

This option is used by default.

AFE1_AFE2-1:1

Memory and registers

197

Debug file segment information
Retrieves the memory configuration from the debug file, which has retrieved it
from the linker configuration file. This information is only available during a
debug session. The advantage of using this option is that the simulator can catch
memory accesses outside the linked application.

Memory information is displayed in these columns:

Zone
The memory zone, see C-SPY memory zones, page 165.

Name
The name of the memory address range.

Start
The start address for the memory address range, in hexadecimal notation.

End
The end address for the memory address range, in hexadecimal notation.

Type
The access type of the memory address range.

Size
The size of the memory address range.

Use manual ranges

Specify your own ranges manually via the Edit Memory Range dialog box. To open
this dialog box, click New to specify a new memory address range, or select an existing
memory address range and click Edit to modify it. For more information, see Edit
Memory Range dialog box for the C-SPY simulator, page 198.

The ranges you define manually are saved between debug sessions.

An X in the column Ignored means that C-SPY has detected that the specified manual
range is illegal, for example because it overlaps another range. C-SPY will not use such
an area.

Memory access checking

Check for determines what to check for:

● Access type violation.

Action selects the action to be performed if an access violation occurs. Choose between:

● Log violations
● Log and stop execution.

AFE1_AFE2-1:1

198

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Any violations are logged in the Debug Log window.

Buttons

These buttons are available for the manual ranges:

New
Opens the Edit Memory Range dialog box, where you can specify a new
memory address range and associate an access type with it, see Edit Memory
Range dialog box for the C-SPY simulator, page 198.

Edit
Opens the Edit Memory Range dialog box, where you can edit the selected
memory address range. See Edit Memory Range dialog box for the C-SPY
simulator, page 198.

Delete
Deletes the selected memory address range definition.

Delete All
Deletes all defined memory address range definitions.

Edit Memory Range dialog box for the C-SPY simulator
The Edit Memory Range dialog box is available from the Memory Configuration
dialog box.

Use this dialog box to specify your own memory address ranges, and their access types.

See also Memory Configuration dialog box for the C-SPY simulator, page 196

AFE1_AFE2-1:1

Memory and registers

199

Requirements

The C-SPY simulator.

Memory range

Defines the memory address range specific to your device:

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

Start address
Specify the start address for the memory address range, in hexadecimal
notation.

End address
Specify the end address for the memory address range, in hexadecimal notation.

Access type

Selects an access type for the memory address range. Choose between:

● RAM, for read/write memory

● ROM/Flash, for read-only memory

● SFR, for SFR read/write memory.

AFE1_AFE2-1:1

200

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Memory Configuration dialog box for C-SPY hardware debugger drivers
The Memory Configuration dialog box is available from the C-SPY driver menu.

C-SPY uses a default memory configuration based on information retrieved from the
device description file that you select, or if memory configuration is missing in the
device description file, tries to provide a usable factory default. See Selecting a device
description file, page 57.

Use this dialog box to verify, and if needed, modify the memory areas so that they match
the memory available on your device. Providing C-SPY with information about the

AFE1_AFE2-1:1

Memory and registers

201

memory layout of the target system is helpful both in terms of performance and
functionality:

● Reading (and writing) memory (if your debug probe is connected through a USB
port) can be fast, but is usually the limiting factor when C-SPY needs to update
many debugger windows. Caching memory can speed up the performance, but then
C-SPY needs information about the target memory.

● If C-SPY has been informed that the content of certain memory areas will be
changed during a debug session, C-SPY can keep a copy of that memory readable
even when the target does not normally allow reading (such as when executing).

● C-SPY can prevent accesses to areas without any memory at all, which can be
important for certain hardware.

The Memory Configuration dialog box is automatically displayed the first time you
start the C-SPY driver for a given project, unless the device description file contains a
memory description which is already specified as correct and complete. Subsequent
starts will not display the dialog box unless you have made project changes that might
cause the memory configuration to change, for example, if you have selected another
device description file.

You can only change the memory configuration when C-SPY is not running.

See also Memory configuration for C-SPY hardware debugger drivers, page 166.

Requirements

One of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY CMSIS-DAP driver

● The C-SPY GDB Server driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI Stellaris driver

● The C-SPY TI XDS driver

Factory ranges

Identifies which device description file that is currently selected and lists the default
memory address ranges retrieved from the file in these columns:

Zone
The memory zone, see C-SPY memory zones, page 165.

AFE1_AFE2-1:1

202

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Name
The name of the memory address range.

Start
The start address for the memory address range, in hexadecimal notation.

End
The end address for the memory address range, in hexadecimal notation.

Type
The access type of the memory address range.

Size
The size of the memory address range.

Used ranges

These columns list the memory address ranges that will be used by C-SPY. The columns
are normally identical to the factory ranges, unless you have added, removed, or
modified ranges.

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

Start
The start address for the memory address range, in hexadecimal notation.

End
The end address for the memory address range, in hexadecimal notation.

Cache Type
The cache type of the memory address range.

Size
The size of the memory address range.

Comment
Memory area information.

Use the buttons to override the default memory address ranges that are retrieved from
the device description file.

Graphical bar

A graphical bar that visualizes the entire theoretical memory address range for the
device. Defined ranges are highlighted in green.

AFE1_AFE2-1:1

Memory and registers

203

Buttons

These buttons are available for manual ranges:

New
Opens the Edit Memory Range dialog box, where you can specify a new
memory address range and associate a cache type with it, see Edit Memory
Range dialog box for C-SPY hardware debugger drivers, page 203.

Edit
Opens the Edit Memory Range dialog box, where you can edit the selected
memory address area. See Edit Memory Range dialog box for C-SPY hardware
debugger drivers, page 203.

Remove
Removes the selected memory address range definition.

Use Factory
Restores the list of used ranges to the factory ranges.

Edit Memory Range dialog box for C-SPY hardware debugger drivers
The Edit Memory Range dialog box is available from the Memory Configuration
dialog box.

Use this dialog box to specify the memory address ranges, and assign a cache type to
each range.

See also Memory configuration for C-SPY hardware debugger drivers, page 166.

AFE1_AFE2-1:1

204

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

Requirements

One of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY CMSIS-DAP driver

● The C-SPY GDB Server driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI Stellaris driver

● The C-SPY TI XDS driver

Memory range

Defines the memory address range specific to your device:

Zone
Selects a memory zone, see C-SPY memory zones, page 165.

Start address
Specify the start address for the memory address range, in hexadecimal
notation.

End address
Specify the end address for the memory address range, in hexadecimal notation.

Cache type

Selects a cache type to the memory address range. Choose between:

RAM
When the target CPU is not executing, all read accesses from memory are loaded
into the cache. For example, if two Memory windows show the same part of
memory, the actual memory is only read once from the hardware to update both
windows. If you modify memory from a C-SPY window, your data is written to
cache only. Before any target execution, even stepping a single machine
instruction, the RAM cache is flushed so that all modified bytes are written to
the memory on your hardware.

AFE1_AFE2-1:1

Memory and registers

205

ROM/Flash
This memory is assumed not to change during a debug session. Any code within
such a range that is downloaded when you start a debug session (or technically,
any such code that is part of the application being debugged) is stored in the
cache and remains there. Other parts of such ranges are loaded into the cache
from memory on demand, but are then kept during the debug session. Note that
C-SPY will not allow you to modify such memory from C-SPY windows.

Even though flash memory is normally used as a fixed read-only memory, there
are applications that modify parts of flash memory at runtime. For example,
some part of flash memory might be used for a file system or simply to store
non-volatile information. To reflect this in C-SPY, you should choose the RAM
cache type for those instead. Then C-SPY will assume that those parts can
change at any time during execution.

SFR/Uncached
A range of this type is completely uncached. All read or write commands from
a C-SPY window will access the hardware immediately. Typically, this type is
useful for special function registers, which can have all sorts of unusual
behavior, such as having different values at every read access. This can in turn
have side-effects on other registers when they are written, not containing the
same value as was previously written, etc.

If you do not have the appropriate information about your device, you can specify an
entire memory as SFR/Uncached. This is not incorrect, but might make C-SPY slower
when updating windows. In fact, this caching type is sometimes used by the default
when there is no memory address range information available.

If required, you can disable caching—choose C-SPY driver>Disable Debugger Cache.

Extra attributes

Provides extra attributes.

Access width [8,16,32,64]
Forces C-SPY to use 8, 16, 32, or 64-bit width when accessing memory in this
range. Specify 8, 16, 32, or 64 in the text box.

This option might not be available in the C-SPY driver you are using.

AFE1_AFE2-1:1

206

Reference information on memory and registers

C-SPY® Debugging Guide
for Arm

207

Part 2. Analyzing your
application
This part of the C-SPY® Debugging Guide for Arm includes these chapters:

● Trace

● The application timeline

● Profiling

● Code coverage

● Performance monitoring

● Power debugging

● C-RUN runtime error checking

208

AFE1_AFE2-1:1

209

Trace
● Introduction to using trace

● Collecting and using trace data

● Reference information on trace

Introduction to using trace
These topics are covered:

● Reasons for using trace

● Briefly about trace

● Requirements for using trace

See also:

● Getting started using data logging, page 262

● Getting started using event logging, page 264

● Power debugging, page 321

● Getting started using interrupt logging, page 409

● Profiling, page 293

REASONS FOR USING TRACE

By using trace, you can inspect the program flow up to a specific state, for instance an
application crash, and use the trace data to locate the origin of the problem. Trace data
can be useful for locating programming errors that have irregular symptoms and occur
sporadically.

Reasons for using the trace triggers and filters

By using trace trigger and filter conditions, you can select the interesting parts of your
source code and use the trace buffer in the trace probe more efficiently. Trace triggers—
Trace Start Trigger and Trace Stop Trigger breakpoints—specify for example a code
section for which you want to collect trace data. A trace filter specifies conditions that,
when fulfilled, activate the trace data collection during execution.

AFE1_AFE2-1:1

210

Introduction to using trace

C-SPY® Debugging Guide
for Arm

BRIEFLY ABOUT TRACE

Your target system must be able to generate trace data. Once generated, C-SPY can
collect it and you can visualize and analyze the data in various windows and dialog
boxes.

C-SPY supports collecting trace data from these target systems:

● Devices with support for ETM (Embedded Trace Macrocell)—ETM trace

● Devices with support for the SWD (Serial Wire Debug) interface using the SWO
(Serial Wire Output) communication channel—SWO trace

● For some cores and devices, the C-SPY simulator

Depending on your target system, different types of trace data can be generated.

ETM trace

ETM (Embedded Trace Macrocell) real-time trace is a continuously collected sequence
of every executed instruction for a selected portion of the execution. It is only possible
to collect as much data as the trace buffer can hold. The trace buffer can be located either
in the debug probe or on-chip (ETB or ETR). The trace buffer collects trace data in real
time, but the data is not displayed in the C-SPY windows until after the execution has
stopped.

PTM trace

PTM (Program Trace Macrocell) is an alternative implementation of the trace logic used
in some Arm Cortex cores. The functionality is the same as ETM trace.

Throughout this document, the term ETM also applies to PTM unless otherwise stated.

ETB trace

ETB (Embedded Trace Buffer) trace is an on-chip trace buffer. For ETB trace, the trace
buffer has a designated memory area with a predefined size.

ETR trace

ETR (Embedded Trace Router) trace is a trace variant that uses an on-chip trace buffer.
For ETR trace, the trace buffer shares the RAM memory with your application code and
is configured in the project options.

MTB trace

MTB trace (Micro Trace Buffer) is a simplified trace variant that uses an on-chip trace
buffer. For MTB trace, the trace buffer shares the RAM memory with your application
code.

AFE1_AFE2-1:1

Trace

211

MTB trace gives access to instruction trace on some devices based on the Cortex-M0+
and M23 cores.

SWO trace

SWO trace is a sequence of events of various kinds, generated by the on-chip debug
hardware. The events are transmitted in real time from the target system over the SWO
communication channel. This means that the C-SPY windows are continuously updated
while the target system is executing. The most important events are:

● PC sampling
The hardware can sample and transmit the value of the program counter at regular
intervals. This is not a continuous sequence of executed instructions (like ETM
trace), but a sparse regular sampling of the PC. A modern Arm CPU typically
executes millions of instructions per second, while the PC sampling rate is usually
counted in thousands per second.

● Interrupt logs
The hardware can generate and transmit data related to the execution of interrupts,
generating events when entering and leaving an interrupt handler routine.

● Data logs
Using Data Log breakpoints, the hardware can be configured to generate and
transmit events whenever a certain variable, or simply an address range, is accessed
by the CPU.

The SWO channel has limited throughput, so it is usually not possible to use all the
above features at the same time, at least not if either the frequency of PC sampling, of
interrupts, or of accesses to the designated variables is high.

If you use the SWO communication channel on a trace probe, the data will be collected
in the trace buffer and displayed after the execution has stopped.

Trace features in C-SPY

In C-SPY, you can use the trace-related windows—Trace, Function Trace, Timeline,
and Find in Trace. Depending on your C-SPY driver, you can set various types of trace
breakpoints and triggers to control the collection of trace data.

If you use the C-SPY I-jet driver, the C-SPY J-Link/J-Trace driver, the C-SPY ST-LINK
driver, or the C-SPY TI XDS driver, you have access to windows such as the Interrupt
Log, Interrupt Log Summary, Data Log, and Data Log Summary windows.

When you are debugging, two buttons labeled ETM and SWO, respectively, are visible
on the IDE main window toolbar. If either of these buttons are green, it means that the
corresponding trace hardware is generating trace data. For detailed tooltip information
about which C-SPY features have requested trace data generation, simply point at the

AFE1_AFE2-1:1

212

Introduction to using trace

C-SPY® Debugging Guide
for Arm

button with the mouse pointer. This is useful, for example, if your SWO communication
channel often overflows because too many of the C-SPY features are currently using
trace data. Clicking on the buttons opens the corresponding setup dialog boxes.

In addition, several other features in C-SPY also use trace data, features such as the
Profiler, Code coverage, and Instruction profiling.

REQUIREMENTS FOR USING TRACE

The C-SPY simulator supports trace-related functionality for some cores and devices. If
supported, there are no further specific requirements.

Note: The specific set of debug components you are using (hardware, a debug probe,
and a C-SPY driver) determine which trace features in C-SPY that are supported.

Requirements for using ETM trace

ETM trace is available for some Arm devices.

To use ETMv3 trace, or earlier, you need one of these combinations:

● An I-jet Trace in-circuit debugging probe and a device that supports ETM via a
physical trace port. Make sure to use the C-SPY I-jet driver.

● An I-jet or I-jet Trace in-circuit debugging probe and a device that supports ETM
via ETB or ETR. The debug probe reads ETM data from the ETB or ETR buffer.
Make sure to use the C-SPY I-jet driver.

● A J-Link or J-Trace debug probe and a device that supports ETM via ETB or ETR.
The debug probe reads ETM data from the ETB or ETR buffer. Make sure to use the
C-SPY J-Link/J-Trace driver.

● A J-Trace debug probe and a device that supports ETM via a physical trace port.
Make sure to use the C-SPY J-Link/J-Trace driver.

To use ETMv4 trace, you need one of these combinations:

● An I-jet Trace in-circuit debugging probe and a device that supports ETM via a
physical trace port. Make sure to use the C-SPY I-jet driver.

● An I-jet or I-jet Trace in-circuit debugging probe and a device that supports ETM
via ETB or ETR. The debug probe reads ETM data from the ETB or ETR buffer.
Make sure to use the C-SPY I-jet driver.

For more information, see the IAR Debug probes User Guide for I-jet, I-jet Trace, and
I-scope, and the IAR J-Link and IAR-J-Trace User Guide, respectively.

Note: For ETB and ETR, the device support must implement specific trace support for
either ETB or ETR. Specific setup sequences might also be needed in the corresponding
device support macro files (.dmac).

AFE1_AFE2-1:1

Trace

213

Requirements for using MTB (Micro Trace Buffer) trace

To use MTB trace, you need an M0+ or M23 device with MTB, and one of these
alternatives:

● An I-jet in-circuit debugging probe

● The C-SPY CMSIS-DAP driver and a device that supports CMSIS-DAP

● A J-Link debug probe

Requirements for using SWO trace

To use SWO trace you need an I-jet or I-jet Trace in-circuit debugging probe, a J-Link,
J-Trace, an ST-LINK, or a TI XDS debug probe that supports the SWO communication
channel and a device that supports the SWD/SWO interface.

Requirements for using the trace triggers and trace filters

The trace triggering and trace filtering features are available for ETM, ETB, ETR, and
PTM trace, but not for SWO or MTB trace.

Different processors, cores, and debug probes might limit the number of available trace
triggers and filters.

Collecting and using trace data
These tasks are covered:

● Getting started with ETM trace

● Getting started with SWO trace

● Getting started with MTB trace

● Setting up concurrent use of ETM and SWO

● Trace data collection using breakpoints

● Searching in trace data

● Browsing through trace data

AFE1_AFE2-1:1

214

Collecting and using trace data

C-SPY® Debugging Guide
for Arm

GETTING STARTED WITH ETM TRACE

1 Before you start C-SPY, you must set up the trace port for your device. For some
devices this is done automatically when the trace logic is enabled. However, for some
devices, typically Atmel and ST devices based on Arm 7 or Arm 9, you need to set up
the trace port explicitly. You do this by means of a C-SPY macro file. You can find
examples of such files (ETM_init*.mac) in the example projects. To use a macro file,
choose Project>Options>Debugger>Setup>Use macro files. Specify your macro
file—a browse button is available.

Note that the pins used on the hardware for the trace signals cannot be used by your
application.

2 If your device uses ETR, specify the ETR trace buffer memory layout on the
Project>Options>Debugger>Extra options tab. The available parameters are:

● --macro_param etrram

The start of the RAM area for trace storage, for example, 0x040A0000. If not
specified, ETB trace will be used instead of ETR trace.

● --macro_param etrsize

The size of the RAM area for trace storage, for example, 0x60000.

● --macro_param etrport

The access port used to access the ETR RAM, for example, 1. If not specified and if
ETR is enabled, the port that is used to access the core will be used.

3 Start C-SPY and choose ETM Trace Settings from the C-SPY driver menu. In the
ETM Trace Settings dialog box that appears, check if you need to change any of the
default settings.

4 Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

5 Click the Edit Settings button to open the ETM Trace Settings dialog box. Make sure
that the ETM registers and pins were properly initialized and that the debug probe
receives the Trace Clock (TCLK). The dialog box displays the trace clock frequency
which is received by the debug probe. Click Cancel to close the dialog box.

6 Start the execution. When the execution stops, for instance because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information, see Trace
window, page 229.

GETTING STARTED WITH SWO TRACE

1 Before you start C-SPY, choose Project>Options>C-SPY driver.

Click the Setup tab or the Connection tab, respectively, and choose Interface>SWD.

AFE1_AFE2-1:1

Trace

215

2 After you have started C-SPY, choose SWO Trace Windows Settings from the C-SPY
driver menu. In the dialog box that appears, make your settings for controlling the
output in the Trace window.

To see statistical trace data, select the option Force>PC samples, see SWO Trace
Window Settings dialog box, page 223.

3 To configure the hardware’s generation of trace data, click the SWO Configuration
button available in the SWO Configuration dialog box. For more information, see
SWO Configuration dialog box, page 225.

Note specifically these settings:

● The value of the CPU clock option must reflect the frequency of the CPU clock
speed at which the application executes. Note also that the settings you make are
preserved between debug sessions.

● To decrease the amount of transmissions on the communication channel, you can
disable the Timestamp option. Alternatively, set a lower rate for PC Sampling or
use a higher SWO clock frequency.

4 Open the SWO Trace window—available from the C-SPY driver menu—and click the
Activate button to enable trace data collection.

5 Start the execution. The Trace window is continuously updated with trace data. For
more information about the window, see Trace window, page 229.

GETTING STARTED WITH MTB TRACE

1 Before you start C-SPY, use one of these alternatives to configure the MTB trace
buffer:

● Define an array in RAM called __mtb_trace_buffer in your application, which
the debugger will use as the trace buffer.

● Define the two symbols MTB_TRACE_BUFFER$$Base and
MTB_TRACE_BUFFER$$Limit in the linker configuration file (.icf). The debugger
will use this information as the address and the size of the trace buffer.

● Let the debugger automatically find some unused RAM space and use that as the
trace buffer.

2 Start C-SPY.

3 Open the Trace window—available from the driver-specific menu—and click the
Activate button to enable collecting trace data.

4 Start the execution. When the execution stops, for instance because a breakpoint is
triggered, trace data is displayed in the Trace window. For more information, see Trace
window, page 229.

AFE1_AFE2-1:1

216

Collecting and using trace data

C-SPY® Debugging Guide
for Arm

SETTING UP CONCURRENT USE OF ETM AND SWO

If you have a J-Trace debug probe for Cortex-M3, you can use ETM trace and SWO
trace concurrently.

In this case, if you activate the ETM trace and the SWO trace, SWO trace data will also
be collected in the ETM trace buffer, instead of being streamed via the SWO channel.
This means that the SWO trace data will not be displayed until the execution has
stopped, instead of being continuously updated live in the SWO Trace window.

TRACE DATA COLLECTION USING BREAKPOINTS

A convenient way to collect trace data between two execution points is to start and stop
the data collection using dedicated breakpoints.

Choose between these alternatives:

● In the editor or Disassembly window, position your insertion point, right-click, and
toggle a Trace Start Trigger or Trace Stop Trigger breakpoint from the context
menu.

● In the Breakpoints window, choose New Breakpoint>Trace Start Trigger, Trace
Stop Trigger, or Trace Filter from the context menu.

● The C-SPY system macros __setTraceStartBreak and
__setTraceStopBreak can also be used.

For more information about these breakpoints, see Trace Start Trigger breakpoint dialog
box, page 239 and Trace Stop Trigger breakpoint dialog box, page 240, respectively.

Using the trace triggers and trace filters:
1 Use the Trace Start Trigger dialog box to set a start condition—a start trigger—to

start collecting trace data.

2 Use the Trace Stop Trigger dialog box to set a stop condition—a stop trigger—to stop
collecting trace data.

3 Optionally, set additional conditions for the trace data collection to continue. Then set
one or more trace filters, using the Trace Filter dialog box.

4 If needed, set additional trace start or trace stop conditions.

5 Enable the Trace window and start the execution.

6 Stop the execution.

7 You can view the trace data in the Trace window, and also in browse mode in the
Disassembly window, where the trace marks for your trace triggers and trace filters are
also visible.

AFE1_AFE2-1:1

Trace

217

8 If you have set a trace filter, the trace data collection is performed while the condition
is true plus some further instructions. When viewing the trace data and looking for a
certain data access, remember that the access took place one instruction earlier.

SEARCHING IN TRACE DATA

When you have collected trace data, you can perform searches in the collected data to
locate the parts of your code or data that you are interested in, for example, a specific
interrupt or accesses of a specific variable.

You specify the search criteria in the Find in Trace dialog box and view the result in the
Find in Trace window.

Note: The Find in Trace dialog box depends on the C-SPY driver you are using.

The Find in Trace window is very similar to the Trace window, showing the same
columns and data, but only those rows that match the specified search criteria.
Double-clicking an item in the Find in Trace window brings up the same item in the
Trace window.

To search in your trace data:
1 On the Trace window toolbar, click the Find button.

2 In the Find in Trace dialog box, specify your search criteria.

Typically, you can choose to search for:

● A specific piece of text, for which you can apply further search criteria

● An address range

● A combination of these, like a specific piece of text within a specific address range.

For more information about the various options, see Find in Trace dialog box, page 253.

3 When you have specified your search criteria, click Find. The Find in Trace window
is displayed, which means you can start analyzing the trace data. For more information,
see Find in Trace window, page 255.

BROWSING THROUGH TRACE DATA

To follow the execution history, simply look and scroll in the Trace window.
Alternatively, you can enter browse mode.

To enter browse mode, double-click an item in the Trace window, or click the Browse
toolbar button.

The selected item turns yellow and the source and Disassembly windows will highlight
the corresponding location. You can now move around in the trace data using the up and
down arrow keys, or by scrolling and clicking—the source and Disassembly windows

AFE1_AFE2-1:1

218

Reference information on trace

C-SPY® Debugging Guide
for Arm

will be updated to show the corresponding location. This is like stepping backward and
forward through the execution history.

Double-click again to leave browse mode.

Reference information on trace
Reference information about:

● ETM Trace Settings dialog box (I-jet), page 219

● ETM Trace Settings dialog box (J-Link/J-Trace), page 221

● SWO Trace Window Settings dialog box, page 223

● SWO Configuration dialog box, page 225

● Trace window, page 229

● Function Trace window, page 238

● Trace Start Trigger breakpoint dialog box, page 239

● Trace Stop Trigger breakpoint dialog box, page 240

● Trace Start breakpoints dialog box (I-jet and CMSIS-DAP), page 241

● Trace Stop breakpoints dialog box (I-jet and CMSIS-DAP), page 243

● Trace Filter breakpoints dialog box (I-jet), page 245

● Trace Start breakpoints dialog box (J-Link/J-Trace), page 246

● Trace Stop breakpoints dialog box (J-Link/J-Trace), page 249

● Trace Filter breakpoints dialog box (J-Link/J-Trace), page 251

● Find in Trace dialog box, page 253

● Find in Trace window, page 255

● Trace Save dialog box, page 256

AFE1_AFE2-1:1

Trace

219

ETM Trace Settings dialog box (I-jet)
The ETM Trace Settings dialog box is available from the C-SPY driver menu.

Use this dialog box to configure ETM trace generation and collection.

See also:

● Requirements for using ETM trace, page 212

● Getting started with ETM trace, page 214

Requirements

One of these alternatives:

● The C-SPY I-jet driver

● The C-SPY CMSIS-DAP driver

Port width

Specifies the trace bus width, which can be set to 1, 2, 4, 8, or 16-bits. The value must
correspond with what is supported by the hardware and the debug probe.

For the lower values, the risk of FIFO buffer overflow increases, unless you are using
the Stall processor on FIFO full option.

Port mode

Specifies the used trace clock rate:

● Normal, full-rate clocking

● Normal, half-rate clocking

AFE1_AFE2-1:1

220

Reference information on trace

C-SPY® Debugging Guide
for Arm

Data Trace

Selects what type of trace data you want C-SPY to collect. Data trace is only available
for Arm7/Arm9/Arm11-based devices with ETM data trace. Choose between:

Collect data values
Collects data values.

Collect data addresses
Collects data addresses.

Limit data tracing to address range
Collects the specified type of data within the address range you specify in the
First and Last text boxes.

Capture

Normally, trace collection starts or stops when execution starts or stops, or when a Trace
Start or Trace Stop breakpoint is triggered. To change this, choose between:

Stop on buffer full
Stops collecting trace data when the probe buffer is full.

Stall processor on FIFO full
Stalls the processor in case the FIFO buffer fills up. The trace FIFO buffer on
the CPU might in some situations become full—FIFO buffer overflow—which
means trace data will be lost. This can be the case when the CPU is executing
several branch instructions close to each other in time, such as in tight loops.

Suppress PC capture
Disables PC trace. Depending on your hardware, data trace might still be
available.

Status

Shows the ETM status.

Trace clock frequency
Shows the frequency of the trace clock to help you determine if the trace
hardware is properly configured. Typically, this depends on the settings of Port
Width and Port Mode.

Apply settings
Applies the settings you made in this dialog box. The trace clock frequency will
be updated.

AFE1_AFE2-1:1

Trace

221

ETM Trace Settings dialog box (J-Link/J-Trace)
The ETM Trace Settings dialog box is available from the C-SPY driver menu.

Use this dialog box to configure ETM trace generation and collection.

See also:

● Requirements for using ETM trace, page 212

● Getting started with ETM trace, page 214

Requirements

The C-SPY J-Link/J-Trace driver.

Trace port width

Specifies the trace bus width, which can be set to 1, 2, 4, 8, or 16 bits. The value must
correspond with what is supported by the hardware and the debug probe. For
Cortex-M3, 1, 2, and 4 bits are supported by the J-Trace debug probe. For Arm7/9, only
4 bits are supported by the J-Trace debug probe.

For the lower values, the risk of FIFO buffer overflow increases, unless you are using
the Stall processor on FIFO full option.

Trace port mode

Specifies the used trace clock rate:

● Normal, full-rate clocking

● Normal, half-rate clocking

● Multiplexed

● Demultiplexed

● Demultiplexed, half-rate clocking

AFE1_AFE2-1:1

222

Reference information on trace

C-SPY® Debugging Guide
for Arm

Note: For the J-Trace driver, the available alternatives depend on the device you are
using.

Trace buffer size

Specify the size of the trace buffer. By default, the number of trace frames is 0xFFFF.
For Arm7/9 the maximum number is 0xFFFFF, and for Cortex-M3 the maximum
number is 0x3FFFFF.

For ARM7/9, one trace frame corresponds to 2 bytes of the physical J-Trace buffer size.
For Cortex-M3, one trace frame corresponds to approximately 1 byte of the buffer size.

Note: The Trace buffer size option is only available for the J-Trace driver.

Cycle accurate tracing

Emits trace frames synchronous to the processor clock even when no trace data is
available. This makes it possible to use the trace data for real-time timing calculations.
However, if you select this option, the risk for FIFO buffer overflow increases.

Note: This option is only available for Arm7/9 devices.

Broadcast all branches

Makes the processor send more detailed address trace information. However, if you
select this option, the risk for FIFO buffer overflow increases.

Note: This option is only available for Arm7/9 devices. For Cortex, this option is always
enabled.

Stall processor on FIFO full

Stalls the processor in case the FIFO buffer fills up. The trace FIFO buffer on the CPU
might in some situations become full—FIFO buffer overflow—which means trace data
will be lost. This can be the case when the CPU is executing several branch instructions
close to each other in time, such as in tight loops.

Show timestamp

Makes the Trace window display seconds instead of cycles in the Index column. To
make this possible, you must also specify the appropriate speed for your CPU in the
Trace port (CPU core) speed text box.

Note: This option is only available when you use the J-Trace driver with Arm7/9
devices.

AFE1_AFE2-1:1

Trace

223

SWO Trace Window Settings dialog box
The SWO Trace Window Settings dialog box is available from the C-SPY driver
menu, alternatively from the SWO Trace window toolbar.

Use this dialog box to specify what to display in the SWO Trace window.

Note that you also need to configure the generation of trace data, click SWO
Configuration. For more information, see SWO Configuration dialog box, page 225.

Requirements

One of these alternatives:

● The C-SPY I-jet driver and an I-jet or I-jet Trace in-circuit debugging probe

● The C-SPY J-Link/J-Trace driver and a J-Link/J-Trace JTAG/SWD probe

● The C-SPY ST-LINK driver and an ST-LINK JTAG/SWD probe

● The C-SPY TI XDS driver and a TI XDS probe

Force

Enables data generation, if it is not already enabled by other features using SWO trace
data. The Trace window displays all generated SWO data. Other features in C-SPY, for
example Profiling, can also enable SWO trace data generation. If no other feature has
enabled the generation, use the Force options to generate SWO trace data.

The generated data will be displayed in the Trace window. Choose between:

Time Stamps
Enables timestamps for various SWO trace packets, that is sent over the SWO
communication channel. Use the resolution drop-down list to choose the
resolution of the timestamp value. For example, 1 to count every cycle, or 16 to
count every 16th cycle. Note that the lowest resolution is only useful if the time
between each event packet is long enough. 16 is useful if using a low SWO clock
frequency.

This option does not apply to I-jet.

AFE1_AFE2-1:1

224

Reference information on trace

C-SPY® Debugging Guide
for Arm

PC samples
Enables sampling the program counter register, PC, at regular intervals. To
choose the sampling rate, see SWO Configuration dialog box, page 225,
specifically the option PC Sampling.

Interrupt Logs
Forces the generation of interrupt logs to the SWO Trace window. For
information about other C-SPY features that also use trace data for interrupts,
see Interrupts, page 401.

ITM Log
Forces the generation of ITM logs to the SWO Trace window.

This option only applies to I-jet.

Generate

Enables trace data generation for these events. The generated data will be displayed in
the Trace window. The value of the counters are displayed in the Comment column in
the SWO Trace window. Choose between:

CPI
Enables generation of trace data for the CPI counter.

EXC
Enables generation of trace data for the EXC counter.

SLEEP
Enables generation of trace data for the SLEEP counter.

LSU
Enables generation of trace data for the LSU counter.

FOLD
Enables generation of trace data for the FOLD counter.

SWO Configuration

Displays the SWO Configuration dialog box where you can configure the hardware’s
generation of trace data. See SWO Configuration dialog box, page 225.

This button is not available when you are using I-jet.

AFE1_AFE2-1:1

Trace

225

SWO Configuration dialog box
The SWO Configuration dialog box is available from the C-SPY driver menu,
alternatively from the SWO Trace Window Settings dialog box.

This figure reflects the C-SPY I-jet driver.

Use this dialog box to configure the serial-wire output communication channel and the
hardware’s generation of trace data.

See also Getting started with SWO trace, page 214.

Requirements

One of these alternatives:

● The C-SPY I-jet driver and an I-jet or I-jet Trace in-circuit debugging probe

● The C-SPY J-Link/J-Trace driver and a J-Link/J-Trace JTAG/SWD probe

● The C-SPY ST-LINK driver and an ST-LINK JTAG/SWD probe

● The C-SPY TI XDS driver and a TI XDS probe

AFE1_AFE2-1:1

226

Reference information on trace

C-SPY® Debugging Guide
for Arm

PC Sampling

Controls the behavior of the sampling of the program counter. You can specify:

In use by
Lists the features in C-SPY that can use trace data for PC sampling. ON
indicates features currently using trace data. OFF indicates features currently
not using trace data.

Rate
Use the drop-down list to choose the sampling rate, that is, the number of
samples per second. The highest possible sampling rate depends on the SWO
clock value and on how much other data that is sent over the SWO
communication channel. The higher values in the list will not work if the SWO
communication channel is not fast enough to handle that much data.

This option does not apply to I-jet.

Divider
Select a divider, that, applied to the CPU clock speed, determines the rate of PC
samples. The highest possible sampling rate depends on the SWO clock value
and on how much other data that is sent over the SWO communication channel.
The smaller values in the list will not work if the SWO communication channel
is not fast enough to handle that much data.

This option only applies to I-jet.

Data Log Events

Specifies what to log when a Data Log breakpoint is triggered. These items are
available:

In use by
Lists the features in C-SPY that can use trace data for Data Log Events. ON
indicates features currently using trace data. OFF indicates features currently
not using trace data.

PC only
Logs the value of the program counter.

PC + data value + base addr
Logs the value of the program counter, the value of the data object, and its base
address.

Data value + exact addr
Logs the value of the data object and the exact address of the data object that
was accessed.

AFE1_AFE2-1:1

Trace

227

Interrupt Log

Lists the features in C-SPY that can use trace data for Interrupt Logs. ON indicates
features currently using trace data. OFF indicates features currently not using trace data.

For more information about interrupt logging, see Interrupts, page 401.

Override project default

Overrides the CPU clock and the SWO clock default values on the
Project>Options>J-Link/J-Trace>Setup page, on the
Project>Options>ST-Link>Communication page, or on the
Project>Options>TI XDS>Communication page, respectively.

This option does not apply to I-jet.

Override project settings

Overrides the CPU clock and the SWO prescaler default values on the
Project>Options>I-jet>Setup page.

This option only applies to I-jet.

CPU clock

Specify the exact clock frequency used by the internal processor clock, HCLK, in MHz.
The value can have decimals.

This value is used for configuring the SWO communication speed.

For J-Link, ST-LINK, and TI XDS, this value is also used for calculating timestamps.

SWO clock

Specify the clock frequency of the SWO communication channel in kHz. Choose
between:

Autodetect
Automatically uses the highest possible frequency that the J-Link debug probe
can handle. When it is selected, the Wanted text box displays that frequency.

Wanted
Manually selects the frequency to be used, if Autodetect is not selected. The
value can have decimals. Use this option if data packets are lost during
transmission.

Actual
Displays the frequency that is actually used. This can differ a little from the
wanted frequency.

AFE1_AFE2-1:1

228

Reference information on trace

C-SPY® Debugging Guide
for Arm

This option does not apply to I-jet.

SWO prescaler

Specify the clock prescaler of the SWO communication channel. The prescaler, in turn,
determines the SWO clock frequency. If data packets are lost during transmission, try
using a higher prescaler value. Choose between:

Auto
Automatically uses the highest possible frequency that the I-jet debugging probe
can handle.

1, 2, 5, 10, 20, 50, 100
The prescaler value.

This option only applies to I-jet.

Timestamps

Selects the resolution of the timestamp value. For example, 1 to count every cycle, or 16
to count every 16th cycle. Note that the lowest resolution is only useful if the time
between each event packet is long enough.

This option does not apply to I-jet.

ITM Stimulus Ports

Selects which ports you want to redirect and to where. The ITM Stimulus Ports are used
for sending data from your application to the debugger host without stopping the
program execution. There are 32 such ports. Choose between:

Enabled ports
Enables the ports to be used. Only enabled ports will actually send any data over
the SWO communication channel to the debugger.

Port 0 is used by the terminal I/O library functions.

Ports 1-4 are used by the ITM macros for the Event Log window.

Port 5 is used for an optional PC value added to the ITM macro.

To Terminal I/O window
Specifies the ports to use for routing data to the Terminal I/O window.

To Log File
Specifies the ports to use for routing data to a log file. To use a different log file
than the default one, use the browse button.

AFE1_AFE2-1:1

Trace

229

The stdout and stderr of your application can be routed via SWO to the C-SPY
Terminal I/O window, instead of via semihosting. To achieve this, choose
Project>Options>General Options>Library Configuration>Library low-level
interface implementation>stdout/stderr>Via SWO. This will significantly improve
the performance of stdout/stderr, compared to when semihosting is used.

This can be disabled if you deselect the port settings in the Enabled ports and To
Terminal I/O options.

Power Sampling

Force PC Sampling
Forces PC sampling, even when no other C-SPY features have requested it. This
makes it possible to associate PC values with power samples.

Collect power samples only at PC samples
Collects power samples only at PC samples, so that every power sample can be
associated with a program counter position.

Trace window
The Trace window is available from the C-SPY driver menu.

This window displays the collected trace data.

Note: There are three different trace windows—ETM Trace, SWO Trace, and just
Trace for the C-SPY simulator. The windows look slightly different.

The content of the Trace window depends on the C-SPY driver you are using and the
trace support of your debug probe.

See also Collecting and using trace data, page 213.

Requirements

One of these alternatives:

● The C-SPY Simulator. (Not available for all cores and devices.)

● A CMSIS-DAP probe

● An I-jet or I-jet Trace in-circuit debugging probe

● A J-Link/J-Trace JTAG/SWD probe

● An ST-LINK JTAG/SWD probe

● A TI XDS probe

AFE1_AFE2-1:1

230

Reference information on trace

C-SPY® Debugging Guide
for Arm

Trace toolbar

The toolbar in the Trace window contains:

Enable/Disable
Enables and disables collecting and viewing trace data in this window.

Clear trace data
Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Toggle source
Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse
Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 217.

Find
Displays a dialog box where you can perform a search, see Find in Trace dialog
box, page 253.

Save
In the ETM Trace and SWO Trace windows, this button displays the Trace
Save dialog box, see Trace Save dialog box, page 256.

In the C-SPY I-jet driver and in the C-SPY simulator, this button displays a
standard Save As dialog box where you can save the collected trace data to a
text file, with tab-separated columns.

Edit Settings
In the C-SPY simulator, this button is not enabled.

In the ETM Trace window this button displays the Trace Settings dialog box,
see ETM Trace Settings dialog box (J-Link/J-Trace), page 221 and ETM Trace
Settings dialog box (I-jet), page 219.

In the SWO Trace window this button displays the SWO Trace Window
Settings dialog box, see SWO Trace Window Settings dialog box, page 223.

Progress bar
When a large amount of trace data has been collected, there might be a delay
before all of it has been processed and can be displayed. The progress bar
reflects that processing.

AFE1_AFE2-1:1

Trace

231

Display area (in the C-SPY simulator)

This area displays a collected sequence of executed machine instructions. In addition,
the window can display trace data.

This area contains these columns for the C-SPY simulator:

The leftmost column contains identifying icons to simplify navigation within
the buffer:

Timestamp
The number of cycles elapsed to this point.

Trace
The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Read Addr, Read Data, Write Addr, Write Data
These columns show reads and writes to memory.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

The yellow diamond indicates the trace execution point, marking when
target execution has started.

The right green arrow indicates a call instruction.

The left green arrow indicates a return instruction.

The dark green bookmark indicates a navigation bookmark.

The red arrow indicates an interrupt.

The violet bar indicates the results of a search.

AFE1_AFE2-1:1

232

Reference information on trace

C-SPY® Debugging Guide
for Arm

Display area (for ETM trace in the C-SPY hardware debugger drivers)

This area displays a collected sequence of executed machine instructions and other trace
data.

Data trace is only available for the C-SPY I-jet driver or CMSIS-DAP driver, when using
Arm7/Arm9/Arm11-based devices with ETM data trace.

 This area contains these columns. Note that some columns depend on the C-SPY driver,
the CPU, and the probe you are using.

The leftmost column contains identifying icons to simplify navigation within
the buffer:

The yellow diamond indicates the trace execution point, marking when
target execution has started.

The right green arrow indicates a call instruction.

The left green arrow indicates a return instruction.

The dark green bookmark indicates a navigation bookmark.

The red arrow indicates an interrupt.

The violet bar indicates the results of a search.

AFE1_AFE2-1:1

Trace

233

Timestamp
The internal I-jet Trace timestamp.

Address
The address of the instruction associated with the trace frame.

Opcode
The operation code of the instruction associated with the trace frame. After the
hexadecimal value, extra information can be displayed:

x2 — if two instructions were executed

C — if the instruction was read from the I-Cache

Exec
The execution mode—Arm, Thumb, or NoExec.

Trace
The collected sequence of executed machine instructions. Optionally, the
corresponding source code can also be displayed.

Except
The type of exception, when it occurs.

Access
The access type of the instruction associated with the trace frame. DMA stands
for DMA transfer. The address and data information shows which transfer that
was performed.

Data address
The data trace address.

Data value
The data trace value.

Comment
Additional information.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

Display area (for SWO trace)

This area contains these columns for SWO trace:

SWO Packet
The contents of the captured SWO packet, displayed as a hexadecimal value.

AFE1_AFE2-1:1

234

Reference information on trace

C-SPY® Debugging Guide
for Arm

Cycles
The approximate number of cycles from the start of the execution until the
event.

For J-Link, this number is reported by the CPU.

For I-jet, this number corresponds to the internal I-jet Trace timestamp.

Event
The event type of the captured SWO packet. If the column displays Overflow,
the data packet could not be sent, because too many SWO features use the SWO
channel at the same time. To decrease the amount of transmissions on the
communication channel, point at the SWO button—on the IDE main window
toolbar—with the mouse pointer to get detailed tooltip information about which
C-SPY features that have requested trace data generation. Disable some of the
features.

Value
The event value, if any.

Trace
If the event is a sampled PC value, the disassembled instruction is displayed in
this column. Optionally, the corresponding source code can also be displayed.

Comment
Additional information, including the values of the selected Trace Events
counters, or the number of the comparator (hardware breakpoint) used for the
Data Log breakpoint.

A red-colored row indicates that the previous row and the red row are not consecutive.
This means that there is a gap in the collected trace data, for example because trace data
has been lost due to an overflow.

If the display area seems to show garbage, make sure you specified a correct value for
the CPU clock in the SWO Configuration dialog box.

AFE1_AFE2-1:1

Trace

235

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands. Note that the shortcuts to the
submenu commands do not use the Ctrl key.

These commands are available:

Enable
Enables and disables collecting and viewing trace data in this window.

Clear
Clears the trace buffer. Both the Trace window and the Function Trace window
are cleared.

Embed source
Toggles the Trace column between showing only disassembly or disassembly
together with the corresponding source code.

Browse
Toggles browse mode on or off for a selected item in the Trace window, see
Browsing through trace data, page 217.

Find>Find (F)
Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 253. The contents of the window will scroll to
display the first match.

Find>Find Next (G)
Finds the next occurrence of the specified string.

Find>Find Previous (Shift+G)
Finds the previous occurrence of the specified string.

AFE1_AFE2-1:1

236

Reference information on trace

C-SPY® Debugging Guide
for Arm

Find>Clear (Shift+F)
Removes all search highlighting in the window.

Find All
Displays a dialog box where you can perform a search in the Trace window, see
Find in Trace dialog box, page 253. The search results are displayed in the Find
in Trace window—available by choosing the View>Messages command, see
Find in Trace window, page 255.

Navigate>After Current Loop (L)
Identifies the selected program counter and scans the trace data forward,
collecting program counters, until it finds the same address again. It has now
detected a loop. (Loops longer than 1000 instructions are not detected.) Then it
navigates forward until it finds a program counter that is not part of the collected
set. This is useful for navigating out of many iterations of an idle or polling loop.

Navigate>Before Current Loop (Shift+L)
Behaves as After Current Loop, but navigates backward out of the loop.

Navigate>After Current Function (U)
Navigates to the next unmatched return instruction. This is similar to stepping
out of the current function.

Navigate>Before Current Function (Shift+U)
Navigates to the closest previous unmatched call instruction.

Navigate>Next Statement (S)
Navigates to the next instruction that belongs to a different C statement than the
starting point. It skips function calls, i.e. it tries to reach the next statement in
the starting frame.

Navigate>Previous Statement (Shift+S)
Behaves as Next statement, but navigates backward to the closest previous
different C statement.

Navigate>Next on Same Address (A)
Navigates to the next instance of the starting program counter address, typically
to the next iteration of a loop.

Navigate>Previous on Same Address (Shift+A)
Navigates to the closest previous instance of the starting program counter
address.

Navigate>Next Interrupt (I)
Navigates to the next interrupt entry. (To then find the matching interrupt exit,
follow up with After Current Function.)

AFE1_AFE2-1:1

Trace

237

Navigate>Previous Interrupt (Shift+I)
Navigates to the closest previous interrupt entry.

Navigate>Next Execution Start Point (E)
Navigates to the next point where the CPU was started, for example places
where the application stopped at breakpoints, or was stepped.

Navigate>Previous Execution Start Point (Shift+E)
Navigates to the closest previous point where the CPU was started.

Navigate>Next Discontinuity (D)
Navigates to the next discontinuity in the trace data.

Navigate>Previous Discontinuity (Shift+D)
Navigates to the closest previous discontinuity in the trace data.

Bookmarks>Toggle (+)
Adds a new navigation bookmark or removes an existing bookmark.

Bookmarks>Goto Next (B)
Navigates to the next navigation bookmark.

Bookmarks>Goto Previous (Shift+B)
Navigates to the closest previous navigation bookmark.

Bookmarks>Clear All
Removes all navigation bookmarks.

Bookmarks>location (0–9)
At the bottom of the submenu, the ten most recently defined bookmarks are
listed, with a shortcut key each from 0–9.

Timestamp>Set as Zero Point (Z)
Sets the selected row as a reference “zero” point in the collected sequence of
trace data. The count of rows in the Trace window will show this row as 0 and
recalculate the timestamps of all other rows in relation to this timestamp.

Timestamp>Go to Zero Point (Shift+Z)
Navigates to the reference “zero” point in the collected sequence of trace data
(if you have set one).

Timestamp>Clear Zero Point
Removes the reference “zero” point from the trace data and restores the original
timestamps of all rows.

AFE1_AFE2-1:1

238

Reference information on trace

C-SPY® Debugging Guide
for Arm

Save
In the ETM Trace and SWO Trace windows, this button displays the Trace
Save dialog box, see Trace Save dialog box, page 256.

In the C-SPY I-jet driver and in the C-SPY simulator, this button displays a
standard Save As dialog box where you can save the collected trace data to a
text file, with tab-separated columns.

Function Trace window
The Function Trace window is available from the C-SPY driver menu during a debug
session.

This window displays a subset of the trace data displayed in the Trace window. Instead
of displaying all rows, the Function Trace window shows:

● The functions called or returned to, instead of the traced instruction

● The corresponding trace data.

Requirements

One of these alternatives:

● The C-SPY Simulator. (Not available for all cores and devices.)

● An I-jet or I-jet Trace in-circuit debugging probe

● A J-Link/J-Trace JTAG/SWD probe

● An ST-LINK JTAG/SWD probe

● A TI XDS probe

Display area

There are two sets of columns available, and which set is used in your debugging system
depends on the debug probe and which trace sources that are available:

● The available columns are the same as in the Trace window, see Trace window,
page 229.

AFE1_AFE2-1:1

Trace

239

● For the simulator, I-jet Trace, and I-jet and depending on the trace source, these
columns are available:

Timestamp
The number of cycles elapsed to this point according to the timestamp in the
debug probe.

Address
The address of the executed instruction.

Call/Return
The function that was called or returned to.

Trace Start Trigger breakpoint dialog box
The Trace Start Trigger dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.

Use this dialog box to set a Trace Start Trigger breakpoint where you want to start
collecting trace data. If you want to collect trace data only for a specific range, you must
also set a Trace Stop Trigger breakpoint where you want to stop collecting data.

See also Trace Stop Trigger breakpoint dialog box, page 240 and Trace data collection
using breakpoints, page 216.

To set a Trace Start Trigger breakpoint:
1 In the editor or Disassembly window, right-click and choose Trace Start Trigger from

the context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Start
Trigger.

AFE1_AFE2-1:1

240

Reference information on trace

C-SPY® Debugging Guide
for Arm

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection starts.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 159.

Trace Stop Trigger breakpoint dialog box
The Trace Stop Trigger dialog box is available from the context menu that appears
when you right-click in the Breakpoints window.

Use this dialog box to set a Trace Stop Trigger breakpoint where you want to stop
collecting trace data. If you want to collect trace data only for a specific range, you might
also need to set a Trace Start Trigger breakpoint where you want to start collecting data.

See also Trace Start Trigger breakpoint dialog box, page 239 and Trace data collection
using breakpoints, page 216.

To set a Trace Stop Trigger breakpoint:
1 In the editor or Disassembly window, right-click and choose Trace Stop Trigger from

the context menu.

Alternatively, open the Breakpoints window by choosing View>Breakpoints.

AFE1_AFE2-1:1

Trace

241

2 In the Breakpoints window, right-click and choose New Breakpoint>Trace Stop
Trigger.

Alternatively, to modify an existing breakpoint, select a breakpoint in the Breakpoints
window and choose Edit on the context menu.

3 In the Break at text box, specify an expression, an absolute address, or a source
location. Click OK.

4 When the breakpoint is triggered, the trace data collection stops.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Break At

Specify the code location of the breakpoint in the text box. Alternatively, click the Edit
button to open the Enter Location dialog box, see Enter Location dialog box, page 159.

Trace Start breakpoints dialog box (I-jet and CMSIS-DAP)
The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Start).

Use this dialog box to set the conditions that determine when to start collecting trace
data. When the trace condition is triggered, the trace data collection is started.

Requirements

One of these alternatives:

● The C-SPY I-jet driver

AFE1_AFE2-1:1

242

Reference information on trace

C-SPY® Debugging Guide
for Arm

● The C-SPY CMSIS-DAP driver

● A device with data matching capabilities.

Trigger at

Specify the starting point of the code section for which you want to collect trace data.
You can specify a variable name, an address, or a cycle counter value.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

Fetch
Accesses at execution address.

Any accesses of the specified type will activate the trace data collection.

Match data

Enables matching of the accessed data. Choose between:

Use the Match data options in combination with the Read/Write, Read, or Write access
types for data. This option can be useful when you want a trigger when a variable has a
certain value.

Note: The Match data options are only available when using a Cortex-M device. For
Cortex-M devices, only one breakpoint with Match data can be set. Such a breakpoint
uses two breakpoint resources.

Value Specify a data value.

Mask Specify which part of the value to match (word, halfword,
or byte).

AFE1_AFE2-1:1

Trace

243

Size

Controls the size of the address range, that when reached, will trigger the start of the
trace data collection. Choose between:

Auto
Sets the size automatically. This can be useful if Trigger at contains a variable.

Manual
Specify the size of the breakpoint range manually.

Trigger range

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover requested range
Extends the range so that a whole data structure is covered. For data structures
that do not fit the size of the possible ranges supplied by the hardware breakpoint
unit, for example three bytes, the range will not cover the whole data structure.
Note that the range will be extended beyond the size of the data structure, which
might cause false triggers at adjacent data.

This option is not enabled for Arm7/9 devices because the range for such
devices will always cover the whole data structure.

Trace Stop breakpoints dialog box (I-jet and CMSIS-DAP)
The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Stop).

AFE1_AFE2-1:1

244

Reference information on trace

C-SPY® Debugging Guide
for Arm

Use this dialog box to set the conditions that determine when to stop collecting trace
data. When the trace condition is triggered, the trace data collection is stopped.

Requirements

One of these alternatives:

● The C-SPY I-jet driver

● The C-SPY CMSIS-DAP driver

Trigger at

Specify the end point of the code section for which you want to collect trace data. You
can specify a variable name, an address, or a cycle counter value.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

Fetch
Accesses at execution address.

Any accesses of the specified type will activate the trace data collection.

Match data

Enables matching of the accessed data. Choose between:

Use the Match data options in combination with the Read/Write, Read, or Write access
types for data. This option can be useful when you want a trigger when a variable has a
certain value.

Note: The Match data options are only available when using a Cortex-M device. For
Cortex-M devices, only one breakpoint with Match data can be set. Such a breakpoint
uses two breakpoint resources.

Value Specify a data value.

Mask Specify which part of the value to match (word, halfword,
or byte).

AFE1_AFE2-1:1

Trace

245

Size

Controls the size of the address range, that when reached, will trigger the start of the
trace data collection. Choose between:

Auto
Sets the size automatically. This can be useful if Trigger at contains a variable.

Manual
Specify the size of the breakpoint range manually.

Trigger range

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover requested range
Extends the range so that a whole data structure is covered. For data structures
that do not fit the size of the possible ranges supplied by the hardware breakpoint
unit, for example three bytes, the range will not cover the whole data structure.
Note that the range will be extended beyond the size of the data structure, which
might cause false triggers at adjacent data.

This option is not enabled for Arm7/9 devices because the range for such
devices will always cover the whole data structure.

Trace Filter breakpoints dialog box (I-jet)
The Trace Filter dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Filter).

AFE1_AFE2-1:1

246

Reference information on trace

C-SPY® Debugging Guide
for Arm

Use this dialog box to set the conditions that determine when to start collecting trace
data. When the trace condition is triggered, the trace data collection is started.

Requirements

One of these alternatives:

● The C-SPY I-jet driver

● The C-SPY CMSIS-DAP driver

Start

Specify the start location of the code section for which you want to collect trace data.
Alternatively, click the Edit button to open the Enter Location dialog box, see Enter
Location dialog box, page 159.

End

Specify the end location of the code section for which you want to collect trace data.
Alternatively, click the Edit button to open the Enter Location dialog box, see Enter
Location dialog box, page 159.

Trace Start breakpoints dialog box (J-Link/J-Trace)
The Trace Start dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Start).

AFE1_AFE2-1:1

Trace

247

Use this dialog box to set the conditions that determine when to start collecting trace
data. When the trace condition is triggered, the trace data collection is started.

Requirements

The C-SPY J-Link/J-Trace driver.

Trigger at

Specify the starting point of the code section for which you want to collect trace data.
You can specify a variable name, an address, or a cycle counter value.

Size

Controls the size of the address range, that when reached, will trigger the start of the
trace data collection. Choose between:

Auto
Sets the size automatically. This can be useful if Trigger at contains a variable.

Manual
Specify the size of the breakpoint range manually.

Trigger range

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover requested range
Extends the range so that a whole data structure is covered. For data structures
that do not fit the size of the possible ranges supplied by the hardware breakpoint
unit, for example three bytes, the range will not cover the whole data structure.
Note that the range will be extended beyond the size of the data structure, which
might cause false triggers at adjacent data.

This option is not enabled for Arm7/9 devices because the range for such
devices will always cover the whole data structure.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

AFE1_AFE2-1:1

248

Reference information on trace

C-SPY® Debugging Guide
for Arm

Write
Writes to location.

OP-fetch
Accesses at execution address.

Cycle
The number of counter cycles at a specific point in time, counted from where the
execution started. This option is only available for Cortex-M devices.

Any accesses of the specified type will activate the trace data collection.

Match data

Enables matching of the accessed data. Use the Match data options in combination with
the Read/Write, Read, or Write access types for data. This option can be useful when
you want a trigger when a variable has a certain value.

The Match data options are only available for J-Link/J-Trace and when using a
Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two breakpoint resources.

Link condition

Specifies how trace conditions are combined, using AND and OR. When combining a
condition that has the link condition AND with a condition that has the link condition
OR, AND has precedence. The option Inverse inverts the trace condition and is
individual for each trace filter condition. If one trace start or stop condition is inverted,
all others will be too. An inverted trace start or stop condition means that the trace data
collection is performed everywhere except for this section of the application code.

For Arm7/9 devices, trace filters are combined using the OR algorithm. Use the Inverse
option to invert the trace filter—all trace filters are affected. The trace filter will be
combined with the start and stop triggers, if any, using the AND algorithm.

Value Specify a data value.

Mask Specify which part of the value to match (word, halfword,
or byte).

AFE1_AFE2-1:1

Trace

249

Trace Stop breakpoints dialog box (J-Link/J-Trace)
The Trace Stop dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Stop).

When the trace condition is triggered, the trace data collection is performed for some
further instructions, and then the collection is stopped.

Requirements

The C-SPY J-Link/J-Trace driver.

Trigger at

Specify the stopping point of the code section for which you want to collect trace data.
You can specify a variable name, an address, or a cycle counter value.

Size

Controls the size of the address range, that when reached, will trigger the stop of the
trace data collection. Choose between:

Auto
Sets the size automatically. This can be useful if Trigger at contains a variable.

Manual
Specify the size of the breakpoint range manually.

AFE1_AFE2-1:1

250

Reference information on trace

C-SPY® Debugging Guide
for Arm

Trigger range

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover requested range
Extends the range so that a whole data structure is covered. For data structures
that do not fit the size of the possible ranges supplied by the hardware breakpoint
unit, for example three bytes, the range will not cover the whole data structure.
Note that the range will be extended beyond the size of the data structure, which
might cause false triggers at adjacent data.

This option is not enabled for Arm7/9 devices because the range for such
devices will always cover the whole data structure.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

OP-fetch
Accesses at execution address.

Cycle
The number of counter cycles at a specific point in time, counted from where the
execution started. This option is only available for Cortex-M devices.

Any accesses of the specified type will stop the trace data collection.

Match data

Enables matching of the accessed data. Use the Match data options in combination with
the Read/Write, Read, or Write access types for data. This option can be useful when
you want a trigger when a variable has a certain value.

Value Specify a data value.

Mask Specify which part of the value to match (word, halfword,
or byte).

AFE1_AFE2-1:1

Trace

251

The Match data options are only available for J-Link/J-Trace and when using a
Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two breakpoint resources.

Link condition

Specifies how trace conditions are combined, using AND and OR. When combining a
condition that has the link condition AND with a condition that has the link condition
OR, AND has precedence. The option Inverse inverts the trace condition and is
individual for each trace filter condition. If one trace start or stop condition is inverted,
all others will be too. An inverted trace start or stop condition means that the trace data
collection is performed everywhere except for this section of the application code.

For Arm7/9 devices, trace filters are combined using the OR algorithm. Use the Inverse
option to invert the trace filter—all trace filters are affected. The trace filter will be
combined with the start and stop triggers, if any, using the AND algorithm.

Trace Filter breakpoints dialog box (J-Link/J-Trace)
The Trace Filter dialog box is available from the context menu that appears when you
right-click in the Breakpoints window. You can also right-click in the editor window or
the Disassembly window, and then choose Toggle Breakpoint (Trace Filter).

When the trace condition is triggered, the trace data collection is performed for some
further instructions, and then the collection is stopped.

AFE1_AFE2-1:1

252

Reference information on trace

C-SPY® Debugging Guide
for Arm

Requirements

The C-SPY J-Link/J-Trace driver.

Trigger at

Specify the code location of the breakpoint. Alternatively, click the Edit button to open
the Enter Location dialog box, see Enter Location dialog box, page 159.

Size

Controls the size of the address range where filtered trace is active. Choose between:

Auto
Sets the size automatically. This can be useful if Trigger at contains a variable.

Manual
Specify the size of the breakpoint range manually.

Trigger range

Shows the requested range and the effective range to be covered by the trace data
collection. The range suggested is either within or exactly the area specified by the
Trigger at and the Size options.

Extend to cover requested range
Extends the range so that a whole data structure is covered. For data structures
that do not fit the size of the possible ranges supplied by the hardware breakpoint
unit, for example three bytes, the range will not cover the whole data structure.
Note that the range will be extended beyond the size of the data structure, which
might cause false triggers at adjacent data.

This option is not enabled for Arm7/9 devices because the range for such
devices will always cover the whole data structure.

Access Type

Selects the type of memory access that triggers the breakpoint:

Read/Write
Reads from or writes to location.

Read
Reads from location.

Write
Writes to location.

AFE1_AFE2-1:1

Trace

253

OP-fetch
Accesses at execution address.

Cycle
The number of counter cycles at a specific point in time, counted from where the
execution started. This option is only available for Cortex-M devices.

Match data

Enables matching of the accessed data. Use the Match data options in combination with
the Read/Write, Read, or Write access types for data. This option can be useful when
you want a trigger when a variable has a certain value.

The Match data options are only available for J-Link/J-Trace and when using a
Cortex-M device.

Note: For Cortex-M devices, only one breakpoint with Match data can be set. Such a
breakpoint uses two breakpoint resources.

Link condition

Specifies how trace conditions are combined, using AND and OR. When combining a
condition that has the link condition AND with a condition that has the link condition
OR, AND has precedence. The option Inverse inverts the trace condition and is
individual for each trace filter condition. If one trace start or stop condition is inverted,
all others will be too. An inverted trace start or stop condition means that the trace data
collection is performed everywhere except for this section of the application code.

For Arm7/9 devices, trace filters are combined using the OR algorithm. Use the Inverse
option to invert the trace filter—all trace filters are affected. The trace filter will be
combined with the start and stop triggers, if any, using the AND algorithm.

Find in Trace dialog box
The Find in Trace dialog box is available by clicking the Find button on the Trace
window toolbar or by choosing Edit>Find and Replace>Find.

Value Specify a data value.

Mask Specify which part of the value to match (word, halfword,
or byte).

AFE1_AFE2-1:1

254

Reference information on trace

C-SPY® Debugging Guide
for Arm

Note that the Edit>Find and Replace>Find command is context-dependent. It displays
the Find in Trace dialog box if the Trace window is the current window or the Find
dialog box if the editor window is the current window.

Use this dialog box to specify the search criteria for advanced searches in the trace data.

The search results are displayed in the Find in Trace window—available from the
View>Messages menu, see Find in Trace window, page 255.

See also Searching in trace data, page 217.

Requirements

One of these alternatives:

● The C-SPY Simulator. Not available for all cores and devices.

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY CMSIS-DAP driver

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

Text search

Specify the string you want to search for. To specify the search criteria, choose between:

Match case
Searches only for occurrences that exactly match the case of the specified text.
Otherwise int will also find INT, Int, and so on.

Match whole word
Searches only for the string when it occurs as a separate word. Otherwise int
will also find print, sprintf, and so on.

AFE1_AFE2-1:1

Trace

255

Only search in one column
Searches only in the column you selected from the drop-down list.

Address range

Specify the address range you want to display or search. The trace data within the
address range is displayed. If you have also specified a text string in the Text search
field, the text string is searched for within the address range.

Find in Trace window
The Find in Trace window is available from the View>Messages menu. Alternatively,
it is automatically displayed when you perform a search using the Find in Trace dialog
box or perform a search using the Find in Trace command available from the context
menu in the editor window.

This window displays the result of searches in the trace data. Double-click an item in the
Find in Trace window to bring up the same item in the Trace window.

Before you can view any trace data, you must specify the search criteria in the Find in
Trace dialog box, see Find in Trace dialog box, page 253.

See also Searching in trace data, page 217.

Requirements

One of these alternatives:

● The C-SPY Simulator. Not available for all cores and devices.

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY CMSIS-DAP driver

● The C-SPY ST-LINK driver

AFE1_AFE2-1:1

256

Reference information on trace

C-SPY® Debugging Guide
for Arm

Display area

The Find in Trace window looks like the Trace window and shows the same columns
and data, but only those rows that match the specified search criteria.

Trace Save dialog box
The Trace Save dialog box is available from the driver-specific menu, and from the
Trace window and the SWO Trace window.

Requirements

One of these alternatives:

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

Index Range

Saves a range of frames to a file. Specify a start index and an end index (as numbered in
the index column in the Trace window).

Append to file

Appends the trace data to an existing file.

Use tab-separated format

Saves the content in columns that are tab-separated, instead of separated by white
spaces.

File

Specify a file for the trace data.

AFE1_AFE2-1:1

257

The application timeline
● Introduction to analyzing your application’s timeline

● Analyzing your application’s timeline

● Reference information on application timeline

Introduction to analyzing your application’s timeline
These topics are covered:

● Briefly about analyzing the timeline

● Requirements for timeline support

See also:

● Trace, page 209

BRIEFLY ABOUT ANALYZING THE TIMELINE

C-SPY can provide information for various aspects of your application, collected when
the application is running. This can help you to analyze the application’s behavior.

You can view the timeline information in different representations:

● As different graphs that correlate with the running application in relation to a shared
time axis.

● As detailed logs

● As summaries of the logs.

Depending on the capabilities of your hardware, the debug probe, and the C-SPY driver
you are using, timeline information can be provided for:

Call stack Can be represented in the Timeline window, as a graph that displays the
sequence of function calls and returns collected by the trace system. You
get timing information between the function invocations.

Note that there is also a related Call Stack window and a Function
Trace window, see Call Stack window, page 88 and Function Trace
window, page 238, respectively.

AFE1_AFE2-1:1

258

Introduction to analyzing your application’s timeline

C-SPY® Debugging Guide
for Arm

Data logging Based on data logs collected by the trace system for up to four different
variables or address ranges, specified by means of Data Log
breakpoints. Choose to display the data logs:

● In the Timeline window, as a graph of how the values change over
time.

● In the Data Log window and the Data Log Summary window.

Event
logging

Based on event logs produced when the execution passes specific
positions in your application code. Choose to display the event logs:

● In the Timeline window, as a graph of the timing of the events.

● In the Event Log window and the Event Log Summary window.

Event logs can help you to analyze the application flow and inspect data
correlated to a certain position in your application code.

Interrupt
logging

Based on interrupt logs collected by the trace system. Choose to display
the interrupt logs:

● In the Timeline window, as a graph of the interrupt events during
the execution of your application.

● In the Interrupt Log window and the Interrupt Log Summary
window.

Interrupt logging can, for example, help you locate which interrupts you
can fine-tune to make your application more efficient.

For more information, see the chapter Interrupts.

Power
logging

Based on logged power measurement samples generated by the debug
probe or associated hardware. Choose to display the power logs:

● In the Timeline window, as a graph of the power measurement
samples.

● In the Power Log window.

Power logs can be useful for finding peaks in the power consumption
and by double-clicking on a value you can see the corresponding source
code. The precision depends on the frequency of the samples, but there
is a good chance that you find the source code sequence that caused the
peak.

For more information, see the chapter Power debugging.

AFE1_AFE2-1:1

The application timeline

259

REQUIREMENTS FOR TIMELINE SUPPORT

Depending on the capabilities of the hardware, the debug probe, and the C-SPY driver
you are using, timeline information is supported for:

1 Very limited when ETM trace is enabled.

2 Requires ETB/MTB.

3 Not for all cores and devices.

For more information about requirements related to trace data, see Requirements for
using trace, page 212.

Analyzing your application’s timeline
These tasks are covered:

● Displaying a graph in the Timeline window

● Navigating in the graphs

State logging Based on logged activity—state changes—for peripheral units and
clocks, as well as for CPU modes generated by the debug probe or
associated hardware. Choose to display the state logs:

● In the Timeline window, as a graph of the state changes.

● In the State Log window and in the State Log Summary window.

The information is useful for tracing the activity on the target system.

For more information, see the chapter Power debugging.

Target system Call Stack
Data

logging

State

logging

Event

logging

Interrupt

logging

Power

logging

C-SPY simulator Yes3 Yes3 — — Yes3 —

CMSIS-DAP Yes2 — — — — —

I-jet Yes2 Yes — Yes Yes Yes

J-Link Yes2 Yes — Yes Yes Yes

J-Trace Yes Yes1 — Yes1 Yes1 —

ST-LINK — Yes3 — Yes3 Yes3 Yes3

TI MSP-FET — — Yes — — Yes

TI XDS — Yes Yes Yes Yes Yes

Table 11: Support for timeline information

AFE1_AFE2-1:1

260

Analyzing your application’s timeline

C-SPY® Debugging Guide
for Arm

● Analyzing performance using the graph data

● Getting started using data logging

● Getting started using event logging

See also:

● Debugging in the power domain, page 328

● Using the interrupt system, page 406

DISPLAYING A GRAPH IN THE TIMELINE WINDOW

The Timeline window can display several graphs—follow this example procedure to
display any of these graphs. For an overview of the graphs and what they display, see
Briefly about analyzing the timeline, page 257.

1 Choose C-SPY driver>SWO Configuration to open the SWO Configuration dialog
box. Make sure the CPU clock option is set to the same value as the CPU clock value
set by your application. This is necessary to set the SWO clock and to obtain a correct
data transfer to the debug probe.

If you are using the C-SPY simulator in 32-bit mode, choose Simulator>Simulated
Frequency to set up a frequency that matches the simulated hardware.

2 Choose Timeline from the C-SPY driver menu to open the Timeline window.

3 In the Timeline window, right-click in the window and choose Select Graphs from the
context menu to select which graphs to be displayed.

4 In the Timeline window, right-click in the graph area and choose Enable from the
context menu to enable a specific graph.

5 For the Data Log graph, you must set a Data Log breakpoint for each variable you want
a graphical representation of in the Timeline window. See Data Log breakpoints
dialog box, page 151 and Data Log breakpoints dialog box (C-SPY hardware drivers),
page 152, respectively.

6 For the Event graph, you must add a preprocessor macro to your application source
code where you want events to be generated. See Getting started using event logging,
page 264.

7 Click Go on the toolbar to start executing your application. The graphs that you have
enabled appear.

AFE1_AFE2-1:1

The application timeline

261

NAVIGATING IN THE GRAPHS

After you have performed the steps in Displaying a graph in the Timeline window, page
260, you can use any of these alternatives to navigate in the graph:

● Right-click and from the context menu choose Zoom In or Zoom Out.
Alternatively, use the + and – keys. The graph zooms in or out depending on which
command you used.

● Right-click in the graph and from the context menu choose Navigate and the
appropriate command to move backwards and forwards on the graph. Alternatively,
use any of the shortcut keys—arrow keys, Home, End, and Ctrl+End.

● Double-click on a sample of interest to highlight the corresponding source code in
the editor window and in the Disassembly window.

● Click on the graph and drag to select a time interval, which will correlate to the
running application. The selection extends vertically over all graphs, but appears
highlighted in a darker color for the selected graph. Press Enter or right-click and
from the context menu choose Zoom>Zoom to Selection. The selection zooms in.
Use the navigation keys in combination with the Shift key to extend the selection.

ANALYZING PERFORMANCE USING THE GRAPH DATA

The Timeline window provides a set of tools for analyzing the graph data.

1 In the Timeline window, right-click and choose Time Axis Unit from the context
menu. Select which unit to be used on the time axis—choose between Seconds and
Cycles. If Cycles is not available, the graphs are based on different clock sources.

2 Execute your application to display a graph, following the steps described in
Displaying a graph in the Timeline window, page 260.

3 Whenever execution stops, point at the graph with the mouse pointer to get detailed
tooltip information for that location.

AFE1_AFE2-1:1

262

Analyzing your application’s timeline

C-SPY® Debugging Guide
for Arm

Note that if you have enabled several graphs, you can move the mouse pointer over the
different graphs to get graph-specific information.

4 Click in the graph and drag to select a time interval. Point in the graph with the mouse
pointer to get timing information for the selection.

GETTING STARTED USING DATA LOGGING

1 To set up for data logging, choose C-SPY driver>Configuration. In the dialog box, set
up the serial-wire output communication channel for trace data. Note specifically the
CPU clock option. You can set a default value for the CPU clock on the
Project>Options>C-SPY driver page. In the SWO Configuration dialog box, you
can override the default value.

If you are using the C-SPY simulator you can ignore this step.

AFE1_AFE2-1:1

The application timeline

263

2 To set a data log breakpoint, use one of these methods:

● In the Breakpoints window, right-click and choose New Breakpoint>Data Log to
open the breakpoints dialog box. Set a breakpoint on the memory location that you
want to collect log information for. This can be specified either as a variable or as an
address.

● In the Memory window, select a memory area, right-click and choose Set Data Log
Breakpoint from the context menu. A breakpoint is set on the start address of the
selection.

● In the editor window, select a variable, right-click and choose Set Data Log
Breakpoint from the context menu. The breakpoint will be set on the part of the
variable that the microcontroller can access using one instruction.

You can set up to four data log breakpoints. For more information, see Data Log
breakpoints, page 127.

3 Choose C-SPY driver>Data Log to open the Data Log window. Optionally, you can
also choose:

● C-SPY driver>Data Log Summary to open the Data Log Summary window

● C-SPY driver>Timeline to open the Timeline window to view the Data Log graph.

4 From the context menu, available in the Data Log window, choose Enable to enable
the logging.

5 In the SWO Configuration dialog box, you can notice in the Data Log Events area
that Data Logs are enabled. Choose which level of logging you want:

● PC only

● PC + data value + base address

● Data value + exact address

If you are using the C-SPY simulator you can ignore this step.

6 Start executing your application program to collect the log information.

7 To view the data log information, look in the Data Log window, the Data Log
Summary window, or the Data graph in the Timeline window.

8 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

9 To disable data logging, choose Disable from the context menu in each window where
you have enabled it.

AFE1_AFE2-1:1

264

Analyzing your application’s timeline

C-SPY® Debugging Guide
for Arm

GETTING STARTED USING EVENT LOGGING

1 To specify the position in your application source code that you want to generate events
for, use the predefined preprocessor macros in arm_itm.h (located in arm\inc\c). In
your application source code, write (for example):

#include <arm_itm.h>
void func(void)
{
 ITM_EVENT8_WITH_PC(1,25);
 ITM_EVENT32_WITH_PC(2, __get_PSP());
}

The first line sends an event with the value 25 to channel 1. The second line sends an
event with the current value of the stack pointer to channel 2, which means that C-SPY
can display the stack pointer at a code position of your choice. When these source lines
are passed during program execution, events will be generated and visualized by C-SPY,
which means that you can further analyze them.

2 To view event information, you can choose between these alternatives:

● Choose C-SPY driver>Timeline to open the Timeline window and choose Enable
from the context menu. You can now view events for each channel as a graph (Event
graph). See also Timeline window—Events graph, page 286.

● Choose C-SPY driver>Event Log to open the Event Log window and choose
Enable from the context menu. You can now view the events for each channel as
numbers. See also Event Log window, page 271.

● Choose C-SPY driver>Event Log Summary to open the Event Log Summary
window and choose Enable from the context menu. You will now get a summary of
all events. See also Event Log Summary window, page 274.

Note: Whenever the Events graph or the Event Log window is enabled, you can also
enable the Event Log Summary window to get a summary. However, if you have
enabled the Event Log Summary window, but not the Event Log window or the Event
graph in the Timeline window, you can get a summary but not detailed information
about events.

3 Select the graph and right-click to view the context menu. Here you can choose to:

● Change the radix (you can choose between displaying values in hexadecimal or in
decimal format). Note that this setting affects also the Event Log window and the
Event Log Summary window.

● Show the numerical value of the variables

● Show the value of the events

● Select the style of the graph (as bars, levels, or linear)

● Select the size of the graph (S, M, or L)

AFE1_AFE2-1:1

The application timeline

265

● Go to source

4 Start executing your application program to collect the log information.

5 To view the event information, look at either the Event Log window, the Event Log
Summary window, or the event graph for the specific channel in the Timeline
window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window.

7 To disable event logging, choose Disable from the context menu in each window
where you have enabled it.

Reference information on application timeline
Reference information about:

● Timeline window—Call Stack graph, page 277

● Timeline window—Data Log graph, page 282

● Timeline window—Events graph, page 286

● Data Log window, page 266

● Data Log Summary window, page 269

● Event Log window, page 271

● Event Log Summary window, page 274

● Viewing Range dialog box, page 290

See also:

● Timeline window—Interrupt Log graph, page 422

● Timeline window—Power graph, page 338

● Timeline window—State Log graph, page 344

AFE1_AFE2-1:1

266

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Data Log window
The Data Log window is available from the C-SPY driver menu.

Use this window to log accesses to up to four different memory locations or areas.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using data logging, page 262.

Requirements

One of these alternatives:

● The C-SPY simulator. (Not for all cores and devices.)

● A device and a debug probe with support for SWO.

Display area

Each row in the display area shows the time, the program counter, and, for every tracked
data object, its value and address. All information is cleared on reset. The information
is displayed in these columns:

Time
For the I-jet in-circuit debugging probe, the time for the data access is based on
a dedicated 48-MHz clock.

AFE1_AFE2-1:1

The application timeline

267

The time for the data access for the C-SPY J-Link driver, the C-SPY ST-LINK
driver, and the simulator, based on the clock frequency. For the C-SPY J-Link
driver, the C-SPY ST-LINK driver, and the C-SPY TI XDS driver, this is
specified in the SWO Configuration dialog box.

If the time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show time from the context
menu.

Cycles
The number of cycles from the start of the execution until the event.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter*
Displays one of these:

An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Value
Displays the access type and the value (using the access size) for the location or
area you want to log accesses to. For example, if zero is read using a byte access
it will be displayed as 0x00, and for a long access it will be displayed as
0x00000000.

To specify what data you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 127.

Address
The actual memory address that is accessed. For example, if only a byte of a
word is accessed, only the address of the byte is displayed. The address is
calculated as base address + offset, where the base address is retrieved from the
Data Log breakpoint dialog box and the offset is retrieved from the logs. If the
log from the target system does not provide the debugger with an offset, the

AFE1_AFE2-1:1

268

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

offset contains + ?. If you want the offset to be displayed (for the C-SPY I-jet
driver, the C-SPY J-Link driver, the C-SPY ST-LINK driver, and the C-SPY TI
XDS driver), select the Value + exact addr option in the SWO Configuration
dialog box.

* You can double-click a line in the display area. If the value of the PC for that line is
available in the source code, the editor window displays the corresponding source code
(this does not include library source code).

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

AFE1_AFE2-1:1

The application timeline

269

Data Log Summary window
The Data Log Summary window is available from the C-SPY driver menu.

This window displays a summary of data accesses to specific memory location or areas.

See also Getting started using data logging, page 262.

Requirements

One of these alternatives:

● The C-SPY simulator. (Not for all cores and devices.)

● A device and a debug probe with support for SWO.

Display area

Each row in this area displays the type and the number of accesses to each memory
location or area in these columns. Summary information is listed at the bottom of the
display area.

Data
The name of the data object you have selected to log accesses to. To specify
what data object you want to log accesses to, use the Data Log breakpoint
dialog box. See Data Log breakpoints, page 127.

Total Accesses
The total number of accesses.

If the sum of read accesses and write accesses is less than the total accesses, the
target system for some reason did not provide valid access type information for
all accesses.

Read Accesses
The total number of read accesses.

Write Accesses
The total number of write accesses.

AFE1_AFE2-1:1

270

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Unknown Accesses
The number of unknown accesses, in other words, accesses where the access
type is not known.

Approximative time count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time/Current cycles
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

Context menu

This context menu is available:

AFE1_AFE2-1:1

The application timeline

271

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

Event Log window
The Event Log window is available from the C-SPY driver menu.

This window displays the events produced when the execution passes specific positions
in your application code. The Cortex ITM communication channels are used for passing
the events from a running application to the C-SPY Events system.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Getting started using event logging, page 264.

AFE1_AFE2-1:1

272

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Requirements

A Cortex device and one of these alternatives:

● The C-SPY I-jet driver and an I-jet or I-jet Trace in-circuit debugging probe with an
SWD interface between the debug probe and the target system

● The C-SPY J-Link/J-Trace driver and a J-Link or J-Trace debug probe with an SWD
interface between the debug probe and the target system

● The C-SPY ST-LINK driver and an ST-LINK debug probe with an SWD interface
between the debug probe and the target system

● The C-SPY TI XDS driver and a TI XDS debug probe with an SWD interface
between the debug probe and the target system.

Display area

Each row in the display area shows the events in these columns:

Cycles
The number of cycles from the start of the execution until the event. This
information is cleared at reset.

If a cycle is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show cycles from the context
menu.

Program Counter
An address, which is the content of the PC, that is, the address of the instruction
that performed the memory access.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

ITM1
ITM2
ITM3
ITM4

The Cortex ITM communication channels for which the events are logged. For
each event, the event value is displayed.

Add a preprocessor macro to your application source code where you want
events to be generated. See Getting started using event logging, page 264.

AFE1_AFE2-1:1

The application timeline

273

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable
The name of the channel for which the Events-specific commands below apply.
This menu command is context-sensitive, which means it reflects the channel in
the Events graph you selected in the Timeline window (one of up to four).

Signed
Toggles between displaying the selected value as a signed or unsigned number.
Note that this setting also affects the log window.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

AFE1_AFE2-1:1

274

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

Event Log Summary window
The Event Log Summary window is available from the C-SPY driver menu.

This window displays a summary of events produced when the execution passes specific
positions in your application code. The Cortex ITM communication channels are used
for passing the events from a running application to the C-SPY Event system.

See also Getting started using event logging, page 264.

Requirements

A Cortex device and one of these alternatives:

● The C-SPY I-jet driver and an I-jet or I-jet Trace in-circuit debugging probe with an
SWD interface between the debug probe and the target system

● The C-SPY J-Link/J-Trace driver and a J-Link or J-Trace debug probe with an SWD
interface between the debug probe and the target system

● The C-SPY ST-LINK driver and an ST-LINK debug probe with an SWD interface
between the debug probe and the target system

● The C-SPY TI XDS driver and a TI XDS debug probe with an SWD interface
between the debug probe and the target system.

Display area

Each row displays the type and the number of accesses to each location in your
application code in these columns. Summary information is listed at the bottom of the
display area.

Channel
The name of the communication channel for which events are generated.

AFE1_AFE2-1:1

The application timeline

275

Count
The number of logged events.

Average Value
The average value of all received event values.

Min Value
The smallest value of all received event values.

Max Value
The largest value of all received event values.

Average Interval
The average time (in cycles) between events.

Min Interval
The shortest time (in cycles) between two events.

Max Interval
The longest time (in cycles) between two events.

Approximative time count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time/Current cycles
The information displayed depends on the C-SPY driver you are using.

AFE1_AFE2-1:1

276

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable
The name of the channel for which the Events-specific commands below apply.
This menu command is context-sensitive, which means it reflects the channel in
the Events graph you selected in the Timeline window (one of up to four).

Signed
Toggles between displaying the selected value as a signed or unsigned number.
Note that this setting also affects the log window.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

AFE1_AFE2-1:1

The application timeline

277

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

Timeline window—Call Stack graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Call Stack graph displays the sequence of function calls and returns collected by the
trace system.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

One of these alternatives:

● The C-SPY simulator. (Not for all cores and devices.)

● ETB/ETM and one of the C-SPY CMSIS-DAP driver, the C-SPY I-jet driver, or the
C-SPY J-Link/J-Trace driver

AFE1_AFE2-1:1

278

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

● The C-SPY I-jet driver and an I-jet Trace debug probe

● The C-SPY J-Link/J-Trace driver and a J-Trace debug probe

Display area for the Call Stack graph

Each function invocation is displayed as a horizontal bar which extends from the time
of entry until the return. Called functions are displayed above its caller. The horizontal
bars use four different colors:

● Medium green for normal C functions with debug information

● Light green for functions known to the debugger through an assembler label

● Medium yellow for normal interrupt handlers, with debug information

● Light yellow for interrupt handlers known to the debugger through an assembler
label

The timing information represents the number of cycles spent in, or between, the
function invocations.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Click in the graph to display the corresponding source code.

Note: For highly optimized code, C-SPY might not be able to identify all calls. This
means that for highly optimized code, the call stack is not entirely trustworthy.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

AFE1_AFE2-1:1

The application timeline

279

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Call Stack
A heading that shows that the Call stack-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

AFE1_AFE2-1:1

280

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Show Timing
Toggles the display of the timing information on or off.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Save to File
Saves all contents (or the selected contents) of the Call Stack graph to a file. The
menu command is only available when C-SPY is not running.

Navigate Call Stack>After Current Loop (L)
Identifies the selected program counter and scans the trace data forward,
collecting program counters, until it finds the same address again. It has now
detected a loop. (Loops longer than 1000 instructions are not detected.) Then it
navigates forward until it finds a program counter that is not part of the collected
set. This is useful for navigating out of many iterations of an idle or polling loop.

Navigate Call Stack>Before Current Loop (Shift+L)
Behaves as After Current Loop, but navigates backward out of the loop.

Navigate Call Stack>After Current Function (U)
Navigates to the next unmatched return instruction. This is similar to stepping
out of the current function.

Navigate Call Stack>Before Current Function (Shift+U)
Navigates to the closest previous unmatched call instruction.

Navigate Call Stack>Next Statement (S)
Navigates to the next instruction that belongs to a different C statement than the
starting point. It skips function calls, i.e. it tries to reach the next statement in
the starting frame.

Navigate Call Stack>Previous Statement (Shift+S)
Behaves as Next statement, but navigates backward to the closest previous
different C statement.

Navigate Call Stack>Next on Same Address (A)
Navigates to the next instance of the starting program counter address, typically
to the next iteration of a loop.

Navigate Call Stack>Previous on Same Address (Shift+A)
Navigates to the closest previous instance of the starting program counter
address.

AFE1_AFE2-1:1

The application timeline

281

Navigate Call Stack>Next Interrupt (I)
Navigates to the next interrupt entry. (To then find the matching interrupt exit,
follow up with After Current Function.)

Navigate Call Stack>Previous Interrupt (Shift+I)
Navigates to the closest previous interrupt entry.

Navigate Call Stack>Next Execution Start Point (E)
Navigates to the next point where the CPU was started, for example places
where the application stopped at breakpoints, or was stepped.

Navigate Call Stack>Previous Execution Start Point (Shift+E)
Navigates to the closest previous point where the CPU was started.

Navigate Call Stack>Next Discontinuity (D)
Navigates to the next discontinuity in the trace data.

Navigate Call Stack>Previous Discontinuity (Shift+D)
Navigates to the closest previous discontinuity in the trace data.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection
Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling. See
Selecting a time interval for profiling information, page 299.

AFE1_AFE2-1:1

282

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Timeline window—Data Log graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Data Log graph displays the data logs collected by the trace system, for up to four
different variables or address ranges specified as Data Log breakpoints.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

One of these alternatives:

● The C-SPY simulator. (Not for all cores and devices.)

● A device and a debug probe with support for SWO.

Display area for the Data Log graph

Where:

● The label area at the left end of the graph displays the variable name or the address
for which you have specified the Data Log breakpoint.

● The graph itself displays how the value of the variable changes over time. The label
area also displays the limits, or range, of the Y-axis for a variable. You can use the
context menu to change these limits. The graph is a graphical representation of the
information in the Data Log window, see Data Log window, page 266.

AFE1_AFE2-1:1

The application timeline

283

● The graph can be displayed either as a thin line between consecutive logs or as a
rectangle for every log (optionally color-filled).

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system. A red question mark indicates
a log without a value.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

Context menu

This context menu is available:

Note: The contents of this menu are dynamic and depend on which features that your
combination of software and hardware supports. However, the list of menu commands
below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

AFE1_AFE2-1:1

284

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Data Log
A heading that shows that the Data Log-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable
The name of the variable for which the Data Log-specific commands below
apply. This menu command is context-sensitive, which means it reflects the
Data Log graph you selected in the Timeline window (one of up to four).

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 290.

AFE1_AFE2-1:1

The application timeline

285

Size
Determines the vertical size of the graph—choose between Small, Medium,
and Large.

Style
Selects the style of the graph. Choose between:

Bars, displays a vertical bar for each log.

Columns, displays a column for each log.

Levels, displays the graph with a rectangle for each log, optionally color-filled.

Linear, displays the graph as a thin line between consecutive logs.

Note that all styles are not available for all graphs.

Solid Graph
Displays the graph as a color-filled solid graph instead of as a thin line.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

AFE1_AFE2-1:1

286

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Timeline window—Events graph
The Timeline window is available from the C-SPY driver menu during a debug session.

This window displays trace data represented as different graphs, in relation to a shared
time axis.

The Events graph displays the events produced when the execution passes specific
positions in your application code.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Requirements

One of these alternatives:

● The C-SPY I-jet driver and an I-jet debug probe

● The C-SPY J-Link/J-Trace driver. For the J-Trace debug probe, event logging is
very limited when ETM trace is enabled.

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

Display area for the Events graph

Where:

● The label area at the left end of the graph displays the name of the channel.

AFE1_AFE2-1:1

The application timeline

287

● For each channel, there will be a vertical line that indicates when the event occurred.
Optionally, you can choose to display the event value that was passed with the
event.

● The graph can be displayed in different styles—as a thin line between consecutive
logs, as a rectangle for every log (optionally color-filled), or as vertical bars.

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all data logs from the target system.

At the bottom of the window, there is a shared time axis that uses seconds or cycles as
the time unit.

See also Getting started using event logging, page 264.

Context menu

This context menu is available:

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

AFE1_AFE2-1:1

288

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Events
A heading that shows that the Events-specific commands below are available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Variable
The name of the channel for which the Events-specific commands below apply.
This menu command is context-sensitive, which means it reflects the channel in
the Events graph you selected in the Timeline window (one of up to four).

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 290.

AFE1_AFE2-1:1

The application timeline

289

Size
Determines the vertical size of the graph—choose between Small, Medium,
and Large.

Style
Selects the style of the graph. Choose between:

Bars, displays a vertical bar for each log.

Columns, displays a column for each log.

Levels, displays the graph with a rectangle for each log, optionally color-filled.

Linear, displays the graph as a thin line between consecutive logs.

Note that all styles are not available for all graphs.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Signed
Toggles between displaying the selected value as a signed or unsigned number.
Note that this setting also affects the log window.

Hexadecimal
Toggles between displaying the selected value in decimal or hexadecimal
format. Note that this setting also affects the log window.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

AFE1_AFE2-1:1

290

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

Viewing Range dialog box
The Viewing Range dialog box is available from the context menu that appears when
you right-click in any graph in the Timeline window that uses the linear, levels or
columns style.

Use this dialog box to specify the value range, that is, the range for the Y-axis for the
graph.

Requirements

One of these alternatives:

● The C-SPY Simulator. (Not for all cores and devices.)

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

Range for ...

Selects the viewing range for the displayed values:

Auto
Uses the range according to the range of the values that are actually collected,
continuously keeping track of minimum or maximum values. The currently
computed range, if any, is displayed in parentheses. The range is rounded to
reasonably even limits.

Factory
For the Power Log graph—Uses the range according to the properties of the
measuring hardware (only if supported by the product edition you are using).

AFE1_AFE2-1:1

The application timeline

291

For all other graphs—Uses the range according to the value range of the
variable, for example 0–65535 for an unsigned 16-bit integer.

Custom
Use the text boxes to specify an explicit range.

Scale

Selects the scale type of the Y-axis:

● Linear
● Logarithmic

AFE1_AFE2-1:1

292

Reference information on application timeline

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

293

Profiling
● Introduction to the profiler

● Using the profiler

● Reference information on the profiler

Introduction to the profiler
These topics are covered:

● Reasons for using the profiler

● Briefly about the profiler

● Requirements for using the profiler

REASONS FOR USING THE PROFILER

Function profiling can help you find the functions in your source code where the most
time is spent during execution. You should focus on those functions when optimizing
your code. A simple method of optimizing a function is to compile it using speed
optimization. Alternatively, you can move the data used by the function into more
efficient memory. For detailed information about efficient memory usage, see the IAR
C/C++ Development Guide for Arm.

Alternatively, you can use filtered profiling, which means that you can exclude, for
example, individual functions from being profiled. To profile only a specific part of your
code, you can select a time interval—using the Timeline window—for which C-SPY
produces profiling information.

Instruction profiling can help you fine-tune your code on a very detailed level, especially
for assembler source code. Instruction profiling can also help you to understand where
your compiled C/C++ source code spends most of its time, and perhaps give insight into
how to rewrite it for better performance.

BRIEFLY ABOUT THE PROFILER

Function profiling information is displayed in the Function Profiler window, that is,
timing information for the functions in an application. Profiling must be turned on
explicitly using a button on the window’s toolbar, and will stay enabled until it is turned
off.

AFE1_AFE2-1:1

294

Introduction to the profiler

C-SPY® Debugging Guide
for Arm

For debug probes that support it, C-SPY can capture full instruction trace in real time,
and process the information for the Function Profiler window.

Instruction profiling information is displayed in the Disassembly window, that is, the
number of times each instruction has been executed.

Profiling sources

The profiler can use different mechanisms, or sources, to collect profiling information.
Depending on the available trace source features, one or more of the sources can be used
for profiling:

● Trace (calls)
The full instruction trace (ETM trace) is analyzed to determine all function calls and
returns. When the collected instruction sequence is incomplete or discontinuous, as
sometimes happens when using ETM trace, the profiling information is less accurate.

Select this profiling source (or Trace (flat)) to activate ETM trace for code coverage.

● Trace (flat)/Sampling
Each instruction in the full instruction trace (ETM trace) or each PC Sample (from
SWO trace) is assigned to a corresponding function or code fragment, without regard
to function calls or returns. This is most useful when the application does not exhibit
normal call/return sequences, such as when you are using an RTOS, or when you are
profiling code which does not have full debug information.

Select this profiling source (or Trace (calls)) to activate ETM trace for code coverage.

Power sampling

Some debug probes support sampling of the power consumption of the development
board, or components on the board. Each sample is associated with a PC sample and
represents the power consumption (actually, the electrical current) for a small time
interval preceding the time of the sample. When the profiler is set to use Power
Sampling, additional columns are displayed in the Profiler window. Each power sample
is associated with a function or code fragment, just as with regular PC Sampling.

Note that this does not imply that all the energy corresponding to a sample can be
attributed to that function or code fragment. The time scales of power samples and
instruction execution are vastly different—during one power measurement, the CPU has
typically executed many thousands of instructions. Power Sampling is a statistics tool.

REQUIREMENTS FOR USING THE PROFILER

The C-SPY simulator supports the profiler for most cores and devices. If supported,
there are no further specific requirements.

AFE1_AFE2-1:1

Profiling

295

To use the profiler in your hardware debugger system, you need one of these
alternatives:

● An I-jet or I-jet Trace in-circuit debugging probe, a J-Link, a J-Trace, ST-LINK
debug probe with an SWD/SWO interface between the probe and the target system,
which must be based on a Cortex-M device

● A I-jet Trace in-circuit debugging probe and an Arm device with ETM trace

● A J-Trace debug probe and an Arm7/9 or Cortex-M device with ETM trace.

This table lists the C-SPY driver profiling support:

1 Only for Cortex-M devices supporting SWO.

2 Requires SWO trace.

3 Only for XDS110 with EnergyTraceTM options.

4 Not for all cores and devices.

Using the profiler
These tasks are covered:

● Getting started using the profiler on function level

● Analyzing the profiling data

● Getting started using the profiler on instruction level

Target system Trace (calls) Trace (flat) Sampling Power

C-SPY simulator Yes4 Yes4 — —

CMSIS-DAP Yes Yes — —

I-jet Yes Yes Yes1 Yes

I-jet Trace Yes Yes Yes1 Yes

J-Link Yes Yes Yes1 —

J-Link Ultra Yes Yes Yes1 Yes2

J-Trace Yes Yes Yes1 —

GDB Server — — — —

ST-LINK — — Yes1 Yes1

TI Stellaris — — — —

TI XDS — — Yes1 Yes3

TI MSP-FET — — — Yes

Table 12: C-SPY driver profiling support

AFE1_AFE2-1:1

296

Using the profiler

C-SPY® Debugging Guide
for Arm

● Selecting a time interval for profiling information

GETTING STARTED USING THE PROFILER ON FUNCTION
LEVEL

To display function profiling information in the Function Profiler window:
1 Build your application using these options:

2 To set up the profiler for function profiling:

● If you use ETM trace, make sure that the Cycle accurate tracing option is selected
in the Trace Settings dialog box.

● If you use the SWD/SWO interface, no specific settings are required.

3 When you have built your application and started C-SPY, choose C-SPY
driver>Function Profiler to open the Function Profiler window, and click the
Enable button to turn on the profiler. Alternatively, choose Enable from the context
menu that is available when you right-click in the Function Profiler window.

4 Start executing your application to collect the profiling information.

5 Profiling information is displayed in the Function Profiler window. To sort, click on
the relevant column header.

6 When you start a new sampling, you can click the Clear button—alternatively, use the
context menu—to clear the data.

ANALYZING THE PROFILING DATA

Here follow some examples of how to analyze the data.

The first figure shows the result of profiling using Source: Trace (calls). The profiler
follows the program flow and detects function entries and exits.

● For the InitFib function, Flat Time 231 is the time spent inside the function itself.

● For the InitFib function, Acc Time 487 is the time spent inside the function itself,
including all functions InitFib calls.

● For the InitFib/GetFib function, Acc Time 256 is the time spent inside GetFib (but
only when called from InitFib), including any functions GetFib calls.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker Output>Include debug information in output

Table 13: Project options for enabling the profiler

AFE1_AFE2-1:1

Profiling

297

● Further down in the data, you can find the GetFib function separately and see all of
its subfunctions (in this case none).

The second figure shows the result of profiling using Source: Trace (flat). In this case,
the profiler does not follow the program flow, instead the profiler only detects whether
the PC address is within the function scope. For incomplete trace data, the data might
contain minor errors.

AFE1_AFE2-1:1

298

Using the profiler

C-SPY® Debugging Guide
for Arm

For the InitFib function, Flat Time 231 is the time (number of hits) spent inside the
function itself.

To secure valid data when using a debug probe, make sure to use the maximum trace
buffer size and set a breakpoint in your code to stop the execution before the buffer is
full.

Note: The <No function> entry represents PC values that are not within the known
C-SPY ranges for the application.

GETTING STARTED USING THE PROFILER ON INSTRUCTION
LEVEL

To display instruction profiling information in the Disassembly window:
1 When you have built your application and started C-SPY, choose View>Disassembly

to open the Disassembly window, and choose Instruction Profiling>Enable from the
context menu that is available when you right-click in the left-hand margin of the
Disassembly window.

2 Make sure that the Show command on the context menu is selected, to display the
profiling information.

3 Start executing your application to collect the profiling information.

4 When the execution stops, for instance because the program exit is reached or a
breakpoint is triggered, you can view instruction level profiling information in the
left-hand margin of the window.

AFE1_AFE2-1:1

Profiling

299

For each instruction, the number of times it has been executed is displayed.

Instruction profiling attempts to use the same source as the function profiler. If the
function profiler is not on, the instruction profiler will try to use first trace and then PC
sampling as source. You can change the source to be used from the context menu that is
available in the Function Profiler window.

SELECTING A TIME INTERVAL FOR PROFILING
INFORMATION

Normally, the profiler computes its information from all PC samples it receives,
accumulating more and more information until you explicitly clear the profiling
information. However, you can choose a time interval for which the profiler computes
the PC samples. This function is supported by the I-jet and I-jet Trace in-circuit
debugging probes, the J-Link probe, the J-Trace probe, the ST-LINK probe, and the
TI XDS probe.

To select a time interval:
1 Choose Function Profiler from the C-SPY driver menu.

2 In the Function Profiler window, right-click and choose Source: Sampling from the
context menu.

3 Execute your application to collect samples.

4 Choose C-SPY driver>Timeline.

5 In the Timeline window, click and drag to select a time interval.

AFE1_AFE2-1:1

300

Reference information on the profiler

C-SPY® Debugging Guide
for Arm

6 In the selected time interval, right-click and choose Profile Selection from the context
menu.

The Function Profiler window now displays profiling information for the selected time
interval.

7 Click the Full/Time-interval profiling button to toggle the Full profiling view.

Reference information on the profiler
Reference information about:

● Function Profiler window, page 301

See also:

● Disassembly window, page 83

● ETM Trace Settings dialog box (J-Link/J-Trace), page 221

● ETM Trace Settings dialog box (I-jet), page 219

● SWO Trace Window Settings dialog box, page 223

AFE1_AFE2-1:1

Profiling

301

● SWO Configuration dialog box, page 225

Function Profiler window
The Function Profiler window is available from the C-SPY driver menu.

This window displays function profiling information.

When Trace (flat) is selected, a checkbox appears on each line in the left-side margin of
the window. Use these checkboxes to include or exclude lines from the profiling.
Excluded lines are dimmed but not removed.

See also Using the profiler, page 295.

Requirements

One of these alternatives:

● The C-SPY Simulator. Not available for all cores and devices.

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY CMSIS-DAP driver

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

Toolbar

The toolbar contains:

Enable/Disable
Enables or disables the profiler.

Clear
Clears all profiling data.

AFE1_AFE2-1:1

302

Reference information on the profiler

C-SPY® Debugging Guide
for Arm

Save
Opens a standard Save As dialog box where you can save the contents of the
window to a file, with tab-separated columns. Only non-expanded rows are
included in the list file.

Graphical view
Overlays the values in the percentage columns with a graphical bar.

Progress bar
Displays a backlog of profiling data that is still being processed. If the rate of
incoming data is higher than the rate of the profiler processing the data, a
backlog is accumulated. The progress bar indicates that the profiler is still
processing data, but also approximately how far the profiler has come in the
process.

Note that because the profiler consumes data at a certain rate and the target
system supplies data at another rate, the amount of data remaining to be
processed can both increase and decrease. The progress bar can grow and shrink
accordingly.

Time-interval mode
Toggles between profiling a selected time interval or full profiling. This toolbar
button is only available if PC Sampling is supported by the debug probe.

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 294.

Status field
Displays the range of the selected time interval, in other words, the profiled
selection. This field is yellow when Time-interval profiling mode is enabled.
This field is only available if PC Sampling is supported by the debug probe
(SWO trace).

For information about which views that are supported in the C-SPY driver you
are using, see Requirements for using the profiler, page 294.

Display area

The content in the display area depends on which source that is used for the profiling
information:

● For the Trace (calls) source, the display area contains one line for each function
compiled with debug information enabled. When some profiling information has
been collected, it is possible to expand rows of functions that have called other
functions. The child items for a given function list all the functions that have been
called by the parent function and the corresponding statistics.

AFE1_AFE2-1:1

Profiling

303

● For the Trace (flat) source, the display area contains one line for each C function of
your application, but also lines for sections of code from the runtime library or from
other code without debug information, denoted only by the corresponding
assembler labels. Each executed PC address from trace data is treated as a separate
sample and is associated with the corresponding line in the Profiling window. Each
line contains a count of those samples.

For information about which views that are supported in the C-SPY driver you are using,
see Requirements for using the profiler, page 294.

More specifically, the display area provides information in these columns:

Function (All sources)
The name of the profiled C function.

For Sampling source, sections of code from the runtime library or from other
code without debug information, denoted only by the corresponding assembler
labels, is displayed.

Calls (Trace (calls))
The number of times the function has been called.

Flat time (Trace (calls))
The time expressed in cycles spent inside the function.

Flat time (%) (Trace (calls))
Flat time expressed as a percentage of the total time.

Acc. time (Trace (calls))
The time expressed in cycles spent inside the function and everything called by
the function.

Acc. time (%) (Trace (calls))
Accumulated time expressed as a percentage of the total time.

PC Count (Trace (flat) and Sampling)
The number of executed instructions (Trace) or PC samples (Sampling)
associated with the function.

PC Count (%) (Trace (flat) and Sampling)
The number of executed instructions (Trace) or PC samples (Sampling)
associated with the function as a percentage of the total number of executed
instructions /PC samples.

Power Samples (Power Sampling)
The number of power samples associated with that function.

AFE1_AFE2-1:1

304

Reference information on the profiler

C-SPY® Debugging Guide
for Arm

Energy (%) (Power Sampling)
The accumulated value of all measurements associated with that function,
expressed as a percentage of all measurements.

Avg Current [mA] (Power Sampling)
The average measured value for all samples associated with that function.

Min Current [mA] (Power Sampling)
The minimum measured value for all samples associated with that function.

Max Current [mA] (Power Sampling)
The maximum measured value for all samples associated with that function.

Context menu

This context menu is available:

The contents of this menu depend on the C-SPY driver you are using.

These commands are available:

Enable
Enables the profiler. The system will also collect information when the window
is closed.

Clear
Clears all profiling data.

Filtering
Selects which part of your code to profile. Choose between:

Check All—Excludes all lines from the profiling.

Uncheck All—Includes all lines in the profiling.

Load—Reads all excluded lines from a saved file.

Save—Saves all excluded lines to a file. Typically, this can be useful if you are
a group of engineers and want to share sets of exclusions.

These commands are only available when using one of the modes Trace (flat) or
Sampling.

AFE1_AFE2-1:1

Profiling

305

Source
Selects which source to be used for the profiling information. See also Profiling
sources, page 294.

Note that the available sources depend on the C-SPY driver you are using.

Choose between:

Sampling—the instruction count for instruction profiling represents the number
of samples for each instruction.

Trace (calls)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Trace (flat)—the instruction count for instruction profiling is only as complete
as the collected trace data.

Power Sampling
Toggles power sampling information on or off. This command is supported by
the I-jet and I-jet Trace in-circuit debugging probes, the J-Link, and the J-Link
Ultra debug probes.

Save to File
Saves all profiling data to a file.

Show Source
Opens the editor window (if not already opened) and highlights the selected
source line.

AFE1_AFE2-1:1

306

Reference information on the profiler

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

307

Code coverage
● Introduction to code coverage

● Reference information on code coverage

Introduction to code coverage
These topics are covered:

● Reasons for using code coverage

● Briefly about code coverage

● Requirements and restrictions for using code coverage

REASONS FOR USING CODE COVERAGE

The code coverage functionality is useful when you design your test procedure to verify
whether all parts of the code have been executed. It also helps you identify parts of your
code that are not reachable.

BRIEFLY ABOUT CODE COVERAGE

The Code Coverage window reports the status of the current code coverage analysis for
C or C++ code. For every program, module, and function, the analysis shows the
percentage of code that has been executed since code coverage was turned on up to the
point where the application has stopped. In addition, all statements that have not been
executed are listed. The analysis will continue until turned off.

For debug probes that support it, C-SPY can capture full instruction trace in real time,
and process the information for the Code Coverage window.

Note: Assembler code is not covered in the Code Coverage window. To view code
coverage for assembler code, use the Disassembly window.

REQUIREMENTS AND RESTRICTIONS FOR USING CODE
COVERAGE

Code coverage is supported by the C-SPY simulator for most cores and devices and if
supported there are no specific requirements or restrictions.

AFE1_AFE2-1:1

308

Reference information on code coverage

C-SPY® Debugging Guide
for Arm

To use code coverage in your hardware debugger system, consider these requirements
and restrictions:

● When SWO trace is used—code coverage information is based on trace samples
only. This means that a function must be executed several times before 100% code
coverage is reached. Also, no code coverage information is collected while single
stepping.

● When ETM trace is used—for some devices, code coverage can be of infinite
length. Without this enhanced trace capability, the coverage length is restricted by
the size of the trace buffer. For efficient use of the trace buffer, you can limit the
trace data collection using the trace start and trace stop breakpoints.

● Real-time code coverage requires that the debug probe supports this feature.

● Run code coverage on non-optimized code, as optimizations will negatively affect
code coverage.

Reference information on code coverage
Reference information about:

● Code Coverage window, page 308

See also Single stepping, page 76.

Code Coverage window
The Code Coverage window is available from the View menu.

AFE1_AFE2-1:1

Code coverage

309

This window reports the status of the current code coverage analysis. For every program,
module, and function, the analysis shows the percentage of code that has been executed
since code coverage was turned on up to the point where the application has stopped. In
addition, all statements that have not been executed are listed. The analysis will continue
until turned off.

Only source code that was compiled with debug information is displayed. Therefore,
startup code, exit code, and library code are not displayed in the window. Furthermore,
coverage information for statements in inlined functions is not displayed. Only the
statement containing the inlined function call is marked as executed.

A statement is considered to be executed when all its instructions have been executed.
By default, when a statement has been executed, it is removed from the window and the
percentage is increased correspondingly.

Requirements

One of these alternatives:

● The C-SPY Simulator. Not available for all cores and devices.

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY CMSIS-DAP driver

● The C-SPY ST-LINK driver

● The C-SPY TI XDS driver

Display area

Double-clicking a statement or a function in the Code Coverage window displays that
statement or function as the current position in the editor window, which becomes the
active window.

These columns are available:

Code
The code coverage information is displayed as a tree structure, showing the
program, module, function, and statement levels. You can use the plus (+) sign
and minus (-) sign icons to expand and collapse the structure.

These icons give you an overview of the current status on all levels:

● Red diamond—0% of the modules or functions has been executed.

● Green diamond—100% of the modules or functions has been executed.

● Red and green diamond—Some of the modules or functions have been
executed. This is most directly visible at the instruction level for a branch
instruction or a conditionally executed instruction. For example, coverage

AFE1_AFE2-1:1

310

Reference information on code coverage

C-SPY® Debugging Guide
for Arm

data can indicate that while a branch instruction has executed, control flow
has not both branched and continued in straight execution. Or, in the case of
a conditional instruction, it indicates if the instruction has executed both
with the controlling flag set, and with the controlling flag not set.

Red, green, and yellow colors can be used as highlight colors in the source editor
window. In the editor window, the yellow color signifies partially executed.

Coverage (%)
The amount of statements that has been covered so far, that is, the number of
executed statements divided with the total number of statements.

Code Range
The address range in code memory where the statement is located.

File
The source file where the step point is located.

Line
The source file line where the step point is located.

Column
The source file column where the step point is located.

Context menu

This context menu is available:

These commands are available:

Activate
Switches code coverage on and off during execution.

Clear
Clears the code coverage information. All step points are marked as not
executed.

Hide Covered Step Points
Toggles the display of covered step points on and off. When this option is
selected, executed statements are removed from the window.

AFE1_AFE2-1:1

Code coverage

311

Show Coverage in Editor
Toggles the red, green, and yellow highlight colors that indicate code coverage
in the source editor window on and off.

Save session
Saves your code coverage session data to a *.dat file. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command is only
supported by the C-SPY simulator.

Restore session
Restores previously saved code coverage session data. This is useful if you for
some reason must abort your debug session, but want to continue the session
later on. This command is available on the toolbar. This command is only
supported by the C-SPY simulator.

Save As
Saves the current code coverage result in a text file.

AFE1_AFE2-1:1

312

Reference information on code coverage

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

313

Performance monitoring
● Introduction to performance monitoring

● Setting up performance monitoring

● Reference information on performance monitoring

Introduction to performance monitoring
These topics are covered:

● Briefly about performance monitoring

● Requirements and restrictions for using performance monitoring

● Event types

● Detecting counter overflow

BRIEFLY ABOUT PERFORMANCE MONITORING

The Performance Monitoring window is a viewer for counting events or CPU clock
cycles through the Performance Monitoring Unit (PMU) available on Cortex-A,
Cortex-R, and some Cortex-M devices. Cortex-M devices must be based on the
Armv8.1M architecture.

To monitor event counters or CPU cycles through the PMU in the Performance
Monitoring window, you must first make settings in the window and select the events
that you want to monitor.

REQUIREMENTS AND RESTRICTIONS FOR USING
PERFORMANCE MONITORING

To use performance monitoring in your hardware debugger system, consider these
requirements and restrictions:

● This feature requires an I-jet or J-Link probe.

● The target device must be equipped with a PMU. There are different PMU protocol
versions available. C-SPY can handle all versions from PMUv1 and higher.

Note: The PMU on Arm v8-A (or higher) devices is not supported by the C-SPY
Performance Monitoring window.

● To use Auto-Update on a Cortex-A or Cortex-R device, IAR Embedded
Workbench also requires a probe with a driver that can connect to the PMU through

AFE1_AFE2-1:1

314

Introduction to performance monitoring

C-SPY® Debugging Guide
for Arm

a debug access point (DAP)—currently only available with the I-jet family of
probes—and the target must have memory-mapped registers. If these requirements
are not met, the values of the event counters will only be updated when the
application execution is stopped. For a Cortex-M device equipped with a PMU,
DAP is not required for enabling Auto-Update, but currently only the I-jet family of
probes are officially supported by C-SPY.

When the Performance Monitoring window is open, the PMU registers in the
Registers window (if visible) cannot be modified and their values cannot be reliably
synced with the values in the Performance Monitoring window.

Note: For Armv7 and Armv8 devices, the PMU counters use 32-bit registers (for
Armv8.1M devices, the PMU counters only use 16-bit registers), but the values in the
Performance Monitoring window will show 64-bit data, taking into account counter
overflows.

EVENT TYPES

The PMU is designed to count different types of events. There are two categories of
events—common events and implementation-defined events.

Common events

If implemented, a common event must comply with the definitions given by the Arm
Architecture specification. The Performance Monitoring window provides a standard
list of these events. If a common event is not implemented in the target device, the
counter will not increment. Therefore, you are responsible for knowing whether or not
an event has been implemented in the device you are using.

Implementation-defined events

An implementation-defined event is more dependent on the target device, which gives
the chip manufacturer more freedom in the design. However, Arm strongly recommends
that the implementation conforms to the definitions in the Arm Architecture
specification.

The implementation-defined event list in C-SPY can contain events specific to the
current device. The Performance Monitoring window manages functions for loading
and saving this list as a text file that you can create and modify. Examples of architecture
specific implementation-defined event lists are provided in the directory arm\src\PMU.
This list is also automatically saved in the project settings file in the current IAR
Embedded Workbench project folder when C-SPY exits.

AFE1_AFE2-1:1

Performance monitoring

315

DETECTING COUNTER OVERFLOW

Counter overflow occurs when the highest bit (bit 31 on 32-bit registers) in a PMU
counter changes from 1 to 0. This change can be seen in the PMOVSR register in 32-bit
mode, and in the PMOVSR_EL0 register in 64-bit mode (which is only available for
Armv8 devices). For Armv8.1M devices, the register is named PMU_OVSR.

If Auto-Update is enabled, the overflows will be incremented when detected, and
shown in the Overflow column in the Performance Monitoring window.

If Auto-Update is disabled, C-SPY will not be able to keep track of the overflows,
which makes the values of the counters in the Value column unreliable. Whenever the
execution is paused and an overflow is detected in a counter, there is no way for C-SPY
to know if there has been more than one overflow during execution. In general, the
values in the Value column are unreliable whenever the corresponding counters show a
value less than zero (0) in the Overflow column.

Occasionally, a value in the Value column might show an asterisk (*) before the actual
value and a tooltip with the word Overflow when the mouse pointer hovers over the
affected counter value. This indicates that the overflow bit for that counter is set, but
C-SPY has not yet updated the value and incremented the overflow count in the
Overflow column.

Setting up performance monitoring
To monitor event counters or CPU cycles through the PMU in the Performance
Monitoring window, you must make settings in the window and select the events that
you would like to monitor.

To set up performance monitoring:
1 When the debug probe is connected, choose C-SPY driver>Performance Monitoring.

2 In the Performance Monitoring window, right-click and choose Enable
Performance Monitoring from the context menu.

3 For each counter, use the context menu options to select a common or
implementation-defined event that you want to monitor.

When you run the application, the event counters or CPU cycles through the PMU are
displayed in the Performance Monitoring window.

AFE1_AFE2-1:1

316

Reference information on performance monitoring

C-SPY® Debugging Guide
for Arm

Reference information on performance monitoring
Reference information about:

● Performance Monitoring window, page 316

Performance Monitoring window
The Performance Monitoring window is available from the C-SPY driver menu
during a debug session.

Use this window to monitor counting events or CPU clock cycles through the PMU.

Note: The names of the counters in this window can be used as pseudo-variables in
other windows, such as a Watch-type window.

Requirements

A debug probe with support for performance monitoring and one of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

Display area

This area contains a description of the most recent fault exception that was encountered
during application execution.

This area contains these columns:

Counter
The names of the counters.

Value
The resulting counts.

AFE1_AFE2-1:1

Performance monitoring

317

Event ID
The assigned event IDs for the counter.

Overflow
The number of detected overflows.

Context menu

This context menu is available for setting up and managing events and counter results:

Enable Performing Monitoring
Enables performance monitoring.

Update All Counters
If the PMU can be accessed at runtime (that is, when the PMU registers are
memory-mapped and are accessible at runtime), this menu command refreshes
the values of all counters, including PMCCNTR, otherwise it will be unavailable.

Auto-Update
This option is only available when the PMU registers can be accessed at
runtime. If enabled, the Performance Monitoring window automatically
refreshes at regular intervals. The time between each refresh is controlled by the
LiveWatch setting on the Tools>Options>Debugger page.

During execution, C-SPY also accumulates overflows and adds them to the total
value of each respective counter.

Note that if the Auto-Update refresh rate is set too low, a PMU register might
overflow more than once during execution, which will make the total counts
unreliable. Make sure that the updates are made at least once for the smallest
register, assuming that it increments with the same frequency as the cycle
counter.

AFE1_AFE2-1:1

318

Reference information on performance monitoring

C-SPY® Debugging Guide
for Arm

Set Common Event
Opens the list of common events. The selected event will be assigned to the
currently selected counter.

Note that this menu item does not work for PMCCNTR.

Reset Counter
Resets the currently selected counter. This operation also resets the Overflow for
that counter in the PMOVSR register.

Reset All Counters
Resets all counters, including PMCCNTR. This operation also resets all Overflow
bits in the PMOVSR register.

Copy Value to Clipboard
Copies the value of the currently selected counter excluding the overflow
asterisk (*) marker.

Copy all to Clipboard
Copies the entire contents of the window. The operation creates a table where
each column is separated by a Tab character, and each line contains a counter.

Count every 64 cycles
When selected, sets the PMCR.D bit, which makes the PMCCNTR only count every
64th clock cycle. This is useful to make the counting last longer before the
overflow bit is set. C-SPY automatically multiplies the number of counts by 64.
Note that this decreases the accuracy of the cycle counting.

Set Implementation Defined Event
Opens a menu with implementation-defined events. The selected event will be
assigned to the currently selected counter.

Note that this menu item does not work for PMCCNTR.

Clear Implementation Defined Event List
Clears the list of implementation-defined events.

Save Implementation Defined Event List
Opens a standard File Save dialog box from which you can choose a filename
to save the current implementation-defined event list. The saved file is a text file
where each line contains the ID, name, and description of an event, separated by
spaces or tabs. The ID is stored as a hexadecimal number beginning with 0x.

AFE1_AFE2-1:1

Performance monitoring

319

Load Implementation Defined Event List
Opens a standard File Open dialog box from which you can load a list of
implementation-defined events, where each line should contain the ID, name,
and description of an event, separated by spaces or tabs.

The format is defined as this:

● The first element must be a decimal or hexadecimal number (where
hexadecimal numbers must start with 0x)

● The second element must be a name containing letters, numbers, or
underscores

● The last element can contain any text, but C-SPY will trim off the starting
and ending spaces when the file is loaded

● If a line does not follow this syntax, it will be silently ignored.

For example, the first line in a file containing the Armv8
implementation-defined event list should look like this:

0x0040 L1D_CACHE_RD Atttribute Level 1 data cache access, read

Note that there are no restrictions to the type of spacing used between the
elements in a line. However, a Tab character is usually preferred for editing
purposes.

AFE1_AFE2-1:1

320

Reference information on performance monitoring

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

321

Power debugging
● Introduction to power debugging

● Optimizing your source code for power consumption

● Debugging in the power domain

● Reference information on power debugging

Introduction to power debugging
These topics are covered:

● Reasons for using power debugging

● Briefly about power debugging

● Requirements and restrictions for power debugging

REASONS FOR USING POWER DEBUGGING

Long battery lifetime is a very important factor for many embedded systems in almost
any market segment—medical, consumer electronics, home automation, etc. The power
consumption in these systems does not only depend on the hardware design, but also on
how the hardware is used. The system software controls how it is used.

For examples of when power debugging can be useful, see Optimizing your source code
for power consumption, page 323.

BRIEFLY ABOUT POWER DEBUGGING

Power debugging is based on the ability to sample the power consumption—more
precisely, the power being consumed by the CPU and the peripheral units—and
correlate each sample with the application’s instruction sequence and hence with the
source code and various events in the program execution.

Traditionally, the main software design goal has been to use as little memory as possible.
However, by correlating your application’s power consumption with its source code you
can gain insight into how the software affects the power consumption, and thus how it
can be minimized.

AFE1_AFE2-1:1

322

Introduction to power debugging

C-SPY® Debugging Guide
for Arm

Measuring power consumption

The debug probe measures the voltage drop across a small resistor in series with the
supply power to the device. The voltage drop is measured by a differential amplifier and
then sampled by an AD converter.

The TI MSP-FET and TI XDS 110 debug probes use EnergyTraceTM Technology
support to measure the power supplied to a target microcontroller. A software-controlled
DC–DC converter generates the target power supply. The time density of the DC–DC
converter charge pulses equals the power consumption of the target microcontroller. A
built-in on-the-fly calibration circuit defines the energy equivalent of a single DC–DC
charge pulse.

Power debugging using C-SPY

C-SPY provides an interface for configuring your power debugging and a set of
windows for viewing the power values:

● The Power Log Setup window is where you can specify a threshold and an action
to be executed when the threshold is reached. This means that you can enable or
disable the power measurement or you can stop the application’s execution and
determine the cause of unexpected power values.

● The Power Log window displays all logged power values. This window can be used
for finding peaks in the power logging and because the values are correlated with
the executed code, you can double-click on a value in the Power Log window to get
the corresponding code. The precision depends on the frequency of the samples, but
there is a good chance that you find the source code sequence that caused the peak.

● The Power graph in the Timeline window displays power values on a time scale.
This provides a convenient way of viewing the power consumption in relation to the
other information displayed in the window. The Timeline window is correlated to
both the Power Log window, the source code window, and the Disassembly
window, which means you are just a double-click away from the source code that
corresponds to the values you see on the timeline.

● The Function Profiler window combines the function profiling with the power
logging to display the power consumption per function—power profiling. You will
get a list of values per function and also the average values together with max and
min values. Thus, you will find the regions in the application that you should focus
when optimizing for power consumption.

AFE1_AFE2-1:1

Power debugging

323

REQUIREMENTS AND RESTRICTIONS FOR POWER
DEBUGGING

To use the features in C-SPY for power debugging, you need one of these:

● An I-jet or I-jet Trace in-circuit debugging probe. Note that power debugging is not
possible when using I-jet Trace with ETM.

For more accurate power debugging, you can connect the I-scope probe between the
I-jet/I-jet Trace probe and the target board. I-scope adds detailed current and voltage
measurement capability.

● A J-Link Ultra debug probe and a Cortex-M device with SWO.

● A TI MSP-FET debug probe, featuring the EnergyTraceTM technology provided by
Texas Instruments, and a TI MSP-FET device. The probe outputs voltage, current,
and energy information.

● An ST STLINK-V3PWR debug probe and a Cortex-M device with SWO. The
target board should be powered via the probe.

● A TI XDS110 debug probe, featuring the EnergyTraceTM technology provided by
Texas Instruments, and a Texas Instruments device. The probe outputs voltage,
current, and energy information.

Optimizing your source code for power consumption
This section gives some examples where power debugging can be useful and hopefully
help you identify source code constructions that can be optimized for low power
consumption.

These topics are covered:

● Waiting for device status

● Software delays

● DMA versus polled I/O

● Low-power mode diagnostics

● CPU frequency

● Detecting mistakenly unattended peripherals

● Peripheral units in an event-driven system

● Finding conflicting hardware setups

● Analog interference

AFE1_AFE2-1:1

324

Optimizing your source code for power consumption

C-SPY® Debugging Guide
for Arm

WAITING FOR DEVICE STATUS

One common construction that could cause unnecessary power consumption is to use a
poll loop for waiting for a status change of, for example a peripheral device.
Constructions like this example execute without interruption until the status value
changes into the expected state.

while (USBD_GetState() < USBD_STATE_CONFIGURED);
while ((BASE_PMC->PMC_SR & MC_MCKRDY) != PMC_MCKRDY);

To minimize power consumption, rewrite polling of a device status change to use
interrupts if possible, or a timer interrupt so that the CPU can sleep between the polls.

SOFTWARE DELAYS

A software delay might be implemented as a for or while loop like for example:

i = 10000; /* A software delay */
do i--;
while (i != 0);

Such software delays will keep the CPU busy with executing instructions performing
nothing except to make the time go by. Time delays are much better implemented using
a hardware timer. The timer interrupt is set up and after that, the CPU goes down into a
low power mode until it is awakened by the interrupt.

DMA VERSUS POLLED I/O

DMA has traditionally been used for increasing transfer speed. For MCUs there are
plenty of DMA techniques to increase flexibility, speed, and to lower power
consumption. Sometimes, CPUs can even be put into sleep mode during the DMA
transfer. Power debugging lets you experiment and see directly in the debugger what
effects these DMA techniques will have on power consumption compared to a
traditional CPU-driven polled solution.

LOW-POWER MODE DIAGNOSTICS

Many embedded applications spend most of their time waiting for something to
happen—receiving data on a serial port, watching an I/O pin change state, or waiting for
a time delay to expire. If the processor is still running at full speed when it is idle, battery
life is consumed while very little is being accomplished. So in many applications, the
core is only active during a very small amount of the total time, and by placing it in a
low-power mode during the idle time, the battery life can be extended considerably.

A good approach is to have a task-oriented design and to use an RTOS. In a task-oriented
design, a task can be defined with the lowest priority, and it will only execute when there
is no other task that needs to be executed. This idle task is the perfect place to implement
power management. In practice, every time the idle task is activated, it sets the core into

AFE1_AFE2-1:1

Power debugging

325

a low-power mode. Many microprocessors and other silicon devices have a number of
different low-power modes, in which different parts of the core can be turned off when
they are not needed. The oscillator can for example either be turned off or switched to a
lower frequency. In addition, individual peripheral units, timers, and the CPU can be
stopped. The different low-power modes have different power consumption based on
which peripherals are left turned on. A power debugging tool can be very useful when
experimenting with different low-level modes.

You can use the Function profiler in C-SPY to compare power measurements for the task
or function that sets the system in a low-power mode when different low-power modes
are used. Both the mean value and the percentage of the total power consumption can be
useful in the comparison.

CPU FREQUENCY

Power consumption in a CMOS MCU is theoretically given by the formula:

P = f * U2 * k

where f is the clock frequency, U is the supply voltage, and k is a constant.

Power debugging lets you verify the power consumption as a factor of the clock
frequency. A system that spends very little time in sleep mode at 50 MHz is expected to
spend 50% of the time in sleep mode when running at 100 MHz. You can use the power
data collected in C-SPY to verify the expected behavior, and if there is a non-linear
dependency on the clock frequency, make sure to choose the operating frequency that
gives the lowest power consumption.

DETECTING MISTAKENLY UNATTENDED PERIPHERALS

Peripheral units can consume much power even when they are not actively in use. If you
are designing for low power, it is important that you disable the peripheral units and not
just leave them unattended when they are not in use. But for different reasons, a
peripheral unit can be left with its power supply on—it can be a careful and correct
design decision, or it can be an inadequate design or just a mistake. If not the first case,
then more power than expected will be consumed by your application. This will be
easily revealed by the Power graph in the Timeline window. Double-clicking in the
Timeline window where the power consumption is unexpectedly high will take you to
the corresponding source code and disassembly code. In many cases, it is enough to
disable the peripheral unit when it is inactive, for example by turning off its clock which
in most cases will shut down its power consumption completely.

However, there are some cases where clock gating will not be enough. Analog
peripherals like converters or comparators can consume a substantial amount of power
even when the clock is turned off. The Timeline window will reveal that turning off the
clock was not enough and that you need to turn off the peripheral completely.

AFE1_AFE2-1:1

326

Optimizing your source code for power consumption

C-SPY® Debugging Guide
for Arm

PERIPHERAL UNITS IN AN EVENT-DRIVEN SYSTEM

Consider a system where one task uses an analog comparator while executing, but the
task is suspended by a higher-priority task. Ideally, the comparator should be turned off
when the task is suspended and then turned on again once the task is resumed. This
would minimize the power being consumed during the execution of the high-priority
task.

This is a schematic diagram of the power consumption of an assumed event-driven
system where the system at the point of time t0 is in an inactive mode and the current is
I0:

At t1, the system is activated whereby the current rises to I1 which is the system’s power
consumption in active mode when at least one peripheral device turned on, causing the
current to rise to I1. At t2, the execution becomes suspended by an interrupt which is
handled with high priority. Peripheral devices that were already active are not turned off,
although the task with higher priority is not using them. Instead, more peripheral devices
are activated by the new task, resulting in an increased current I2 between t2 and t3 where
control is handed back to the task with lower priority.

The functionality of the system could be excellent and it can be optimized in terms of
speed and code size. But in the power domain, more optimizations can be made. The
shadowed area represents the energy that could have been saved if the peripheral devices
that are not used between t2 and t3 had been turned off, or if the priorities of the two tasks
had been changed.

If you use the Timeline window, you can make a closer examination and identify that
unused peripheral devices were activated and consumed power for a longer period than
necessary. Naturally, you must consider whether it is worth it to spend extra clock cycles
to turn peripheral devices on and off in a situation like in the example.

AFE1_AFE2-1:1

Power debugging

327

FINDING CONFLICTING HARDWARE SETUPS

To avoid floating inputs, it is a common design practice to connect unused MCU I/O
pins to ground. If your source code by mistake configures one of the grounded I/O pins
as a logical 1 output, a high current might be drained on that pin. This high unexpected
current is easily observed by reading the current value from the Power graph in the
Timeline window. It is also possible to find the corresponding erratic initialization code
by looking at the Power graph at application startup.

A similar situation arises if an I/O pin is designed to be an input and is driven by an
external circuit, but your code incorrectly configures the input pin as output.

ANALOG INTERFERENCE

When mixing analog and digital circuits on the same board, the board layout and routing
can affect the analog noise levels. To ensure accurate sampling of low-level analog
signals, it is important to keep noise levels low. Obtaining a well-mixed signal design
requires careful hardware considerations. Your software design can also affect the
quality of the analog measurements.

Performing a lot of I/O activity at the same time as sampling analog signals causes many
digital lines to toggle state at the same time, which might introduce extra noise into the
AD converter.

Power debugging will help you investigate interference from digital and power supply
lines into the analog parts. Power spikes in the vicinity of AD conversions could be the
source of noise and should be investigated. All data presented in the Timeline window
is correlated to the executed code. Simply double-clicking on a suspicious power value
will bring up the corresponding C source code.

AFE1_AFE2-1:1

328

Debugging in the power domain

C-SPY® Debugging Guide
for Arm

Debugging in the power domain
These tasks are covered:

● Displaying a power profile and analyzing the result

● Detecting unexpected power usage during application execution

● Changing the graph resolution

See also:

● Timeline window—Power graph, page 338

● Selecting a time interval for profiling information, page 299

DISPLAYING A POWER PROFILE AND ANALYZING THE
RESULT

To view the power profile:
1 Choose C-SPY driver>SWO Configuration to open the SWO Configuration dialog

box. Make sure the CPU clock option is set to the same value as the CPU clock value
set by your application. This is necessary to set the SWO clock and to obtain a correct
data transfer to the debug probe.

This step requires a device with SWD SWO (Serial Wire Output) capability.

2 Start the debugger.

3 Choose C-SPY driver>Power Log Setup. In the ID column, make sure to select the
alternatives for which you want to enable power logging.

4 Choose C-SPY driver>Timeline to open the Timeline window.

5 Right-click in the graph area and choose Enable from the context menu to enable the
power graph you want to view.

6 Choose C-SPY driver>Power Log to open the Power Log window.

7 Optionally, if you want to correlate power values to specific interrupts or variables,
right-click in the Interrupts or Data Logs graph area, respectively, and choose Enable
from the context menu.

For variables, you also need to set a Data Log breakpoint for each variable you want a
graphical representation of in the Timeline window. See Data Log breakpoints dialog
box (C-SPY hardware drivers), page 152.

This step requires a device with SWD SWO (Serial Wire Output) capability.

8 Optionally, before you start executing your application you can configure the viewing
range of the Y-axis for the power graph. See Viewing Range dialog box, page 290.

AFE1_AFE2-1:1

Power debugging

329

9 Click Go on the toolbar to start executing your application. In the Power Log window,
all power values are displayed. In the Timeline window, you will see a graphical
representation of the power values, and, if you are using a device with SWD SWO
(Serial Wire Output) capability, of the data and interrupt logs if you enabled these
graphs. For information about how to navigate on the graph, see Navigating in the
graphs, page 261.

10 To analyze power consumption (requires a device with SWD SWO capability):

● Double-click on an interesting power value to highlight the corresponding source
code in the editor window and in the Disassembly window. The corresponding log
is highlighted in the Power Log window. For examples of when this can be useful,
see Optimizing your source code for power consumption, page 323.

● You can identify peripheral units to disable if they are not used. You can detect this
by analyzing the power graph in combination with the other graphs in the Timeline
window. See also Detecting mistakenly unattended peripherals, page 325.

● For a specific interrupt, you can see whether the power consumption is changed in
an unexpected way after the interrupt exits, for example, if the interrupt enables a
power-intensive unit and does not turn it off before exit.

● For function profiling, see Selecting a time interval for profiling information, page
299.

DETECTING UNEXPECTED POWER USAGE DURING
APPLICATION EXECUTION

To detect unexpected power consumption:
1 Choose C-SPY driver>SWO Configuration to open the SWO Configuration dialog

box. Make sure these settings are used:

● CPU clock must be set to the same value as the CPU clock value set by your
application. This is necessary to set the SWO clock and to obtain the correct data
transfer rate to the debug probe.

This step requires a Cortex-M device with SWO.

2 Choose C-SPY driver>Power Log Setup to open the Power Log Setup window.

3 In the Power Log Setup window, specify a threshold value and the appropriate action,
for example Log All and Halt CPU Above Threshold.

4 Choose C-SPY driver>Power Log to open the Power Log window. If you
continuously want to save the power values to a file, choose Choose Live Log File
from the context menu. In this case you also need to choose Enable Live Logging to.

5 Start the execution.

AFE1_AFE2-1:1

330

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

When the power consumption passes the threshold value, the execution will stop and
perform the action you specified.

If you saved your logged power values to a file, you can open that file in an external tool
for further analysis.

CHANGING THE GRAPH RESOLUTION

To change the resolution of a Power graph in the Timeline window:
1 In the Timeline window, select the Power graph, right-click and choose Open Setup

Window to open the Power Log Setup window.

2 From the context menu in the Power Log Setup window, choose a suitable unit of
measurement.

3 In the Timeline window, select the Power graph, right-click and choose Viewing
Range from the context menu.

4 In the Viewing Range dialog box, select Custom and specify range values in the
Lowest value and the Highest value text boxes. Click OK.

5 The graph is automatically updated accordingly.

Reference information on power debugging
Reference information about:

● Power Log Setup window, page 331

● Power Log window, page 334

● Timeline window—Power graph, page 338

● State Log window, page 339

● State Log Summary window, page 341

● Timeline window—State Log graph, page 344

See also:

● Trace window, page 229

● The application timeline, page 257

● Viewing Range dialog box, page 290

● Function Profiler window, page 301

AFE1_AFE2-1:1

Power debugging

331

Power Log Setup window
The Power Log Setup window is available from the C-SPY driver menu during a debug
session.

Use this window to configure the power measurement.

Note: To enable power logging, choose Enable from the context menu in the Power
Log window or from the context menu in the power graph in the Timeline window.

See also Debugging in the power domain, page 328.

Requirements

A debug probe with support for power debugging and one of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI XDS driver

Sampling Frequency toolbar

Use this toolbar to override the default sampling frequency, and to inspect the maximum
and the actual sampling frequency.

Max [Hz]
This is the maximum supported sampling frequency in Hertz.

Wanted [Hz]
Use this option to override the default sampling frequency. The frequency you
enter will be rounded to the nearest possible value, and the Actual [Hz] value
will be updated accordingly.

Actual [Hz]
This is the actual sampling frequency being used.

AFE1_AFE2-1:1

332

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

Display area

This area contains these columns:

ID
A unique string that identifies the measurement channel in the probe. Select the
check box to activate the channel. If the check box is deselected, logs will not
be generated for that channel.

Name
Specify a user-defined name.

Shunt [Ohm]
This column always contains -- (two dashes) for all debug probes except
I-scope. For I-scope, specify the resistance of the shunt.

Threshold
Specify a threshold value in the selected unit. The action you specify will be
executed when the threshold value is reached.

Unit
Displays the selected unit for power. You can choose a unit from the context
menu.

Action
Displays the selected action for the measurement channel. Choose between:

● Log All
● Log Above Threshold
● Log Below Threshold
● Log All and Halt CPU Above Threshold
● Log All and Halt CPU Below Threshold

AFE1_AFE2-1:1

Power debugging

333

Context menu

This context menu is available:

These commands are available:

nA, uA, mA
Selects the unit for the power display. These alternatives are available for
channels that measure current.

uV, mV, V
Selects the unit for power display. These alternatives are available for channels
that measure voltage.

uWs, mWs, Ws
Selects the unit for power display. These alternatives are available for channels
that measure energy.

Log All
Logs all values.

Log Above Threshold
Logs all values above the threshold.

Log Below Threshold
Logs all values below the threshold.

Log All and Halt CPU Above Threshold
Logs all values. If a logged value exceeds the threshold, execution is stopped.
This might take a few execution cycles.

Log All and Halt CPU Below Threshold
Logs all values. If a logged value goes below the threshold, execution is stopped.
This might take a few execution cycles.

AFE1_AFE2-1:1

334

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

Power Log window
The Power Log window is available from the C-SPY driver menu during a debug
session.

This window displays collected power values.

A row with only Time/Cycles displayed in pink denotes a logged power value for a
channel that was active during the actual collection of data but currently is disabled in
the Power Log Setup window.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

See also Debugging in the power domain, page 328.

Requirements

A debug probe with support for power debugging and one of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI XDS driver

Display area

This area contains these columns:

Time
The time from the application reset until the event, based on the clock frequency
specified in the SWO Configuration dialog box.

If the time is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

This column is available when you have selected Show Time from the context
menu.

AFE1_AFE2-1:1

Power debugging

335

Cycles
The number of cycles from the application reset until the event. This
information is cleared at reset.

If a cycle is displayed in italics, the target system could not collect a correct
time, but instead had to approximate it.

This column is available when you have selected Show Cycles from the context
menu.

Program Counter
Displays one of these:

An address, which is the content of the PC, that is, the address of an instruction
close to where the power value was collected.

---, the target system failed to provide the debugger with any information.

Overflow in red, the communication channel failed to transmit all data from the
target system.

Idle, the power value is logged during idle mode.

Note that the Program Counter column is only available if your C-SPY
debugger driver and device support it.

Name [unit]
The power measurement value expressed in the unit you specified in the Power
Log Setup window.

AFE1_AFE2-1:1

336

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system, which means that power values are saved internally
within the IDE. The values are displayed in the Power Log window and in the
Power graph in the Timeline window (if enabled). The system will log
information also when the window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger, or if you change the execution frequency in the SWO Configuration
dialog box.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Choose Live Log File
Displays a standard file selection dialog box where you can choose a destination
file for the logged power values. The power values are continuously saved to that
file during execution. The content of the live log file is never automatically
cleared, the logged values are simply added at the end of the file.

Enable Live Logging to
Toggles live logging on or off. The logs are saved in the specified file.

Clear log file
Clears the content of the live log file.

AFE1_AFE2-1:1

Power debugging

337

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

Open Setup Window
Opens the Power Log Setup window.

The format of the log file

The log file has a tab-separated format. The entries in the log file are separated by TAB
and line feed. The logged power values are displayed in these columns:

Time/Cycles
The time from the application reset until the power value was logged.

Approx
An x in the column indicates that the power value has an approximative value
for time/cycle.

PC
The value of the program counter close to the point where the power value was
logged.

Name [unit]
The corresponding value from the Power Log window, where Name and unit
are according to your settings in the Power Log Setup window.

AFE1_AFE2-1:1

338

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

Timeline window—Power graph
The power graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

The power graph displays a graphical view of power measurement samples generated
by the debug probe or associated hardware in relation to a common time axis.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see The application timeline, page 257.

See also Requirements and restrictions for power debugging, page 323.

Requirements

A debug probe with support for power debugging and one of these alternatives:

● The C-SPY I-jet driver

● The C-SPY J-Link/J-Trace driver

● The C-SPY ST-LINK driver

● The C-SPY TI MSP-FET driver

● The C-SPY TI XDS driver

Display area

Where:

● The label area at the left end of the graph displays the name of the measurement
channel.

AFE1_AFE2-1:1

Power debugging

339

● The Voltage and the Current graphs show power measurement samples generated by
the debug probe or associated hardware. The Energy graph shows accumulated
energy since the last time the CPU was stopped.

● The graph can be displayed as a thin line between consecutive logs, as a rectangle
for every log (optionally color-filled), or as columns.

● The resolution of the graph can be changed.

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

State Log window
The State Log window is available from the C-SPY driver menu.

This window logs activity—state changes—for peripheral units and clocks, as well as
for CPU modes.

The information is useful for tracing the activity on the target system. When the State
Log window is open, it is updated continuously at runtime.

Note: The number of saved logs is limited. When this limit is exceeded, the entries at
the beginning of the buffer are erased.

See also Displaying a power profile and analyzing the result, page 328 and Timeline
window—State Log graph, page 344.

Requirements

One of these alternatives:

● The C-SPY MSP-FET driver and a TI MSP-FET debug probe with
EnergyTrace+TM Technology provided by Texas Instruments.

AFE1_AFE2-1:1

340

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

● The C-SPY TI XDS driver and a TI XDS110 debug probe with EnergyTrace+TM
Technology provided by Texas Instruments, and one of the MSP432, CC13xx, or
CC26xx devices.

Display area

This area contains these columns:

Time
The time for the state change, based on the sampling frequency.

If a time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

Source
The name of the peripheral unit, clock, or CPU mode.

Status
The status at the given time.

Program Counter*
The address of the program counter when the status changed, or shows idle if
the log was taken during CPU idle mode, or shows --- for an unknown PC value.

Active
The active time calculated using the on and off time for the source. If it is written
in italics, it is based on at least one approximative time.

* You can double-click an address. If it is available in the source code, the editor window
displays the corresponding source code, for example for the interrupt handler (this does
not include library source code).

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

AFE1_AFE2-1:1

Power debugging

341

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.

If the Time column is always displayed by default in the C-SPY driver you are
using, this menu command is not available.

Show Cycles
Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

State Log Summary window
The State Log Summary window is available from the C-SPY driver menu.

This window displays a summary of logged activity—state changes—for peripheral
units and clocks, as well as for CPU modes.

Click a column to sort it according to the values. Click again to reverse the sort order.

At the bottom of the display area, the current time or cycles is displayed—the number
of cycles or the execution time since the start of execution.

See also Displaying a power profile and analyzing the result, page 328 and Timeline
window—State Log graph, page 344.

Requirements

One of these alternatives:

AFE1_AFE2-1:1

342

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

● The C-SPY MSP-FET driver and a TI MSP-FET debug probe with
EnergyTrace+TM Technology provided by Texas Instruments.

● The C-SPY TI XDS driver and a TI XDS110 debug probe with EnergyTrace+TM
Technology provided by Texas Instruments, and one of the MSP432, CC13xx, or
CC26xx devices.

Display area

Each row in this area displays statistics about the specific measurement source based on
the log information in these columns; and summary information is listed at the bottom
of the display area:

Source
The name of the peripheral unit, clock, or CPU mode.

Count
The number of times the source was activated.

First time
The first time the source was activated.

Total (Time)**
The accumulated time the source has been active.

Total (%)
The accumulated time in percent that the source has been active.

Shortest
The shortest time spent with this source active.

Longest
The longest time spent with this source active.

Min interval
The shortest time between two activations of this source.

Max interval
The longest time between two activations of this source.

Approximative time count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero. In this case, all logs have an exact time stamp.

AFE1_AFE2-1:1

Power debugging

343

For other C-SPY drivers, a non-zero value is displayed. The value represents the
amount of logs with an approximative time stamp. This might happen if the
bandwidth in the communication channel is too low compared to the amount of
data packets generated by the CPU or if the CPU generated packets with an
approximative time stamp.

Overflow count
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, this information is not displayed or the value is always
zero.

For other C-SPY drivers, the number represents the amount of overflows in the
communication channel which can cause logs to be lost. If this happens, it
indicates that logs might be incomplete. To solve this, make sure not to use all
C-SPY log features simultaneously or check used bandwidth for the
communication channel.

Current time/Current cycles
The information displayed depends on the C-SPY driver you are using.

For some C-SPY drivers, the value is always zero or not visible at all.

For other C-SPY drivers, the number represents the current time or cycles—the
number of cycles or the execution time since the start of execution.

** Calculated in the same way as for the Execution time/cycles in the State Log
window.

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

AFE1_AFE2-1:1

344

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column.

If the Time column is always displayed by default in the C-SPY driver you are
using, this menu command is not available.

Show Cycles
Displays the Cycles column.

If the C-SPY driver you are using does not support the Cycles column, this
menu command is not available.

Timeline window—State Log graph
The State Log graph in the Timeline window is available from the C-SPY driver menu
during a debug session.

The State Log graph displays a graphical view of logged activity—state changes—for
peripheral units and clocks, as well as CPU modes in relation to a common time axis.

For more information about the Timeline window, how to display a graph, and the other
supported graphs, see The application timeline, page 257.

See also Requirements and restrictions for power debugging, page 323.

Requirements

One of the following combinations:

● The C-SPY MSP-FET driver and a TI MSP-FET debug probe with
EnergyTrace+TM Technology provided by Texas Instruments.

AFE1_AFE2-1:1

Power debugging

345

● The C-SPY TI XDS driver and a TI XDS110 debug probe with EnergyTrace+TM
Technology provided by Texas Instruments, and one of the MSP432, CC13xx, or
CC26xx devices.

Display area

Where:

● The label area at the left end of the graph displays the name of the sources of the
status information.

● The graph itself shows the state of the peripheral units, clocks, and CPU modes
generated by the debug probe or associated hardware. The white figure indicates the
time spent in the state. This graph is a graphical representation of the information in
the State Log window, see State Log window, page 339.

At the bottom of the window, there is a shared time axis that uses seconds as the time
unit.

Context menu

This context menu is available:

Note: The context menu contains some commands that are common to all graphs in the
Timeline window and some commands that are specific to each graph.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

AFE1_AFE2-1:1

346

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Power Log
A heading that shows that the Power Log-specific commands below are
available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Viewing Range
Displays a dialog box, see Viewing Range dialog box, page 290.

Size
Determines the vertical size of the graph—choose between Small, Medium,
and Large.

AFE1_AFE2-1:1

Power debugging

347

Style
Selects the style of the graph. Choose between:

Bars, displays a vertical bar for each log.

Columns, displays a column for each log.

Levels, displays the graph with a rectangle for each log, optionally color-filled.

Linear, displays the graph as a thin line between consecutive logs.

Note that all styles are not available for all graphs.

Show Numerical Value
Shows the numerical value of the variable, in addition to the graph.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Open Setup Window
Opens the Power Log Setup window.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

Profile Selection
Enables profiling time intervals in the Function Profiler window. Note that this
command is only available if the C-SPY driver supports PC Sampling. See
Selecting a time interval for profiling information, page 299.

AFE1_AFE2-1:1

348

Reference information on power debugging

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

349

C-RUN runtime error
checking
● Introduction to runtime error checking

● Using C-RUN

● Detecting various runtime errors

● Reference information on runtime error checking

● Compiler and linker reference for C-RUN

● cspybat options for C-RUN

Note that the functionality described in this chapter requires C-RUN, which
is an add-on product to IAR Embedded Workbench.

Introduction to runtime error checking
These topics are covered:

● Runtime error checking

● Runtime error checking using C-RUN

● The checked heap provided by the library

● Using C-RUN in the IAR Embedded Workbench IDE

● Using C-RUN in non-interactive mode

● Requirements for runtime error checking

RUNTIME ERROR CHECKING

Runtime error checking is a way of detecting erroneous code constructions when your
application is running. This is done by instrumenting parts of the code in the application,
or by replacing C/C++ library functionality with a dedicated library that contains
support for runtime error checking.

Runtime error checking uses different methods for implementing the checks, depending
on the type of your application and in what environment it should run.

AFE1_AFE2-1:1

350

Introduction to runtime error checking

C-SPY® Debugging Guide
for Arm

Instrumenting the code to perform checks makes the code larger and slower. Variants of
library functions with checks will also, in general, be larger and slower than the
corresponding functions without checks.

RUNTIME ERROR CHECKING USING C-RUN

C-RUN supports three types of runtime error checking:

● Arithmetic checking, which includes checking for integer overflow and underflow,
erroneous shifts, division by zero, value-changing conversions, and unhandled cases
in switch statements. Normally, the overhead of arithmetic checking is not
particularly high, and arithmetic checking can be enabled or disabled on a module
by module basis with no complications.

● Bounds checking, which checks whether accesses via pointers are within the bounds
of the object pointed to. Bounds checking involves instrumenting the code to track
pointer bounds, with relatively high costs in both code size and speed. A global
table of bounds for indirectly accessed pointers is also needed. You can disable
tracking, or just checking, per module or function, but any configuration where
pointer bounds are not tracked by all code will usually require some source code
adaption.

● Heap checking using a checked heap, which checks for errors in the use of heap
memory. Heap checking can find incorrect write accesses to heap memory, double
free, non-matching allocation and deallocation, and, with explicit calls, leaked heap
blocks. Using the checked heap increases the memory size for each heap block,
which might mean that you must increase your heap size, and heap operations can
take significantly longer than with the normal heap. It also checks only when heap
functions are called, which means that it will not catch all heap write errors.

All checks that C-RUN can perform can be used for both C and C++ source code.

You can enable several types of C-RUN checks at the same time. Each type of check that
you enable will increase, sometimes very slightly, execution time and code size.

Sometimes, the compiler might merge several checks into one, or move a check out of
a loop, in which case the problem may be detected well in advance of the actual access.
In these cases, the C-RUN message will display the problem source location (or
locations) as separate from the current location.

Before you perform any C-RUN runtime checks, make sure to use all the compiler’s
facilities for finding problems:

● Do not use Kernighan & Ritchie function declarations—use the prototyped style
instead. Read about --require_prototypes in the IAR C/C++ Development
Guide for Arm.

AFE1_AFE2-1:1

C-RUN runtime error checking

351

● Make sure to pay attention to any compiler warnings before you perform any
runtime checking. The compiler will not, in most cases, emit code to check for a
problem it has already warned about. For example:

unsigned char ch = 1000; /* Warning: integer truncation */

Even when integer conversion checking is enabled, the emitted code will not contain
any check for this case, and the code will simply assign the value 232 (1000 & 255)
to ch.

Note: C-RUN depends on the Arm semi-hosting interface (the library function
__iar_ReportCheckFailed will communicate with C-SPY via the semihosting
interface). It is only in non-interactive mode that you can use another low-level I/O
interface. See Using C-RUN in non-interactive mode, page 352.

For information about how to detect the errors, see Detecting various runtime errors,
page 355.

THE CHECKED HEAP PROVIDED BY THE LIBRARY

The library provides a replacement checked heap that you can use for checking heap
usage. The checked heap will insert guard bytes before and after the user part of a heap
block, and will also store some extra information (including a sequential allocation
number) in each block to help with reporting.

Each heap operation will normally check each involved heap block for changes to the
guard bytes, or to the contents of newly allocated heap memory. At certain times (either
triggered by a specific call, or after a configurable number of heap operations) a heap
integrity check will be performed which checks the entire heap for problems.

It is important to know that the checked heap cannot find erroneous read accesses, like
reading from a freed heap block, or reading outside the bounds of an allocated heap
block. Bounds checking can find these, as well as many erroneous write accesses that
might be missed by the checked heap because they do not write to a guard byte or an
otherwise checked byte. The checked heap also checks only when a heap operation is
used, and not at the actual point of access.

USING C-RUN IN THE IAR EMBEDDED WORKBENCH IDE

C-RUN is fully integrated in the IAR Embedded Workbench IDE and it offers:

● Detailed error information with call stack information provided for each found error
and code correlation and graphical feedback in editor windows on errors

● Error rule management to stop the execution, log, or ignore individual runtime
errors, either on project level, file level, or at specific code locations. It is possible to
load and save filter setups.

AFE1_AFE2-1:1

352

Introduction to runtime error checking

C-SPY® Debugging Guide
for Arm

● A bookmark in the editor window for each message which makes it easy to navigate
between the messages (using F4).

In the IDE, C-RUN provides these windows:

● The C-RUN Messages window, which lists all messages that C-RUN generates.
Each message contains a message type (reflecting the check performed), a text that
describes the problem, and a call stack. The corresponding source code statements
will be highlighted in the editor window. See C-RUN Messages window, page 376.

● The C-RUN Message Rules window, which lists all rules. See C-RUN Messages
Rules window, page 378. The rules determine which messages that are displayed in
the C-RUN Messages window.

USING C-RUN IN NON-INTERACTIVE MODE

You can run C-RUN checked programs using cspybat—C-SPY in batch mode.
cspybat can use rules and other setup configured in the Workbench IDE. C-RUN
messages in cspybat are by default reported to the host stdout, but you can redirect
them to a file.

If you instead want to use your own communication channel between your application
and the host for C-RUN messages, replace the function __iar_ReportCheckFailed
(uses the semihosting interface for the communication) with your own version and you
can use any communication interface you like. In the source file
ReportCheckFailedStdout.c (arm\src\lib\crun) you can find a variant that
reports to the application’s stdout. To use your own report function instead of the
semihosting one, use the linker option --redirect
__iar_ReportCheckFailed=__iar_ReportCheckFailedStdout.

Note: If the module for the report function is inserted into the project, the module should
not be compiled with any C-RUN source code options.

The output from __iar_ReportCheckFailedStdout is not in user-readable form,
because it only contains the raw data. You can use cspybat with the simulator driver to
transform the raw text into something very similar to normal C-RUN messages. For
more information, see --rtc_raw_to_txt, page 387.

Use the option --rtc_enable to enable C-RUN in cspybat. Note that all cspybat
options for C-RUN all begin with --rtc_*. For more information about these options,
see cspybat options for C-RUN, page 386.

REQUIREMENTS FOR RUNTIME ERROR CHECKING

To perform runtime error checking you need C-RUN, which is an add-on product to IAR
Embedded Workbench.

AFE1_AFE2-1:1

C-RUN runtime error checking

353

Using C-RUN
These tasks are covered:

● Getting started using C-RUN runtime error checking

● Creating rules for messages

GETTING STARTED USING C-RUN RUNTIME ERROR
CHECKING

Typical use of C-RUN involves these steps:

● Determine which C-RUN checks that are needed and specify them in the C-RUN
options.

● Run your application in the IAR Embedded Workbench IDE and interactively
inspect each C-RUN message. For each message, determine if it is the result of a
real problem or not. If not, you can apply a rule to ignore that particular message, or
similar messages in the future. If the message is the result of a real problem, you
might, depending on the particular circumstances, need to correct the problem and
rerun, or you might check for other problems first.

● When finished, close C-SPY. Because the C-RUN windows stay open, now is the
time to work through the found problems. Look at the rules setup, possibly edit it,
and then save it for future runs.

● Repeat the process until all problems are taken care of.

More in detail, to perform runtime error checking and detect possible runtime errors,
follow this example of a typical process:

1 To set project options for runtime checking, choose Project>Options>Runtime
Checking and select the runtime checks you want to perform, for example Bounds
checking.

Note that runtime checking must be enabled on the project level, then you must enable
each type of check you want to use. Some of the check options, such as Use checked
heap, and Enable bounds checking, must be enabled on the project level, whereas
others can be enabled on project or file level.

2 Build your application. Note that the lower optimization levels give you better
information.

3 Start a debug session.

4 Start executing your application program.

AFE1_AFE2-1:1

354

Using C-RUN

C-SPY® Debugging Guide
for Arm

5 If C-RUN detects a possible error, the program execution stops and the corresponding
source code is highlighted in the editor window:

The C-RUN Messages window is displayed if it is not already open, and it provides
information about the source code construct, type of check, and the call stack
information for the source location

Note that detection of a problem might not occur at the actual point of access. The check
might have been moved out of a loop, or several checks for different accesses might have
been merged. In these cases, the problem source (the source for the problem access)
might not be in the current statement, and there might be more than one problem source.

6 Depending on the source code construct, you might be able to continue program
execution after the possible error has been detected. Note that some types of errors
might cause unexpected behavior during runtime because of, for example, overwritten
data or code.

7 If required, use the C-RUN Messages Rules window to specify rules to filter out
specific messages based on specific checks and source code locations, specific checks
and source files, or specific checks only. You can also specify whether a specific check
should not stop the execution, but only log instead. See Creating rules for messages,
page 355.

You can repeat this procedure for the various runtime checks you want to perform.

AFE1_AFE2-1:1

C-RUN runtime error checking

355

CREATING RULES FOR MESSAGES

Depending on your source code, the number of messages in the C-RUN Messages
window might be very large. For better focus, you can create rules to control which
messages you want to be displayed.

To create a rule:
1 Select a message in the C-RUN Messages window that you want to create a filter rule

for.

2 Right-click and choose one of the rules from the context menu.

The rule will appear in the C-RUN Rules window.

3 For an overview of all your rules, choose View>C-RUN Rules.

When a check fails, the rules determine how the message should be reported. Rules are
scanned top–down and the action from the first matching rule is taken.

Note: You can save a filter setup and then load it later in a new debug session.

Detecting various runtime errors
These tasks are covered:

● Detecting implicit or explicit integer conversion

● Detecting signed or unsigned overflow

● Detecting bit loss or undefined behavior when shifting

● Detecting division by zero

● Detecting unhandled cases in switch statements

● Detecting accesses outside the bounds of arrays and other objects

● Detecting heap usage error

● Detecting heap memory leaks

● Detecting heap integrity violations

Detecting implicit or explicit integer conversion

Description Checks that an integer conversion (implicit or explicit) or a write access to a bitfield does
not change the value.

Why perform the check Because C allows converting larger types to smaller integer types, some conversions can
unintentionally remove significant bits of the value. The check can be limited to implicit

AFE1_AFE2-1:1

356

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

integer conversions, which is useful when the loss of data caused by explicit conversion
is considered intentional.

How to use it Compiler option:
--runtime_checking integer_conversion|implicit_integer_conversion

In the IDE: Project>Options>Runtime Checking>Integer conversion

The check can be applied to one or more modules.

The check can be avoided by inserting an explicit mask:

short f(int x)
{
 return x & 0xFFFF; /* Will not report change of value */
}

How it works The compiler inserts code to perform the check at each integer conversion and at each
write access to a bitfield, unless the compiler determines that the check cannot fail. Note
that an explicit conversion from a constant will not be checked.

Note that increment/decrement operators (++/--) and compound assignments (+=, -=,
etc) are checked as if they were written longhand (var = var op val).

For example, both ++i and i += 1 are checked as if they were written i = i + 1. In
this case, the addition will be checked if overflow checks are enabled, and the
assignment will be checked if conversion checks are enabled. For integer types with the
same size as int or larger, the conversion check cannot fail. But for smaller integer
types, any failure in an expression of this kind will generally be a conversion failure.
This example shows this:

signed char a = 127;
void f(void)
{
 ++a; /* Conversion check error (128 -> -128) */
 a -= 1; /* Conversion check error (-129 -> 127) */
}

The code size increases, which means that if the application has resource constraints this
check should be used module per module to minimize the overhead.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Integer conversion option.

AFE1_AFE2-1:1

C-RUN runtime error checking

357

This is an example of source code that will be identified during runtime:

C-RUN will report either Integer conversion failure or Bitfield overflow.
This is an example of the message information that will be listed:

Detecting signed or unsigned overflow

Description Checks that the result of an expression is in the range of representable values for its type,
and that shift counts are valid.

Does not check for overflow in shift operations, which is handled by a separate check.
See Detecting bit loss or undefined behavior when shifting, page 359.

Why perform the check Because the behavior of signed overflow is undefined, and because unsigned overflow
results in a truncation that can sometimes be undesirable. Although the shift operation
is not checked, shift counts are checked because if a shift count is negative or greater
than or equal to the width of the promoted left operand, the behavior of the shift
operation is undefined.

How to use it Compiler option:
--runtime_checking signed_overflow|unsiged_overflow

In the IDE: Project>Options>Runtime Checking>Integer overflow

The check can be applied to one or more modules.

The check can be avoided, for example by working in a larger type, when such a type
exists:

int f(int a, int b)
 { return (int) ((long long) a + (long long) b); }
short g(short a, short b)
 { return (short) (a + b); } /* Integer promotion occurs */

AFE1_AFE2-1:1

358

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

How it works The compiler inserts code to perform the check at each integer operation that can
overflow (+, -, *, /, %, including unary -) and each shift operation, unless the compiler
determines that the check cannot fail.

Note that increment/decrement operators (++/--) and compound assignments (+=, -=,
etc) are checked as if they were written longhand (var = var op val).

For example, both ++i and i += 1 are checked as if they were written i = i + 1. In
this case, the addition will be checked if overflow checks are enabled, and the
assignment will be checked if conversion checks are enabled. For integer types with the
same size as int or larger, the conversion check cannot fail. But for smaller integer
types, any failure in an expression of this kind will generally be a conversion failure.
This example shows this:

signed char a = 127;
void f(void)
{
 ++a; /* Conversion check error (128 -> -128) */
 a -= 1; /* Conversion check error (-129 -> 127) */
}

The code size increases, which means that if the application has resource constraints this
check should be used per module to minimize overhead.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Integer overflow option.

This is an example of source code that will be identified during runtime:

C-RUN will report either Signed ingeger overflow, Unsigned integer
overflow, or Shift count overflow. This is an example of the message
information that will be listed:

AFE1_AFE2-1:1

C-RUN runtime error checking

359

Detecting bit loss or undefined behavior when shifting

Description Checks for overflow in shift operations and that shift counts are valid.

Why perform the check Because the behavior of signed overflow is undefined, and because unsigned overflow
results in a truncation that can sometimes be undesirable.

Overflow occurs in a left shift operation E1<<E2 if E1 is negative or if the result, defined
as E1*2E2, is not in the range of representable values for its type.

How to use it Compiler option: --runtime_checking signed_shift|unsigned_shift

In the IDE: Project>Options>Runtime Checking>Integer shift overflow

The check can be applied to one or more modules.

The check can be avoided by masking before shift:

/* Cannot overflow */
int f(int x) { return (x & 0x00007FFF) << 16; }

How it works The compiler inserts code to perform the check for each shift operation, unless the
compiler determines that the check cannot fail.

The code size increases, which means that if the application has resource constraints this
check should be used per module to minimize the overhead.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Integer shift overflow option.

This is an example of source code that will be identified during runtime:

C-RUN will report either Shift overflow or Shift count overflow. This is an
example of the message information that will be listed:

AFE1_AFE2-1:1

360

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

Detecting division by zero

Description Checks for division by zero and modulo by zero. Floating-point operations are checked
for division by exactly (positive) zero.

Why perform the check Because the behavior of integer division by zero is undefined, and because
floating-point division by exactly zero usually indicates a problem.

How to use it Compiler option: --runtime_checking div_by_zero

In the IDE: Project>Options>Runtime Checking>Division by zero

The check can be applied to one or more modules.

How it works The compiler inserts code to perform the check at each division and modulo operation,
unless the compiler determines that the check cannot fail.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Division by zero option.

This is an example of source code that will be identified during runtime:

C-RUN will report Division by zero. This is an example of the message information
that will be listed:

Detecting unhandled cases in switch statements

Description Checks for a missing case label in a switch statement that does not have a default
label.

Why perform the check The check is useful, for example, to detect when an enum type has been augmented with
a new value that is not yet handled in a switch statement.

AFE1_AFE2-1:1

C-RUN runtime error checking

361

How to use it Compiler option: --runtime_checking switch

In the IDE: Project>Options>Runtime Checking>Switch

The check can be applied to one or more modules.

The check can be avoided by adding a default label.

How it works The compiler inserts an implicit default label to perform the check in each switch
statement that does not have a default label.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Switch option.

This is an example of source code that will be identified during runtime:

C-RUN will report Unhandled case in switch. This is an example of the message
information that will be listed:

Detecting accesses outside the bounds of arrays and other objects

Description Checks that accesses through pointer expressions are within the bounds of the expected
object. The object can be of any type and can reside anywhere—globally, on the stack,
or on the heap.

AFE1_AFE2-1:1

362

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

Why perform the check The check is useful whenever your application reads or writes to locations it should not.
For example:

int arr[10] = {0};
int f(int i)
{
 return arr[i];
}
int g(void)
{
 return f(20); /* arr[20 is out of bounds] */
}

How to use it Compiler option: --runtime_checking bounds

In the IDE: Project>Options>Runtime Checking>Enable bounds checking

This will enable out-of-bounds checking globally. Note that there are suboptions that
you can use to fine-tune the out-of-bounds checking globally and for each source file.

How it works In code where pointer bounds are tracked:

● Each transfer of a pointer value also transfers the bounds for that pointer value.

● When a pointer is initialized to point to an object of some sort, the bounds of the
pointer are set to the bounds of the object. If the object is an array, the bounds cover
the entire array. If it is a single instance, the bounds cover the single instance.

● When a pointer is initialized to an absolute address, the pointer is assumed to point
to a single object of the specified type. For example:

uint32_t * p = (uint_32_t *)0x100;

In this case, p will point to a 32-bit unsigned integer at address 0x100, with the
bounds 0x100 and 0x104.

● A null pointer is given bounds that do not cover any access, in other words, an
access through it is erroneous.

● When a pointer value is passed to a function as a parameter, the bounds are passed
as extra, hidden, parameters.

● When a pointer value is returned from a function, the returned value and the bounds
are passed in a struct as the actual return value.

● When a pointer value is stored in memory in such a way that it can be accessed via
pointers, its bounds are stored in a global bounds table. Whenever the pointer value
is accessed, the associated bounds in the global bounds table are retrieved as well.
The size of the global bounds table can be changed using Number of entries (the
linker option --bounds_table_size
number_of_records[:number_of_buckets]|(number_of_bytes)).

AFE1_AFE2-1:1

C-RUN runtime error checking

363

● In other cases, the bounds are kept track of in extra local variables.

● All floating-point library functions will use the softfp interface.

For each access through a pointer expression, the calculated address and the calculated
address plus the access size is checked against the bounds. If any of the two addresses
are outside of the bounds, a C-RUN message is generated.

Functions that receive pointers in any parameters, or that return a pointer value, can exist
in two variants, one with the bounds, and one without the bounds.

Resource usage The bounds checking overhead can cause the application to no longer fit in the available
ROM or RAM. There are some ways you can try to deal with this:

● Provided that your application does not use too many indirectly accessed pointers,
you can shrink the global bounds table to reduce the amount of RAM used for it.
See --bounds_table_size, page 380 (in the IDE, Number of entries).

By default, 4-Kbyte entries that need about 190 Kbytes are used.

● You can turn off the actual bounds checks in some modules. This will reduce the
amount of code added by instrumentation to some extent.

● You can turn off pointer bounds tracking in some modules. This will eliminate the
increase in code size entirely in these modules, but will cause problems in the
interface between the code that does track pointer bounds and the code that does
not. See the next section for more information.

Non-checked code Sometimes you cannot enable bounds checking in the entire application, for example if
some part of the application is an externally built library, or is written in assembler. If
you add any extra source code lines to make your code work for bounds checking, use
the preprocessor symbol __AS_BOUNDS__ to make the extra source code conditional.
These are some cases you should consider:

● Calling code that does not track bounds from code that does
This only affects functions with pointers as parameters or as return types.

By using #pragma no_bounds or #pragma default_no_bounds on your
declarations. you can specify that certain functions do not track pointer bounds. If
you call such a function from code that does not track pointer bounds, no extra hidden
parameters are passed, and any returned pointers are either considered “unsafe” (all
checked accesses via such pointers generate errors) or “safe” (accesses via such
pointers cannot fail), depending on whether the option Check pointers from
non-instrumented functions has been used or not (compiler option
--ignore_uninstrumented_pointers). If you wish to explicitly specify the
bounds on such values, use the built in operator __as_make_bounds.

AFE1_AFE2-1:1

364

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

For example:

#pragma no_bounds
struct X * f1(void);
...
{
 struct X *px = f1();
 /* Set bounds to allow acesses to a single X struct.
 (If the pointer can be NULL, you must check for that.) */
 if (px)
 px = __as_make_bounds(px, 1);
 /* From here, any accesses via the pointer will be checked
 to ensure taht they are within the struct. */

● Calling code that tracks bounds from code that does not
If you call a function that tracks bounds, and which has pointers as parameters, or
which returns a pointer, from code that does not track bounds, you will generally get
an undefined external error when linking. To enable such calls, you can use
#pragma generate_entry_without_bounds or the option Generate functions
callable from non-instrumented code (compiler option
--generate_entries_without_bounds) to direct the compiler to emit one or
more extra functions that can be called from code that does not track bounds. Each
such function will simply call the function with default bounds, which will be either
"safe" (accesses via such pointers never generate errors) or "unsafe" (accesses via
such pointers always generate errors) depending on whether the option Check
pointers from uninstrumented functions (compiler option
--ignore_uninstrumented_pointers) has been used or not.

If you want to specify more precise bounds in this case, use
#pragma define_without_bounds.

You can use this pragma directive in two ways. If the function in question is only
called from code that does not track pointer bounds, and the bounds are known or can
be inferred from other parameters, there is no need for two functions, and you can
simply modify the definition using #pragma define_without_bounds.

For example:

#pragma define_without_bounds
int f2(int * p, int n)
{
 p = __as_make_bounds(p, n); /* Give p bounds */
 ...
}

In the example, p is assumed to point to an array of n integers. After the assignment,
the bounds for p will be p and p + n.

If the function can be called from both code that does track pointer bounds and from
code that does not, you can instead use #pragma define_without_bounds to

AFE1_AFE2-1:1

C-RUN runtime error checking

365

define an extra variant of the function without bounds information that calls the
variant with bounds information.

You cannot define both the variant without bounds and the variant with bounds in the
same translation unit.

For example:

#pragma define_without_bounds
int f3(int * p, int n)
{
 return f3(__as_make_bounds(p, n), n);
}

In the example, p is assumed to point to an array of n integers. The variant of f3
without extra bounds information defined here calls the variant of f3 with extra
bounds information ("f3 [with bounds]"), giving the pointer parameter bounds of p
and p + n.

● Global variables with pointers defined in code that does not track bounds
These pointers will get either bounds that signal an error on any access, or, if the
option Check pointers from non-instrumented memory (linker option
--ignore_unistrumented_pointers) is used when linking, bounds that never
cause an error to be signaled. If you need more specific bounds, use
__as_make_bounds.

For example:

extern struct x * gptr;
int main(void)
{
 /* Give gptr bounds with size N. */
 gptr = __as_make_bounds(gptr, N);
 ...
}

● RTOS tasks
The function that implements a task might get called with a parameter that is a
pointer. If the RTOS itself is not tracking pointer bounds, you must use
#pragma define_without_bounds and __as_make_bounds to get the correct
bounds information.

For example:

#pragma define_without_bounds
void task1(struct Arg * p)
{
 /* p points to a single Arg struct */
 p = __as_make_bounds(p, 1);
 ...
}

AFE1_AFE2-1:1

366

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

Some limitations:

● Function pointers
Sharing a function pointer between code that tracks bounds and code that does not
can be problematic.

There is no difference in type between functions that track bounds, and functions that
do not. Functions of both kinds can be assigned to function pointers, or passed to
functions that take function pointer parameters. However, if a function whose
signature includes pointers is called in a non-matching context (a function that tracks
bounds from code that does not, or vice versa), things will not work reliably. In the
most favorable cases, this will mean confusing bounds violations, but it can cause
practically any behavior because these functions are being called with an incorrect
number of arguments.

For things to work, you must ensure that all functions whose signature includes
pointers, and which are called via function pointers, are of the right kind. For the
simple case of call-backs from a library that does not track bounds, it will usually
suffice to use #pragma no_bounds on the relevant functions.

● K&R functions
Do not use K&R functions. Use --require_prototypes and shared header files
to make sure that all functions have proper prototypes. Note that in C void f() is a
K&R function, while f(void) is not.

● Pointers updated by code that does not track bounds
Whenever a pointer is updated by code that does not set up new bounds for the
pointer, there is a potential problem. If the new pointer value does not point into the
same object as the old pointer value, the bounds will be incorrect and an access via
this pointer in checked code will signal an error.

Absolute addresses If you use #pragma location or the @ operator to place variables at absolute
addresses, pointers to these variables will get correct bounds, just like pointers to any
other variables.

If you use an explicit cast from an integer to a pointer, the pointer will get bounds
assuming that it points to a single object of the specified type. If you need other bounds,
use __as_make_bounds.

For example:

/* p will get bounds that assume it points to a single struct
 Port at address 0x1000. */
p = (struct Port *)0x1000;
/* If it points to an array of 3 struct you can add */
p = __as_make_bounds(p, 3);

AFE1_AFE2-1:1

C-RUN runtime error checking

367

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Bounds checking option.

This is an example of source code that will be identified during runtime:

C-RUN will report either Access out of bounds or Invalid function pointer.
This is an example of the message information that will be listed:

Detecting heap usage error

Description Checks that the heap interface—malloc, new, free, etc—is used properly by your
application. The following improper uses are checked for:

● Using the incorrect deallocator—free, delete, etc—for an allocator—malloc,
new, etc. For example:

char * p1 = (char *)malloc(23); /* Allocation using malloc. */
char * p2 = new char[23]; /* Allocation using new[]. */
char * p3 = new int; /* Allocation using new. */
delete p1 /* Error, allocated using malloc. */
free(p2); /* Error, allocated using new[]. */
delete[] p3; /* Error, allocated using new. */

● Freeing a heap block more than once.

● Trying to allocate a heap block that is too large.

Why perform the check To verify that the heap interface is used correctly.

How to use it Linker option: --debug_heap

In the IDE: Project>Options>Runtime Checking>Use checked heap

AFE1_AFE2-1:1

368

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

The checked heap will replace the normal heap for the whole application. The checked
heap requires extra heap and stack resources. Make sure that your application has at least
10 Kbytes of heap and 4 Kbytes of stack.

The limit for how large a heap block can be at allocation is by default 1 Gbyte. The limit
can be changed by the function:

size_t __iar_set_request_report_limit(size_t value);

The function returns the old limit. You can find the declaration of this function in
iar_dlmalloc.h. For more information, see the IAR C/C++ Development Guide for
Arm.

How it works For any incorrect use of the heap interface, a message will be issued.

See also The checked heap provided by the library, page 351.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Debug heap option.

This is an example of source code that will be identified during runtime:

C-RUN will report either Heap integrity violation or Heap usage error. This
is an example of the message information that will be listed:

Detecting heap memory leaks

Description Checks for heap blocks without references at a selected point in your application.

Why perform the check A leaked heap block cannot be used or freed, because it can no longer be referred to. Use
this check to detect references to heap blocks and report blocks that are seemingly

AFE1_AFE2-1:1

C-RUN runtime error checking

369

unreferenced. Note that the leak detection cannot find all possible memory leak cases, a
seemingly unreferenced heap block might actually be referenced and a seemingly
referenced heap block might actually be leaked.

Note: The leak checker does not currently support multi-threaded environments. The
leak checker works by scanning known RAM locations for references to heap blocks.
The thread executing the leak check has information about its own stack, but not about
the stack of other threads. The missing information can result in both false positives and
false negatives.

How to use it Linker option: --debug_heap

In the IDE: Project>Options>Runtime Checking>Use checked heap

The checked heap will replace the normal heap for the whole application. The checked
heap requires extra heap and stack resources. Make sure that your application has at least
10 Kbytes of heap and 4 Kbytes of stack.

The leak detection check must be called manually. It can either be called at the exit of
the application or it can be used for detecting leaked heap blocks between two source
points. These functions are defined in iar_dlmalloc.h:

● void __iar_leaks_ignore_all(void);

Use this function to mark all currently allocated heap blocks to be ignored in
subsequent heap leakage checks.

● void __iar_leaks_ignore_block(void *block);

Use this function to mark a specific allocated heap block to be ignored in subsequent
heap leakage checks.

● void __iar_check_leaks(void);

Use this function to check for leaks.

How it works The checked heap will replace the normal heap for the whole application. The heap
leakage algorithm has three phases:

1 Scans the heap and makes a list of all allocated heap blocks.

2 Scans the statically used RAM, the stack, etc for addresses in the heap. If the
address matches one of the heap blocks in the list above, it is removed from the list.

3 Reports the remaining heap blocks in the list as leaked.

See The checked heap provided by the library, page 351.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Debug heap option.

AFE1_AFE2-1:1

370

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

This is an example of source code that will be identified during runtime:

C-RUN will report Memory leak. This is an example of the message information that
will be listed:

Detecting heap integrity violations

Description Checks for various heap integrity violations. The check can either be manually triggered
or can be set up to be triggered at regular intervals of use of the heap interface. Integrity
problems that can be detected when you enable this check are:

● Destruction of the internal heap structure. Mostly, this is because a write access
through a pointer expression is incorrect. Use out-of-bounds checking to try to
locate the erroneous write access.

● Write accesses outside allocated memory, for example:

char * p = (char *)malloc(100); /* Memory is allocated. */
...
p[100] = ... /* This write access is out of bounds. */

A write access that is out-of-bounds of the heap block and that changes the guards in
front of or after the heap block will be detected. Any other write accesses will not be
detected.

● Write accesses to freed memory, for example:

char * p = (char *)malloc(...); /* Memory is allocated. */
...
free(p); /* Memory is freed. */
...
p[...] = ... /* Write access to freed memory. */

If the memory that contains the original p is allocated again before p is written to,
this error will typically not be detected. By using the delayed free list (see below),
this error can be found.

AFE1_AFE2-1:1

C-RUN runtime error checking

371

Why perform the check Use the checked heap if you suspect that your application, at some point, writes
erroneously in the heap, for example by misusing a heap block.

How to use it Linker option: --debug_heap

In the IDE: Project>Options>Runtime Checking>Use checked heap

The checked heap will replace the normal heap for the whole application. The checked
heap requires extra heap and stack resources. Make sure that your application has at least
10 Kbytes of heap and 4 Kbytes of stack.

For detecting heap integrity violations, you can use these functions which are defined in
iar_dlmalloc.h:

● size_t __iar_check_heap_integrity(void);

Use this function to verify the integrity of the heap. If any corruptions are detected,
they are reported. The return value is the number of found problems. There is a limit
on the number of corruption errors that are reported. This limit can be changed by
using the __iar_set_integrity_report_limit function. Execution is only
stopped when the final message is generated. The default number of reported
messages is 10. A call to __iar_check_heap_integrity is not guaranteed to
return to the caller if the heap is corrupt.

● size_t __iar_set_heap_check_frequency(size_t interval);

Use this function to specify how often the periodic heap integrity checks are
performed. By default, the periodic checks are turned off (interval = 0). If
interval is a positive number, the integrity will be checked every interval:th
heap operation where every call to free/malloc/new/delete/realloc/etc counts
as one operation. The function returns the old interval, which means that the state can
be restored if necessary. The heap check interval can be increased or turned off when
trusted parts of your application program, and then be decreased when you run parts
of your application that are likely to contain heap errors.

● size_t __iar_set_delayed_free_size(size_t size);

Use this function to specify the maximum size of the freed delay list. By default, the
freed delay list is turned off (size = 0). This function has no effect on the actual size
of the list, it only changes the maximum. The function returns the previous value so
it can be restored if necessary.

The freed delay list can be used to try to find locations in your application that use a
freed heap block. This can help you detect:

● Mixing up an old heap block pointer that has been freed with a new, freshly
allocated heap block pointer. Because the freed delay list will delay the actual
reuse of a freed heap block, the behavior of your application might change and
you might be able to detect the presence of this kind of problem.

AFE1_AFE2-1:1

372

Detecting various runtime errors

C-SPY® Debugging Guide
for Arm

● Writes to already freed heap blocks. If a heap block is in the freed delay list, it
will get specific content, different from when it is actually freed, and a heap
integrity check can find those erroneous write accesses to the heap block.

● size_t __iar_free_delayed_free_size(size_t count);

Use this function to make sure that at most count elements are present in the freed
delay list. Superfluous elements are freed (the oldest ones change first). It has no
effect on the maximum size of the list—it only changes the current number of
elements. Calling this function has no effect if count is larger than the current size
of the list. The function returns the number of freed elements.

How it works The checked heap will replace the normal heap for the whole application.

The freed delay list is a queuing mechanism for free calls. When calling free, or an
equivalent memory operation that returns memory to the heap, the recently freed pointer
is queued to be freed instead of actually being freed. If the maximum size of the delay
list is exceeded, the oldest elements above the maximum size in the freed delay list are
actually freed.

All errors that the checked heap reports, mention a heap block that is somehow corrupt.
The checked heap cannot inform about who corrupted the heap block or when it was
corrupted. You can use calls to the __iar_debug_check_heap_integrity function
to verify the integrity during application execution and narrow down the list of potential
candidates.

For example:

...
__iar_debug_check_heap_integrity(); /* Pre-check */
my_function(..., ..., ...);
__iar_debug_check_heap_integrity(); /* Post-check */
...

If the post-check reports problems that the pre-check does not, it is probable that
my_function corrupted the heap.

The checked heap consumes resources:

● The checked heap requires more ROM space than the normal heap implementation

● All heap operations require more time in the checked heap

● Each heap block in the checked heap contains additional space for bookkeeping,
which results in increased RAM usage for your application.

See The checked heap provided by the library, page 351.

Example Follow the procedure described in Getting started using C-RUN runtime error checking,
page 353, but use the Checked heap option.

AFE1_AFE2-1:1

C-RUN runtime error checking

373

This is an example of source code that will be identified during runtime:

C-RUN will report Heap integrity violation. This is an example of the message
information that will be listed:

Reference information on runtime error checking
Reference information about:

● C-RUN Runtime Checking options, page 373

● C-RUN Messages window, page 376

● C-RUN Messages Rules window, page 378

C-RUN Runtime Checking options
The C-RUN Runtime Checking options determine which checks to perform at
runtime.

See also Using C-RUN, page 353.

AFE1_AFE2-1:1

374

Reference information on runtime error checking

C-SPY® Debugging Guide
for Arm

Enable

Enables runtime checking.

Use checked heap

Uses the checked heap, to detect heap usage errors.

Enable bounds checking

Checks for accesses outside the bounds of arrays and other objects. Available checks:

Track pointer bounds
Makes the compiler add code that tracks pointer bounds. If you want to check
pointer bounds, you should enable Check accesses and then decide how
instrumented code should interact with non-instrumented code:

Check accesses Inserts code for checking accesses via pointers.

Generate functions callable
from non-instrumented
code

When Track pointer bounds is enabled, any
functions that return or receive types that
contain pointers are modified to also
return/receive pointer bounds. Use this option
to generate an extra entry for each such
function, which can be called from unchecked
code.

Check pointers from
non-instrumented
functions

When Track pointer bounds is enabled,
pointers that originate from functions that are
not instrumented for bounds checking are by
default given globally permissive bounds
information. Use this option to identify these
pointers—any accesses via such pointers will
generate an error. In this way you can manually
replace the globally permissive bounds
information with valid counterparts, see
__as_get_base, page 385, __as_get_bound,
page 385, __as_make_bounds, page 386.

If this option is not used and you do not specify
valid bounds information, accesses via such
pointers do not generate errors and might result
in unnoticed incorrect runtime behavior.

AFE1_AFE2-1:1

C-RUN runtime error checking

375

Insert checks for

Inserts checks for:

Integer overflow
Checks for signed overflow in integer operations. Use Including unsigned to
also check for unsigned overflow in integer operations.

Integer conversion
Checks for implicit integer conversions resulting in a change of value. Use
Including explicit casts to also check for explicit casts.

Integer shift overflow
Checks for overflow in shift operations. Use Including unsigned shifts to also
check for unsigned overflow in shift operations.

Division by zero
Checks for division by zero.

Check pointers from
non-instrumented
memory

When Track pointer bounds is enabled, each
time a pointer is loaded from memory, its
bounds are looked up in the global bounds
table. If no entry is found in the table for this
pointer, usually because the pointer was created
by non-instrumented code, it is given globally
permissive bounds. Use this option to identify
such pointers—any accesses via such pointers
will generate an error. In this way you can
manually replace the globally permissive
bounds information with valid counterparts, see
__as_get_base, page 385, __as_get_bound,
page 385, __as_make_bounds, page 386.

If this option is not used and you do not specify
valid bounds information, accesses via such
pointers do not generate errors and might result
in unnoticed incorrect runtime behavior.

Number of entries The bounds checking system uses a separate
table to track bounds for pointers in memory.
Use this option to set the number of such
bounds that can be tracked simultaneously. The
table will use approximately 50 bytes per
pointer.

AFE1_AFE2-1:1

376

Reference information on runtime error checking

C-SPY® Debugging Guide
for Arm

Unhandled switch case
Checks for unhandled cases in switch statements

C-RUN Messages window
The C-RUN Messages window is available from the View menu.

This window displays information about runtime errors detected by a runtime check.
The window groups messages that have the same source statement, the same call stack,
and the same messages.

See also Using C-RUN, page 353.

Requirements

A license for the C-RUN product.

Toolbar

The toolbar contains:

Default action
Sets the default action for what happens if no other rule is satisfied. Choose
between Stop, Log, and Ignore.

Filter
Filters the list of messages so that only messages that contain the text you
specify will be listed. This is useful if you want to search the message text, call
stack entries, or filenames.

Messages
Lists the number of C-RUN messages.

AFE1_AFE2-1:1

C-RUN runtime error checking

377

Display area

The display area shows all detected errors since the last reset. More specifically, the
display area provides information in these columns:

Messages
Information about the detected runtime error. Each message consists of a
headline, detailed information about the error, and call stack information for the
error location. Note that ranges displayed for accesses and bounds include the
start address but not the end address.

Source File
The name of the source file in which a runtime error was detected, or otherwise
a relevant location, for example variable definitions.

PC
The value of PC when the runtime error was detected.

Core
The CPU core that executed the check, in case you have a multicore
environment.

Context menu

This context menu is available:

These commands are available:

Add Rule for ... at range
Adds a rule that matches this particular runtime check at this particular location.

Add Rule for ... in filename
Adds a rule that matches all runtime checks of this kind in the specified file.

Add Rule for ...
Adds a rule that matches all runtime checks of this kind.

Clear All
Clears the window from all content.

AFE1_AFE2-1:1

378

Reference information on runtime error checking

C-SPY® Debugging Guide
for Arm

Save to File
Opens a dialog box where you can choose to save content to a file, either in text
or XML format.

C-RUN Messages Rules window
The C-RUN Messages Rules window is available from the View menu.

This window displays the rules that control how messages are reported in the C-RUN
Messages window. When a potential error is detected, it is matched against these rules
(from top to bottom) and the action taken is determined by the first rule that matches. At
the bottom, there is always a catch-all rule that matches all messages. This rule can be
modified using Default action in the C-RUN Messages window.

* is used as a wildcard.

See also Using C-RUN, page 353.

Requirements

A license for the C-RUN product.

Display area

The display area provides information in these columns:

Check
The name of the runtime error that this rule matches.

Source File
The name of the source file and possibly the location in the file to match.

Action
The action to take for errors that match the rule:

● Stop stops the execution and logs the error

● Log logs the error but continues the execution

AFE1_AFE2-1:1

C-RUN runtime error checking

379

● Ignore neither logs nor stops.

Context menu

This context menu is available:

These commands are available:

Stop/Log/Ignore
Selects the action to take when a message matches the selected rule.

Move Up/Down
Moves the selected rule up/down one step.

Delete
Deletes the selected rule.

Delete All
Deletes all rules.

Save to File
Opens a dialog box where you can choose to save rules, see Load from File.
See also --rtc_rules, page 388.

Load from File
Opens a dialog box where you can choose to load rules from a file.

Compiler and linker reference for C-RUN
Reference information about:

● --bounds_table_size, page 380 (linker option)

● --debug_heap, page 381 (linker option)

● --generate_entries_without_bounds, page 381 (compiler option)

● --ignore_uninstrumented_pointers, page 381 (compiler option)

AFE1_AFE2-1:1

380

Compiler and linker reference for C-RUN

C-SPY® Debugging Guide
for Arm

● --ignore_uninstrumented_pointers, page 382 (linker option)

● --runtime_checking, page 382 (compiler option)

● #pragma default_no_bounds, page 383

● #pragma define_with_bounds, page 383

● #pragma define_without_bounds, page 383

● #pragma disable_check, page 384

● #pragma generate_entry_without_bounds, page 384

● #pragma no_arith_checks, page 385

● #pragma no_bounds, page 385

● __as_get_base, page 385

● __as_get_bound, page 385

● __as_make_bounds, page 386

--bounds_table_size

Syntax --bounds_table_size records[:buckets]|(bytes)

Parameters

For use with The linker.

Description Use this linker option to specify the size of the global bounds table, which is used for
tracking the bounds of pointers in memory.

You can specify the number of records in the table (the number of pointers it can keep
bounds for). If you do, you can also specify the number of buckets (a power of two),
which will affect the speed of lookups. If not specified, the number of buckets is a power
of two that is at least 6 times the number of records.

Alternatively, you can specify the total number of bytes to use for records and buckets.

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

Project>Options>Runtime Checking>Number of entries

records The number of records.

:buckets The number of buckets.

(bytes) The number of bytes, within parentheses.

AFE1_AFE2-1:1

C-RUN runtime error checking

381

--debug_heap

Syntax --debug_heap

For use with The linker.

Description Use this linker option to use the checked heap.

See also The checked heap provided by the library, page 351.

Project>Options>Runtime Checking>Use checked heap

--generate_entries_without_bounds

Syntax --generate_entries_without_bounds

For use with The compiler.

Description Use this compiler option to generate extra functions for use from non-instrumented
code. This option requires that out-of-bounds checking is enabled.

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

Project>Options>Runtime Checking>Generate functions callable from
non-instrumented code

--ignore_uninstrumented_pointers

Syntax --ignore_uninstrumented_pointers

For use with The compiler.

Description Use this compiler option to disable checking of accesses via pointers from
non-instrumented functions.

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

Project>Options>Runtime Checking>Check pointers from non-instrumented
functions

AFE1_AFE2-1:1

382

Compiler and linker reference for C-RUN

C-SPY® Debugging Guide
for Arm

--ignore_uninstrumented_pointers

Syntax --ignore_uninstrumented_pointers

For use with The linker.

Description Use this linker option to disable checking of accessing via pointers in memory for which
no bounds have been set.

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

Project>Options>Runtime Checking>Check pointers from non-instrumented
memory

--runtime_checking

Syntax --runtime_checking param ,param, ...

Parameters param is one of:

For use with The compiler.

Description Use this compiler option to enable runtime error checking.

signed_overflow |
unsigned_overflow

Checks for signed or unsigned overflow in
integer operations.

integer_conversion |
implicit_integer_conversion

Checks for implicit or explicit integer
conversions resulting in a change of value.

div_by_zero Checks for division by zero.

signed_shift |
unsigned_shift

Checks for bit loss or
implementation-dependent results when
shifting.

switch Checks for unhandled cases in switch
statements.

bounds Checks for accesses outside the bounds of
arrays and other objects.

bounds_no_checks Tracks pointer bounds, but performs no checks.
See also #pragma disable_check =
bounds.

AFE1_AFE2-1:1

C-RUN runtime error checking

383

See also Introduction to runtime error checking, page 349.

To set related options, choose:

Project>Options>Runtime Checking

#pragma default_no_bounds

Syntax #pragma default_no_bounds [=on|=off]

Parameters

Description Use this pragma directive to apply #pragma no_bounds to a whole set of functions,
for example around a header file declaring the interface to unchecked code.

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

#pragma define_with_bounds

Syntax #pragma define_with_bounds

Description You can only use this pragma directive on a function that is declared with
#pragma no_bounds (or equivalent). The function will then be instrumented to track
pointer bounds, but not to perform any bounds checks. Any calls to the function will be
to the version without extra bounds information.

This is useful for writing a checking version of a function based on the non-checking
version.

#pragma define_without_bounds

Syntax #pragma define_without_bounds

Description Use this pragma directive to define the version of a function that does not have extra
bounds information. The code of the function is still instrumented to track pointer
bounds (and checks are also inserted, unless #pragma disable_check = bounds is
used).

on Makes the default for all functions declared from this point
be as if they were declared with #pragma no_bounds.

off Turns off the default.

AFE1_AFE2-1:1

384

Compiler and linker reference for C-RUN

C-SPY® Debugging Guide
for Arm

This can be useful for functions that are exclusively called from code that does not track
pointer bounds, and where the bounds can be inferred from other arguments, or in some
other way.

Example /* p points to an array of n integers */
void fun(int * p, int n)
{
 /* Set up bounds for p. */
 p = __as_make_bounds(p, n);
 ...
}

#pragma disable_check

Syntax #pragma disable_check = bounds

Parameters

Description Use this pragma directive to specify that the immediately following function does not
check accesses against bounds. If compiled with bounds checking, the function will be
instrumented to track bounds, but will perform no checks.

#pragma generate_entry_without_bounds

Syntax #pragma generate_entry_without_bounds

Description Use this pragma directive to enable generation of an extra entry without bounds for the
immediately following function. This extra entry (function) can be called from code
which is not instrumented for bounds checking. It takes no extra hidden parameters, and
does not add any information about bounds for returned pointers. Any pointers passed
into such a function are given bounds that will cause an error for any access. If you use
--ignore_uninstrumented_pointers, the given bounds will not cause errors.

It is an error to use this pragma directive on a function where no such entry can be
generated. This includes functions that take a variable number of arguments, and
functions that take one or more function pointers to functions that take or return values
that contain pointers.

It is not an error to use this pragma directive on a function that does not need such an
entry (because it takes no pointers, or because it is declared with #pragma
no_bounds). In this case, no extra entry is generated.

bounds Does not check accesses against bounds.

AFE1_AFE2-1:1

C-RUN runtime error checking

385

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

#pragma no_arith_checks

Syntax #pragma no_arith_checks

Description Use this pragma directive to specify that no C-RUN arithmetic checks will be performed
in the function that follows.

#pragma no_bounds

Syntax #pragma no_bounds

Description Use this pragma directive to specify that the immediately following function is not
instrumented for bounds checking. No extra hidden bounds parameters will be passed
when this function is called, and it will not return bounds for pointers, if any, in its return
value.

See also Detecting accesses outside the bounds of arrays and other objects, page 361.

__as_get_base

Syntax __as_get_base(ptr)

Parameters

Description Use this operator to create a pointer of the same type as ptr, representing the base of
the area pointed to by ptr.

Example base = __as_get_base(my_ptr);

__as_get_bound

Syntax __as_get_bound(ptr)

Parameters

ptr A pointer.

ptr A pointer.

AFE1_AFE2-1:1

386

cspybat options for C-RUN

C-SPY® Debugging Guide
for Arm

Description Use this operator to create a pointer of the same type as ptr, representing the upper
bound of the area pointed to by ptr.

Example bound = __as_get_bound(my_ptr);

__as_make_bounds

Syntax __as_make_bounds(ptr, number)
__as_make_bounds(ptr, base, bound)

Parameters

Description Use this operator to create a pointer with bounds information. Use the first syntax to
create the bounds ptr up to ptr + size for ptr. The second syntax has explicit bounds.
base is a pointer to the first element of the area. bound is a pointer to just beyond the
area. Except that each expression will be evaluated only once, the two-parameter variant
is equivalent to __as_make_bounds(ptr, ptr, ptr + size).

Example /* Starting here, p points to a single element */
p = __as_make_bounds(p, 1);
/* Call fun with a pointer with the specified bounds */
fun(__as_make_bounds(q, start, end));

cspybat options for C-RUN
Reference information about:

● --rtc_enable, page 387

● --rtc_output, page 387

● --rtc_raw_to_txt, page 387

● --rtc_rules, page 388

ptr A pointer that has no bounds.

number The number of elements.

base The start of the object pointed to.

bound The end of the object pointed to.

AFE1_AFE2-1:1

C-RUN runtime error checking

387

--rtc_enable

Syntax --rtc_enable

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to enable C-RUN run-time checking in cspybat. This option is
automatically enabled if any of the other –rtc_* options are used.

This option is not available in the IDE.

--rtc_output

Syntax --rtc_output file

Note that this option must be placed before the --backend option on the command line.

Parameters

For use with cspybat

Description Use this option to specify to cspybat a file for the C-RUN message output, in text
(filename extension txt) or XML (filename extension xml) format.

This option is not available in the IDE.

--rtc_raw_to_txt

Syntax --rtc_raw_to_txt=file

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to make cspybat act as a runtime checking messages filter. The option
reads a file and transforms each message into a properly formatted message (as in the
C-RUN Messages window). The only limitation is that call stack information cannot be
provided.

file The file for output messages.

AFE1_AFE2-1:1

388

cspybat options for C-RUN

C-SPY® Debugging Guide
for Arm

This option is not available in the IDE.

--rtc_rules

Syntax --rtc_rules file

Note that this option must be placed before the --backend option on the command line.

Parameters

For use with cspybat

Description Use this option to specify the name of the C-RUN rules file to cspybat.

See also C-RUN Messages Rules window, page 378 for information about Save to File.

This option is not available in the IDE.

file The rules input file.

389

Part 3. Advanced
debugging
This part of the C-SPY® Debugging Guide for Arm includes these chapters:

● Multicore debugging

● Interrupts

● C-SPY macros

● The C-SPY command line utility—cspybat

● Flash loaders

390

AFE1_AFE2-1:1

391

Multicore debugging
● Introduction to multicore debugging

● Debugging multiple cores

● Reference information on multicore debugging

Introduction to multicore debugging
These topics are covered:

● Briefly about multicore debugging

● Symmetric multicore debugging

● Asymmetric multicore debugging

● Requirements and restrictions for multicore debugging

BRIEFLY ABOUT MULTICORE DEBUGGING

Multicore debugging means that you can debug targets with multiple cores. The C-SPY
debugger supports multicore debugging in two ways:

● Symmetric multicore debugging (SMP), which means debugging two or more
identical cores that run the same application. This is handled using a single instance
of the IAR Embedded Workbench IDE.

● Asymmetric multicore debugging (AMP), which means debugging two or more
cores that run separate applications. This is handled using two or more cooperating
instances of the IAR Embedded Workbench IDE, where each instance is connected
to one or more identical cores.

SYMMETRIC MULTICORE DEBUGGING

Symmetric multicore debugging means that the target has two or more identical cores
that run the same application. The cores can typically be accessed through a single
debug probe.

In the debugger, at any given time the windows show the state of only one of the cores—
the one in focus.

This is an overview of special support for symmetric multicore debugging:

● You can control whether to automatically start and stop the whole application or to
run the cores independently of each other.

AFE1_AFE2-1:1

392

Introduction to multicore debugging

C-SPY® Debugging Guide
for Arm

● You can also control which core you want the debugger to focus on. This affects
editor windows and the Disassembly, Registers, Watch, Locals, Call Stack
window, etc.

● The Cores window shows a list of all available cores, and gives some information
about each core, such as its execution state. The Multicore toolbar is a complement
to the Cores window,

● The Stack window can show the stack for each core by means of dedicated stack
sections.

● RTOS support is available in separate multicore-aware plugins, Typically, they work
like their single-core plugin counterparts, but handle multiple active tasks on
separate cores. The plugins might also provide the information required by the
Stack window to display the stack for any selected task.

ASYMMETRIC MULTICORE DEBUGGING

Asymmetric multicore means that the target has two or more cores that run separate
applications. To debug the target, two or more IDE instances can be used, where each
instance is connected to one or more identical cores.The IDE instances synchronize so
that debugging sessions can be started and stopped, and the cores can be controlled from
any of the instances. Except for shared memory, each debugging session can only show
information (variables, call stack, etc) about its own cores.

You start one IDE instance manually and that instance is referred to as the master. When
you start an asymmetric multicore debugging session, the master instance can initiate
one or more partner (or slave) instances. The partner instances will be reused if they are
already running.

All instances each require their own project, master and partners. You must set up each
project with the correct processor variant, linker, and debugger options. The master
project must also be configured to act as multicore master or have multicore master
mode enabled.

One possible strategy for download is to combine the debug images for the cores into
one and let the master project download the combined image. In this scenario, the
partners must be configured to attach to a running target, and/or to suppress any
downloading.

Another strategy is to download the master and partners as separate binary images, in
which case you must make sure to avoid any unintentional overlaps in memory.

This is an overview of special support for asymmetric multicore debugging:

● You can control whether to automatically start and stop the whole application or to
run the cores independently of each other.

AFE1_AFE2-1:1

Multicore debugging

393

● Each instance of the IDE displays debug information for the cores that it is
connected to.

● The Cores window shows a list of all available cores, and gives some information
about each core, such as its execution state. The Multicore toolbar is a complement
to the Cores window,

● When you set a breakpoint, it is only connected to one core, and when the
breakpoint is triggered, that core is stopped.

REQUIREMENTS AND RESTRICTIONS FOR MULTICORE
DEBUGGING

The C-SPY simulator supports multicore debugging for most cores and devices. If
supported, there are no further specific requirements or restrictions.

To use multicore debugging in your hardware debugger system, you need a specific
combination of C-SPY driver and debug probe:

● The IAR C-SPY I-jet driver

● The IAR C-SPY CMSIS-DAP driver

● The IAR C-SPY J-Link/J-Trace driver (asymmetric multicore)

Note: There might be restrictions in trace support due to limitations in the hardware you
are using.

Debugging multiple cores
These tasks are covered:

● Setting up for symmetric multicore debugging

● Setting up for asymmetric multicore debugging

● Starting and stopping a multicore debug session

SETTING UP FOR SYMMETRIC MULTICORE DEBUGGING

1 Choose Project>Options>Debugger>Multicore and specify the number of cores you
have.

2 You can now start your debug session.

SETTING UP FOR ASYMMETRIC MULTICORE DEBUGGING

There are a number of ways that you can set up for multicore debugging, but this strategy
is recommended:

AFE1_AFE2-1:1

394

Debugging multiple cores

C-SPY® Debugging Guide
for Arm

1: Preparing the projects
1 Create a workspace with two or more projects, one for each core or set of cores.

2 Select an appropriate download strategy. One possible download strategy would be to
combine the images for the cores into one and let the master project download the
combined image. In this scenario, the partners would have to be configured to attach to
a running target, and/or to suppress any downloading.

3 In the intended master project, choose Project>Options>Debugger>Multicore to
open the Multicore options page.

2A: Setting up one partner project
1 Select Simple. Specify the options Partner workspace (path), Partner project

(project name), and Partner configuration (build configuration). These settings are
used when the partner session starts.

2 Select the option Attach partner to running target. Use the Partner cores option to
specify the number of cores in the partner project.

By default, the Embedded Workbench instance associated with the partner project must
be installed in the same directory as the Embedded Workbench instance associated with
the master project, for example in c:\Program Files\IAR Systems\Embedded
Workbench N.n. If the two Embedded Workbench instances were installed in different
locations (perhaps because they are not based on the same version (N.n) of the
Embedded Workbench shared components), you must select Override partner
debugger location and specify the installation directory of the Embedded Workbench
for the partner project. Note that the Embedded Workbench for the partner project must

AFE1_AFE2-1:1

Multicore debugging

395

be based on version 9.1.7 or later of the shared components—to check this, choose
Help>About>Product Info.

For more information about the multicore settings, see Multicore, page 588

2B: Setting up two or more partner projects
1 Select Advanced. Create a multicore session file in XML format with information

about location and settings of the partner projects and use the browse button to specify
this file. For more information about this file, see The multicore session file, page 399.
These settings are used when the partner session starts.

3: Make final settings
1 Select appropriate reset strategies for all projects:

● In the master project, choose Project>Options>C-SPY driver>Setup>Reset and
select a reset strategy, typically Hardware.

● In the Workspace window, switch to the partner projects one at a time. Then for
each project, choose Project>Options>C-SPY driver>Setup>Reset and select a
reset strategy for the partner session that does not affect the master session,
typically Software.

2 Make sure to use compatible settings for the debug probe for all projects.

AFE1_AFE2-1:1

396

Reference information on multicore debugging

C-SPY® Debugging Guide
for Arm

The master and partner instances are indicated in the main IDE window title bar.

STARTING AND STOPPING A MULTICORE DEBUG SESSION

1 To start a multicore debug session, for example use the standard Download and
Debug command, either in the master or in a partner session.

2 To stop a multicore debug session, for example use the standard Stop Debugging
command, which will stop all debugging sessions.

Reference information on multicore debugging
Reference information about:

● Cores window, page 397

● Multicore toolbar, page 399

● The multicore session file, page 399

See also:

● __getNumberOfCores, page 459

● __getSelectedCore, page 459

● __selectCore, page 485

AFE1_AFE2-1:1

Multicore debugging

397

Cores window
The Cores window is available from the View menu.

This window shows a list of all available cores, and gives some information about each
core, such as its execution state. The line highlighted in bold is the core currently in
focus, which means that any window showing information that is specific to a core will
be updated to reflect the state of the core in focus. This includes highlights in editor
windows and the Disassembly, Registers, Watch, Locals, Call Stack window, and so
on. Double-click a line to focus on that core.

Note: For asymmetric multicore debugging, only local cores can be in focus.

If both cores are executing, and either one of them hits a breakpoint (or some other
condition which causes the program execution to stop), then the debugger attempts to
focus on that core automatically.

See also Debugging multiple cores, page 393.

Requirements

One of these alternatives:

● An I-jet or I-jet Trace debug probe

● A J-Link or J-Trace debug probe

● The C-SPY simulator. (Not for all cores and devices.)

Display area

A row in this area shows information about a core, in these columns:

Execution state
Displays one of these icons to indicate the execution state of the core:

 in focus, not executing

 not in focus, not executing

 in focus, executing

 not in focus, executing

AFE1_AFE2-1:1

398

Reference information on multicore debugging

C-SPY® Debugging Guide
for Arm

Core
The name of the core.

Status
The status of the execution, which can be one of Stopped, Running, Sleeping,
or Unknown.

PC
The value of the program counter.

Cycles | Time
The value of the cycle counter or the execution time since the start of the
execution, depending on the debugger driver you are using.

Context menu

For symmetric multicore debugging, this context menu is available:

These commands are available:

Start Core
Starts the selected core.

Stop Core
Stops the selected core.

Focus on Core (also double-click)
Focuses on the selected core.

Run/Step/Stop affect all cores
The Run, Step, Stop commands affect all cores.

Run/Step/Stop affect current core only
The Run/Step/Stop commands only affect the current core. This menu
command is only supported if your device supports it.

Note: These commands are not supported by all target hardware.

 in focus, unknown status

 not in focus, unknown status

AFE1_AFE2-1:1

Multicore debugging

399

Multicore toolbar
The Multicore toolbar can be toggled on/off from the Window>Toolbars submenu
when you have enabled multicore debugging, see Setting up for symmetric multicore
debugging, page 393 or Setting up for asymmetric multicore debugging, page 393,
respectively.

This toolbar is a complement to and shows the same state as the Cores window. Each
core has a button with an adjacent drop-down menu. Click a button to make C-SPY
focus on that core.

Note: For asymmetric multicore debugging, you can use the toolbar commands to start
and stop cores in the associated debugging session.

The multicore session file
This file in XML format can be used to specify an asymmetric debug session with more
than two IDE instances. You specify the location of the file to the IDE on the
Project>Options>Debugger>Multicore page. For more information, see Setting up
for asymmetric multicore debugging, page 393, and Multicore, page 588,

XML specification

The multicore session file needs to look like this:

<?xml version="1.0" encoding="utf-8"?>

<sessionSetup>

 <partner>
 <name>Name_of_master_instance</name>
 <workspace>Path_to_workspace</workspace>
 <project>Name_of_project</project>
 <config>Build_config</config>
 <numberOfCores>N</numberOfCores>
 <attachToRunningTarget>true/false</attachToRunningTarget>
 </partner>

AFE1_AFE2-1:1

400

Reference information on multicore debugging

C-SPY® Debugging Guide
for Arm

 <partner>
 <name>Name_of_partner_instance_1</name>
 <workspace>Path_to_workspace</workspace>
 <project>Name_of_project</project>
 <config>Build_config</config>
 <numberOfCores>N</numberOfCores>
 <attachToRunningTarget>true/false</attachToRunningTarget>

 <debuggerpath>Path_to_Embedded_workbench</debuggerpath>
 </partner>

 ...

 <partner>
 <name>Name_of_partner_instance_N</name>
 <workspace>Path_to_workspace</workspace>
 <project>Name_of_project</project>
 <config>Build_config</config>
 <numberOfCores>N</numberOfCores>
 <attachToRunningTarget>true/false</attachToRunningTarget>

 <debuggerpath>Path_to_Embedded_workbench</debuggerpath>
 </partner>

</sessionSetup>

AFE1_AFE2-1:1

401

Interrupts
● Introduction to interrupts

● Using the interrupt system

● Reference information on interrupts

Introduction to interrupts
These topics are covered:

● Briefly about the interrupt simulation system

● Interrupt characteristics

● Interrupt simulation states

● C-SPY system macros for interrupt simulation

● Target-adapting the interrupt simulation system

● Briefly about interrupt logging

See also:

● Reference information on C-SPY system macros, page 444

● Breakpoints, page 125

● The IAR C/C++ Development Guide for Arm

BRIEFLY ABOUT THE INTERRUPT SIMULATION SYSTEM

By simulating interrupts, you can test the logic of your interrupt service routines and
debug the interrupt handling in the target system long before any hardware is available.
If you use simulated interrupts in conjunction with C-SPY macros and breakpoints, you
can compose a complex simulation of, for instance, interrupt-driven peripheral devices.

For most cores and devices, the C-SPY Simulator includes an interrupt simulation
system where you can simulate the execution of interrupts during debugging. You can
configure the interrupt simulation system so that it resembles your hardware interrupt
system. Note that for some cores and devices, the C-SPY simulator uses the Imperas
Instruction Set Simulator instead of the IAR C-SPY simulator driver, see The IAR
C-SPY Simulator, page 48. The Imperas Instruction Set Simulator does not support
simulated interrupts. When C-SPY uses the Imperas driver, the interrupt system more
resembles a hardware interrupt system.

AFE1_AFE2-1:1

402

Introduction to interrupts

C-SPY® Debugging Guide
for Arm

The interrupt system has the following features:

● Simulated interrupt support for the Arm core

● Single-occasion or periodical interrupts based on the cycle counter

● Predefined interrupts for various devices

● Configuration of hold time, probability, and timing variation

● State information for locating timing problems

● Configuration of interrupts using a dialog box or a C-SPY system macro—that is,
one interactive and one automating interface. In addition, you can instantly force an
interrupt.

● A log window that continuously displays events for each defined interrupt.

● A status window that shows the current interrupt activities.

All interrupts you define using the Interrupt Configuration window are preserved
between debug sessions, unless you remove them. A forced interrupt, on the other hand,
exists only until it has been serviced and is not preserved between sessions.

The interrupt simulation system is activated by default, but if not required, you can turn
off the interrupt simulation system to speed up the simulation. To turn it off, use either
the Interrupt Configuration window or a system macro.

INTERRUPT CHARACTERISTICS

The simulated interrupts consist of a set of characteristics which lets you fine-tune each
interrupt to make it resemble the real interrupt on your target hardware. You can specify
a first activation time, a repeat interval, a hold time, a variance, and a probability.

The interrupt simulation system uses the cycle counter as a clock to determine when an
interrupt should be raised in the simulator. You specify the first activation time, which
is based on the cycle counter. C-SPY will generate an interrupt when the cycle counter
has passed the specified activation time. However, interrupts can only be raised between

AFE1_AFE2-1:1

Interrupts

403

instructions, which means that a full assembler instruction must have been executed
before the interrupt is generated, regardless of how many cycles an instruction takes.

To define the periodicity of the interrupt generation you can specify the repeat interval
which defines the amount of cycles after which a new interrupt should be generated. In
addition to the repeat interval, the periodicity depends on the two options probability—
the probability, in percent, that the interrupt will actually appear in a period—and
variance—a time variation range as a percentage of the repeat interval. These options
make it possible to randomize the interrupt simulation. You can also specify a hold time
which describes how long the interrupt remains pending until removed if it has not been
processed. If the hold time is set to infinite, the corresponding pending bit will be set
until the interrupt is acknowledged or removed.

INTERRUPT SIMULATION STATES

The interrupt simulation system contains status information that you can use for locating
timing problems in your application. The Interrupt Status window displays the
available status information. For an interrupt, these states can be displayed: Idle,
Pending, Executing, or Suspended.

Normally, a repeatable interrupt has a specified repeat interval that is longer than the
execution time. In this case, the status information at different times looks like this:

Note: The interrupt activation signal—also known as the pending bit—is automatically
deactivated the moment the interrupt is acknowledged by the interrupt handler.

AFE1_AFE2-1:1

404

Introduction to interrupts

C-SPY® Debugging Guide
for Arm

However, if the interrupt repeat interval is shorter than the execution time, and the
interrupt is reentrant (or non-maskable), the status information at different times looks
like this:

An execution time that is longer than the repeat interval might indicate that you should
rewrite your interrupt handler and make it faster, or that you should specify a longer
repeat interval for the interrupt simulation system.

C-SPY SYSTEM MACROS FOR INTERRUPT SIMULATION

Macros are useful when you already have sorted out the details of the simulated interrupt
so that it fully meets your requirements. If you write a macro function containing
definitions for the simulated interrupts, you can execute the functions automatically
when C-SPY starts. Another advantage is that your simulated interrupt definitions will
be documented if you use macro files, and if you are several engineers involved in the
development project you can share the macro files within the group.

When the IAR C-SPY simulator driver is used (see Briefly about the interrupt
simulation system, page 401), the C-SPY Simulator provides these predefined system
macros related to interrupts:

● __cancelAllInterrupts

● __cancelInterrupt

● __disableInterrupts

● __enableInterrupts

● __orderInterrupt

● __popSimulatorInterruptExecutingStack

The parameters of the first five macros correspond to the equivalent entries of the
Interrupt Configuration window.

AFE1_AFE2-1:1

Interrupts

405

For more information about each macro, see Reference information on C-SPY system
macros, page 444.

TARGET-ADAPTING THE INTERRUPT SIMULATION SYSTEM

The interrupt simulation system is easy to use. However, to take full advantage of the
interrupt simulation system you should be familiar with how to adapt it for the processor
you are using.

The interrupt simulation has the same behavior as the hardware. This means that the
execution of an interrupt is dependent on the status of the global interrupt enable bit. The
execution of maskable interrupts is also dependent on the status of the individual
interrupt enable bits.

To simulate device-specific interrupts, the interrupt system must have detailed
information about each available interrupt. This information is provided in the device
description files.

For information about device description files, see Selecting a device description file,
page 57.

BRIEFLY ABOUT INTERRUPT LOGGING

Interrupt logging provides you with comprehensive information about the interrupt
events. This might be useful, for example, to help you locate which interrupts you can
fine-tune to become faster. You can log entrances and exits to and from interrupts. If you
are using the C-SPY simulator driver (see Briefly about the interrupt simulation system,
page 401), you can also log internal interrupt status information, such as triggered,
expired, etc. In the IDE:

● The logs are displayed in the Interrupt Log window

● A summary is available in the Interrupt Log Summary window

● The Interrupt graph in the Timeline window provides a graphical view of the
interrupt events during the execution of your application

Requirements for interrupt logging

Interrupt logging is supported by the C-SPY simulator driver (see Briefly about the
interrupt simulation system, page 401). The Imperas Instruction Set Simulator does not
support interrupt logging.

To use interrupt logging you need a Cortex-M device. You also need one of these
alternatives:

● An I-jet or I-jet Trace in-circuit debugging probe, and an SWD interface between
the debug probe and the target system

AFE1_AFE2-1:1

406

Using the interrupt system

C-SPY® Debugging Guide
for Arm

● A J-Link or J-Trace debug probe and an SWD interface between the debug probe
and the target system

● An ST-LINK debug probe and an SWD interface between the debug probe and the
target system

● A TI XDS debug probe and an SWD interface between the debug probe and the
target system

See also Getting started using interrupt logging, page 409.

Using the interrupt system
These tasks are covered:

● Simulating a simple interrupt

● Simulating an interrupt in a multi-task system

● Getting started using interrupt logging

See also:

● Using C-SPY macros, page 429 for details about how to use a setup file to define
simulated interrupts at C-SPY startup

● The tutorial Simulating an interrupt in the Information Center.

SIMULATING A SIMPLE INTERRUPT

This example demonstrates the method for simulating a timer interrupt. However, the
procedure can also be used for other types of interrupts.

AFE1_AFE2-1:1

Interrupts

407

To simulate and debug an interrupt:
1 Assume this simple application which contains an IRQ handler routine that handles

system timer interrupts. It increments a tick variable. The main function sets the
necessary status registers. The application exits when 100 interrupts have been
generated.

/* Enables use of extended keywords */
#pragma language=extended

#include <intrinsics.h>
#include <stdio.h>

unsigned int ticks = 0;

/* IRQ handler */
#if __ARM_PROFILE_M__
/* Defines an interrupt handler for the Cortex-M UART interrupt.
*/
void UART_Handler()
#else
/* Defines an interrupt handler for other cores. */
__irq __arm void IRQ_Handler(void)
#endif
{
 /* We use only system timer interrupts, so we do not need
 to check the interrupt source. */
 ticks += 1;
 TMOVFR_bit.OVF = 1; /* Clear system timer overflow flag */
}

int main(void)
{
 __enable_interrupt();
 /* Timer setup code */
 ILC0_bit.ILR0 = 4; /* System timer interrupt priority */
 TMRLR_bit.TMRLR = 1E5; /* System timer reload value */
 TMEN_bit.TCEN = 1; /* Enable system timer */
 while (ticks < 100);
 printf("Done\n");
}

2 Add your interrupt service routine to your application source code and add the file to
your project.

3 Build your project and start the simulator.

AFE1_AFE2-1:1

408

Using the interrupt system

C-SPY® Debugging Guide
for Arm

4 Choose Simulator>Interrupt Configuration to open the Interrupt Configuration
window. Right-click in the window and select Enable Interrupt Simulation on the
context menu. For the timer example, verify these settings:

Click OK.

5 Execute your application. If you have enabled the interrupt properly in your application
source code, C-SPY will:

● Generate an interrupt when the cycle counter has passed 4000

● Continuously repeat the interrupt after approximately 2000 cycles.

6 To watch the interrupt in action, choose Simulator>Interrupt Log to open the
Interrupt Log window.

7 From the context menu, available in the Interrupt Log window, choose Enable to
enable the logging. If you restart program execution, status information about
entrances and exits to and from interrupts will now appear in the Interrupt Log
window.

For information about how to get a graphical representation of the interrupts correlated
with a time axis, see Timeline window—Interrupt Log graph, page 422.

SIMULATING AN INTERRUPT IN A MULTI-TASK SYSTEM

If you are using interrupts in such a way that the normal instruction used for returning
from an interrupt handler is not used, for example in an operating system with
task-switching, the simulator cannot automatically detect that the interrupt has finished
executing. The interrupt simulation system will work correctly, but the status
information in the Interrupt Configuration window might not look as you expect. If
too many interrupts are executing simultaneously, a warning might be issued.

To simulate a normal interrupt exit:
1 Set a code breakpoint on the instruction that returns from the interrupt function.

Option Settings

Interrupt IRQ

First activation 4000

Repeat interval 2000

Hold time 10

Probability (%) 100

Variance (%) 0

Table 14: Timer interrupt settings

AFE1_AFE2-1:1

Interrupts

409

2 Specify the __popSimulatorInterruptExecutingStack macro as a condition to
the breakpoint.

When the breakpoint is triggered, the macro is executed and then the application
continues to execute automatically.

GETTING STARTED USING INTERRUPT LOGGING

1 To set up for interrupt logging, choose C-SPY driver>SWO Configuration. In the
dialog box, set up the serial-wire output communication channel for trace data. Note
specifically the CPU clock option. The CPU clock can also be set up on the
Project>Options>ST-LINK>Communication page and the
Project>Options>TI XDS>Communication page, respectively.

For the C-SPY simulator, no specific settings are required.

2 Choose C-SPY driver>Interrupt Log to open the Interrupt Log window. Optionally,
you can also choose:

● C-SPY driver>Interrupt Log Summary to open the Interrupt Log Summary
window

● C-SPY driver>Timeline to open the Timeline window and view the Interrupt graph

3 From the context menu in the Interrupt Log window, choose Enable to enable the
logging.

In the SWO Configuration dialog box, you can see in the Interrupt Log Events area
that interrupt logs are enabled.

4 Start executing your application program to collect the log information.

5 To view the interrupt log information, look in the Interrupt Log or Interrupt Log
Summary window, or the Interrupt graph in the Timeline window.

6 If you want to save the log or summary to a file, choose Save to log file from the
context menu in the window in question.

7 To disable interrupt logging, from the context menu in the Interrupt Log window,
toggle Enable off.

Reference information on interrupts
Reference information about:

● Interrupt Configuration window, page 410

● Available Interrupts window, page 413

● Interrupt Status window, page 414

AFE1_AFE2-1:1

410

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

● Interrupt Log window, page 416

● Interrupt Log Summary window, page 420

● Timeline window—Interrupt Log graph, page 422

Interrupt Configuration window
The Interrupt Configuration window is available by choosing Simulator>Interrupt
Configuration.

This window lists all installed interrupts. Use this window to enable or disable
individual interrupts or the interrupt simulation system, and to edit the properties of
installed interrupts.

See also Using the interrupt system, page 406.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Display area

This area contains these columns:

Interrupt
Lists all installed interrupts. Use the checkbox to enable or disable the interrupt.

ID
A unique interrupt identifier.

Type
Shows the type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Available Interrupts
window.

AFE1_AFE2-1:1

Interrupts

411

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Description
A description of the selected interrupt, if available. The description is retrieved
from the selected device description file and consists of a string describing the
priority, vector offset, enable bit, and pending bit, separated by space characters.
The enable bit and pending bit are optional. It is possible to have none, only the
enable bit, or both. For interrupts specified using the system macro
__orderInterrupt, the Description box is empty.

For Cortex-M devices, the description is retrieved from the selected device
description file and is editable. Enable bit and pending bit are not available from
the ddf file—they must be manually edited if wanted. The priority is as in the
hardware—the lower the number, the higher the priority. NMI and HardFault are
special, and their descriptions should not be edited. Cortex-M interrupts are also
affected by the PRIMASK, FAULTMASK, and BASEPRI registers, as described in
the Arm documentation.

For other devices, the description strings for IRQ and FIQ are hardcoded and
cannot be edited. In those descriptions, a higher priority number means a higher
priority.

First Activation
The value of the cycle counter after which the specified interrupt will be
generated. Click to edit.

Repeat Interval
The periodicity of the interrupt in cycles. Click to edit.

Hold Time
How long, in cycles, the interrupt remains pending until removed if it has not
been processed. Click to edit. If you specify inf, the corresponding pending bit
will be set until the interrupt is acknowledged or removed.

Variance %
A timing variation range, as a percentage of the repeat interval, in which the
interrupt might occur for a period. For example, if the repeat interval is 100 and
the variance 5%, the interrupt might occur anywhere between T=95 and T=105,
to simulate a variation in the timing. Click to edit.

AFE1_AFE2-1:1

412

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

Probability %
The probability, in percent, that the interrupt will actually occur within the
specified period. Click to edit.

Context menu

This context menu is available:

These commands are available:

Enable Interrupt Simulation
Enables or disables the entire interrupt simulation system. If the interrupt
simulation is disabled, the definitions remain but no interrupts are generated.
Note that you can also enable and disable installed interrupts individually by
using the check box to the left of the interrupt name in the list of installed
interrupts.

Enable
Enables or disables the individual interrupt you clicked on.

Remove
Removes the individual interrupt you clicked on.

Add Interrupt
Selects an interrupt to install. The drop-down list contains all available
interrupts. Your selection will automatically update the Description box. The
list is, for Cortex-M devices, populated with entries from the device description
file that you have selected. For other devices, only two interrupts are available:
IRQ and FIQ.

Remove All
Removes all installed interrupts in the window.

Open Available Interrupts Window
Opens the Available Interrupts window, see Available Interrupts window, page
413.

AFE1_AFE2-1:1

Interrupts

413

Available Interrupts window
The Available Interrupts window is available from the C-SPY driver menu.

Use this window for an overview of all available interrupts for your project. You can also
use it for forcing an interrupt instantly. This is useful when you want to check your
interrupt logic and interrupt routines. Just start typing an interrupt name and focus shifts
to the first line found with that name.

The hold time for a forced interrupt is infinite, and the interrupt exists until it has been
serviced or until a reset of the debug session.

To sort the window contents, click on either the Interrupt or the Description column
header. A second click on the same column header reverses the sort order.

To force an interrupt:
1 Enable the interrupt simulation system, see Interrupt Configuration window, page 410.

2 Activate the interrupt by choosing the Force Interrupt command from the context
menu.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Display area

This area lists all available interrupts and their definitions. This information is retrieved
from the selected device description file. See this file for a detailed description.

AFE1_AFE2-1:1

414

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

These commands are available:

Add to Configuration
Installs the selected interrupt and adds it to the Interrupt Configuration
window.

Force Interrupt
Triggers the selected interrupt.

Open Configuration Window
Opens the Interrupt Configuration window, see Interrupt Configuration
window, page 410.

Interrupt Status window
The Interrupt Status window is available from the C-SPY driver menu.

This window shows the status of all the currently active interrupts, in other words
interrupts that are either executing or waiting to be executed.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Display area

This area contains these columns:

Interrupt
Lists all interrupts.

AFE1_AFE2-1:1

Interrupts

415

ID
A unique interrupt identifier.

Type
The type of the interrupt. The type can be one of:

Forced, a single-occasion interrupt defined in the Available Interrupts
window.

Single, a single-occasion interrupt.

Repeat, a periodically occurring interrupt.

If the interrupt has been set from a C-SPY macro, the additional part (macro) is
added, for example: Repeat(macro).

Status
The state of the interrupt:

Idle, the interrupt activation signal is low (deactivated).

Pending, the interrupt activation signal is active, but the interrupt has not been
yet acknowledged by the interrupt handler.

Executing, the interrupt is currently being serviced, that is the interrupt handler
function is executing.

Suspended, the interrupt is currently suspended due to execution of an interrupt
with a higher priority.

(deleted) is added to Executing and Suspended if you have deleted a currently
active interrupt. (deleted) is removed when the interrupt has finished executing.

Next Time
The next time an idle interrupt is triggered. Once a repeatable interrupt stats
executing, a copy of the interrupt will appear with the state Idle and the next time
set. For interrupts that do not have a next time—that is pending, executing, or
suspended—the column will show --.

Timing
The timing of the interrupt. For a Single and Forced interrupt, the activation
time is displayed. For a Repeat interrupt, the information has the form:
Activation Time + n*Repeat Time. For example, 2000 + n*2345. This
means that the first time this interrupt is triggered, is at 2000 cycles and after that
with an interval of 2345 cycles.

AFE1_AFE2-1:1

416

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

Interrupt Log window
The Interrupt Log window is available from the C-SPY driver menu.

This window logs entrances to and exits from interrupts. The C-SPY Simulator also logs
internal state changes.

The information is useful for debugging the interrupt handling in the target system.
When the Interrupt Log window is open, it is updated continuously at runtime.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

For more information, see Getting started using interrupt logging, page 409.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 422.

Requirements

One of these alternatives:

● The C-SPY simulator. Not available for all cores and devices.

● An I-jet or I-jet Trace in-circuit debugging probe, and an SWD interface between
the debug probe and the target system

● A J-Link or J-Trace debug probe with an SWD interface between the debug probe
and the target system

● An ST-LINK debug probe with an SWD interface between the debug probe and the
target system

AFE1_AFE2-1:1

Interrupts

417

● A TI XDS debug probe and an SWD interface between the debug probe and the
target system

Display area for the C-SPY hardware debugger drivers

This area contains these columns:

Time
The time for the interrupt entrance, based on the CPU clock frequency specified
in the SWO Configuration dialog box.

If a time is displayed in italics, the target system has not been able to collect a
correct time, but instead had to approximate it.

This column is available when you have selected Show Time from the context
menu. If the Show Time command is not available, the Time column is
displayed by default.

Cycles
The number of cycles from the start of the execution until the event.

A cycle count displayed in italics indicates an approximative value. Italics is
used when the target system has not been able to collect a correct value, but
instead had to approximate it.

This column is available when you have selected Show Cycles from the context
menu provided that the C-SPY driver you are using supports it.

Interrupt
The name of the interrupt source where the interrupt occurred. If the column
displays Overflow in red, the communication channel failed to transmit all
interrupt logs from the target system.

Status
The event status of the interrupt:

Enter, the interrupt is currently executing.

Leave, the interrupt has finished executing.

Program Counter*
The address of the interrupt handler.

Execution Time/Cycles
The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

AFE1_AFE2-1:1

418

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

* You can double-click an address. If it is available in the source code, the editor window
displays the corresponding source code, for example for the interrupt handler (this does
not include library source code).

Display area for the C-SPY simulator

This area contains these columns:

Time
The time for the interrupt entrance, based on an internally specified clock
frequency.

This column is available when you have selected Show Time from the context
menu.

Cycles
The number of cycles from the start of the execution until the event.

This column is available when you have selected Show Cycles from the context
menu.

Interrupt
The interrupt as defined in the device description file.

Status
Shows the event status of the interrupt:

Triggered, the interrupt has passed its activation time.

Forced, the same as Triggered, but the interrupt was forced from the Available
Interrupts window.

Enter, the interrupt is currently executing.

Leave, the interrupt has been executed.

Expired, the interrupt hold time has expired without the interrupt being
executed.

Rejected, the interrupt has been rejected because the necessary interrupt
registers were not set up to accept the interrupt.

Program Counter
The value of the program counter when the event occurred.

Execution Time/Cycles
The time spent in the interrupt, calculated using the Enter and Leave
timestamps. This includes time spent in any subroutines or other interrupts that
occurred in the specific interrupt.

AFE1_AFE2-1:1

Interrupts

419

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

AFE1_AFE2-1:1

420

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

Interrupt Log Summary window
The Interrupt Log Summary window is available from the C-SPY driver menu.

This window displays a summary of logs of entrances to and exits from interrupts.

For more information, see Getting started using interrupt logging, page 409.

For information about how to get a graphical view of the interrupt events during the
execution of your application, see Timeline window—Interrupt Log graph, page 422.

Requirements

One of these alternatives:

● The C-SPY simulator. Not available for all cores and devices.

● An I-jet or I-jet Trace in-circuit debugging probe, and an SWD interface between
the debug probe and the target system

● A J-Link or J-Trace debug probe with an SWD interface between the debug probe
and the target system

● An ST-LINK debug probe with an SWD interface between the debug probe and the
target system

● A TI XDS debug probe and an SWD interface between the debug probe and the
target system

Display area for the C-SPY simulator

Each row in this area displays statistics about the specific interrupt based on the log
information in these columns:

Interrupt
The type of interrupt that occurred.

At the bottom of the column, the current time or cycles is displayed—the
number of cycles or the execution time since the start of execution. Overflow
count and approximative time count is always zero.

AFE1_AFE2-1:1

Interrupts

421

Count
The number of times the interrupt occurred.

First time
The first time the interrupt was executed.

Total (Time)**
The accumulated time spent in the interrupt.

Total (%)
The time in percent of the current time.

Fastest**
The fastest execution of a single interrupt of this type.

Slowest**
The slowest execution of a single interrupt of this type.

Min interval
The shortest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

Max interval
The longest time between two interrupts of this type.

The interval is specified as the time interval between the entry time for two
consecutive interrupts.

** Calculated in the same way as for the Execution time/cycles in the Interrupt Log
window.

Context menu

This context menu is available:

These commands are available:

Enable
Enables the logging system. The system will log information also when the
window is closed.

AFE1_AFE2-1:1

422

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Save to File
Displays a standard file selection dialog box where you can select the
destination file for the log information. The entries in the log file are separated
by TAB and LF characters. An X in the Approx column indicates that the
timestamp is an approximation.

Show Time
Displays the Time column. If the Time column is displayed by default in the
C-SPY driver you are using, this menu command is not available.

Show Cycles
Displays the Cycles column. If the Cycles column is not supported in the C-SPY
driver you are using, this menu command is not available.

Timeline window—Interrupt Log graph
The Interrupt Log graph displays interrupts collected by the trace system. In other
words, the graph provides a graphical view of the interrupt events during the execution
of your application.

Note: There is a limit on the number of saved logs. When this limit is exceeded, the
oldest entries in the buffer are erased.

Display area

● The label area at the left end of the graph displays the names of the interrupts.

● The graph itself shows active interrupts as a thick green horizontal bar where the
white figure indicates the time spent in the interrupt. This graph is a graphical
representation of the information in the Interrupt Log window, see Interrupt Log
window, page 416.

AFE1_AFE2-1:1

Interrupts

423

● If the bar is displayed without horizontal borders, there are two possible causes:

● The interrupt is reentrant and has interrupted itself. Only the innermost interrupt
will have borders.

● There are irregularities in the interrupt enter-leave sequence, probably due to
missing logs.

● If the bar is displayed without a vertical border, the missing border indicates an
approximate time for the log.

● A red vertical line indicates overflow, which means that the communication channel
failed to transmit all interrupt logs from the target system.

At the bottom of the window, there is a common time axis that uses seconds as the time
unit.

Context menu

This context menu is available:

Note: The exact contents of the context menu you see on the screen depends on which
features that your combination of software and hardware supports. However, the list of
menu commands below is complete and covers all possible commands.

These commands are available:

Navigate
Commands for navigating the graph(s). Choose between:

Next moves the selection to the next relevant point in the graph. Shortcut key:
right arrow.

Previous moves the selection backward to the previous relevant point in the
graph. Shortcut key: left arrow.

First moves the selection to the first data entry in the graph. Shortcut key:
Home.

AFE1_AFE2-1:1

424

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

Last moves the selection to the last data entry in the graph. Shortcut key: End.

End moves the selection to the last data in any displayed graph, in other words
the end of the time axis. Shortcut key: Ctrl+End.

Auto Scroll
Toggles automatic scrolling on or off. When on, the most recently collected data
is automatically displayed when you choose Navigate>End.

Zoom
Commands for zooming the window, in other words, changing the time scale.
Choose between:

Zoom to Selection makes the current selection fit the window. Shortcut key:
Return.

Zoom In zooms in on the time scale. Shortcut key: +

Zoom Out zooms out on the time scale. Shortcut key: –

10ns, 100ns, 1us, etc makes an interval of 10 nanoseconds, 100 nanoseconds, 1
microsecond, respectively, fit the window.

1ms, 10ms, etc makes an interval of 1 millisecond or 10 milliseconds,
respectively, fit the window.

10m, 1h, etc makes an interval of 10 minutes or 1 hour, respectively, fit the
window.

Interrupts
A heading that shows that the Interrupt Log-specific commands below are
available.

Enable
Toggles the display of the graph on or off. If you disable a graph, that graph will
be indicated as OFF in the window. If no data has been collected for a graph, no
data will appear instead of the graph.

Clear
Deletes the log information. Note that this will also happen when you reset the
debugger.

Go To Source
Displays the corresponding source code in an editor window, if applicable.

Sort by
Sorts the entries according to their ID or name. The selected order is used in the
graph when new interrupts appear.

AFE1_AFE2-1:1

Interrupts

425

source
Goes to the previous/next log for the selected source.

Select Graphs
Selects which graphs to be displayed in the Timeline window.

Time Axis Unit
Selects the unit used in the time axis—choose between Seconds and Cycles.

If Cycles is not available, the graphs are based on different clock sources. In that
case you can view cycle values as tooltip information by pointing at the graph
with your mouse pointer.

AFE1_AFE2-1:1

426

Reference information on interrupts

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

427

C-SPY macros
● Introduction to C-SPY macros

● Using C-SPY macros

● Reference information on the macro language

● Reference information on reserved setup macro function names

● Reference information on C-SPY system macros

● Graphical environment for macros

Introduction to C-SPY macros
These topics are covered:

● Reasons for using C-SPY macros

● Briefly about using C-SPY macros

● Briefly about setup macro functions and files

● Briefly about the macro language

REASONS FOR USING C-SPY MACROS

You can use C-SPY macros either by themselves or in conjunction with complex
breakpoints and interrupt simulation to perform a wide variety of tasks. Some examples
where macros can be useful:

● Automating the debug session, for instance with trace printouts, printing values of
variables, and setting breakpoints.

● Hardware configuring, such as initializing hardware registers.

● Feeding your application with simulated data during runtime.

● Simulating peripheral devices, see the chapter Interrupts. This only applies if you
are using the simulator driver.

● Developing small debug utility functions, for instance calculating the stack depth,
see the provided example stack.mac located in the directory \arm\src\.

AFE1_AFE2-1:1

428

Introduction to C-SPY macros

C-SPY® Debugging Guide
for Arm

BRIEFLY ABOUT USING C-SPY MACROS

To use C-SPY macros, you should:

● Write your macro variables and functions and collect them in one or several macro
files

● Register your macros

● Execute your macros

For registering and executing macros, there are several methods to choose between.
Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register or execute your macro.

BRIEFLY ABOUT SETUP MACRO FUNCTIONS AND FILES

There are some reserved setup macro function names that you can use for defining
macro functions which will be called at specific times, such as:

● Once after communication with the target system has been established but before
downloading the application software

● Once after your application software has been downloaded

● Each time the reset command is issued

● Once when the debug session ends

To define a macro function to be called at a specific stage, you should define and register
a macro function with one of the reserved names. For instance, if you want to clear a
specific memory area before you load your application software, the macro setup
function execUserPreload should be used. This function is also suitable if you want
to initialize some CPU registers or memory-mapped peripheral units before you load
your application software.

You should define these functions in a setup macro file, which you can load before
C-SPY starts. Your macro functions will then be automatically registered each time you
start C-SPY. This is convenient if you want to automate the initialization of C-SPY, or
if you want to register multiple setup macros.

For more information about each setup macro function, see Reference information on
reserved setup macro function names, page 439.

Remapping memory

A common feature of many Arm-based processors is the ability to remap memory. After
a reset, the memory controller typically maps address zero to non-volatile memory, such
as flash. By configuring the memory controller, the system memory can be remapped to
place RAM at zero and non-volatile memory higher up in the address map. By doing
this, the exception table will reside in RAM and can be easily modified when you

AFE1_AFE2-1:1

C-SPY macros

429

download code to the target hardware. To handle this in C-SPY, the setup macro function
execUserPreload() is suitable. For an example, see Remapping memory, page 63.

BRIEFLY ABOUT THE MACRO LANGUAGE

The syntax of the macro language is very similar to the C language. There are:

● Macro statements, which are similar to C statements.

● Macro functions, which you can define with or without parameters and return
values.

● Predefined built-in system macros, similar to C library functions, which perform
useful tasks such as opening and closing files, setting breakpoints, and defining
simulated interrupts.

● Macro variables, which can be global or local, and can be used in C-SPY
expressions.

● Macro strings, which you can manipulate using predefined system macros.

For more information about the macro language components, see Reference information
on the macro language, page 434.

Example

Consider this example of a macro function which illustrates the various components of
the macro language:

__var oldVal;
CheckLatest(val)
{
 if (oldVal != val)
 {
 __message "Message: Changed from ", oldVal, " to ", val, "\n";
 oldVal = val;
 }
}

Note: Reserved macro words begin with double underscores to prevent name conflicts.

Using C-SPY macros
These tasks are covered:

● Registering C-SPY macros—an overview

● Executing C-SPY macros—an overview

● Registering and executing using setup macros and setup files

AFE1_AFE2-1:1

430

Using C-SPY macros

C-SPY® Debugging Guide
for Arm

● Executing macros using Quick Watch

● Executing a macro by connecting it to a breakpoint

● Aborting a C-SPY macro

For more examples using C-SPY macros, see:

● The tutorial about simulating an interrupt, which you can find in the Information
Center

● Initializing target hardware before C-SPY starts, page 62

REGISTERING C-SPY MACROS—AN OVERVIEW

C-SPY must know that you intend to use your defined macro functions, and therefore
you must register your macros. There are various ways to register macro functions:

● You can register macro functions during the C-SPY startup sequence, see
Registering and executing using setup macros and setup files, page 431.

● You can register macros interactively in the Macro Registration window, see
Macro Registration window, page 509. Registered macros appear in the Debugger
Macros window, see Debugger Macros window, page 511.

● You can register a file containing macro function definitions, using the system
macro __registerMacroFile. This means that you can dynamically select which
macro files to register, depending on the runtime conditions. Using the system
macro also lets you register multiple files at the same moment. For information
about the system macro, see __registerMacroFile, page 484.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to register your macro.

EXECUTING C-SPY MACROS—AN OVERVIEW

There are various ways to execute macro functions:

● You can execute macro functions during the C-SPY startup sequence and at other
predefined stages during the debug session by defining setup macro functions in a
setup macro file, see Registering and executing using setup macros and setup files,
page 431.

● The Quick Watch window lets you evaluate expressions, and can thus be used for
executing macro functions. For an example, see Executing macros using Quick
Watch, page 432.

● The Macro Quicklaunch window is similar to the Quick Watch window, but is
more specifically designed for C-SPY macros. See Macro Quicklaunch window,
page 513.

AFE1_AFE2-1:1

C-SPY macros

431

● A macro can be connected to a breakpoint; when the breakpoint is triggered the
macro is executed. For an example, see Executing a macro by connecting it to a
breakpoint, page 432.

Which method you choose depends on which level of interaction or automation you
want, and depending on at which stage you want to execute your macro.

REGISTERING AND EXECUTING USING SETUP MACROS AND
SETUP FILES

It can be convenient to register a macro file during the C-SPY startup sequence. To do
this, specify a macro file which you load before starting the debug session. Your macro
functions will be automatically registered each time you start the debugger.

If you use the reserved setup macro function names to define the macro functions, you
can define exactly at which stage you want the macro function to be executed.

To define a setup macro function and load it during C-SPY startup:
1 Create a new text file where you can define your macro function.

For example:

execUserSetup()
{
 ...
 __registerMacroFile("MyMacroUtils.mac");
 __registerMacroFile("MyDeviceSimulation.mac");

}

This macro function registers the additional macro files MyMacroUtils.mac and
MyDeviceSimulation.mac. Because the macro function is defined with the function
name execUserSetup, it will be executed directly after your application has been
downloaded.

2 Save the file using the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger>Setup. Select the Use
macro file option, and choose the macro file you just created.

The macros will now be registered during the C-SPY startup sequence.

AFE1_AFE2-1:1

432

Using C-SPY macros

C-SPY® Debugging Guide
for Arm

EXECUTING MACROS USING QUICK WATCH

The Quick Watch window lets you dynamically choose when to execute a macro
function.

1 Consider this simple macro function that checks the status of a timer enable bit:

TimerStatus()
{
 if ((TimerStatreg & 0x01) != 0)/* Checks the status of reg */
 return "Timer enabled"; /* C-SPY macro string used */
 else
 return "Timer disabled"; /* C-SPY macro string used */
}

2 Save the macro function using the filename extension mac.

3 To load the macro file, choose View>Macros>Macro Registration. The Macro
Registration window is displayed. Click Add and locate the file using the file browser.
The macro file appears in the list of macros in the Macro Registration window.

4 Select the macro you want to register and your macro will appear in the Debugger
Macros window.

5 Choose View>Quick Watch to open the Quick Watch window, type the macro call
TimerStatus() in the text field and press Return,

Alternatively, in the macro file editor window, select the macro function name
TimerStatus(). Right-click, and choose Quick Watch from the context menu that
appears.

The macro will automatically be displayed in the Quick Watch window. For more
information, see Quick Watch window, page 118.

EXECUTING A MACRO BY CONNECTING IT TO A
BREAKPOINT

You can connect a macro to a breakpoint. The macro will then be executed when the
breakpoint is triggered. The advantage is that you can stop the execution at locations of
particular interest and perform specific actions there.

AFE1_AFE2-1:1

C-SPY macros

433

For instance, you can easily produce log reports containing information such as how the
values of variables, symbols, or registers change. To do this you might set a breakpoint
on a suspicious location and connect a log macro to the breakpoint. After the execution
you can study how the values of the registers have changed.

To create a log macro and connect it to a breakpoint:
1 Assume this skeleton of a C function in your application source code:

int fact(int x)
{
 ...
}

2 Create a simple log macro function like this example:

logfact()
{
 __message "fact(" ,x, ")";
}

The __message statement will log messages to the Debug Log window.

Save the macro function in a macro file, with the filename extension mac.

3 To register the macro, choose View>Macros>Macro Registration to open the Macro
Registration window and add your macro file to the list. Select the file to register it.
Your macro function will appear in the Debugger Macros window.

4 To set a code breakpoint, click the Toggle Breakpoint button on the first statement
within the function fact in your application source code. Choose View>Breakpoints
to open the Breakpoints window. Select your breakpoint in the list of breakpoints and
choose the Edit command from the context menu.

5 To connect the log macro function to the breakpoint, type the name of the macro
function, logfact(), in the Action field and click OK to close the dialog box.

6 Execute your application source code. When the breakpoint is triggered, the macro
function will be executed. You can see the result in the Debug Log window.

Note that the expression in the Action field is evaluated only when the breakpoint causes
the execution to really stop. If you want to log a value and then automatically continue
execution, you can either:

● Use a Log breakpoint, see Log breakpoints dialog box, page 146

● Use the Condition field instead of the Action field. For an example, see Performing
a task and continuing execution, page 137.

AFE1_AFE2-1:1

434

Reference information on the macro language

C-SPY® Debugging Guide
for Arm

7 You can easily enhance the log macro function by, for instance, using the __fmessage
statement instead, which will print the log information to a file. For information about
the __fmessage statement, see Formatted output, page 438.

For an example where a serial port input buffer is simulated using the method of
connecting a macro to a breakpoint, see the tutorial Simulating an interrupt in the
Information Center.

ABORTING A C-SPY MACRO

To abort a C-SPY macro:
1 Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the macro has terminated is displayed in the Debug Log
window.

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

Reference information on the macro language
Reference information about:

● Macro functions, page 434

● Macro variables, page 435

● Macro parameters, page 435

● Macro strings, page 436

● Macro statements, page 436

● Formatted output, page 438

MACRO FUNCTIONS

C-SPY macro functions consist of C-SPY variable definitions and macro statements
which are executed when the macro is called. An unlimited number of parameters can
be passed to a macro function, and macro functions can return a value on exit.

A C-SPY macro has this form:

macroName (parameterList)
{
 macroBody
}

where parameterList is a list of macro parameters separated by commas, and
macroBody is any series of C-SPY variable definitions and C-SPY statements.

AFE1_AFE2-1:1

C-SPY macros

435

Type checking is neither performed on the values passed to the macro functions nor on
the return value.

MACRO VARIABLES

A macro variable is a variable defined and allocated outside your application. It can then
be used in a C-SPY expression, or you can assign application data—values of the
variables in your application—to it. For more information about C-SPY expressions, see
C-SPY expressions, page 98.

The syntax for defining one or more macro variables is:

__var nameList;

where nameList is a list of C-SPY variable names separated by commas.

A macro variable defined outside a macro body has global scope, and it exists
throughout the whole debugging session. A macro variable defined within a macro body
is created when its definition is executed and destroyed on return from the macro.

By default, macro variables are treated as signed integers and initialized to 0. When a
C-SPY variable is assigned a value in an expression, it also acquires the type of that
expression. For example:

In case of a name conflict between a C symbol and a C-SPY macro variable, C-SPY
macro variables have a higher precedence than C variables. Note that macro variables
are allocated on the debugger host and do not affect your application.

MACRO PARAMETERS

A macro parameter is intended for parameterization of device support. The named
parameter will behave as a normal C-SPY macro variable with these differences:

● The parameter definition can have an initializer

● Values of a parameters can be set through options (either in the IDE or in cspybat).

● A value set from an option will take precedence over a value set by an initializer

● A parameter must have an initializer, be set through an option, or both. Otherwise, it
has an undefined value, and accessing it will cause a runtime error.

Expression What it means

myvar = 3.5; myvar is now type double, value 3.5.

myvar = (int*)i; myvar is now type pointer to int, and the value is the
same as i.

Table 15: Examples of C-SPY macro variables

AFE1_AFE2-1:1

436

Reference information on the macro language

C-SPY® Debugging Guide
for Arm

The syntax for defining one or more macro parameters is:

__param param[=value, ...;]

Use the command line option --macro_param to specify a value to a parameter, see
--macro_param, page 562.

MACRO STRINGS

In addition to C types, macro variables can hold values of macro strings. Note that
macro strings differ from C language strings.

When you write a string literal, such as "Hello!", in a C-SPY expression, the value is
a macro string. It is not a C-style character pointer char*, because char* must point to
a sequence of characters in target memory and C-SPY cannot expect any string literal to
actually exist in target memory.

You can manipulate a macro string using a few built-in macro functions, for example
__strFind or __subString. The result can be a new macro string. You can
concatenate macro strings using the + operator, for example str + "tail". You can
also access individual characters using subscription, for example str[3]. You can get the
length of a string using sizeof(str). Note that a macro string is not
NULL-terminated.

The macro function __toString is used for converting from a NULL-terminated C
string in your application (char* or char[]) to a macro string. For example, assume
this definition of a C string in your application:

char const *cstr = "Hello";

Then examine these macro examples:

__var str; /* A macro variable */
str = cstr /* str is now just a pointer to char */
sizeof str /* same as sizeof (char*), typically 2 or 4 */
str = __toString(cstr,512) /* str is now a macro string */
sizeof str /* 5, the length of the string */
str[1] /* 101, the ASCII code for 'e' */
str += " World!" /* str is now "Hello World!" */

See also Formatted output, page 438.

MACRO STATEMENTS

Statements are expected to behave in the same way as the corresponding C statements
would do. The following C-SPY macro statements are accepted:

Expressions

expression;

AFE1_AFE2-1:1

C-SPY macros

437

For more information about C-SPY expressions, see C-SPY expressions, page 98.

Note: On 64-bit architectures, the expression #PC becomes ambiguous in C-SPY
macros. Therefore, when you debug a 64-bit MCU, you must use #PC32 for AArch32
and #PC64 for AArch64 in C-SPY macros. When debugging a 32-bit MCU, use #PC.

Conditional statements

if (expression)
 statement

if (expression)
 statement
else
 statement

Loop statements

for (init_expression; cond_expression; update_expression)
 statement

while (expression)
 statement

do
 statement
while (expression);

Return statements

return;

return expression;

If the return value is not explicitly set, signed int 0 is returned by default.

Blocks

Statements can be grouped in blocks.

{
 statement1
 statement2
 .
 .
 .
 statementN
}

AFE1_AFE2-1:1

438

Reference information on the macro language

C-SPY® Debugging Guide
for Arm

FORMATTED OUTPUT

C-SPY provides various methods for producing formatted output:

where argList is a comma-separated list of C-SPY expressions or strings, and file is
the result of the __openFile system macro, see __openFile, page 476.

To produce messages in the Debug Log window:

var1 = 42;
var2 = 37;
__message "This line prints the values ", var1, " and ", var2,
" in the Debug Log window.";

This produces this message in the Debug Log window:

This line prints the values 42 and 37 in the Debug Log window.

To write the output to a designated file:

__fmessage myfile, "Result is ", res, "!\n";

To produce strings:

myMacroVar = __smessage 42, " is the answer.";

myMacroVar now contains the string "42 is the answer.".

Specifying display format of arguments

To override the default display format of a scalar argument (number or pointer) in
argList, suffix it with a : followed by a format specifier. Available specifiers are:

These match the formats available in the Watch and Locals windows, but number
prefixes and quotes around strings and characters are not printed.

__message argList; Prints the output to the Debug Log window.

__fmessage file, argList; Prints the output to the designated file.

__smessage argList; Returns a string containing the formatted output.

%b for binary scalar arguments

%o for octal scalar arguments

%d for decimal scalar arguments

%x for hexadecimal scalar arguments

%c for character scalar arguments

AFE1_AFE2-1:1

C-SPY macros

439

Example:

__message "The character '", cvar:%c, "' has the decimal value
", cvar;

Depending on the value of the variables, this produces this message:

The character 'A' has the decimal value 65

Note: A character enclosed in single quotes (a character literal) is an integer constant
and is not automatically formatted as a character. For example:

__message 'A', " is the numeric value of the character ",
'A':%c;

would produce:

65 is the numeric value of the character A

Optionally, a number can be inserted between the % and the letter, to format an integer
to that minimum width. Binary, octal, and hexadecimal numbers will be left-padded
with zeros, decimal numbers and characters will be padded with spaces. Note that
numbers that do not fit within the requested minimum width will not be truncated.

Examples:

__message 31:%4x; // 001f
__message 31:%4d; // 31
__message 31:%8b; // 00011111

Note: The default format for certain types is primarily designed to be useful in the
Watch window and other related windows. For example, a value of type char is
formatted as 'A' (0x41), while a pointer to a character (potentially a C string) is
formatted as 0x8102 "Hello", where the string part shows the beginning of the string
(currently up to 60 characters).

When printing a value of type char*, use the %x format specifier to print just the pointer
value in hexadecimal notation, or use the system macro __toString to get the full
string value.

Reference information on reserved setup macro function names
There are reserved setup macro function names that you can use for defining your setup
macro functions. By using these reserved names, your function will be executed at
defined stages during execution. For more information, see Briefly about setup macro
functions and files, page 428.

Reference information about:

● execConfigureTraceETM

AFE1_AFE2-1:1

440

Reference information on reserved setup macro function names

C-SPY® Debugging Guide
for Arm

● execConfigureTraceSWO

● execUserAttach

● execUserPreload

● execUserExecutionStarted

● execUserExecutionStopped

● execUserFlashInit

● execUserSetup

● execUserFlashReset

● execUserPreReset

● execUserReset

● execUserExit

● execUserFlashExit

● execUserCoreConnect

execConfigureTraceETM

Syntax execConfigureTraceETM

For use with All C-SPY hardware drivers where full instruction trace is supported and enabled.

Description This macro is executed just before execution begins, and should be used for setting up
device-specific registers that might be required to get full instruction trace (ETM/PTM)
out to a physical pin, or to configure device-specific parts of an on-chip trace unit
(ETB/MTB/PTB).

execConfigureTraceSWO

Syntax execConfigureTraceSWO

For use with All C-SPY hardware drivers where SWO trace is supported and enabled.

Description This macro is executed just before execution begins, and should be used for setting up
device-specific registers that might be required to get SWO trace out to a physical pin.

Configuring SWO/ITM or TPIU should generally not be required here, because this is
handled by the probe driver.

AFE1_AFE2-1:1

C-SPY macros

441

execUserAttach

Syntax execUserAttach

For use with All C-SPY hardware debugger drivers except CADI.

Description Called after the debugger attaches to a running application at its current location without
resetting the target system (the option Attach to running target).

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

execUserPreload

Syntax execUserPreload

For use with All C-SPY drivers.

Description Called after communication with the target system is established but before
downloading the target application.

Implement this macro to initialize memory locations and/or registers which are vital for
loading data properly.

Note: Do not use this macro if you are using a flash loader. Use the macro
execUserFlashInit instead to perform early initializations required by the flash
loader, see execUserFlashInit, page 442.

execUserExecutionStarted

Syntax execUserExecutionStarted

For use with All C-SPY drivers.

Description Called when the debugger is about to start or resume execution. The macro is not called
when performing a one-instruction assembler step, in other words, Step or Step Into in
the Disassembly window.

execUserExecutionStopped

Syntax execUserExecutionStopped

AFE1_AFE2-1:1

442

Reference information on reserved setup macro function names

C-SPY® Debugging Guide
for Arm

For use with All C-SPY drivers.

Description Called when the debugger has stopped execution. The macro is not called when
performing a one-instruction assembler step, in other words, Step or Step Into in the
Disassembly window.

execUserFlashInit

Syntax execUserFlashInit

For use with The C-SPY hardware debugger drivers.

Description Called once before the flash loader is downloaded to RAM. Implement this macro
typically for setting up the memory map required by the flash loader. This macro is only
called when you are programming flash, and it should only be used for flash loader
functionality.

execUserSetup

Syntax execUserSetup

For use with All C-SPY drivers.

Description Called once after the target application is downloaded.

Implement this macro to set up the memory map, breakpoints, interrupts, register macro
files, etc.

If you define interrupts or breakpoints in a macro file that is executed at system start
(using execUserSetup) we strongly recommend that you also make sure that they are
removed at system shutdown (using execUserExit). An example is available in
SetupSimple.mac, see the tutorials in the Information Center.

The reason for this is that the simulator saves interrupt settings between sessions and if
they are not removed they will get duplicated every time execUserSetup is executed
again. This seriously affects the execution speed.

execUserFlashReset

Syntax execUserFlashReset

For use with The C-SPY hardware debugger drivers.

AFE1_AFE2-1:1

C-SPY macros

443

Description Called once after the flash loader is downloaded to RAM, but before execution of the
flash loader. This macro is only called when you are programming flash, and it should
only be used for flash loader functionality.

execUserPreReset

Syntax execUserPreReset

For use with All C-SPY drivers.

Description Called each time just before the reset command is issued.

Implement this macro to set up any required device state.

execUserReset

Syntax execUserReset

For use with All C-SPY drivers.

Description Called each time just after the reset command is issued.

Implement this macro to set up and restore data.

execUserExit

Syntax execUserExit

For use with All C-SPY drivers.

Description Called once when the debug session ends.

Implement this macro to save status data etc.

execUserFlashExit

Syntax execUserFlashExit

For use with The C-SPY hardware debugger drivers.

Description Called once when the flash programming ends.

AFE1_AFE2-1:1

444

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Implement this macro to save status data etc. This macro is useful for flash loader
functionality.

execUserCoreConnect

Syntax execUserCoreConnect

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

The C-SPY TI MSP-FET driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Called immediately when connection with the probe is established.

Implement this macro to perform actions before connecting the CPU. This macro is
useful for unlocking/erasing a secured device.

Reference information on C-SPY system macros
This section gives reference information about each of the C-SPY system macros.

This table summarizes the pre-defined system macros:

Macro Description

__argCount Returns the number of arguments in a string. See the
documentation in the Flash Loader Development Guide.

__abortLaunch Aborts the launch of the debugger

__bytes2Word16 Extracts a 16-bit word from a buffer. See the
documentation in the Flash Loader Development Guide.

__bytes2Word32 Extracts a 32-bit word from a buffer. See the
documentation in the Flash Loader Development Guide.

__cancelAllInterrupts Cancels all ordered interrupts

__cancelInterrupt Cancels an interrupt

__clearBreak Clears a breakpoint

__closeFile Closes a file that was opened by __openFile

Table 16: Summary of system macros

AFE1_AFE2-1:1

C-SPY macros

445

__delay Delays execution

__disableInterrupts Disables generation of interrupts

__driverType Verifies the driver type

__emulatorSpeed Sets the emulator clock frequency

__emulatorStatusCheckOnRead Enables or disables the verification of the CPSR
register after each read operation

__enableInterrupts Enables generation of interrupts

__evaluate Interprets the input string as an expression and
evaluates it

__expandVar Expands all argument variables in a string

__fillMemory8 Fills a specified memory area with a byte value

__fillMemory16 Fills a specified memory area with a 2-byte value

__fillMemory32 Fills a specified memory area with a 4-byte value

__fillMemory64 Fills a specified memory area with an 8-byte value

__gdbserver_exec_command Send strings or commands to the GDB Server

__getArg Returns an argument from a string. See the
documentation in the Flash Loader Development Guide.

__getNumberOfCores Gets the number local cores being debugged.

__getSelectedCore Gets the number of the current core.

__getTracePortSize Returns the width of the trace port

__hasDAPRegs Returns true if the C-SPY driver supports the macros
__readAPReg, __readDPReg, and
__writeAPReg, and __writeDPReg

__hwJetResetWithStrategy Performs a hardware reset and a halt of the target
CPU

__hwReset Performs a hardware reset and a halt of the target
CPU

__hwResetRunToBp Performs a hardware reset and then executes to the
specified address

__hwResetWithStrategy Performs a hardware reset and halt with delay of the
target CPU

__hwRunToBreakpoint Sets a temporary breakpoint and starts the execution

__isBatchMode Checks if C-SPY is running in batch mode or not.

__isMacroSymbolDefined Checks if a C-SPY macro symbol is defined.

Macro Description

Table 16: Summary of system macros (Continued)

AFE1_AFE2-1:1

446

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__jlinkExecCommand Sends a low-level command to the J-Link/J-Trace
driver

__jlinkExecMacro Calls a function (without any parameter) in a J-Link
script file.

__jtagCommand Sends a low-level command to the JTAG instruction
register

__jtagCP15IsPresent Checks if coprocessor CP15 is available

__jtagCP15ReadReg Returns the coprocessor CP15 register value

__jtagCP15WriteReg Writes to the coprocessor CP15 register

__jtagData Sends a low-level data value to the JTAG data register

__jtagRawRead Returns the read data from the JTAG interface

__jtagRawSync Writes accumulated data to the JTAG interface

__jtagRawWrite Accumulates data to be transferred to the JTAG

__jtagResetTRST Resets the ARM TAP controller via the TRST JTAG
signal

__loadImage Loads a debug image

__makeString Creates a new buffer string. See the documentation
in the Flash Loader Development Guide.

__memoryRestore Restores the contents of a file to a specified memory
zone

__memorySave Saves the contents of a specified memory area to a
file

__messageBoxYesCancel Displays a Yes/Cancel dialog box for user interaction

__messageBoxYesNo Displays a Yes/No dialog box for user interaction

__openFile Opens a file for I/O operations

__orderInterrupt Generates an interrupt

__popSimulatorInterruptExec

utingStack

Informs the interrupt simulation system that an
interrupt handler has finished executing

__probeType Verifies the probe type

__readAPReg Reads from an AP register

__readDPReg Reads from a DP register

__readFile Reads from the specified file

__readFileByte Reads one byte from the specified file

Macro Description

Table 16: Summary of system macros (Continued)

AFE1_AFE2-1:1

C-SPY macros

447

__readMemory8,

__readMemoryByte

Reads one byte from the specified memory location

__readMemory16 Reads two bytes from the specified memory location

__readMemory32 Reads four bytes from the specified memory location

__readMemory64 Reads eight bytes from the specified memory location

__readMemoryBuffer Reads bytes and returns them as a string. See the
documentation in the Flash Loader Development Guide.

__registerMacroFile Registers macros from the specified file

__resetFile Rewinds a file opened by __openFile

__restoreSoftwareBreakpoint

s

Restores any breakpoints that were destroyed during
system startup.

__selectCore Switches focus from the current core to the specified
core.

__setCodeBreak Sets a code breakpoint

__setDataBreak Sets a data breakpoint

__setDataLogBreak Sets a data log breakpoint

__setLogBreak Sets a log breakpoint

__setSimBreak Sets a simulation breakpoint

__setTraceStartBreak Sets a trace start trigger breakpoint

__setTraceStopBreak Sets a trace stop trigger breakpoint

__sourcePosition Returns the file name and source location if the
current execution location corresponds to a source
location

__strFind Searches a given string for the occurrence of another
string

__subString Extracts a substring from another string

__system1 Starts an external application

__system2 Starts an external application with stdout and
stderr collected in one variable

__system3 Starts an external application with stdout and
stderr collected in separate variables

__targetDebuggerVersion Returns the version of the target debugger

__toLower Returns a copy of the parameter string where all the
characters have been converted to lower case

Macro Description

Table 16: Summary of system macros (Continued)

AFE1_AFE2-1:1

448

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__abortLaunch

Syntax __abortLaunch(message)

Parameters message

A string that is printed as an error message when the macro executes.

Return value None.

For use with All C-SPY drivers.

Description This macro can be used for aborting a debugger launch, for example if another macro
sees that something goes wrong during initialization and cannot perform a proper setup.

__toString Prints strings

__toUpper Returns a copy of the parameter string where all the
characters have been converted to upper case

__unloadImage Unloads a debug image

__wallTime_ms Returns the current host computer CPU time in
milliseconds

__whichCore Returns the currently running core.

__writeAPReg Writes to an AP register

__writeDPReg Writes to a DP register

__writeFile Writes to the specified file

__writeFileByte Writes one byte to the specified file

__writeMemory8,

__writeMemoryByte

Writes one byte to the specified memory location

__writeMemory16 Writes a two-byte word to the specified memory
location

__writeMemory32 Writes a four-byte word to the specified memory
location

__writeMemory64 Writes an eight-byte word to the specified memory
location

__writeMemoryBuffer Writes bytes from a buffer. See the documentation in
the Flash Loader Development Guide.

Macro Description

Table 16: Summary of system macros (Continued)

AFE1_AFE2-1:1

C-SPY macros

449

This is an emergency stop when launching, not a way to end an ongoing debug session
like the C library function abort().

Example if (!__messageBoxYesCancel("Do you want to mass erase to unlock
 the device?", "Unlocking device"))
{ __abortLaunch("Unlock canceled. Debug session cannot
 continue."); }

__cancelAllInterrupts

Syntax __cancelAllInterrupts()

Return value int 0

For use with The C-SPY Simulator. (Not available for all cores and devices.)

Description Cancels all ordered interrupts.

__cancelInterrupt

Syntax __cancelInterrupt(interrupt_id)

Parameters interrupt_id

The value returned by the corresponding __orderInterrupt macro call
(unsigned long).

Return value

For use with The C-SPY Simulator. (Not available for all cores and devices.)

Description Cancels the specified interrupt.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 17: __cancelInterrupt return values

AFE1_AFE2-1:1

450

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__clearBreak

Syntax __clearBreak(break_id)

Parameters break_id

The value returned by any of the set breakpoint macros.

Return value int 0

For use with All C-SPY drivers.

Description Clears a user-defined breakpoint.

See also Breakpoints, page 125.

__closeFile

Syntax __closeFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Closes a file previously opened by __openFile.

__delay

Syntax __delay(value)

Parameters value

The number of milliseconds to delay execution.

Return value int 0

For use with All C-SPY drivers.

Description Delays execution the specified number of milliseconds.

AFE1_AFE2-1:1

C-SPY macros

451

__disableInterrupts

Syntax __disableInterrupts()

Return value

For use with The C-SPY Simulator. (Not available for all cores and devices.)

Description Disables the generation of interrupts.

__driverType

Syntax __driverType(driver_id)

Parameters driver_id

A string corresponding to the driver you want to check for. Choose one of these:

"sim" corresponds to the simulator driver

"cadi" corresponds to the C-SPY CADI driver

"cmsisdap" corresponds to the C-SPY CMSIS-DAP driver

"e2" corresponds to the C-SPY E2 driver

"gdbserv" corresponds to the C-SPY GDB Server driver

"generic" corresponds to third-party drivers

"g+link pro" corresponds to the G+LINK driver

"ijet" corresponds to the C-SPY I-jet driver

"jlink" corresponds to the C-SPY J-Link/J-Trace driver

"lmiftdi" corresponds to the C-SPY TI Stellaris driver

"mspfet" corresponds to the C-SPY MSP-FET driver

"nulink" corresponds to the C-SPY Nu-Link driver

"xds" corresponds to the C-SPY TI XDS driver

"stlink" corresponds to the C-SPY ST-LINK driver

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 18: __disableInterrupts return values

AFE1_AFE2-1:1

452

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Return value

For use with All C-SPY drivers.

Description Checks to see if the current C-SPY driver is identical to the driver type of the
driver_id parameter.

Example __driverType("sim")

If the simulator is the current driver, the value 1 is returned. Otherwise 0 is returned.

__emulatorSpeed

Syntax __emulatorSpeed(speed)

Parameters

Return value

For use with The C-SPY hardware drivers.

Description Sets the emulator clock frequency. For JTAG interfaces, this is the JTAG clock
frequency as seen on the TCK signal.

Example __emulatorSpeed(0)

Sets the emulator speed to be automatically detected.

Result Value

Successful 1

Unsuccessful 0

Table 19: __driverType return values

speed The emulator speed in Hz. Use 0 (zero) to make the speed
automatically detected. Use -1 for adaptive speed (only for
emulators supporting adaptive speed).

Result Value

Successful The previous speed, or 0 (zero) if unknown

Unsuccessful. The speed is not supported
by the emulator

-1

Table 20: __emulatorSpeed return values

AFE1_AFE2-1:1

C-SPY macros

453

__emulatorStatusCheckOnRead

Syntax __emulatorStatusCheckOnRead(status)

Parameters

Return value int 0

For use with The C-SPY J-Link/J-Trace driver.

Description Enables or disables the driver verification of CPSR (current processor status register)
after each read operation. Typically, this macro can be used for initiating JTAG
connections on some CPUs, like Texas Instruments’ TMS470R1B1M.

Note: Enabling this verification can cause problems with some CPUs, for example if
invalid CPSR values are returned. However, if this verification is disabled
(SetCheckModeAfterRead = 0), the success of read operations cannot be verified
and possible data aborts are not detected.

For the C-SPY I-jet/JTAG-jet driver, this macro is recognized, but has no effect.

Example __emulatorStatusCheckOnRead(1)

Disables the checks for data aborts on memory reads.

__enableInterrupts

Syntax __enableInterrupts()

Return value

For use with The C-SPY Simulator. (Not available for all cores and devices.)

Description Enables the generation of interrupts.

status Use 0 to enable checks (default). Use 1 to disable checks.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 21: __enableInterrupts return values

AFE1_AFE2-1:1

454

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__evaluate

Syntax __evaluate(string, valuePtr)

Parameters string

Expression string.

valuePtr

Pointer to a macro variable storing the result.

Return value

For use with All C-SPY drivers.

Description This macro interprets the input string as an expression and evaluates it. The result is
stored in a variable pointed to by valuePtr.

Example This example assumes that the variable i is defined and has the value 5:

__evaluate("i + 3", &myVar)

The macro variable myVar is assigned the value 8.

__expandVar

Syntax __expandVar(argvar)

Parameters argvar

A string that contains one or more predefined or custom argument variables for
paths or arguments, for example an installation directory or an argument to a
tool.

Return value

Result Value

Successful int 0

Unsuccessful int 1

Table 22: __evaluate return values

Result Value

Successful The string, with the argument variables expanded.

Unsuccessful If any of the variables in the argument are not recognized, the return
value is an empty string.

Table 23: __expandVar return values

AFE1_AFE2-1:1

C-SPY macros

455

For use with All C-SPY drivers.

Description Expands any Embedded Workbench argument variables—such as $PROJ_DIR$ or
$PROJ_FNAME$—contained in a string argument.

Example __expandVar("$PROJ_DIR$")

returns, for example,

D:\Documents\myProject

and

__expandVar("$TOOLKIT_DIR$\\projects\\$PROJ_FNAME$.txt")

returns, for example,

D:\Applications\IAR\Embedded Workbench\projects\myproj.txt

See also Information about argument variables in the IDE Project Management and Building
Guide for Arm.

__fillMemory8

Syntax __fillMemory8(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

length

An integer that specifies how many bytes are affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

AFE1_AFE2-1:1

456

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a byte value.

Example __fillMemory8(0x80, 0x700, "Memory", 0x10, "OR");

__fillMemory16

Syntax __fillMemory16(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

length

An integer that defines how many 2-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value and the
existing contents of memory before writing the result to memory.

OR An OR operation will be performed between value and the
existing contents of memory before writing the result to memory.

XOR An XOR operation will be performed between value and the
existing contents of memory before writing the result to memory.

AFE1_AFE2-1:1

C-SPY macros

457

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with a 2-byte value.

Example __fillMemory16(0xCDCD, 0x7000, "Memory", 0x200, "Copy");

__fillMemory32

Syntax __fillMemory32(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

length

An integer that defines how many 4-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Return value int 0

For use with All C-SPY drivers.

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

AFE1_AFE2-1:1

458

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Description Fills a specified memory area with a 4-byte value.

Example __fillMemory32(0x0000FFFF, 0x4000, "Memory", 0x1000, "XOR");

__fillMemory64

Syntax __fillMemory64(value, address, zone, length, format)

Parameters value

An integer that specifies the value.

address

An integer that specifies the memory start address.

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

length

An integer that defines how many 8-byte entities to be affected.

format

A string that specifies the exact fill operation to perform. Choose between:

Return value int 0

For use with All C-SPY drivers.

Description Fills a specified memory area with an 8-byte value.

Example __fillMemory64(0x0155'FFFF'FFFF'FFFF, 0x4000, "Memory", 0x1000,
"AND");

Copy value will be copied to the specified memory area.

AND An AND operation will be performed between value
and the existing contents of memory before writing
the result to memory.

OR An OR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

XOR An XOR operation will be performed between value
and the existing contents of memory before writing
the result to memory.

AFE1_AFE2-1:1

C-SPY macros

459

__gdbserver_exec_command

Syntax __gdbserver_exec_command("string")

Parameters

For use with The C-SPY GDB Server driver.

Description Use this option to send strings or commands to the GDB Server.

__getNumberOfCores

Syntax __getNumberOfCores()

Return value The number of local cores being debugged.

For use with The C-SPY simulator. (Not available for all cores and devices.)

The C-SPY I-jet driver.

Description This macro returns the number of local cores being debugged.

Example test ()
{
 __var i;
 for (i = 0; i < __getNumberOfCores(); i++)
 {
 __selectCore(i);
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
"\n";
 }
}

See also __getSelectedCore, page 459 and __selectCore, page 485

__getSelectedCore

Syntax __getSelectedCore()

Return value The current core. The cores are numbered from 0 and upwards.

string String or command sent to the GDB Server. For more
information, see the GDB server documentation.

AFE1_AFE2-1:1

460

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

For use with The C-SPY simulator. (Not available for all cores and devices.)

The C-SPY I-jet driver.

Description Gets the number of the current core.

Example test ()
{
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
“\n”;
 __selectCore(0);
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
“\n”;
 __selectCore(1);
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
“\n”;

A typical result of the above macro would be (assuming that the original core was
number 1):

Core: 1 pc = 0000213C
Core: 0 pc = 00000494
Core: 1 pc = 0000213C

See also __selectCore, page 485.

__getTracePortSize

Syntax __getTracePortSize

Return value

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

Description Returns the width of the trace port.

See also ETM Trace Settings dialog box (I-jet), page 219 and ETM Trace Settings dialog box
(J-Link/J-Trace), page 221, respectively.

Result Value

The width of the trace port in bits. 1, 2, 4, 8, or 16.

Table 24: __getTracePortSize return values

AFE1_AFE2-1:1

C-SPY macros

461

__hasDAPRegs

Syntax __hasDAPRegs()

Return value

For use with The C-SPY hardware drivers.

Description This macro returns true if the C-SPY driver supports the macros __readAPReg,
__readDPReg, __writeAPReg, and __writeDPReg for the current CPU core,
otherwise it returns false.

__hwJetResetWithStrategy

Syntax __hwJetResetWithStrategy(halt_delay, strategy)

Parameters

Return value

For use with The C-SPY I-jet driver.

Result Value

The C-SPY driver supports the macros __readAPReg,
__readDPReg, __writeAPReg, and __writeDPReg for the
current CPU core.

true

The C-SPY driver does not support the macros __readAPReg,
__readDPReg, __writeAPReg, and __writeDPReg for the
current CPU core.

false

Table 25: __hasDAPRegs return values

halt_delay The delay, in milliseconds, between the end of the reset pulse
and the halt of the CPU. Use 0 (zero) to make the CPU halt
immediately after reset—only when strategy is set to 0.

strategy The reset strategy number. For information about supported
reset strategies, see --jet_standard_reset, page 553.

Result Value

Successful. The delay feature is not supported by the debugging probe -1

Unsuccessful. The reset strategy is not supported by the debugging
probe

-3

Unsuccessful. Other -4

Table 26: __hwJetResetWithStrategy return values

AFE1_AFE2-1:1

462

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Description Specifies the reset strategy to perform.

Example __hwJetResetWithStrategy(0,2)

Performs a hardware reset.

__hwReset

Syntax __hwReset(halt_delay)

Parameters

Return value

For use with This system macro is available for all JTAG interfaces.

Description Performs a hardware reset and halt of the target CPU.

Example __hwReset(0)

Resets the CPU and immediately halts it.

__hwResetRunToBp

Syntax __hwResetRunToBp(strategy, breakpoint_address, timeout)

Parameters

halt_delay The delay, in milliseconds, between the end of the reset pulse
and the halt of the CPU. Use 0 (zero) to make the CPU halt
immediately after reset

Result Value

Successful. The actual delay value implemented by the emulator >=0

Successful. The delay feature is not supported by the emulator -1

Unsuccessful. Hardware reset is not supported by the emulator -2

Table 27: __hwReset return values

strategy For information about supported reset strategies in the
C-SPY I-jet driver, see --jet_standard_reset, page 553.

For information about supported reset strategies in the
C-SPY J-Link driver, see the IAR J-Link and IAR J-Trace
User Guide for JTAG Emulators for ARM Cores.

AFE1_AFE2-1:1

C-SPY macros

463

Return value

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

Description Performs a hardware reset, sets a breakpoint at the specified address, executes to the
breakpoint, and then removes it. The breakpoint address should be the start address of
the downloaded image after it has been copied to RAM.

This macro is intended for running a boot loader that copies the application image from
flash to RAM. The macro should be executed after the image has been downloaded to
flash, but before the image is verified. The macro can be run in execUserFlashExit
or execUserPreload.

Example __hwResetRunToBp(0,0x400000,10000)

Resets the CPU with the reset strategy 0 and executes to the address 0x400000. If the
breakpoint is not reached within 10 seconds, execution stops in accordance with the
specified time out.

breakpoint_address The address of the breakpoint to execute to, specified as an
integer value (symbols cannot be used).

timeout A time out for the breakpoint, specified in milliseconds. If
the breakpoint is not reached within the specified time, the
core will be halted.

Value Result

>=0 Successful. The approximate execution time in ms until the breakpoint
is hit.

-2 Unsuccessful. Hardware reset is not supported by the emulator.

-3 Unsuccessful. The reset strategy is not supported by the emulator.

Table 28: __hwResetRunToBp return values

AFE1_AFE2-1:1

464

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__hwResetWithStrategy

Syntax __hwResetWithStrategy(halt_delay, strategy)

Parameters

Return value

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

This macro also exists in other C-SPY hardware drivers, but has no effect.

Description Performs a hardware reset and a halt with delay of the target CPU.

Example __hwResetWithStrategy(0,1)

Resets the CPU and halts it using a breakpoint at memory address zero.

__hwRunToBreakpoint

Syntax __hwRunToBreakpoint(breakpoint_address, timeout)

Parameters

halt_delay The delay, in milliseconds, between the end of the reset pulse
and the halt of the CPU. Use 0 (zero) to make the CPU halt
immediately after reset—only when strategy is set to 0.

strategy The C-SPY I-jet driver only supports strategy 2 (hardware
reset). For information about supported reset strategies in the
C-SPY J-Link driver, see the J-Link/J-Trace User Guide.

Result Value

Successful. The actual delay in milliseconds, as implemented by the
emulator

>=0

Successful. The delay feature is not supported by the emulator -1

Unsuccessful. Hardware reset is not supported by the emulator -2

Unsuccessful. The reset strategy is not supported by the emulator -3

Table 29: __hwResetWithStrategy return values

breakpoint_address The address of the breakpoint to execute to, specified as an
integer value (symbols cannot be used).

AFE1_AFE2-1:1

C-SPY macros

465

Return value

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY PE micro driver.

The C-SPY ST-LINK driver.

The C-SPY TI XDS driver.

Description Use this macro to set a temporary breakpoint and then start the execution. When the
breakpoint is triggered, the execution stops. This macro can be used for running
initialization code on the target system.

Example __hwRunToBreakpoint(0x20000048,1000)

Sets a temporary breakpoint at the address 0x20000048, starts executing, and executes
until the breakpoint is triggered or until 1000 milliseconds have passed.

__isBatchMode

Syntax __isBatchMode()

Return value

For use with All C-SPY drivers.

timeout A time out for the breakpoint, specified in milliseconds. If
the breakpoint is not reached within the specified time, the
core will be halted.

Value Result

>=0 Successful. The approximate execution time in ms until the breakpoint
is hit.

-1 Failed to set the breakpoint.

-2 Failed to stop at the breakpoint before timeout.

Table 30: __hwRunToBreakpoint return values

Result Value

True int 1

False int 0

Table 31: __isBatchMode return values

AFE1_AFE2-1:1

466

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Description This macro returns True if the debugger is running in batch mode, otherwise it returns
False.

__isMacroSymbolDefined

Syntax __isMacroSymbolDefined(symbol)

Parameters symbol

The name of a C-SPY macro variable or macro function (a string).

Return value 1 if symbol is an existing macro symbol. 0 if symbol is not defined.

For use with All C-SPY drivers.

Description This macro identifies whether a string is the name of an existing C-SPY macro symbol
(variable or function) or not.

Example __var someVariable;

...

if (__isMacroSymbolDefined("someVariable"))
 someVariable = 42;
else
 __message "The someVariable symbol is not defined!";

__jlinkExecCommand

Syntax __jlinkExecCommand(cmdstr)

Parameters

Return value int 0

For use with The C-SPY J-Link/J-Trace driver.

Description Sends a low-level command to the J-Link/J-Trace driver. For a list of possible
commands, see the J-Link/J-Trace User Guide.

Example See the J-Link/J-Trace User Guide.

cmdstr J-Link/J-Trace command string

AFE1_AFE2-1:1

C-SPY macros

467

See also --jlink_exec_command, page 557

__jlinkExecMacro

Syntax __jlinkExecMacro(function)

Parameters

Return value

For use with The C-SPY J-Link driver.

Description Calls a function (without any parameters) in a J-Link script file.

Example _jlinkExecMacro("myfunction");

See also See the J-Link/J-Trace User Guide.

__jtagCommand

Syntax __jtagCommand(ir)

Parameters ir can be one of:

Return value int 0

For use with The C-SPY J-Link/J-Trace driver.

Description Sends a low-level command to the JTAG instruction register IR.

function A string that defines a name of the function in a J-Link script.

An unsigned integer The return value from the J-Link script function.

2 SCAN_N

4 RESTART

12 INTEST

14 IDCODE

15 BYPASS

AFE1_AFE2-1:1

468

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Example __jtagCommand(14);
Id = __jtagData(0,32);

Returns the JTAG ID of the Arm target device.

__jtagCP15IsPresent

Syntax __jtagCP15IsPresent()

Return value 1 if CP15 is available, otherwise 0.

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

Description Checks if the coprocessor CP15 is available.

__jtagCP15ReadReg

Syntax __jtagCP15ReadReg(CRn, CRm, op1, op2)

ParametersParameter The parameters—registers and operands—of the MRC instruction. For details, see the
ARM Architecture Reference Manual. Note that op1 should always be 0.

Return value The register value.

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

Description Reads the value of the CP15 register and returns its value.

__jtagCP15WriteReg

Syntax __jtagCP15WriteReg(CRn, CRm, op1, op2, value)

Parameters The parameters—registers and operands—of the MCR instruction. For details, see the
ARM Architecture Reference Manual. Note that op1 should always be 0. value is the
value to be written.

Applicability The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

AFE1_AFE2-1:1

C-SPY macros

469

Description Writes a value to the CP15 register.

__jtagData

Syntax __jtagData(dr, bits)

Parameters

Return value Returns the result of the operation—the number of bits in the result is given by the bits
parameter.

For use with The C-SPY J-Link/J-Trace driver.

Description Sends a low-level data value to the JTAG data register DR. The bit shifted out of DR is
returned.

Example __jtagCommand(14);
Id = __jtagData(0,32);

Returns the JTAG ID of the Arm target device.

__jtagRawRead

Syntax __jtagRawRead(bitpos, numbits)

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Returns the data read from the JTAG TDO. Only the least significant bits contain data—
the last bit read is from the least significant bit. This function can be called an arbitrary
number of times to get all bits returned by an operation. This function also makes an
implicit synchronization of any accumulated write bits.

dr 32-bit data register value

bits Number of valid bits in dr, both for the macro parameter and
the return value—starting with the least significant bit
(1...32)

bitpos The start bit position in the returned JTAG bits to return data
from

numbits The number of bits to read. The maximum value is 32.

AFE1_AFE2-1:1

470

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Example The following piece of pseudocode illustrates how the data is written to the JTAG (on
the TMS and TDI pins) and read (from TDO):

__var Id;
__var BitPos;
/**
*
* ReadId()
*/
ReadId() {
__message "Reading JTAG Id\n";
__jtagRawWrite(0, 0x1f, 6); /* Goto IDLE via RESET state */
__jtagRawWrite(0, 0x1, 3); /* Enter DR scan chain */
BitPos = __jtagRawWrite(0, 0x80000000, 32); /* Shift 32 bits
 into DR. Remember BitPos for Read operation */
__jtagRawWrite(0, 0x1, 2); /* Goto IDLE */
Id = __jtagRawRead(BitPos, 32); /* Read the Id */
__message "JTAG Id: ", Id:%x, "\n";
}

__jtagRawSync

Syntax __jtagRawSync()

Return value int 0

For use with The C-SPY J-Link/J-Trace driver.

Description Sends arbitrary data to the JTAG interface. All accumulated bits using
__jtagRawWrite will be written to the JTAG scan chain. The data is sent
synchronously with TCK and typically sampled by the device on rising edge of TCK.

AFE1_AFE2-1:1

C-SPY macros

471

Example The following piece of pseudocode illustrates how the data is written to the JTAG (on
the TMS and TDI pins) and read (from TDO):

int i;
U32 tdo;
for (i = 0; i < numBits; i++) {
 TDI = tdi & 1; /* Set TDI pin */
 TMS = tms & 1; /* Set TMS pin */
 TCK = 0;
 TCK = 1;
 tdo <<= 1;
 if (TDO) {
 tdo |= 1;
 }
 tdi >>= 1;
 tms >>= 1;
}

__jtagRawWrite

Syntax __jtagRawWrite(tdi, tms, numbits)

Parameters

Return value Returns the bit position of the data in the accumulated packet. Typically, this value is
used when reading data from the JTAG.

For use with The C-SPY J-Link/J-Trace driver.

Description Accumulates bits to be transferred to the JTAG. If 32 bits are not enough, this function
can be called multiple times. Both data output lines (TMS and TDI) can be controlled
separately.

tdi The data output to the TDI pin. This data is sent with the least
significant bit first.

tms The data output to the TMS pin. This data is sent with the least
significant bit first.

numbits The number of bits to transfer. Every bit results in a falling
and rising edge of the JTAG TCK line. The maximum value is
64.

AFE1_AFE2-1:1

472

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Example /* Send five 1 bits on TMS to go to TAP-RESET state */
__jtagRawWrite(0x1F, 0, 5); /* Store bits in buffer */
__jtagRawSync(); /* Transfer buffer, writing tms, tdi,
 reading tdo */

Returns the JTAG ID of the Arm target device.

__jtagResetTRST

Syntax __jtagResetTRST()

Return value

For use with The C-SPY J-Link/J-Trace driver.

Description Resets the Arm TAP controller via the TRST JTAG signal.

__loadImage

Syntax __loadImage(path, offset, debugInfoOnly)

Parameters path

A string that identifies the path to the debug image to download. The path must
either be absolute or use argument variables. For information about argument
variables, see the IDE Project Management and Building Guide for Arm.

offset

An integer that identifies the offset to the destination address for the downloaded
debug image.

debugInfoOnly

A non-zero integer value if no code or data should be downloaded to the target
system, which means that C-SPY will only read the debug information from the
debug file. Or, 0 (zero) for download.

Result Value

Successful int 0

Unsuccessful Non-zero error number

Table 32: __jtagResetTRST return values

AFE1_AFE2-1:1

C-SPY macros

473

Return value

For use with All C-SPY drivers.

Description Loads a debug image (debug file).

Note: Images are only downloaded to RAM and no flash loading will be performed,
unless you are using J-Link or TI MSP-FET.

Example 1 Your system consists of a ROM library and an application. The application is your active
project, but you have a debug file corresponding to the library. In this case you can add
this macro call in the execUserSetup macro in a C-SPY macro file, which you
associate with your project:

__loadImage("ROMfile", 0x8000, 1);

This macro call loads the debug information for the ROM library ROMfile without
downloading its contents (because it is presumably already in ROM). Then you can
debug your application together with the library.

Example 2 Your system consists of a ROM library and an application, but your main concern is the
library. The library needs to be programmed into flash memory before a debug session.
While you are developing the library, the library project must be the active project in the
IDE. In this case you can add this macro call in the execUserSetup macro in a C-SPY
macro file, which you associate with your project:

__loadImage("ApplicationFile", 0x8000, 0);

The macro call loads the debug information for the application and downloads its
contents (presumably into RAM). Then you can debug your library together with the
application.

See also Images, page 587 and Loading multiple debug images, page 59.

__memoryRestore

Syntax __memoryRestore(zone, filename, offset)

Parameters zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Value Result

Non-zero integer number A unique module identification.

int 0 Loading failed.

Table 33: __loadImage return values

AFE1_AFE2-1:1

474

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

filename

A string that specifies the file to be read. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
Arm.

offset

An integer offset. When restoring data from the file into memory, this offset is
added to the addresses specified in the file. For example, if the file contains data
from 0x0–0x1FF and the offset is 0x400, the data will be placed in memory in
the range 0x400–0x5FF. This makes it possible to restore data into memory on
addresses larger than 32-bit, even if the file format only supports 32-bit
addresses.

Return value int 0

For use with All C-SPY drivers.

Description Reads the contents of a file and saves it to the specified memory zone.

Example __memoryRestore("Memory", "c:\\temp\\saved_mem.hex", 0x400);

See also Memory Restore dialog box, page 177.

__memorySave

Syntax __memorySave(start, stop, format, filename, zerostart)

Parameters start

A string that specifies the first location of the memory area to be saved.

stop

A string that specifies the last location of the memory area to be saved.

format

A string that specifies the format to be used for the saved memory. Choose
between:

intel-extended

motorola

motorola-s19

motorola-s28

AFE1_AFE2-1:1

C-SPY macros

475

motorola-s37

filename

A string that specifies the file to write to. The filename must include a path,
which must either be absolute or use argument variables. For information about
argument variables, see the IDE Project Management and Building Guide for
Arm.

zerostart

An integer. If it is 1 (or any non-zero value), the addresses in the saved file will
start from 0x0. For example, if the specified memory range is 0x400–0x5FF,
the address range in the file will be 0x0–0x1FF. This makes it possible to save
memory from addresses larger than 32-bit to file formats which only support
32-bit addresses. If the parameter is 0, the file will contain the specified
addresses as given.

Return value int 0

For use with All C-SPY drivers.

Description Saves the contents of a specified memory area to a file.

Example __memorySave("Memory:0x00", "Memory:0xFF", "intel-extended",
"c:\\temp\\saved_memory.hex", 0);

See also Memory Save dialog box, page 176.

__messageBoxYesCancel

Syntax __messageBoxYesCancel(message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value
Result Value

Yes 1

No 0

Table 34: __messageBoxYesCancel return values

AFE1_AFE2-1:1

476

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

For use with All C-SPY drivers.

Description Displays a Yes/Cancel dialog box when called and returns the user input. Typically, this
is useful for creating macros that require user interaction.

__messageBoxYesNo

Syntax __messageBoxYesNo(message, caption)

Parameters message

A message that will appear in the message box.

caption

The title that will appear in the message box.

Return value

For use with All C-SPY drivers.

Description Displays a Yes/No dialog box when called and returns the user input. Typically, this is
useful for creating macros that require user interaction.

__openFile

Syntax __openFile(filename, access)

Parameters filename

The file to be opened. The filename must include a path, which must either be
absolute or use argument variables. For information about argument variables,
see the IDE Project Management and Building Guide for Arm.

access

The access type (string).

These are mandatory but mutually exclusive:

"a" append, new data will be appended at the end of the open file

"r" read (by default in text mode; combine with b for binary mode: rb)

Result Value

Yes 1

No 0

Table 35: __messageBoxYesNo return values

AFE1_AFE2-1:1

C-SPY macros

477

"w" write (by default in text mode; combine with b for binary mode: wb)

These are optional and mutually exclusive:

"b" binary, opens the file in binary mode

"t" ASCII text, opens the file in text mode

This access type is optional:

"+" together with r, w, or a; r+ or w+ is read and write, while a+ is read and
append

Return value

For use with All C-SPY drivers.

Description Opens a file for I/O operations. The default base directory of this macro is where the
currently open project file (*.ewp) is located. The argument to __openFile can
specify a location relative to this directory. In addition, you can use argument variables
such as $PROJ_DIR$ and $TOOLKIT_DIR$ in the path argument.

Example __var myFileHandle; /* The macro variable to contain */
 /* the file handle */
myFileHandle = __openFile("$PROJ_DIR$\\Debug\\Exe\\test.tst",
"r");
if (myFileHandle)
{
 /* successful opening */
}

See also For information about argument variables, see the IDE Project Management and
Building Guide for Arm.

__orderInterrupt

Syntax __orderInterrupt(specification, first_activation,
 repeat_interval, variance, infinite_hold_time,
 hold_time, probability)

Result Value

Successful The file handle

Unsuccessful An invalid file handle, which tests as False

Table 36: __openFile return values

AFE1_AFE2-1:1

478

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Parameters specification

The interrupt (string). The specification can either be the full specification used
in the device description file (ddf) or only the name. In the latter case the
interrupt system will automatically get the description from the device
description file.

first_activation

The first activation time in cycles (integer)

repeat_interval

The periodicity in cycles (integer)

variance

The timing variation range in percent (integer between 0 and 100)

infinite_hold_time

1 if infinite, otherwise 0.

hold_time

The hold time (integer)

probability

The probability in percent (integer between 0 and 100)

Return value The macro returns an interrupt identifier (unsigned long).

If the syntax of specification is incorrect, it returns -1.

For use with The C-SPY simulator. (Not available for all cores and devices.)

Description Generates an interrupt.

Example This example generates a repeating interrupt using an infinite hold time first activated
after 4000 cycles:

__orderInterrupt("IRQ", 4000, 2000, 0, 1, 0, 100);

__popSimulatorInterruptExecutingStack

Syntax __popSimulatorInterruptExecutingStack(void)

Return value int 0

For use with The C-SPY simulator. (Not available for all cores and devices.)

AFE1_AFE2-1:1

C-SPY macros

479

Description Informs the interrupt simulation system that an interrupt handler has finished executing,
as if the normal instruction used for returning from an interrupt handler was executed.

This is useful if you are using interrupts in such a way that the normal instruction for
returning from an interrupt handler is not used, for example in an operating system with
task-switching. In this case, the interrupt simulation system cannot automatically detect
that the interrupt has finished executing.

See also Simulating an interrupt in a multi-task system, page 408.

__probeType

Syntax __probeType(probe_id)

Parameters probe_id

A string corresponding to the probe you want to check for. Choose one of these:

"I-jet" corresponds to the I-jet probe

"I-jet-Trace" corresponds to the I-jet Trace probe.

The strings are case-insensitive.

Return value

For use with The C-SPY I-jet driver.

Description Checks to see if the current connected probe is identical to the probe type of the
probe_id parameter.

Example __probeType("I-jet")

If I-jet is the current connected probe, the value 1 is returned. Otherwise 0 is returned.

Result Value

Successful 1

Unsuccessful 0

Table 37: __probeType return values

AFE1_AFE2-1:1

480

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__readAPReg

Syntax __readAPReg(register)

Parameters

Return value

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY TI Stellaris driver.

Description Performs a read operation from an AP register of the currently selected access port.

__readDPReg

Syntax __readDPReg(register)

Parameters

Return value

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY TI Stellaris driver.

Description Performs a read operation from a DP register.

register An 8-bit AP register offset.

Result Value

Successful true

Unsuccessful false

Table 38: __readAPReg return values

register An 8-bit DP register offset.

Result Value

Successful true

Unsuccessful false

Table 39: __readDPReg return values

AFE1_AFE2-1:1

C-SPY macros

481

__readFile

Syntax __readFile(fileHandle, valuePtr)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

valuePtr

A pointer to a variable.

Return value

For use with All C-SPY drivers.

Description Reads a sequence of hexadecimal digits from the given file and converts them to an
unsigned long which is assigned to the value parameter, which should be a pointer
to a macro variable.

Only printable characters representing hexadecimal digits and white-space characters
are accepted, no other characters are allowed.

Example __var number;
if (__readFile(myFileHandle, &number) == 0)
{
 // Do something with number
}

In this example, if the file pointed to by myFileHandle contains the ASCII characters
1234 abcd 90ef, consecutive reads will assign the values 0x1234 0xabcd 0x90ef
to the variable number.

__readFileByte

Syntax __readFileByte(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value -1 upon error or end-of-file, otherwise a value between 0 and 255.

Result Value

Successful 0

Unsuccessful Non-zero error number

Table 40: __readFile return values

AFE1_AFE2-1:1

482

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

For use with All C-SPY drivers.

Description Reads one byte from a file.

Example __var byte;
while ((byte = __readFileByte(myFileHandle)) != -1)
{
 /* Do something with byte */
}

__readMemory8, __readMemoryByte

Syntax __readMemory8(address, zone)
__readMemoryByte(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads one byte from a given memory location.

Example __readMemory8(0x0108, "Memory");

__readMemory16

Syntax __readMemory16(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

AFE1_AFE2-1:1

C-SPY macros

483

Description Reads a two-byte word from a given memory location.

Example __readMemory16(0x0108, "Memory");

__readMemory32

Syntax __readMemory32(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads a four-byte word from a given memory location.

Example __readMemory32(0x0108, "Memory");

__readMemory64

Syntax __readMemory64(address, zone)

Parameters address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value The macro returns the value from memory.

For use with All C-SPY drivers.

Description Reads an eight-byte word from a given memory location.

Example __readMemory64(0x8000, "Memory");

AFE1_AFE2-1:1

484

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__registerMacroFile

Syntax __registerMacroFile(filename)

Parameters filename

A file containing the macros to be registered (string). The filename must include
a path, which must either be absolute or use argument variables. For information
about argument variables, see the IDE Project Management and Building Guide
for Arm.

Return value int 0

For use with All C-SPY drivers.

Description Registers macros from a setup macro file. With this function you can register multiple
macro files during C-SPY startup.

Example __registerMacroFile("c:\\testdir\\macro.mac");

See also Using C-SPY macros, page 429.

__resetFile

Syntax __resetFile(fileHandle)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

Return value int 0

For use with All C-SPY drivers.

Description Rewinds a file previously opened by __openFile.

__restoreSoftwareBreakpoints

Syntax __restoreSoftwareBreakpoints()

Return value int 0

For use with All C-SPY hardware drivers.

AFE1_AFE2-1:1

C-SPY macros

485

Description Restores automatically any breakpoints that were destroyed during system startup.

This can be useful if you have an application that is copied to RAM during startup and
is then executing in RAM. This can, for example, be the case if you use the initialize
by copy directive for code in the linker configuration file or if you have any
__ramfunc declared functions in your application. In this case, any breakpoints will be
overwritten during the RAM copying when the application execution starts.

By using the this macro, C-SPY will restore the destroyed breakpoints.

__selectCore

Syntax __selectCore(int core)

Parameters core

The core to switch to. The cores are numbered from 0 and upwards.

Return value int 0

For use with The C-SPY simulator. (Not available for all cores and devices.)

The C-SPY I-jet driver.

Description Switches focus from the current core to the specified core for the duration of the macro
invocation or until any next invocation of __selectCore.

Example test ()
{
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
“\n”;
 __selectCore(0);
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
“\n”;
 __selectCore(1);
 __message "Core: ", __getSelectedCore(), " pc = ", #PC:%x,
“\n”;

A typical result of the above macro would be (assuming that the original core was
number 1):

Core: 1 pc = 0000213C
Core: 0 pc = 00000494
Core: 1 pc = 0000213C

See also __getSelectedCore, page 459.

AFE1_AFE2-1:1

486

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__setCodeBreak

Syntax __setCodeBreak(location, count, condition, cond_type, action)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 159.

count

An integer that specifies the number of times that a breakpoint condition must
be fulfilled before a break occurs the next time.

condition

The breakpoint condition. This must be a valid C-SPY expression, for instance
a C-SPY macro function.

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

For use with The C-SPY hardware debugger drivers.

Description Sets a code breakpoint, that is, a breakpoint which is triggered just before the processor
fetches an instruction at the specified location.

Examples __setCodeBreak("{D:\\src\\prog.c}.12.9", 3, "d>16", "TRUE",
"ActionCode()");

This example sets a code breakpoint on the label main in your source:

__setCodeBreak("main", 0, "1", "TRUE", "");

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 41: __setCodeBreak return values

AFE1_AFE2-1:1

C-SPY macros

487

This example sets the breakpoint within a specific source file and line without using the
absolute file path to the source:

__setCodeBreak("{main.c}.288.7", 0, "1", "TRUE", "");

See also Breakpoints, page 125.

__setDataBreak

Syntax In the simulator:

__setDataBreak(location, count, condition, cond_type, access,
 action)

In the C-SPY I-jet driver and in the C-SPY CMSIS-DAP driver:

__setDataBreak(location, access, extend, match, data, mask)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
information about the location types, see Enter Location dialog box, page 159.

count

An integer that specifies the number of times that a breakpoint condition must
be fulfilled before a break occurs the next time.

This parameter only applies to the simulator.

condition

The breakpoint condition (string).

This parameter only applies to the simulator.

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

This parameter only applies to the simulator.

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

This parameter only applies to the simulator.

AFE1_AFE2-1:1

488

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

extend

Extends the breakpoint so that a whole data structure is covered. For data
structures that do not fit the size of the possible breakpoint ranges supplied by
the hardware breakpoint unit, for example three bytes, the breakpoint range will
not cover the whole data structure. Note that the breakpoint range will be
extended beyond the size of the data structure, which might cause false triggers
at adjacent data. Choose between "TRUE"or "FALSE".

This parameter only applies to the C-SPY I-jet driver and the C-SPY
CMSIS-DAP driver.

match

Enables matching of the accessed data. Choose between "TRUE"or "FALSE".

This parameter only applies to the C-SPY I-jet driver and the C-SPY
CMSIS-DAP driver.

data

A data value to match, in unsigned 32-bit format.

This parameter only applies to the C-SPY I-jet driver and the C-SPY
CMSIS-DAP driver.

mask

Specifies which part of the data value to match—word, halfword, or byte—in
unsigned 32-bit format.

This parameter only applies to the C-SPY I-jet driver and the C-SPY
CMSIS-DAP driver

Return value

For use with The C-SPY simulator.

The C-SPY CMSIS-DAP driver.

The C-SPY GDB Server driver.

The C-SPY G+LINK driver.

The C-SPY I-jet driver.

The C-SPY J-Link driver.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 42: __setDataBreak return values

AFE1_AFE2-1:1

C-SPY macros

489

The C-SPY PE micro driver.

The C-SPY ST-Link driver.

The C-SPY TI MSP-FET driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Sets a data breakpoint, that is, a breakpoint which is triggered directly after the processor
has read or written data at the specified location.

Example For the C-SPY simulator:

__var brk;
brk = __setDataBreak("Memory:0x4710", 3, "d>6", "TRUE",
 "W", "ActionData()");
...
__clearBreak(brk);

For I-jet:

__var brk;
brk = __setDataBreak("myVar", "W", "FALSE", "TRUE",
 0xABCD, 0xFFFF);
...
__clearBreak(brk);

See also Breakpoints, page 125.

__setDataLogBreak

Syntax __setDataLogBreak(variable, access, extend)

Parameters variable

A string that defines the variable the breakpoint is set on, a variable of integer
type with static storage duration. The microcontroller must also be able to
access the variable with a single-instruction memory access, which means that
you can only set data log breakpoints on 8, 16, and 32-bit variables.

access

The memory access type: "R", for read, "W" for write, or "RW" for read/write.

extend

Use extended range: "TRUE" or "FALSE".

AFE1_AFE2-1:1

490

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

This parameter is only available when using a device and a debug probe that
support SWO.

Return value

For use with The C-SPY simulator. (Not available for all cores and devices.)

A device and a debug probe with support for SWO.

Description Sets a data log breakpoint, that is, a breakpoint which is triggered when a specified
variable is accessed. Note that a data log breakpoint does not stop the execution, it just
generates a data log.

Example For the simulator:

__var brk;
brk = __setDataLogBreak("MyVar", "R");
...
__clearBreak(brk);

For the C-SPY I-jet driver:

__var brk;
brk = __seDataLogBreak("myVar", "RW", "FALSE");
...
__clearBreak(brk);

See also Breakpoints, page 125 and Getting started using data logging, page 262.

__setLogBreak

Syntax __setLogBreak(location, message, msg_type, condition,
 cond_type)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 159.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 43: __setDataLogBreak return values

AFE1_AFE2-1:1

C-SPY macros

491

message

The message text.

msg_type

The message type; choose between:

TEXT, the message is written word for word.

ARGS, the message is interpreted as a comma-separated list of C-SPY
expressions or strings.

condition

The breakpoint condition (string).

cond_type

The condition type; either "CHANGED" or "TRUE" (string).

Return value

For use with All C-SPY drivers.

Description Sets a log breakpoint, that is, a breakpoint which is triggered when an instruction is
fetched from the specified location. If you have set the breakpoint on a specific machine
instruction, the breakpoint will be triggered and the execution will temporarily halt and
print the specified message in the C-SPY Debug Log window.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 44: __setLogBreak return values

AFE1_AFE2-1:1

492

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Example __var logBp1;
__var logBp2;

logOn()
{
 logBp1 = __setLogBreak ("{C:\\temp\\Utilities.c}.23.1",
 "\"Entering trace zone at :\", #PC:%X", "ARGS", "1", "TRUE");
 logBp2 = __setLogBreak ("{C:\\temp\\Utilities.c}.30.1",
 "Leaving trace zone...", "TEXT", "1", "TRUE");
}

logOff()
{
 __clearBreak(logBp1);
 __clearBreak(logBp2);
}

See also Formatted output, page 438 and Breakpoints, page 125.

__setSimBreak

Syntax __setSimBreak(location, access, action)

Parameters location

A string that defines the data location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address or an absolute location. For
information about the location types, see Enter Location dialog box, page 159.

access

The memory access type: "R" for read or "W" for write.

action

An expression, typically a call to a macro, which is evaluated when the
breakpoint is detected.

Return value

For use with The C-SPY simulator. (Not available for all cores and devices.)

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. This value
must be used to clear the breakpoint.

Unsuccessful 0

Table 45: __setSimBreak return values

AFE1_AFE2-1:1

C-SPY macros

493

Description Use this system macro to set immediate breakpoints, which will halt instruction
execution only temporarily. This allows a C-SPY macro function to be called when the
processor is about to read data from a location or immediately after it has written data.
Instruction execution will resume after the action.

This type of breakpoint is useful for simulating memory-mapped devices of various
kinds (for instance serial ports and timers). When the processor reads at a
memory-mapped location, a C-SPY macro function can intervene and supply the
appropriate data. Conversely, when the processor writes to a memory-mapped location,
a C-SPY macro function can act on the value that was written.

__setTraceStartBreak

Syntax In the simulator:

__setTraceStartBreak(location)

In the I-jet driver:

__setTraceStartBreak(location, access, extend, match, data,
mask)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 159.

access

The memory access type—"F" for fetch, "R" for read, "W" for write, or "RW"
for read/write.

This parameter only applies to I-jet.

extend

Extends the breakpoint so that a whole data structure is covered. For data
structures that do not fit the size of the possible breakpoint ranges supplied by
the hardware breakpoint unit, for example three bytes, the breakpoint range will
not cover the whole data structure. Note that the breakpoint range will be
extended beyond the size of the data structure, which might cause false triggers
at adjacent data. Choose between "TRUE"or "FALSE".

This parameter only applies to I-jet.

match

Enables matching of the accessed data. Choose between "TRUE"or "FALSE".

AFE1_AFE2-1:1

494

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

This parameter only applies to I-jet.

data

A data value to match, in unsigned 32-bit format.

This parameter only applies to I-jet.

mask

Specifies which part of the data value to match (word, halfword, or byte), in
unsigned 32-bit format.

This parameter only applies to I-jet.

Return value

For use with The C-SPY simulator. (Not available for all cores and devices.)

The C-SPY I-jet driver.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is started.

Example __var startTraceBp;
__var stopTraceBp;

traceOn()
{
 startTraceBp = __setTraceStartBreak
 ("{C:\\TEMP\\Utilities.c}.23.1");
 stopTraceBp = __setTraceStopBreak
 ("{C:\\temp\\Utilities.c}.30.1");
}

traceOff()
{
 __clearBreak(startTraceBp);
 __clearBreak(stopTraceBp);
}

See also Trace Start Trigger breakpoint dialog box, page 239.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful 0

Table 46: __setTraceStartBreak return values

AFE1_AFE2-1:1

C-SPY macros

495

__setTraceStopBreak

Syntax In the simulator:

__setTraceStopBreak(location)

In the I-jet driver:

__setTraceStopBreak(location, access, extend, match, data, mask)

Parameters location

A string that defines the code location of the breakpoint, either a valid C-SPY
expression whose value evaluates to a valid address, an absolute location, or a
source location. For more information about the location types, see Enter
Location dialog box, page 159.

access

The memory access type: "F" for fetch, "R" for read, "W" for write, or "RW" for
read/write.

This parameter only applies to I-jet.

extend

Extends the breakpoint so that a whole data structure is covered. For data
structures that do not fit the size of the possible breakpoint ranges supplied by
the hardware breakpoint unit, for example three bytes, the breakpoint range will
not cover the whole data structure. Note that the breakpoint range will be
extended beyond the size of the data structure, which might cause false triggers
at adjacent data. Choose between "TRUE"or "FALSE".

This parameter only applies to I-jet.

match

Enables matching of the accessed data. Choose between "TRUE"or "FALSE".

This parameter only applies to I-jet.

data

A data value to match, in unsigned 32-bit format.

This parameter only applies to I-jet.

mask

Specifies which part of the data value to match (word, halfword, or byte), in
unsigned 32-bit format.

This parameter only applies to I-jet.

AFE1_AFE2-1:1

496

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Return value

For use with The C-SPY simulator. (Not available for all cores and devices.)

The C-SPY I-jet driver.

Description Sets a breakpoint at the specified location. When that breakpoint is triggered, the trace
system is stopped.

Example See __setTraceStartBreak, page 493.

See also Trace Stop Trigger breakpoint dialog box, page 240.

__sourcePosition

Syntax __sourcePosition(linePtr, colPtr)

Parameters linePtr

Pointer to the variable storing the line number

colPtr

Pointer to the variable storing the column number

Return value

For use with All C-SPY drivers.

Description If the current execution location corresponds to a source location, this macro returns the
filename as a string. It also sets the value of the variables, pointed to by the parameters,
to the line and column numbers of the source location.

Result Value

Successful An unsigned integer uniquely identifying the breakpoint. The same
value must be used when you want to clear the breakpoint.

Unsuccessful int 0

Table 47: __setTraceStopBreak return values

Result Value

Successful Filename string

Unsuccessful Empty ("") string

Table 48: __sourcePosition return values

AFE1_AFE2-1:1

C-SPY macros

497

__strFind

Syntax __strFind(macroString, pattern, position)

Parameters macroString

A macro string.

pattern

The string pattern to search for

position

The position where to start the search. The first position is 0

Return value The position where the pattern was found or -1 if the string is not found.

For use with All C-SPY drivers.

Description This macro searches a given string (macroString) for the occurrence of another string
(pattern).

Example __strFind("Compiler", "pile", 0) = 3
__strFind("Compiler", "foo", 0) = -1

See also Macro strings, page 436.

__subString

Syntax __subString(macroString, position, length)

Parameters macroString

A macro string.

position

The start position of the substring. The first position is 0.

length

The length of the substring

Return value A substring extracted from the given macro string.

For use with All C-SPY drivers.

Description This macro extracts a substring from another string (macroString).

AFE1_AFE2-1:1

498

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Example __subString("Compiler", 0, 2)

The resulting macro string contains Co.

__subString("Compiler", 3, 4)

The resulting macro string contains pile.

See also Macro strings, page 436.

__system1

Syntax __system1(string)

Parameters string

The command line used to start an external application. In some cases, the full
path is needed. If it contains space characters, quotation marks escaped with
backslashes (\") can be added to encapsulate the path, and, separately, the
arguments to the application, like this:
"\"D:\\My projects\\my app\\app.exe\" \"some argument\"".

Return value The exit code returned from the external application. If the application could not be
launched or fails to return an appropriate exit code, 1 is returned.

For use with All C-SPY drivers.

Description This macro launches an external application. It ignores all output returned from the
application. Terminates the launched application if the application has not finished
within 10 seconds.

Example __var exitCode;

exitCode = __system1("mkdir tmp");

AFE1_AFE2-1:1

C-SPY macros

499

__system2

Syntax __system2(string, &output)

Parameters string

The command line used to start an external application. In some cases, the full
path is needed. If it contains space characters, quotation marks escaped with
backslashes (\") can be added to encapsulate the path, and, separately, the
arguments to the application, like this:
"\"D:\\My projects\\my app\\app.exe\" \"some argument\"".

output

The output returned from the application. Both the stdout and the stderr
streams are stored in this variable.

Return value The exit code returned from the external application. If the application could not be
launched or fails to return an appropriate exit code, 1 is returned.

For use with All C-SPY drivers.

Description This macro launches an external application. The output from both the stdout and the
stderr streams is stored in output. If no data has been received from the launched
application within 10 seconds, or when the returned data exceeds 65535 bytes, the
application is terminated. This restriction prevents the Embedded Workbench IDE from
freezing or crashing because of misbehaving applications.

Example __var exitCode;
__var out_err;

exitCode = __system2("dir /S", &out_err);

__message "Output from the dir command:";
__message out_err;

AFE1_AFE2-1:1

500

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__system3

Syntax __system3(string, &output, &error)

Parameters string

The command line used to start an external application. In some cases, the full
path is needed. If it contains space characters, quotation marks escaped with
backslashes (\") can be added to encapsulate the path, and, separately, the
arguments to the application, like this:
"\"D:\\My projects\\my app\\app.exe\" \"some argument\"".

output

The output returned from the stdout output stream of the application.

error

The output returned from the stderr output stream of the application.

Return value The exit code returned from the external application. If the application could not be
launched or fails to return an appropriate exit code, 1 is returned.

For use with All C-SPY drivers.

Description This macro launches an external application. The output from the stdout stream is
stored in output and the stderr stream is stored in error. If no data has been
received from the launched application within 10 seconds, or when the returned data
exceeds 65535 bytes, the application is terminated. This restriction prevents the
Embedded Workbench IDE from freezing or crashing because of misbehaving
applications.

Example __var exitCode;
__var out;
__var err;

exitCode = __system3("dir /S", &out, &err);

__message "Output from the dir command:";
__message out;

__message "Error text from the dir command:";
__message err;

__targetDebuggerVersion

Syntax __targetDebuggerVersion()

AFE1_AFE2-1:1

C-SPY macros

501

Return value A string that represents the version number of the C-SPY debugger processor module.

For use with All C-SPY drivers.

Description This macro returns the version number of the C-SPY debugger processor module.

Example __var toolVer;
toolVer = __targetDebuggerVersion();
__message "The target debugger version is, ", toolVer;

__toLower

Syntax __toLower(macroString)

Parameters macroString

A macro string.

Return value The converted macro string.

For use with All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to lower case.

Example __toLower("IAR")

The resulting macro string contains iar.

__toLower("Mix42")

The resulting macro string contains mix42.

See also Macro strings, page 436.

__toString

Syntax __toString(C_string, maxlength)

Parameters C_string

Any null-terminated C string.

maxlength

The maximum length of the returned macro string.

AFE1_AFE2-1:1

502

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Return value Macro string.

For use with All C-SPY drivers.

Description This macro is used for converting C strings (char* or char[]) into macro strings.

Example Assuming your application contains this definition:

char const * hptr = "Hello World!";

this macro call:

__toString(hptr, 5)

would return the macro string containing Hello.

See also Macro strings, page 436.

__toUpper

Syntax __toUpper(macroString)

Parameters macroString

A macro string.

Return value The converted string.

For use with All C-SPY drivers.

Description This macro returns a copy of the parameter macroString where all the characters have
been converted to upper case.

Example __toUpper("string")

The resulting macro string contains STRING.

See also Macro strings, page 436.

__unloadImage

Syntax __unloadImage(module_id)

AFE1_AFE2-1:1

C-SPY macros

503

Parameters module_id

An integer which represents a unique module identification, which is retrieved
as a return value from the corresponding __loadImage C-SPY macro.

Return value

For use with All C-SPY drivers.

Description Unloads debug information from an already downloaded debug image.

See also Loading multiple debug images, page 59 and Images, page 587.

__wallTime_ms

Syntax __wallTime_ms()

Return value Returns the current host computer CPU time in milliseconds.

For use with All C-SPY drivers.

Description This macro returns the current host computer CPU time in milliseconds. The first call
will always return 0.

Example __var t1;
__var t2;

t1 = __wallTime_ms();
__var i;
for (i =0; i < 1000; i++)
 __message "Tick";
t2 = __wallTime_ms();
 __message "Elapsed time: ", t2 - t1;

__whichCore

Syntax __whichCore()

Value Result

module_id A unique module identification (the same as the input
parameter).

int 0 The unloading failed.

Table 49: __unloadImage return values

AFE1_AFE2-1:1

504

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

Return value Returns the currently running core. The cores are numbered from 0 and upwards.

For use with All C-SPY drivers.

Description When used in target execution, for example in a breakpoint condition or action, this
macro returns the number of the core currently executing the application. Note that
using this macro outside target execution will return -1.

Example logAndMaybeStop()
{
 __var core;
 core = __whichCore();
 __message "Breakpoint hit by core ", core;
 return core == 2;
}

When used as a breakpoint condition, the function will log every hit but stop only when
it hits core 2.

__writeAPReg

Syntax __writeAPReg(data, register)

Parameters

Return value

For use with The C-SPY I-Jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY TI Stellaris driver.

Description Performs a write operation to an AP register of the currently selected access port.

data A 32-bit value.

register An 8-bit AP register offset.

Result Value

Successful true

Unsuccessful false

Table 50: __writeAPReg return values

AFE1_AFE2-1:1

C-SPY macros

505

__writeDPReg

Syntax __writeDPReg(data, register)

Parameters

Return value

For use with The C-SPY I-Jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY TI Stellaris driver.

Description Performs a write operation to a DP register.

Example __writeDPReg(0x010000F0, 0x8)
 /* Selects access port 1 and bank 15 */

__writeFile

Syntax __writeFile(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Return value int 0

For use with All C-SPY drivers.

Description Prints the integer value in hexadecimal format (with a trailing space) to the file file.

Note: The __fmessage statement can do the same thing. The __writeFile macro is
provided for symmetry with __readFile.

data A 32-bit value.

register An 8-bit DP register offset.

Result Value

Successful true

Unsuccessful false

Table 51: __writeDPReg return values

AFE1_AFE2-1:1

506

Reference information on C-SPY system macros

C-SPY® Debugging Guide
for Arm

__writeFileByte

Syntax __writeFileByte(fileHandle, value)

Parameters fileHandle

A macro variable used as filehandle by the __openFile macro.

value

An integer.

Return value int 0

For use with All C-SPY drivers.

Description Writes one byte to the file fileHandle.

__writeMemory8, __writeMemoryByte

Syntax __writeMemory8(value, address, zone)
__writeMemoryByte(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value int 0

For use with All C-SPY drivers.

Description Writes one byte to a given memory location.

Example __writeMemory8(0x2F, 0x8020, "Memory");

__writeMemory16

Syntax __writeMemory16(value, address, zone)

AFE1_AFE2-1:1

C-SPY macros

507

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value int 0

For use with All C-SPY drivers.

Description Writes two bytes to a given memory location.

Example __writeMemory16(0x2FFF, 0x8020, "Memory");

__writeMemory32

Syntax __writeMemory32(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value int 0

For use with All C-SPY drivers.

Description Writes four bytes to a given memory location.

Example __writeMemory32(0x5555FFFF, 0x8020, "Memory");

AFE1_AFE2-1:1

508

Graphical environment for macros

C-SPY® Debugging Guide
for Arm

__writeMemory64

Syntax __writeMemory64(value, address, zone)

Parameters value

An integer.

address

The memory address (integer).

zone

A string that specifies the memory zone, see C-SPY memory zones, page 165.

Return value int 0

For use with All C-SPY drivers.

Description Writes eight bytes to a given memory location.

Example __writeMemory64(0xFFFF'FFFF'8000'0000, 0xFFFF'8000, "Memory");

Graphical environment for macros
Reference information about:

● Macro Registration window, page 509

● Debugger Macros window, page 511

● Macro Quicklaunch window, page 513

AFE1_AFE2-1:1

C-SPY macros

509

Macro Registration window
The Macro Registration window is available from the View>Macros submenu during
a debug session.

Use this window to list, register, and edit your debugger macro files.

Double-click a macro file to open it in the editor window and edit it.

See also Registering C-SPY macros—an overview, page 430.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

File
The name of an available macro file. To register the macro file, select the check
box to the left of the filename. The name of a registered macro file appears in
bold style.

Full path
The path to the location of the added macro file.

AFE1_AFE2-1:1

510

Graphical environment for macros

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

These commands are available:

Add
Opens a file browser where you can locate the macro file that you want to add
to the list. This menu command is also available as a function button at the top
of the window.

Remove
Removes the selected debugger macro file from the list. This menu command is
also available as a function button at the top of the window.

Remove All
Removes all macro files from the list. This menu command is also available as
a function button at the top of the window.

Reload
Registers the selected macro file. Typically, this is useful when you have edited
a macro file. This menu command is also available as a function button at the
top of the window.

Open File
Opens the selected macro file in the editor window.

Open Debugger Macros Window
Opens the Debugger Macros window.

AFE1_AFE2-1:1

C-SPY macros

511

Debugger Macros window
The Debugger Macros window is available from the View>Macros submenu during a
debug session.

Use this window to list all registered debugger macro functions, either predefined
system macros or your own. This window is useful when you edit your own macro
functions and want an overview of all available macros that you can use.

● Click the column headers Name or File to sort alphabetically on either function
name or filename.

● Double-clicking a macro defined in a file opens that file in the editor window.

● To open a macro in the Macro Quicklaunch window, drag it from the Debugger
Macros window and drop it in the Macro Quicklaunch window.

● Select a macro and press F1 to get online help information for that macro.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

Display area

This area contains these columns:

Name
The name of the debugger macro.

Parameters
The parameters of the debugger macro.

File
For macros defined in a file, the name of the file is displayed. For predefined
system macros, -System Macro- is displayed.

AFE1_AFE2-1:1

512

Graphical environment for macros

C-SPY® Debugging Guide
for Arm

Context menu

This context menu is available:

These commands are available:

Open File
Opens the selected debugger macro file in the editor window.

Add to Quicklaunch Window
Adds the selected macro to the Macro Quicklaunch window.

User Macros
Lists only the debugger macros that you have defined yourself.

System Macros
Lists only the predefined system macros.

All Macros
Lists all debugger macros, both predefined system macros and your own.

Open Macro Registration Window
Opens the Macro Registration window.

AFE1_AFE2-1:1

C-SPY macros

513

Macro Quicklaunch window
The Macro Quicklaunch window is available from the View menu.

Use this window to evaluate expressions, typically C-SPY macros.

For some devices, there are predefined C-SPY macros available with device support,
typically provided by the chip manufacturer. These macros are useful for performing
certain device-specific tasks. The macros are available in the Macro Quicklaunch
window and are easily identified by their green icon.

The Macro Quicklaunch window is similar to the Quick Watch window, but is
primarily designed for evaluating C-SPY macros. The window gives you precise control
over when to evaluate an expression.

See also Executing C-SPY macros—an overview, page 430.

To add an expression:
1 Choose one of these alternatives:

● Drag the expression to the window

● In the Expression column, type the expression you want to examine.

If the expression you add and want to evaluate is a C-SPY macro, the macro must first
be registered, see Registering C-SPY macros—an overview, page 430.

To evaluate an expression:
1 Double-click the Recalculate icon to calculate the value of that expression.

Requirements

Can be used with all C-SPY debugger drivers and debug probes.

AFE1_AFE2-1:1

514

Graphical environment for macros

C-SPY® Debugging Guide
for Arm

Display area

This area contains these columns:

Recalculate icon
To evaluate the expression, double-click the icon. The latest evaluated
expression appears in bold style.

Expression
One or several expressions that you want to evaluate. Click <click to add>
to add an expression. If the return value has changed since last time, the value
will be displayed in red.

Result
Shows the return value from the expression evaluation.

Context menu

This context menu is available:

These commands are available:

Evaluate Now
Evaluates the selected expression.

Remove
Removes the selected expression.

Remove All
Removes all selected expressions.

AFE1_AFE2-1:1

515

The C-SPY command line
utility—cspybat
● Using C-SPY in batch mode

● Summary of C-SPY command line options

● Reference information on C-SPY command line options

Using C-SPY in batch mode
You can execute C-SPY in batch mode if you use the command line utility cspybat,
installed in the directory common\bin.

These topics are covered:

● Starting cspybat

● Output

● Invocation syntax

STARTING CSPYBAT

1 To start cspybat you must first create a batch file. An easy way to do that is to use one
of the batch files that C-SPY automatically generates when you start C-SPY in the
IDE.

C-SPY generates a batch file projectname.buildconfiguration.cspy.bat every
time C-SPY is initialized. In addition, two more files are generated:

● project.buildconfiguration.general.xcl, which contains options specific
to cspybat

● project.buildconfiguration.driver.xcl, which contains options specific to
the C-SPY driver you are using

You can find the files in the directory $PROJ_DIR$\settings. The files contain the
same settings as the IDE, and provide hints about additional options that you can use.

2 To start cspybat, you can use this command line:

project.cspybat.bat [debugfile]

AFE1_AFE2-1:1

516

Using C-SPY in batch mode

C-SPY® Debugging Guide
for Arm

Note that debugfile is optional. You can specify it if you want to use a different debug
file than the one that is used in the project.buildconfiguration.general.xcl
file.

OUTPUT

When you run cspybat, these types of output can be produced:

● Terminal output from cspybat itself
All such terminal output is directed to stderr. Note that if you run cspybat from
the command line without any arguments, the cspybat version number and all
available options including brief descriptions are directed to stdout and displayed
on your screen.

● Terminal output from the application you are debugging
All such terminal output is directed to stdout, provided that you have used the
--plugin option. See --plugin, page 565.

● Error return codes
cspybat returns status information to the host operating system that can be tested in
a batch file. For successful, the value int 0 is returned, and for unsuccessful the value
int 1 is returned.

INVOCATION SYNTAX

The invocation syntax for cspybat is:

cspybat processor_DLL driver_DLL debug_file
 [cspybat_options] --backend driver_options

Note: In those cases where a filename is required—including the DLL files—you are
recommended to give a full path to the filename.

Parameters

The parameters are:

Parameter Description

processor_DLL The processor-specific DLL file—available in
arm\bin.

driver_DLL The C-SPY driver DLL file—available in arm\bin.

debug_file The object file that you want to debug (filename
extension out). See also --debug_file, page 531.

Table 52: cspybat parameters

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

517

Summary of C-SPY command line options
Reference information about:

● General cspybat options

● Options available for all C-SPY drivers

● Options available for the simulator driver

● Options available for the C-SPY GDB Server driver

● Options available for the C-SPY I-jet driver

● Options available for the C-SPY CMSIS-DAP driver

● Options available for the C-SPY J-Link/J-Trace driver

● Options available for the C-SPY TI MSP-FET driver

● Options available for the C-SPY TI Stellaris driver

● Options available for the C-SPY TI XDS driver

● Options available for the C-SPY ST-LINK driver

● Options available for the C-SPY third-party drivers

GENERAL CSPYBAT OPTIONS

cspybat_options The command line options that you want to pass to
cspybat. Note that these options are optional. For
information about each option, see Reference
information on C-SPY command line options, page 527.

--backend Marks the beginning of the parameters to the C-SPY
driver; all options that follow will be sent to the driver.
Note that this option is mandatory.

driver_options The command line options that you want to pass to
the C-SPY driver. Note that some of these options are
mandatory and some are optional. For information
about each option, see Reference information on C-SPY
command line options, page 527.

Parameter Description

Table 52: cspybat parameters (Continued)

--application_args Passes command line arguments to the debugged
application.

AFE1_AFE2-1:1

518

Summary of C-SPY command line options

C-SPY® Debugging Guide
for Arm

--attach_to_running_target Makes the debugger attach to a running
application at its current location, without
resetting the target system.

--backend Marks the beginning of the parameters to be sent
to the C-SPY driver (mandatory).

--code_coverage_file Enables the generation of code coverage
information and places it in a specified file.

--cycles Specifies the maximum number of cycles to run.

--debug_file Specifies an alternative debug file.

--device_macro Specifies a C-SPY device macro file.

--download_only Downloads a code image without starting a
debug session afterwards.

-f Extends the command line.

--flash_loader Specifies a flash loader specification XML file.

--macro Specifies a macro file to be used.

--macro_param Assigns a value to a C-SPY macro parameter.

--plugin Specifies a plugin file to be used.

--rtc_enable Enables C-RUN runtime error checking in
cspybat.

--rtc_output Specifies to cspybat a file for the C-RUN
message output.

--rtc_raw_to_txt Makes cspybat act as a runtime checking
message filter by reading a file as input.

--rtc_rules Specifies a file for the C-RUN rules to cspybat.

--silent Omits the sign-on message.

--sockets Makes the debugger use sockets instead of pipes
for its internal communication.

--suppress_entrypoint_warni

ng

Disables the warning when the ELF entry point is
at address 0x0.

--timeout Limits the maximum allowed execution time.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

519

OPTIONS AVAILABLE FOR ALL C-SPY DRIVERS

--BE8 Uses the big-endian format BE8. For reference
information, see the IAR C/C++ Development
Guide for Arm.

--BE32 Uses the big-endian format BE32. For reference
information, see the IAR C/C++ Development
Guide for Arm.

--cpu Specifies a processor variant. For reference
information, see the IAR C/C++ Development
Guide for Arm.

--device Specifies the name of the device.

--drv_communication Specifies the communication link to be used.

--drv_communication_log Creates a log file.

--drv_exclude_from_verify Excludes memory ranges from being verified.

--drv_reset_to_cpu_start Omits setting the PC when resetting the
application.

--drv_debugger_cache Disables memory caching and memory range
checking in C-SPY.

--drv_restore_breakpoints Restores automatically any breakpoints that were
destroyed during system startup.

--drv_suppress_download Suppresses download of the executable image.
For reference information, see Download, page
586, specifically the option Suppress download.

--drv_vector_table_base Specifies the location of the Cortex-M reset
vector and the initial stack pointer value.

--drv_verify_download Verifies the target program. For reference
information, see Download, page 586,
specifically the option Verify download.

Available for all hardware drivers.

--endian Specifies the byte order of the generated code and
data. For reference information, see the IAR
C/C++ Development Guide for Arm.

AFE1_AFE2-1:1

520

Summary of C-SPY command line options

C-SPY® Debugging Guide
for Arm

OPTIONS AVAILABLE FOR THE SIMULATOR DRIVER

OPTIONS AVAILABLE FOR THE C-SPY GDB SERVER DRIVER

--fpu Selects the type of floating-point unit. For
reference information, see the IAR C/C++
Development Guide for Arm.

--leave_target_running Starts the execution on the target and then exits
but leaves the target running.

-p Specifies the device description file to be used.

--proc_stack_stack Provides C-SPY with information about reserved
stacks.

--semihosting Enables semihosted I/O.

--disable_interrupts Disables the interrupt simulation. (Not available
for all cores and devices.)

--function_profiling Analyzes your source code to find where the most
time is spent during execution. (Not available for
all cores and devices.)

--mapu Activates memory access checking. (Not
available for all cores and devices.)

--multicore_nr_of_cores Specify the number of cores on the device for
multicore debugging. (Not available for all cores
and devices.)

--drv_default_breakpoint Sets the type of breakpoint resource to be used
when setting breakpoints.

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--gdbserv_exec_command Sends a command string to the GDB Server.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

521

OPTIONS AVAILABLE FOR THE C-SPY I-JET DRIVER

--debug_auth_enforce Specifies that the authentication procedure
should be executed when automatic detection
fails.

--debug_auth_settings Specifies the XML file that stores parameters
required for the authentication.

--debug_auth_type Specifies the mechanism used for the debug
authentication.

--drv_catch_exceptions Makes the application stop for certain
exceptions.

--drv_default_breakpoint Sets the type of breakpoint resource to be used
when setting breakpoints.

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--drv_interface Selects the communication interface.

--drv_interface_speed Specifies the JTAG and SWD interface speed.

--drv_mem_ap Enables Live Watch and Live Memory reads for
Cortex-A and Cortex-R devices.

--drv_trace_settings Specifies the mechanism and interface for trace
data collection.

--jet_board_cfg Specifies a probe configuration file.

--jet_board_did Selects which CPU to debug on a multicore
system.

--jet_cpu_clock Specifies the frequency of the internal processor
clock.

--jet_disable_pmu Disables the PMU event counting.

--jet_disable_pmu_dap Disables the PMU DAP channel and uses CP15
instructions for PMU event counting.

--jet_ir_length Specifies the number of IR bits preceding the
Arm core to connect to.

AFE1_AFE2-1:1

522

Summary of C-SPY command line options

C-SPY® Debugging Guide
for Arm

OPTIONS AVAILABLE FOR THE C-SPY CMSIS-DAP DRIVER

--jet_power_from_probe Specifies the power supply from the I-jet or I-jet
Trace probe.

--jet_probe Specifies which debug system the C-SPY I-jet
driver is an interface to.

--jet_script_file Specifies the reset script file.

--jet_standard_reset Selects the reset strategy to be used when C-SPY
starts.

--jet_startup_connection_ti

meout

Prolongs the time that the C-SPY driver tries to
connect to the target board.

--jet_swo_on_d0 Specifies that SWO trace data is output on the
trace data pin D0.

--jet_swo_prescaler Specifies the SWO prescaler for the CPU clock
frequency.

--jet_swo_protocol Selects the SWO communication protocol.

--jet_tap_position Selects a specific device in the JTAG scan chain.

--reset_style Specifies the reset strategies that will be available
when debugging.

--sdm_debug_architecture Specifies the debug architecture used for SDM
debug authentication

--sdm_library Specifies the library file used for SDM debug
authentication.

--sdm_library_hint Specifies an alternate authentication method if
the SDM library does not use the standard SDM
API.

--sdm_manifest Specifies a manifest file that points out the SDM
debug authentication library file.

--debug_auth_enforce Specifies that the authentication procedure
should be executed when automatic detection
fails.

--debug_auth_settings Specifies the XML file that stores parameters
required for the authentication.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

523

--debug_auth_type Specifies the mechanism used for the debug
authentication.

--drv_catch_exceptions Makes the application stop for certain
exceptions.

--drv_default_breakpoint Sets the type of breakpoint resource to be used
when setting breakpoints.

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--drv_interface Selects the communication interface.

--drv_interface_speed Specifies the JTAG and SWD interface speed.

--jet_board_cfg Specifies a probe configuration file.

--jet_board_did Selects which CPU to debug on a multicore
system.

--jet_probe Specifies which debug system the C-SPY driver
is an interface to.

--jet_script_file Specifies the reset script file.

--jet_standard_reset Selects the reset strategy to be used when C-SPY
starts.

--jet_startup_connection_ti

meout

Prolongs the time that the C-SPY driver tries to
connect to the target board.

--jet_tap_position Selects a specific device in the JTAG scan chain.

--reset_style Specifies the reset strategies that will be available
when debugging.

--sdm_debug_architecture Specifies the debug architecture used for SDM
debug authentication

--sdm_library Specifies the library file used for SDM debug
authentication.

--sdm_library_hint Specifies an alternate authentication method if
the SDM library does not use the standard SDM
API.

AFE1_AFE2-1:1

524

Summary of C-SPY command line options

C-SPY® Debugging Guide
for Arm

OPTIONS AVAILABLE FOR THE C-SPY J-LINK/J-TRACE DRIVER

--sdm_manifest Specifies a manifest file that points out the SDM
debug authentication library file.

--drv_catch_exceptions Makes the application stop for certain
exceptions.

--drv_default_breakpoint Sets the type of breakpoint resource to be used
when setting breakpoints.

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--drv_interface Selects the communication interface.

--drv_interface_speed Specifies the JTAG and SWD interface speed.

--drv_mem_ap Enables Live Watch and Live Memory reads for
Cortex-A and Cortex-R devices.

--drv_swo_clock_setup Specifies the CPU clock and the wanted SWO
speed.

--jlink_dcc_timeout Specifies the timeout for a pending request from
C-SPY to the DCC agent on target.

--jlink_device_select Selects a specific device in the JTAG scan chain.

--jlink_exec_command Calls the __jlinkExecCommand macro after
target connection has been established.

--jlink_initial_speed Sets the initial JTAG communication speed in
kHz.

--jlink_ir_length Sets the number of IR bits preceding the Arm
core to connect to.

--jlink_reset_strategy Selects the reset strategy to use at debugger
startup.

--jlink_script_file Specifies the script file for setting up hardware.

--jlink_trace_source Selects either ETB or ETM as the trace source.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

525

OPTIONS AVAILABLE FOR THE C-SPY TI MSP-FET DRIVER

OPTIONS AVAILABLE FOR THE C-SPY TI STELLARIS DRIVER

OPTIONS AVAILABLE FOR THE C-SPY TI XDS DRIVER

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--mspfet_erase_flash Specifies which flash memory to erase before
download.

--mspfet_interface_speed Specifies the interface communication speed.

--mspfet_reset_strategy Selects the reset strategy to use at debugger
startup.

--mspfet_settlingtime Specifies a delay that will be used between
switching on the target VCC and starting the
identification of the Arm device.

--mspfet_vccvoltage Specifies the target VCC voltage.

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--drv_interface Selects the communication interface.

--drv_interface_speed Specifies the JTAG and SWD interface speed.

--lmiftdi_reset_strategy Selects the reset strategy to use at debugger
startup.

--drv_catch_exceptions Makes the application stop for certain exceptions.

--drv_default_breakpoint Sets the type of breakpoint resource to be used
when setting breakpoints.

AFE1_AFE2-1:1

526

Summary of C-SPY command line options

C-SPY® Debugging Guide
for Arm

OPTIONS AVAILABLE FOR THE C-SPY ST-LINK DRIVER

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--drv_interface Selects the communication interface.

--drv_interface_speed Specifies the JTAG and SWD interface speed.

--drv_swo_clock_setup Specifies the CPU clock and the wanted SWO
speed.

--xds_board_file Overrides the default board file.

--xds_reset_strategy Specifies the reset strategy to use.

--xds_rootdir Specifies the installation directory of the TI XDS
driver package.

--debug_auth_enforce Specifies that the authentication procedure
should be executed when automatic detection
fails.

--debug_auth_settings Specifies the XML file that stores parameters
required for the authentication.

--debug_auth_type Specifies the mechanism used for the debug
authentication.

--drv_catch_exceptions Makes the application stop for certain
exceptions.

--drv_enforce_mem_config Prevents the driver from accessing any memory
ranges in the zone Memory that have not been
defined in the Memory Configuration dialog
box.

--drv_interface Selects the communication interface.

--drv_interface_speed Specifies the JTAG and SWD interface speed.

--drv_swo_clock_setup Specifies the CPU clock and the wanted SWO
speed.

--sdm_debug_architecture Specifies the debug architecture used for SDM
debug authentication.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

527

OPTIONS AVAILABLE FOR THE C-SPY THIRD-PARTY DRIVERS

For information about any options specific to the third-party driver you are using, see its
documentation.

Reference information on C-SPY command line options
This section gives detailed reference information about each cspybat option and each
option available to the C-SPY drivers.

--application_args

Syntax --application_args="arg0 arg1 ..."

Parameters arg

A command line argument.

For use with cspybat

Description Use this option to pass command line arguments to the debugged application. These
variables must be defined in the application:

/* __argc, the number of arguments in __argv. */
__no_init __root int __argc;

/* __argv, an array of pointers to the arguments (strings); must
be large enough to fit the number of arguments.*/
__no_init __root const char * __argv[MAX_ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line arguments. */
__no_init __root char __argvbuf[MAX_ARG_SIZE];

--sdm_library Specifies the library file used for SDM debug
authentication.

--sdm_library_hint Specifies an alternate authentication method if
the SDM library does not use the standard SDM
API.

--sdm_manifest Specifies a manifest file that points out the SDM
debug authentication library file.

--stlink_reset_strategy Specifies the reset strategy to use.

AFE1_AFE2-1:1

528

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Example --application_args="--logfile log.txt --verbose"

This option is not available in the IDE. However, command line arguments can be
passed to the debugged application from the Project>Options>Debugger>Extra
Options page using the /args option, see Extra Options, page 591.

--attach_to_running_target

Syntax --attach_to_running_target

For use with cspybat

Note: This option might not be supported by the combination of C-SPY driver and
device that you are using. If you are using this option with an unsupported combination,
C-SPY produces a message.

Description Use this option to make the debugger attach to a running application at its current
location, without resetting the target system.

If you have defined any breakpoints in your project, the C-SPY driver will set them
during attachment. If the C-SPY driver cannot set them without stopping the target
system, the breakpoints will be disabled. The option also suppresses download and the
Run to option.

Project>Attach to Running Target

--backend

Syntax --backend {driver options}

Parameters driver options

Any option available to the C-SPY driver you are using.

For use with cspybat (mandatory).

Description Use this option to send options to the C-SPY driver. All options that follow --backend
will be passed to the C-SPY driver, and will not be processed by cspybat itself.

This option is not available in the IDE.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

529

--code_coverage_file

Syntax --code_coverage_file=filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The name of the destination file for the code coverage information.

For use with cspybat

Description Use this option to enable the generation of a text-based report file for code coverage
information. The code coverage information will be generated after the execution has
completed and you can find it in the specified file. Because most embedded applications
do not terminate, you might have to use this option in combination with --timeout or
--cycles.

Note that this option requires that the C-SPY driver you are using supports code
coverage. If you try to use this option with a C-SPY driver that does not support code
coverage, an error message will be directed to stderr.

See also Code coverage, page 307, --cycles, page 529, --timeout, page 572.

To set this option, choose View>Code Coverage, right-click and choose Save As when
the C-SPY debugger is running.

--cycles

Syntax --cycles cycles

Note that this option must be placed before the --backend option on the command line.

Parameters cycles

The number of cycles to run.

For use with cspybat

Description Use this option to specify the maximum number of cycles to run. If the target program
executes longer than the number of cycles specified, the target program will be aborted.
Using this option requires that the C-SPY driver you are using supports a cycle counter,
and that it can be sampled while executing.

This option is not available in the IDE.

AFE1_AFE2-1:1

530

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--debug_auth_enforce

Syntax --debug_auth_enforce

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option if, for some reason, the automatic detection mechanism fails and you
want to force using the authentication procedure. This could be the case if you are using
a device that is not explicitly supported yet by IAR Embedded Workbench.

See also Debug authentication, page 63.

Project>Options>Debugger>Authentication>Apply authentication if status
cannot be determined

--debug_auth_settings

Syntax --debug_auth_settings=path

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option to specify the XML file that stores parameters required for the
authentication. This file is normally the .dnx file for the project. In the IDE, this file is
selected automatically.

See also Debug authentication, page 63.

This option is not available in the IDE.

path The path to the file where the authentication parameters are
stored.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

531

--debug_auth_type

Syntax --debug_auth_type=mechanism

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option to specify the mechanism used for the debug authentication.

See also Debug authentication, page 63.

This option is not available in the IDE.

--debug_file

Syntax --debug_file filename

Parameters filename

The name of the debug file to use.

For use with cspybat

Description Use this option to make cspybat use the specified debug file instead of the one used in
the generated cpsybat.bat file. This option can be placed both before and after the
--backend option on the command line.

This option is not available in the IDE.

mechanism The name of the mechanism used for the debug
authentication. Currently, this parameter must be sdm.

AFE1_AFE2-1:1

532

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--device

Syntax --device=device_name

Parameters

For use with All C-SPY drivers.

Description Use this option to specify the name of the device.

To set related option, choose:

Project>Options>General Options>Target>Device

--device_macro

Syntax --device_macro filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The C-SPY device macro file to be used (filename extension dmac).

For use with cspybat

Description Use this option to specify a C-SPY device macro file to be loaded before you execute
the target application. A device macro is also loaded when you run a flash loader.

A device macro can include scripted reset styles that can be used by the debugger.

This option can be used more than once on the command line.

See also Briefly about using C-SPY macros, page 428.

This option is not available in the IDE.

--disable_interrupts

Syntax --disable_interrupts

For use with The C-SPY simulator driver. (Not available for all cores and devices.)

device_name The name of the device, for example, ADuC7030,
AT91SAM7S256, LPC2378, STR912FM44, or TMS470R1B1M.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

533

Description Use this option to disable the interrupt simulation.

To set this option, choose Simulator>Interrupt Configuration and deselect the
Enable interrupt simulation command on the context menu.

--download_only

Syntax --download_only

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to download the code image without starting a debug session afterwards.

Project>Download>Download active application

Alternatively, to set a related option, choose:

Project>Options>Debugger>Setup and deselect Run to.

--drv_catch_exceptions

Syntax --drv_catch_exceptions=value

Parameters
value

(for Arm9, Cortex-R4, Arm11,
and Cortex-A)

A value in the range of 0–0x1FF. Each bit specifies
which exception to catch:

Bit 0 = Reset

Bit 1 = Undefined instruction

Bit 2 = SWI

Bit 3 = Prefetch abort

Bit 4 = Data abort

Bit 5 = Not used

Bit 6 = IRQ

Bit 7 = FIQ

Bit 8 = Other errors

AFE1_AFE2-1:1

534

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY CMSIS-DAP driver.

The C-SPY ST-LINK driver.

The C-SPY TI XDS driver.

Description Use this option to make the application stop when a certain exception occurs.

See also Setting a breakpoint on an exception vector, page 135.

Project>Options>Debugger>Driver>Breakpoints>Catch exceptions

--drv_communication

Syntax --drv_communication=connection

value

(for Cortex-M)

A value in the range of 0–0x7FF. Each bit specifies
which exception to catch:

Bit 0 = CORERESET - Reset Vector

Bit 4 = MMERR - Memory Management Fault

Bit 5 = NOCPERR - Coprocessor Access Error

Bit 6 = CHKERR - Checking Error

Bit 7 = STATERR - State Error

Bit 8 = BUSERR - Bus Error

Bit 9 = INTERR - Interrupt Service Errors

Bit 10 = HARDERR - Hard Fault

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

535

Parameters Where connection is one of these for the C-SPY GDB Server driver:

Where connection is one of these for the C-SPY J-Link/J-Trace driver:

Via Ethernet TCPIP:ip_address

TCPIP:ip_address,port

TCPIP:hostname

TCPIP:hostname,port

Note that if no port is specified, port 3333 is used by default.

Via USB port USB:#serial where serial is a string of digits and letters
that identifies which probe you want to connect to. The serial
number can be found either printed on the probe, or obtained
by connecting a single probe, and then starting the debug
session. The serial number is then displayed in the Debug
Log window. The serial number is also displayed in the
Debug Probe Selection dialog box.

USB:#select forces the Debug Probe Selection dialog box
to be displayed each time you start a debug session.

Via USB directly to the
debug probe

USB0–USB3

When using USB0 and if there are more than one debug
probes on the USB connection, a dialog box is displayed
when the debug session starts. Use the dialog box to choose
which debug probe to connect to.

AFE1_AFE2-1:1

536

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Where connection is one of these for the C-SPY I-jet driver:

Via J-Link on LAN TCPIP:

When the colon sign is not followed by any address, host
name, or serial number, the J-Link driver searches for all
J-Link debug probes on the local network and displays them
in a dialog box where you can choose which one to connect
to (Auto detect).

TCPIP:ip_address

TCPIP:ip_address,port

TCPIP:hostname

TCPIP:hostname,port

TCPIP:#serial, connects to the J-Link with the serial
number number on the local network

Note that if no port is specified, port 19020 is used by default.

Via USB port USB:#serial where serial is a string of digits and letters
that identifies which probe you want to connect to. The serial
number can be found either printed on the probe, or obtained
by connecting a single probe, and then starting the debug
session. The serial number is then displayed in the Debug
Log window. The serial number is also displayed in the
Debug Probe Selection dialog box.

USB:#select forces the Debug Probe Selection dialog box
to be displayed each time you start a debug session.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

537

Where connection is one of these for the C-SPY ST-LINK driver, the C-SPY TI
Stellaris driver, and the C-SPY TI XDS driver:

Where connection is one of these for the C-SPY TI MSP-FET driver:

For use with The C-SPY GDB Server driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY ST-LINK driver.

The C-SPY TI MSP-FET driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Use this option to choose communication link.

Via USB port USB:#serial where serial is a string of digits and letters
that identifies which probe you want to connect to. The serial
number can be found either printed on the probe, or obtained
by connecting a single probe, and then starting the debug
session. The serial number is then displayed in the Debug
Log window. The serial number is also displayed in the
Debug Probe Selection dialog box.

USB:#select forces the Debug Probe Selection dialog box
to be displayed each time you start a debug session.

USBx where x is the enumeration order (0-256) of the probe
when plugged in. This is an alternative notation for when the
serial number cannot be used—a solution for older probes.
However, this is an uncertain method, because the order can
change the next time that you plug in the probes, or when you
reboot your computer. The USB port can be obtained by
plugging in all probes to be used. Then use
--drv_communication=USB:#select to display all
connected probes in the Debug Probe Selection dialog box.

Via COM port COMx where x is the enumeration order (0-256) of the probe
when plugged in. This is an uncertain method, because the
order can change the next time that you plug in the probes, or
when you reboot your computer.

If you do not specify the option --drv_communication, the
debug probe is automatically selected.

AFE1_AFE2-1:1

538

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Project>Options>Debugger>GDB Server>TCP/IP address or hostname [,port]

Project>Options>Debugger>J-Link/J-Trace>Connection>Communication

Project>Options>Debugger>ST-LINK>Setup

Project>Options>Debugger>TI MSP-FET>Setup

Project>Options>Debugger>TI XDS>Setup

To set this option for the C-SPY TI Stellaris driver, use
Project>Options>Debugger>Extra Options.

--drv_communication_log

Syntax --drv_communication_log=filename

Parameters

For use with All C-SPY hardware drivers.

Description Use this option to log the communication between C-SPY and the target system to a file.
To interpret the result, detailed knowledge of the communication protocol is required.

Project>Options>Debugger>Driver>Log communication

--drv_debugger_cache

Syntax --drv_debugger_cache={on|off}

Parameters

For use with All C-SPY drivers.

Description Use this option to completely disable memory caching and memory range checking in
C-SPY.

Normally, C-SPY uses the memory range information in the Memory Configuration
dialog box both to restrict access to certain parts of target memory and to cache target
memory contents for improved C-SPY performance. Under certain rare circumstances,

filename The name of the log file.

on Enables memory caching and memory range checking.

off Disables memory caching and memory range checking.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

539

this is not appropriate, and you can choose Disable Debugger Cache to turn off the
caching and memory range checking completely. All accesses from C-SPY will then
result in corresponding accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set of
ranges.

● When the memory range setup is incorrect or incomplete.

Driver>Disable Debugger Cache

--drv_default_breakpoint

Syntax --drv_default_breakpoint={0|1|2}

Parameters

For use with The C-SPY GDB Server driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY CMSIS-DAP driver.

The C-SPY TI XDS driver.

Description Use this option to select the type of breakpoint resource to be used when setting a
breakpoint.

See also Breakpoints options, page 154.

Project>Options>Debugger>Driver>Breakpoints>Default breakpoint type

0 Auto (default)

1 Hardware

2 Software

AFE1_AFE2-1:1

540

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--drv_enforce_mem_config

Syntax --drv_enforce_mem_config={on|off}

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY GDB Server driver.

The C-SPY I-jet driver.

The C-SPY J-Link driver.

The C-SPY ST-Link driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Use this option to prevent the driver from accessing any memory ranges in the zone
Memory that have not been defined in the Memory Configuration dialog box.

Driver>Enforce Memory Configuration

--drv_exclude_from_verify

Syntax --drv_exclude_from_verify=startaddr-endaddr

Parameters

For use with All C-SPY drivers.

Description Use this option to exclude memory ranges from being verified when the option
--drv_verify_download, or the option Verify download in the Project>Options
dialog box in the IDE, is used. The option can be specified multiple times to exclude
several ranges.

on Restricts which memory ranges that can be accessed.

off Allows C-SPY to access all memory ranges.

startaddr The start of the memory range.

endaddr The end of the memory range.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

541

To set this option, use Project>Options>Debugger>Extra Options.

--drv_interface

Syntax --drv_interface={SWD|JTAG|cJTAG|auto}

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY ST-LINK driver.

The C-SPY TI MSP-FET driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Use this option to specify the communication interface between the debug probe and the
target system.

The SWD interface uses fewer pins than JTAG. Specify --drv_interface=SWD if you
want to use the serial-wire output (SWO) communication channel. Alternatively, you
can set this option to JTAG and also specify the --jet_swo_on_d0 option. SWO output
on Trace_D0 is only supported by the C-SPY I-Jet/I-jet Trace driver.

Note: If you select stdout/stderr via SWO on the General Options>Library
Configuration page, SWD is selected automatically, unless the device supports output
of SWO on Trace_D0.

See also ● SWO Trace Window Settings dialog box, page 223

SWD Specifies the SWD interface

JTAG (default) Specifies the JTAG interface

cJTAG Specifies the cJTAG interface.

This parameter is only available for the C-SPY I-jet driver,
the J-Link/J-Trace driver, and the C-SPY TI XDS driver.

auto Automatically selects the debug interface. This parameter is
only available for the C-SPY TI MSP-FET driver.

AFE1_AFE2-1:1

542

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

● J-Link/J-Trace — Connection, page 615

● ST-LINK — Setup, page 618

Project>Options>Debugger>CMSIS-DAP>Interface/Interface

Project>Options>Debugger>I-jet>Interface>Interface

Project>Options>Debugger>J-Link/J-Trace>Connection>Interface

Project>Options>Debugger>ST-LINK>Setup>Interface

Project>Options>Debugger>TI MSP-FET>Setup>Interface

Project>Options>Debugger>TI Stellaris>Setup>Interface

Project>Options>Debugger>TI XDS>Setup>Interface

--drv_interface_speed

Syntax --drv_interface_speed=kHz

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY ST-LINK driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Use this option to set the JTAG and SWD communication speed in kHz.

See also J-Link/J-Trace — Setup, page 611.

Project>Options>Debugger>CMSIS-DAP>Interface>Interface speed

Project>Options>Debugger>I-jet>Interface>Interface speed

Project>Options>Debugger>J-Link/J-Trace>Setup>JTAG/SWD speed

Project>Options>Debugger>ST-LINK>Setup>Interface>Interface speed

Project>Options>Debugger>TI Stellaris>Setup>JTAG/SWD speed

kHz The frequency in kHz

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

543

Project>Options>Debugger>TI XDS>Setup>Interface>Interface speed

--drv_mem_ap

Syntax --drv_mem_ap=n

Parameters

For use with The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

Description Use this option to enable Live Watch and Live Memory reads for Cortex-A and
Cortex-R devices. All Live Watch and Live Memory reads will be redirected through the
specified MEM-AP port. This requires the presence of a suitable MEM-AP port.

Note: Because the memory is redirected through a MEM-AP port, the memory viewed
through this port will not be the same as the memory viewed from the CPU, if the MMU
translation is not one to one.

To set this option, use Project>Options>Debugger>Extra Options.

--drv_reset_to_cpu_start

Syntax --drv_reset_to_cpu_start

For use with The C-SPY GDB Server driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY ST-LINK driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

Description Normally, at reset, the debugger sets PC to the entry point of the application.

This option omits setting the PC each time that the application is reset. This can be useful
when you want to keep the reset value that the CPU sets at reset, for example to start
executing from the first instruction pointed out by the vector table, or to run a bootloader
or OS startup code before entering the start address of the application.

n The number of the MEM-AP port where all Live Watch and
Live Memory reads will be redirected.

AFE1_AFE2-1:1

544

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

This option also keeps the value of the SP (for Cortex-M) or CPSR register (for other
devices) set by the CPU.

To set this option, use Project>Options>Debugger>Extra Options.

--drv_restore_breakpoints

Syntax --drv_restore_breakpoints=location

Parameters

For use with The C-SPY GDB Server driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY CMSIS-DAP driver.

The C-SPY ST-LINK driver.

The C-SPY TI XDS driver.

Description Use this option to restore automatically any software breakpoints that were overwritten
during system startup.

See also Breakpoints options, page 154.

Project>Options>Debugger>Driver>Breakpoints>Restore software breakpoints
at

--drv_swo_clock_setup

Syntax --drv_swo_clock_setup=frequency,autodetect,wanted

Parameters

location Address or function name label

frequency The exact clock frequency used by the internal
processor clock, HCLK, in Hz. This value is used
for configuring the SWO communication speed
and for calculating timestamps.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

545

For use with The C-SPY J-Link/J-Trace driver.

The C-SPY ST-LINK driver.

The C-SPY TI XDS driver.

Description Use this option to set up the CPU clock. If this option is not used, the CPU clock
frequency is by default set to 72 MHz.

Project>Options>Debugger>J-Link/J-Trace>Setup>Clock setup

Project>Options>Debugger>ST-LINK>Communication>Clock setup

Project>Options>Debugger>TI XDS>Communication>Clock setup

--drv_trace_settings

Syntax --drv_trace_settings={Auto|ETB|ETM|SWO|None}

Parameters

For use with The C-SPY I-jet driver.

autodetect 0, Specify the wanted frequency using the
parameter wanted.

1, Automatically uses the highest possible
frequency that the J-Link debug probe can
handle.

wanted The frequency to be used, if autodetect is 0, in
Hz. Use wanted if data packets are lost during
transmission.

Auto Automatically selects the best possible mechanism and interface,
depending on probe and board/device capabilities.

ETB Collects trace data through the on-chip (ETB/MTB) interface.

ETM Collects trace data through the parallel (ETM) interface.

SWO Collects trace data through the serial (SWO) interface.

None Disables trace. In this mode, C-SPY will not access any trace-related
on-chip resources.

AFE1_AFE2-1:1

546

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Description Use this option to specify the mechanism and interface for trace data collection. For
detailed information, see I-jet — Trace, page 607.

Project>Options>Debugger>I-jet>Trace>Mode

--drv_vector_table_base

Syntax --drv_vector_table_base=expression

Parameters

For use with The C-SPY GDB Server driver.

The C-SPY I-jet driver.

The C-SPY J-Link/J-Trace driver.

The C-SPY CMSIS-DAP driver.

The C-SPY TI Stellaris driver.

The C-SPY TI XDS driver.

The C-SPY ST-LINK driver.

The C-SPY Simulator driver.

Description Use this option to specify the location of the reset vector (this also determines the
placement of the initial stack pointer value for Cortex-M). This is useful if you want to
override the default label—defined in the system startup code—in the application or if
the application lacks this label, which can be the case if you debug code that is built by
tools from another vendor.

The default label for the vector location is:

● __vector_table (Cortex-M)

● __vector (Cortex-Av7 and Cortex-Rv7)

● __vector_v8 (Cortex-Av8 and Cortex-Rv8)

Project>Options>Debugger>Extra Options.

expression A label or an address

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

547

-f

Syntax -f filename

Parameters filename

A text file that contains the command line options (default filename extension
xcl).

For use with cspybat

Description Use this option to make cspybat read command line options from the specified file.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines, because the newline character is treated
like a space or tab character.

Both C/C++ style comments are allowed in the file. Double quotes behave in the same
way as in the Microsoft Windows command line environment.

This option can be placed either before or after the --backend option on the command
line.

To set this option, use Project>Options>Debugger>Extra Options.

--flash_loader

Syntax --flash_loader filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The flash loader specification XML file, with the filename extension board.

For use with cspybat

Description Use this option to specify a flash loader specification XML file which contains all
relevant information about the flash loading. There can be more than one such argument,
in which case each argument will be processed in the specified order, resulting in several
flash programming passes.

See also The IAR Flash Loader Development Guide.

AFE1_AFE2-1:1

548

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

To set related options, choose:

Project>Options>Debugger>Download>Use flash loader(s)

--function_profiling

Syntax --function_profiling filename

Parameters filename

The name of the log file where the profiling data is saved.

For use with The C-SPY simulator driver. (Not available for all cores and devices.)

Description Use this option to find the functions in your source code where the most time is spent
during execution. The profiling information is saved to the specified file. For more
information about function profiling, see Profiling, page 293.

C-SPY driver>Function Profiling

--gdbserv_exec_command

Syntax --gdbserv_exec_command="string"

Parameters

For use with The C-SPY GDB Server driver.

Description Use this option to send strings or commands to the GDB Server.

Project>Options>Debugger>Extra Options

--jet_board_cfg

Syntax --jet_board_cfg=probe_configuration_file

Parameters

string String or command sent to the GDB Server. For more
information, see the GDB server documentation.

probe_configuration_file The full path to a probe configuration file.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

549

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description Use this option to specify a probe configuration file that defines the debug system on the
board.

Project>Options>Debugger>CMSIS DAP>Interface>Probe configuration file

Project>Options>Debugger>I-jet>Interface>Probe configuration file

--jet_board_did

Syntax --jet_board_did={cpu|#cpu_number}

Parameters

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description Use this option to specify which CPU to debug on a multicore system.

--jet_board_did=#cpu_number is also applicable when --jet_probe=cmsisdap
is specified.

Example Selecting the CPU on a multicore device with a probe configuration file:

--jet-board-cfg=device.ProbeConfig --jet_board_did=A9_1

cpu If a board configuration file is specified (using
--jet_board_cfg) and the defined debug system
contains more than one CPU, use this parameter to select a
CPU. The value of cpu is a text string. The range of valid
values are located in the probe configuration file.

#cpu_number If the debug system is a multicore SWD system, specify the
CPU number on the DAP.

If the debug system is a JTAG scan chain, and there are
several CPUs at the specified TAP position, then specify the
CPU number on target.

Note that #cpu_number has no effect if a board
configuration file is specified using --jet_board_cfg.

AFE1_AFE2-1:1

550

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Selecting the CPU on a multicore device with a JTAG scan chain, where several CPUs
are found at the specified TAP position:

--jet_tap_position=1 --jet_ir_length=5 --jet_board_did=#2

Project>Options>Debugger>CMSIS DAP>Interface>Probe configuration
file>CPU

Project>Options>Debugger>CMSIS DAP>Interface>Probe config>Explicit>CPU
number on target

Project>Options>Debugger>I-jet>Interface>Probe configuration file>CPU

Project>Options>Debugger>I-jet>Interface>Explicit probe configuration>CPU
number on target

--jet_cpu_clock

Syntax --jet_cpu_clock=frequency

Parameters

For use with The C-SPY I-jet driver.

Description Use this option to specify the exact clock frequency used by the internal processor clock,
HCLK. This value is used for configuring the SWO communication speed and for
calculating timestamps.

Project>Options>Debugger>I-jet>Trace>CPU clock

--jet_disable_pmu

Syntax --jet_disable_pmu

For use with The C-SPY I-jet driver.

Description Use this option to disable the PMU event counting completely.

To set this option, use Project>Options>Debugger>Extra Options.

frequency The clock frequency in Hz

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

551

--jet_disable_pmu_dap

Syntax --jet_disable_pmu_dap

For use with The C-SPY I-jet driver.

Description Use this option to disable the PMU DAP channel and revert to using CP15 instructions
for PMU event counting. This disables live updating of counter values when the
debugger is running.

To set this option, use Project>Options>Debugger>Extra Options.

--jet_ir_length

Syntax --jet_ir_length=length

Parameters

For use with The C-SPY I-jet driver.

Description Use this option to set the number of IR bits preceding the Arm core to connect to.

See also I-jet — Interface, page 605

Project>Options>Debugger>I-jet>Interface>Explicit probe
configuration>Preceding bits

--jet_power_from_probe

Syntax --jet_power_from_probe=[leave_on|switch_off]

Parameters

length The number of IR bits preceding the Arm core to connect to,
for JTAG scan chains that mix Arm devices with other
devices.

leave_on Continues to supply power to the target even after the debug
session has been stopped.

switch_off Turns off the power to the target when the debug session
stops.

AFE1_AFE2-1:1

552

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

For use with The C-SPY I-jet driver.

Description Use this option to specify the status of the probe power supply after debugging.

If this option is not specified, the probe will not supply power to the board.

Project>Options>Debugger>I-jet>Setup>Target power

--jet_probe

Syntax --jet_probe=[ijet|cmsisdap]

Parameters

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description Use this option to specify the C-SPY I-jet driver as the interface to a debug system.

Project>Options>Debugger>Driver

--jet_script_file

Syntax --jet_script_file=path

Parameters

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description Use this option to specify the file that describes the available scripted reset strategies, if
any.

ijet Specifies the C-SPY I-jet driver as the interface to an I-jet or
I-jet Trace probe.

cmsisdap Specifies the C-SPY I-jet driver as the interface to a
CMSIS-DAP system.

path The path to the file where the scripted reset strategies are
described.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

553

See also --reset_style, page 566 and --jet_standard_reset, page 553.

To set this option, use Project>Options>Debugger>Extra Options.

--jet_standard_reset

Syntax --jet_standard_reset=strategy,duration,delay

Parameters
strategy The reset strategy. Choose between:

0, reset disabled

1, software reset

2, hardware reset

3, core reset

4, system reset.

The following reset strategies are available, if present in the
file specified by --jet_script_file and defined by
corresponding instances of --reset_style:

5, custom reset

6, reset by watchdog or reset register

7, reset and halt after bootloader

8, reset and halt before bootloader

9, connect during reset

duration The time in milliseconds that the hardware reset asserts the
reset signal (line nSRST/nRESET) low to reset the device.

Some devices might require a longer reset signal than the
default 200 ms.

This parameter applies to the hardware reset, and to those
custom reset strategies that use the hardware reset.

AFE1_AFE2-1:1

554

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

Description Use this option to select the reset strategy to be used when the debugger starts. Note that
Cortex-M uses a different set of strategies than other devices.

See also --reset_style, page 566 and --jet_script_file, page 552.

Project>Options>Debugger>CMSIS DAP>Setup>Reset

Project>Options>Debugger>I-jet>Setup>Reset

--jet_startup_connection_timeout

Syntax --jet_startup_connection_timeout=milliseconds

Parameters

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description Use this option to prolong the time that the C-SPY driver tries to connect to the target
board.

To set this option, use Project>Options>Debugger>Extra Options.

delay The delay time, in milliseconds, after the reset signal has
been de-asserted, before the debugger attempts to control the
processor.

The processor might be kept internally in reset for some time
after the external reset signal has been de-asserted, and thus
inaccessible for the debugger.

This parameter applies to the Hardware reset, and to those
custom reset strategies that use the Hardware reset.

milliseconds The time in milliseconds.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

555

--jet_swo_on_d0

Syntax --jet_swo_on_d0

For use with The C-SPY I-jet driver.

Description Use this option to specify that SWO trace data is output on the trace data pin D0. When
using this option, both the SWD and the JTAG interface can handle SWO trace data.

Project>Options>Debugger>I-jet>Trace>SWO on the TraceD0 pin

--jet_swo_prescaler

Syntax --jet_swo_prescaler=number

Parameters

For use with The C-SPY I-jet driver.

Description Use this option to specify the prescaler for the SWO clock. The CPU clock frequency is
divided by the number specified as the prescaler. If data packets are lost during
transmission, try using a higher prescaler value.

If this option is not specified, a prescaler value is set automatically. This automatically
set value is the highest possible frequency that the debug probe can handle.

Project>Options>Debugger>I-jet>Trace>SWO prescaler

--jet_swo_protocol

Syntax --jet_swo_protocol={auto|Manchester|UART}

Parameters

number The prescaler value, 1–100, which in turn determines the
CPU clock frequency.

auto Automatically selects the communication protocol.

Manchester Specifies the Manchester protocol.

UART Specifies the UART protocol.

AFE1_AFE2-1:1

556

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

For use with The C-SPY I-jet driver.

Description Use this option to specify the communication protocol for the SWO channel. If this
option is not specified, auto is automatically used.

Project>Options>Debugger>I-jet>Trace>SWO protocol

--jet_tap_position

Syntax --jet_tap_position=tap_number|multidrop_id

Parameters

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description If you are using the JTAG interface, and there is more than one device on the JTAG scan
chain, use this option to select a specific device. If you are using the SWD interface, and
there is a multi-drop SWD system on the board, use this option to select a target ID.

See also I-jet — Interface, page 605.

Project>Options>Debugger>I-jet>Interface>Explicit probe configuration>Target
number (TAP or Multidrop ID)

--jlink_dcc_timeout

Syntax --jlink_dcc_timeout=milliseconds

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to specify a timeout for a pending request from C-SPY to the DCC agent
on target.

tap_number The TAP position of the device you want to connect to.

multidrop_id The target ID in a multi-drop system.

milliseconds The timeout in milliseconds. The valid range is 5-5000. The
default value is 100 milliseconds.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

557

To set this option, use Project>Options>Debugger>Extra Options.

--jlink_device_select

Syntax --jlink_device_select=tap_number

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description If there is more than one device on the JTAG scan chain, use this option to select a
specific device.

See also I-jet — Interface, page 605.

Project>Options>Debugger>J-Link/J-Trace>Connection>JTAG scan chain>TAP
number

--jlink_exec_command

Syntax --jlink_exec_commmand=cmdstr1; cmdstr2; cmdstr3 ...

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to make the debugger call the __jlinkExecCommand macro with one
or several command strings, after target connection has been established.

See also __jlinkExecCommand, page 466.

To set this option, use Project>Options>Debugger>Extra Options.

tap_number The TAP position of the device you want to connect to.

cmdstrn J-Link/J-Trace command string.

AFE1_AFE2-1:1

558

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--jlink_initial_speed

Syntax --jlink_initial_speed=speed

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to set the initial JTAG communication speed in kHz.

See also J-Link/J-Trace — Setup, page 611.

Project>Options>Debugger>J-Link/J-Trace>Setup>JTAG speed>Fixed

--jlink_ir_length

Syntax --jlink_ir_length=length

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to set the number of IR bits preceding the Arm core to connect to.

See also J-Link/J-Trace — Connection, page 615.

Project>Options>Debugger>J-Link/J-Trace>Connection>JTAG scan
chain>Preceding bits

speed The initial communication speed in kHz. If no speed is
specified, 32 kHz will be used as the initial speed.

length The number of IR bits preceding the Arm core to connect to,
for JTAG scan chains that mix Arm devices with other
devices.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

559

--jlink_reset_strategy

Syntax --jlink_reset_strategy=delay,strategy

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to select the reset strategy to be used at debugger startup.

See also J-Link/J-Trace — Setup, page 611.

Project>Options>Debugger>J-Link/J-Trace>Setup>Reset

--jlink_script_file

Syntax --jlink_script_file=filename

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to specify the J-Link script file to be used.

J-Link has a script language that can be used for setting up hardware. For certain targets,
ready-made script files are automatically pointed out by IAR Embedded Workbench. In
command line mode, the script file needs to be manually specified by using this option.

See also The J-Link/J-Trace User Guide (JLinkARM.pdf, document number UM08001), for a
detailed description of the script language.

To set this option using a non-predefined script file, use
Project>Options>Debugger>Extra Options.

delay For Cortex-M and Arm 7/9/11 with strategies 1-9, delay
should be 0 (ignored). For Arm 7/9/11 with strategy 0, the
delay should be one of 0–10000.

strategy For information about supported reset strategies, see the
J-Link/J-Trace User Guide.

filename The name of the J-Link script file.

AFE1_AFE2-1:1

560

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--jlink_trace_source

Syntax --jlink_trace_source={ETB|ETM}

Parameters

For use with The C-SPY J-Link/J-Trace driver.

Description Use this option to select either ETB or ETM as the trace source.

Note: This option only applies to J-Trace.

See also J-Link/J-Trace — Setup, page 611.

Project>Options>Debugger>J-Link/J-Trace>Setup>ETM/ETB

--leave_target_running

Syntax --leave_target_running

For use with cspybat.

Any C-SPY hardware debugger driver.

Note: Even if this option is supported by the C-SPY driver you are using, there might
be device-specific limitations.

Description Use this option to make the debugger leave the application running on the target
hardware after the debug session is closed.

Because existing breakpoints might not be automatically removed, consider disabling
all breakpoints before using this option.

C-SPY driver>Leave Target Running

ETB Selects ETB trace.

ETM Selects ETM trace.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

561

--lmiftdi_reset_strategy

Syntax --lmiftdi_reset_strategy=delay,strategy

Parameters

For use with The C-SPY TI-Stellaris driver.

Description Use this option to select the reset strategy to be used at debugger startup.

See also TI Stellaris — Setup, page 625

Project>Options>Debugger>TI Stellaris>Setup>Reset

--macro

Syntax --macro filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The C-SPY macro file to be used (filename extension mac).

For use with cspybat

Description Use this option to specify a C-SPY macro file to be loaded before executing the target
application. This option can be used more than once on the command line.

See also Briefly about using C-SPY macros, page 428.

Project>Options>Debugger>Setup>Setup macros>Use macro file

delay The delay time measured in milliseconds. delay is ignored
and should be 0.

strategy The reset strategy:

0, (Software) Resets the core. This sets PC to the program
entry address and SP to the initial stack pointer value.

1, (System) Resets the core and peripheral units. This sets PC
to the program entry address and SP to the initial stack
pointer value.

AFE1_AFE2-1:1

562

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--macro_param

Syntax --macro_param [param=value]

Note that this option must be placed before the --backend option on the command line.

Parameters param=value

param is a parameter defined using the __param C-SPY macro construction.
value is a value.

For use with cspybat

Description Use this option to assign a value to a C-SPY macro parameter. This option can be used
more than once on the command line.

See also Macro parameters, page 435.

To set this option, use Project>Options>Debugger>Extra Options

--mapu

Syntax --mapu

For use with The C-SPY simulator driver. (Not available for all cores and devices.)

Description Specify this option to use the section information in the debug file for memory access
checking. During the execution, the simulator will then check for accesses to
unspecified memory ranges. If any such access is found, the C function call stack and a
message will be printed on stderr and the execution will stop.

See also Monitoring memory and registers, page 167.

To set related options, choose:

Simulator>Memory Access Setup

--mspfet_erase_flash

Syntax --mspfet_erase_flash=main|main_info|main_info_ip

Parameters
main Erases the main flash memory

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

563

For use with The C-SPY TI MSP-FET driver.

Description Use this option to specify which flash memories to erase before download.

Project>Options>Debugger>TI MSP-FET>Download>Flash erase

--mspfet_interface_speed

Syntax --mspfet_interface_speed=fast|medium|slow

Parameters

For use with The C-SPY TI MSP-FET driver.

Description Use this option to set the interface communication speed.

Project>Options>Debugger>TI MSP-FET>Setup>Interface speed

--mspfet_reset_strategy

Syntax --mspfet_reset_strategy=delay,strategy

Parameters

For use with The C-SPY TI MSP-FET driver.

Description Use this option to select the reset strategy to use at debugger startup.

main_info Erases both flash memories—main and Information
memory.

main_info_ip Erases the main and Information flash memories,
including the IP protected area.

fast The fast interface speed.

medium The medium interface speed.

slow The slow interface speed.

delay The delay time in milliseconds.

strategy The reset strategy, where 0 is Normal.

AFE1_AFE2-1:1

564

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Project>Options>Debugger>TI MSP-FET>Setup>Reset

--mspfet_settlingtime

Syntax --mspfet_settlingtime=delay

Parameters

For use with The C-SPY TI MSP-FET driver.

Description Use this option to specify a delay that will be used between switching on the target VCC
and starting the identification of the Arm device.

Project>Options>Debugger>TI MSP-FET>Setup>Target VCC>Settling time

--mspfet_vccvoltage

Syntax -mspfet_vccvoltage=voltage

Parameters

For use with The C-SPY TI MSP-FET driver.

Description Use this option to specify the target VCC voltage.

Project>Options>Debugger>TI MSP-FET>Setup>Target VCC>Target VCC

--multicore_nr_of_cores

Syntax --multicore_nr_of_cores=cores

Parameters cores

The number of cores on your device. This must be an integer from 2–8.

For use with The C-SPY simulator driver. (Not available for all cores and devices.)

delay The delay in milliseconds.

voltage The target VCC voltage in mV.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

565

Description For symmetric multicore debugging, specify the number of cores on your device. This
option is not needed for debugging a single-core system, or for asymmetric multicore
debugging.

See also Multicore debugging, page 391.

Project>Options>Debugger>Multicore>Number of cores

-p

Syntax -p filename

Parameters filename

The device description file to be used.

For use with All C-SPY drivers.

Description Use this option to specify the device description file to be used.

See also Selecting a device description file, page 57.

Project>Options>Debugger>Setup>Device description file

--plugin

Syntax --plugin filename

Note that this option must be placed before the --backend option on the command line.

Parameters filename

The plugin file to be used (filename extension dll).

For use with cspybat

Description Certain C/C++ standard library functions, for example printf, can be supported by
C-SPY—for example, the C-SPY Terminal I/O window—instead of by real hardware
devices. To enable such support in cspybat, a dedicated plugin module called
armlibsupportbat.dll located in the arm\bin directory must be used.

Use this option to include this plugin during the debug session. This option can be used
more than once on the command line.

AFE1_AFE2-1:1

566

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Note: You can use this option to also include other plugin modules, but in that case the
module must be able to work with cspybat specifically. This means that the C-SPY
plugin modules located in the common\plugin directory cannot normally be used with
cspybat.

Project>Options>Debugger>Plugins

--proc_stack_stack

Syntax --proc_stack_stack=startaddress,endaddress

where stack is:

● one of main or proc for Cortex-M, and
● one of usr, svc, irq, fiq, und, or abt for other Arm cores

Parameters

For use with All C-SPY drivers. Note that this command line option is only available when using
C-SPY from the IDE—not in batch mode using cspybat.

Description Use this option to provide C-SPY with information about reserved stacks. By default,
C-SPY receives this information from the system startup code, but if you for some
reason want to override the default values, this option can be useful.

Example --proc_stack_irq=0x8000,0x80FF

To set this option, use Project>Options>Debugger>Extra Options.

--reset_style

Syntax --reset_style="reset_id,reset_name,selected,menu_command"

Parameters

startaddress The start address of the stack, specified either as a value or
as an expression.

endaddress The end address of the stack, specified either as a value or as
an expression.

reset_id The number of the reset strategy, 0-9, as described for
--jet_standard_reset

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

567

For use with The C-SPY I-jet driver.

The C-SPY CMSIS-DAP driver.

Description Use this option to specify the reset strategies that will be available when debugging,
once for each reset strategy.

Example This example specifies a script file, sets the standard reset strategy, and specifies the
reset strategies that will be available when debugging:

--jet_script_file=myDir\myProbeScriptFile
--jet_standard_reset=9,0,0
--reset_style="0,-,0,Disabled (no reset)"
--reset_style="1,-,0,Software"
--reset_style="2,-,0,Hardware"
--reset_style="3,-,0,Core"
--reset_style="4,-,0,System"
--reset_style="5,Custom,0,Custom reset"
--reset_style="9,ConnectUnderReset,1,Connect during reset"

See also --jet_script_file, page 552 and --jet_standard_reset, page 553

To set this option, use Project>Options>Debugger>Extra Options.

reset_name The name of the reset strategy, according to the file specified by
--jet_script_file.

For the built-in reset strategies, this parameter is -. To override
a built-in reset strategy, enter the label or function name in your
reset script file.

selected 0 or 1, where 1 sets the default reset strategy for the Reset
drop-down menu

menu_command The name of the reset strategy as it will be displayed on the
Reset drop-down menu.

AFE1_AFE2-1:1

568

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--sdm_debug_architecture

Syntax --sdm_debug_architecture=interface

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option to specify the debug architecture used for SDM debug authentication.

See also Debug authentication, page 63.

To set this option, use Project>Options>Debugger>Extra Options.

--sdm_library

Syntax --sdm_library=path

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option to specify the path to the library file (.dll) used for SDM debug
authentication.

Note: This option cannot be used together with the option --sdm_manifest.

See also Debug authentication, page 63 and --sdm_manifest, page 569.

interface The SDM debug architecture used for SDM debug
authentication. Choose between:

adi_v5 — Arm Debug Interface V5 (default)
adi_v6 — Arm Debug Interface V6
nexus — the Nexus (IEEE-ISTO 5001-2003) standard

debug interface

path The path to the SDM library file (.dll).

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

569

Project>Options>Debugger>Authentication>Library file.

--sdm_library_hint

Syntax --sdm_library_hint=ID

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option if the SDM library does not use the standard SDM API. In that case, IAR
Embedded Workbench must handle the authentication in a special way. For the
STM32H5 device family and the corresponding library, the identifier is st_sdm.

In the IDE, the implementation-specific identifier is fetched from the device selection
file (.i79).

See also Debug authentication, page 63.

This option is not available in the IDE.

--sdm_manifest

Syntax --sdm_manifest=path

Parameters

For use with The C-SPY CMSIS-DAP driver.

The C-SPY I-jet driver.

The C-SPY ST-LINK driver.

Description Use this option to specify the path to the manifest file (.xml) that points out the library
file used for SDM debug authentication.

ID An implementation-specific identifier.

path The path to the SDM manifest file (.xml).

AFE1_AFE2-1:1

570

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

Note: This option cannot be used together with the option --sdm_library.

See also Debug authentication, page 63 and --sdm_library, page 568.

Project>Options>Debugger>Authentication>Manifest file.

--semihosting

Syntax --semihosting={none|iar_breakpoint}

Parameters

For use with All C-SPY drivers.

Description Use this option to enable semihosted I/O and to choose the kind of semihosting interface
to use.

Note that if this option is not used, semihosting will by default be enabled and C-SPY
will try to choose the correct semihosting mode automatically. This means that normally
you do not have to use this option if your application is linked with semihosting.

To make semihosting work, your application must be linked with a semihosting library.

* If no parameter is specified, the behavior is as described in the chapter The DLIB
runtime environment in the IAR C/C++ Development Guide for Arm.

See also For information about linking with semihosting, see the IAR C/C++ Development
Guide for Arm.

Project>Options>General Options>Library Configuration

--silent

Syntax --silent

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

No parameter Use standard semihosting*.

none Does not use semihosted I/O.

iar_breakpoint Uses the IAR proprietary semihosting variant.

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

571

Description Use this option to omit the sign-on message.

This option is not available in the IDE.

--sockets

Syntax --sockets

Note that this option must be placed before the --backend option on the command line.

For use with cspybat

Description Use this option to make the debugger use sockets instead of pipes for its internal
communication. This can make the debugger work better when you run several cspybat
instances in parallel on the same host computer.

This option is not available in the IDE.

--stlink_reset_strategy

Syntax --stlink_reset_strategy=delay,strategy

Parameters
delay The delay time measured in milliseconds. delay is ignored

and should be 0.

strategy The reset strategy:

0, (System) performs the standard reset procedure. Only
available for debugging Cortex-M devices.

1, (Hardware) uses the reset pin to perform a hardware reset.
Only available for ST-LINK version 2.

2, (Connect during reset) ST-LINK connects to the target
while keeping Reset active (Reset is pulled low and remains
low while connecting to the target). Only available for
ST-LINK version 2 and when debugging Cortex-M devices.

3, (Core) resets the core via the VECTRESET (Cortex-M) or
CWRR (Cortex-A) bit—the peripheral units are not affected.

4, (Software) Sets the PC to program entry address and SP to
the initial stack pointer value.

AFE1_AFE2-1:1

572

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

For use with The C-SPY ST-LINK driver.

Description Use this option to select the reset strategy to be used at debugger startup.

See also ST-LINK — Setup, page 618

Project>Options>Debugger>ST-LINK>Setup>Reset

--suppress_entrypoint_warning

Syntax --suppress_entrypoint_warning

For use with cspybat

Description Use this option to disable the warning in the debug log when a debug session starts with
the ELF entry point at address 0x0 (which according to the ELF standard means that
there is no entry point). In practice, there is no problem with having the entry point at
address 0x0.

To set this option, use Project>Options>Debugger>Extra Options

--timeout

Syntax --timeout milliseconds

Note that this option must be placed before the --backend option on the command line.

Parameters milliseconds

The number of milliseconds before the execution stops.

For use with cspybat

Description Use this option to limit the maximum allowed execution time.

This option is not available in the IDE.

--xds_board_file

Syntax --xds_board_file=dat_file

AFE1_AFE2-1:1

The C-SPY command line utility—cspybat

573

Parameters

For use with The C-SPY TI XDS driver.

Description Use this option to override the default board file by specifying a custom board file.

Project>Options>Debugger>TI XDS>Setup>Emulator>Specify custom board file

Project>Options>Debugger>TI XDS>Setup>Emulator>Board file

--xds_reset_strategy

Syntax --xds_reset_strategy=delay,strategy

Parameters

For use with The C-SPY TI XDS driver.

Description Use this option to select the reset strategy to be used at debugger startup.

See also TI XDS — Setup, page 627

Project>Options>Debugger>TI XDS>Setup>Reset

dat_file The (path and) filename of the board file.

delay The delay time measured in milliseconds.

strategy The reset strategy.

For Cortex-M devices:

0, CPU reset

1, System Reset

 2, Board reset. Only available for CC26xx and CC13xx
devices.

 3, Board reset, run and halt with delay. Available for all other
Cortex-M devices.

For other devices (not Cortex-M):

0, Software reset

1, Hardware reset

AFE1_AFE2-1:1

574

Reference information on C-SPY command line options

C-SPY® Debugging Guide
for Arm

--xds_rootdir

Syntax --xds_rootdir=path

For use with The C-SPY TI XDS driver.

Description Use this option to specify the path to the directory where the TI XDS driver package is
installed. If you installed the package in an alternative location, you can use the global
argument variable XDS_EMUPACK_DIR to set a new default value.

To set this option, use Project>Options>Debugger>TI XDS>Setup>TI emulation
package installation path.

AFE1_AFE2-1:1

575

Flash loaders
● Introduction to the flash loader

● Using flash loaders

● Reference information on the flash loader

Introduction to the flash loader
A flash loader is an agent that is downloaded to the target. It fetches your application
from the debugger and programs it into flash memory. The flash loader uses the file I/O
mechanism to read the application program from the host. You can select one or several
flash loaders, where each flash loader loads a selected part of your application. This
means that you can use different flash loaders for loading different parts of your
application.

Flash loaders for various microcontrollers are provided with IAR Embedded Workbench
for Arm. In addition to these, more flash loaders are provided by chip manufacturers and
third-party vendors. The flash loader API, documentation, and several implementation
examples are available to make it possible for you to implement your own flash loader.

Using flash loaders
These tasks are covered:

● Setting up the flash loader(s)

● The flash loading mechanism

● Aborting a flash loader

SETTING UP THE FLASH LOADER(S)

To use a flash loader for downloading your application:
1 Choose Project>Options.

2 Choose the Debugger category and click the Download tab.

3 Select the Use Flash loader(s) option. A default flash loader configured for the device
you have specified will be used. The configuration is specified in a preconfigured
board file.

AFE1_AFE2-1:1

576

Using flash loaders

C-SPY® Debugging Guide
for Arm

4 To override the default flash loader or to modify the behavior of the default flash loader
to suit your board, select the Override default .board file option, and Edit to open the
Flash Loader Configuration dialog box. A copy of the *.board file will be created
in your project directory and the path to the *.board file will be updated accordingly.

5 The Flash Loader Overview dialog box lists all currently configured flash loaders, see
Flash Loader Overview dialog box, page 577. You can either select a flash loader or
open the Flash Loader Configuration dialog box.

In the Flash Loader Configuration dialog box, you can configure the download. For
information about the various flash loader options, see Flash Loader Configuration
dialog box, page 579.

THE FLASH LOADING MECHANISM

When the Use flash loader(s) option is selected and one or several flash loaders have
been configured, these steps are performed when the debug session starts.

Steps 1 to 4 are performed for each flash loader in the flash loader configuration.

1 C-SPY downloads the flash loader into target RAM.

Steps 2 to 4 are performed one or more times depending on the size of the RAM and the
size of the application image.

2 C-SPY writes code/data from the application image into target RAM (RAM buffer).

3 C-SPY starts execution of the flash loader.

4 The flash loader reads data from the RAM buffer and programs the flash memory.

5 The application image now resides in flash memory and can be started. The flash
loader and the RAM buffer are no longer needed, so RAM is fully available to the
application in the flash memory.

ABORTING A FLASH LOADER

To abort a flash loader:
1 Press Ctrl+Shift+. (period) for a short while.

2 A message that says that the flash loader has aborted is displayed in the Debug Log
window.

This method can be used if you suspect that something is wrong with the execution, for
example because it seems not to terminate in a reasonable time.

AFE1_AFE2-1:1

Flash loaders

577

Reference information on the flash loader
Reference information about:

● Flash Loader Overview dialog box, page 577

● Flash Loader Configuration dialog box, page 579

Flash Loader Overview dialog box
The Flash Loader Overview dialog box is available from the
Project>Options>Debugger>Download page.

This dialog box lists all defined flash loaders. If you have selected a device on the
Project>Options>General Options>Target page for which there is a flash loader, this
flash loader is by default listed in the Flash Loader Overview dialog box.

Requirements

Available for supported hardware debugger systems.

Display area

Each row in the display area shows how you have set up one flash loader for flashing a
specific part of memory:

Range
The part of your application to be programmed by the selected flash loader.

Offset/Address
The start of the memory where your application will be flashed. If the address
is preceded by an A, the address is absolute. Otherwise, it is a relative offset to
the start of the memory.

AFE1_AFE2-1:1

578

Reference information on the flash loader

C-SPY® Debugging Guide
for Arm

Loader Path
The path to the flash loader *.flash file to be used (*.out for old-style flash
loaders).

Loader Relocation
For relocatable flash loaders, this is the start of the target RAM memory where
the flash loader will be downloaded.

Extra Parameters
List of extra parameters that will be passed to the flash loader.

Click on the column headers to sort the list by range, offset/address, etc.

Function buttons

These function buttons are available:

OK
The selected flash loader(s) will be used for downloading your application to
memory.

Cancel
Standard cancel.

New
Displays a dialog box where you can specify what flash loader to use, see Flash
Loader Configuration dialog box, page 579.

Edit
Displays a dialog box where you can modify the settings for the selected flash
loader, see Flash Loader Configuration dialog box, page 579.

Delete
Deletes the selected flash loader configuration.

AFE1_AFE2-1:1

Flash loaders

579

Flash Loader Configuration dialog box
The Flash Loader Configuration dialog box is available from the Flash Loader
Overview dialog box.

Use the Flash Loader Configuration dialog box to configure the download to suit your
board. A copy of the default board file will be created in your project directory.

Requirements

Available for supported hardware debugger systems.

Memory range

Specify the part of your application to be downloaded to flash memory. Choose
between:

All
The whole application is downloaded using this flash loader.

Start/End
Specify the start and the end of the memory area for which part of the
application will be downloaded.

Relocate

Overrides the default flash base address, in other words, relocates the location of the
application in memory. This means that you can flash your application to a different
location from where it was linked. Choose between:

AFE1_AFE2-1:1

580

Reference information on the flash loader

C-SPY® Debugging Guide
for Arm

Offset
A numeric value for a relative offset. This offset will be added to the addresses
in the application file.

Absolute address
A numeric value for an absolute base address where the application will be
flashed. The lowest address in the application will be placed on this address.
Note that you can only use one flash loader for your application when you
specify an absolute address.

You can use these numeric formats:

● 123456, decimal numbers

● 0x123456, hexadecimal numbers

● 0123456, octal numbers

The default base address used for writing the first byte—the lowest address—to flash is
specified in the linker configuration file used for your application. However, it can
sometimes be necessary to override the flash base address and start at a different location
in the address space. This can, for example, be necessary for devices that remap the
location of the flash memory.

Flash loader path

Use the text box to specify the path to the flash loader file (*.flash) to be used by your
board configuration.

RAM load address

If the flash loader is relocatable, this option overrides the default address in the target
RAM memory that flash loader is downloaded to, in other words, relocates the flash
loader. Use the text box to specify the address.

Extra parameters

Some flash loaders define their own set of specific options. Use this text box to specify
options to control the flash loader. For information about available flash loader options,
see the Parameter descriptions field.

Parameter descriptions

Displays a description of the extra parameters specified in the Extra parameters text
box.

581

Part 4. Additional
reference information
This part of the C-SPY® Debugging Guide for Arm includes these chapters:

● Debugger options

● Additional information on C-SPY drivers

582

AFE1_AFE2-1:1

583

Debugger options
● Setting debugger options

● Reference information on general debugger options

● Reference information on C-SPY hardware debugger driver options

Setting debugger options
Before you start the C-SPY debugger you might need to set some options—both C-SPY
generic options and options required for the target system (C-SPY driver-specific
options).

To set debugger options in the IDE:
1 Choose Project>Options to display the Options dialog box.

2 Select Debugger in the Category list.

For more information about the generic options, see Reference information on general
debugger options, page 584.

3 On the Setup page, make sure to select the appropriate C-SPY driver from the Driver
drop-down list.

4 To set the driver-specific options, select the appropriate driver from the Category list.
Depending on which C-SPY driver you are using, different options are available.

C-SPY driver Available options pages

C-SPY CADI driver CADI — Setup, page 594

C-SPY CMSIS-DAP driver CMSIS-DAP — Setup, page 595
CMSIS-DAP — Interface, page 598
Breakpoints options, page 154

C-SPY E2 driver E2 — Setup, page 600

C-SPY GDB Server driver GDB Server, page 601
Breakpoints options, page 154

C-SPY G+LINK driver G+LINK — Setup, page 601

Table 53: Options specific to the C-SPY drivers you are using

AFE1_AFE2-1:1

584

Reference information on general debugger options

C-SPY® Debugging Guide
for Arm

5 To restore all settings to the default factory settings, click the Factory Settings button.

6 When you have set all the required options, click OK in the Options dialog box.

Reference information on general debugger options
Reference information about:

● Setup, page 585

● Download, page 586

● Images, page 587

● Multicore, page 588

● Authentication, page 590

● Extra Options, page 591

● Plugins, page 592

C-SPY I-jet driver I-jet — Setup, page 602
I-jet — Interface, page 605
I-jet — Trace, page 607
Breakpoints options, page 154

C-SPY J-Link/J-Trace driver J-Link/J-Trace — Setup, page 611
J-Link/J-Trace — Connection, page 615
Breakpoints options, page 154

C-SPY Nu-Link driver Nu-Link — Setup, page 617

C-SPY PE micro driver PE micro — Setup, page 617

C-SPY ST-LINK driver ST-LINK — Setup, page 618
ST-LINK — Communication, page 621
ST-LINK — Multicore, page 622
Breakpoints options, page 154

C-SPY TI MSP-FET driver TI MSP-FET — Setup, page 623
TI MSP-FET — Download, page 624

C-SPY TI Stellaris driver TI Stellaris — Setup, page 625

C-SPY TI XDS driver TI XDS — Setup, page 627
TI XDS — Communication, page 629

Third-party driver Third-Party Driver options, page 630.

C-SPY driver Available options pages

Table 53: Options specific to the C-SPY drivers you are using (Continued)

AFE1_AFE2-1:1

Debugger options

585

Setup
The general Setup options select the C-SPY driver, the setup macro file, and device
description file to use, and specify which default source code location to run to.

Driver

Selects the C-SPY driver for the target system you have.

Run to

Specifies the location C-SPY runs to when the debugger starts after a reset. By default,
C-SPY runs to the main function.

To override the default location, specify the name of a different location you want
C-SPY to run to. You can specify assembler labels or whatever can be evaluated as such,
for example function names.

If the option is deselected, the program counter will contain the regular hardware reset
address at each reset.

See also Executing from reset, page 56.

Setup macros

Registers the contents of a setup macro file in the C-SPY startup sequence. Select Use
macro file and specify the path and name of the setup file, for example
SetupSimple.mac. If no extension is specified, the extension mac is assumed. A
browse button is available.

It is possible to specify up to two different macro files.

Device description file

A default device description file—either an IAR-specific ddf file or a CMSIS System
View Description file—is selected automatically based on your project settings. To

AFE1_AFE2-1:1

586

Reference information on general debugger options

C-SPY® Debugging Guide
for Arm

override the default file, select Override default and specify an alternative file. A
browse button is available.

For information about the device description file, see Modifying a device description
file, page 61.

IAR-specific device description files for each Arm device are provided in the directory
arm\config and have the filename extension ddf.

Download
By default, C-SPY downloads the application to RAM or flash when a debug session
starts. The Download options let you modify the behavior of the download.

Verify download

Verifies that the downloaded code image can be read back from target memory with the
correct contents.

Suppress download

Disables the downloading of code, while preserving the present content of the flash.
This command is useful if you want to debug an application that already resides in target
memory.

If this option is combined with the Verify download option, the debugger will read back
the code image from non-volatile memory and verify that it is identical to the debugged
application.

Use flash loader(s)

Use this option to use one or several flash loaders for downloading your application to
flash memory. If a flash loader is available for the selected chip, it is used by default.
Press the Edit button to display the Flash Loader Overview dialog box.

AFE1_AFE2-1:1

Debugger options

587

See Flash loaders, page 575.

Override default .board file

A default flash loader is selected based on your choice of device on the General
Options>Target page. To override the default flash loader, select Override default
.board file and specify the path to the flash loader you want to use. A browse button is
available. Click Edit to display the Flash Loader Overview dialog box, see Flash
Loader Overview dialog box, page 577.

Perform mass erase before flashing

Use this option to perform a mass erase on your device. Mass erase uses an on-chip
algorithm that is more efficient than erasing using the flash loader.

Note: This option is only available if your flash loader supports mass erase.

Images
The Images options control the use of additional debug files to be downloaded.

Download extra Images

Controls the use of additional debug files to be downloaded:

Path
Specify the debug file to be downloaded. A browse button is available.

Offset
Specify an integer that determines the destination address for the downloaded
debug file.

AFE1_AFE2-1:1

588

Reference information on general debugger options

C-SPY® Debugging Guide
for Arm

Debug info only
Makes the debugger download only debug information, and not the complete
debug file.

If you want to download more than three debug images, use the related C-SPY macro,
see __loadImage, page 472.

For more information, see Loading multiple debug images, page 59.

Multicore
The Multicore options configure multicore debugging.

Number of cores

For symmetric multicore debugging, specify the number of cores on your device. For
asymmetric multicore debugging, specify the number of cores in the master project.
(Normally, this will be 1.)

Disabled

Selecting this option makes the debug session symmetric multicore.

Simple

Selecting this option makes the debug session an asymmetric multicore debugger
master. When you start a debug session, a new instance of the IAR Embedded
Workbench IDE will be started, using the following options:

Partner workspace
Specify the workspace to be opened in the partner (slave) instance.

AFE1_AFE2-1:1

Debugger options

589

Partner project
Specify the name of the project in the workspace to be opened in the partner
instance. For example, if the project filename is MyPartnerProj.ewp, specify
MyPartnerProj.

Partner configuration
Specify the build configuration to be used when debugging the partner. For
example, Debug or Release.

Attach partner to running target
If you have selected the command Attach to Running Target from the Project
menu, which affects the master. You can also select Attach partner to running
target to also make the debugger attach the partner to the running application at
its current location, without resetting the target system.

For information about Attach to Running Target, see the IDE Project
Management and Building Guide for Arm.

Partner cores
Specify the number of cores in the partner project.

Override partner debugger location
If the Embedded Workbench instance associated with the partner project is not
installed in the same location as the Embedded Workbench instance associated
with the master project, for example in c:\Program Files\IAR
Systems\Embedded Workbench N.n., you must specify the installation
directory of the Embedded Workbench for the partner project. Note that the
Embedded Workbench must be based on version 9.1.7 or later of the shared
components—to check this, choose Help>About>Product Info.

Advanced

Selecting this option makes the debug session asymmetric multicore with one or more
new instances of the IAR Embedded Workbench IDE.

Session configuration
Use the browse button to specify the XML multicore session file that contains
the settings for the debug session. For more information about this file, see The
multicore session file, page 399.

AFE1_AFE2-1:1

590

Reference information on general debugger options

C-SPY® Debugging Guide
for Arm

Authentication
The Authentication options configure debug authentication.

Debug authentication reduces the risk that an attacker uses debug capabilities to
compromise the target system. IAR Embedded Workbench supports debug
authentication using the open-source Secure Debug Manager (SDM) mechanism.

For more information, see Debug authentication, page 63.

Enable debug authentication

Enables/disables the debug authentication mechanism. If authentication is enabled, it is
performed when the debug session starts. The authentication is revoked by a target reset.
The type of reset that revokes the authentication is hardware-specific.

Secure Debug Manager

Use one of these options to specify the authentication library file that corresponds to
your target device. This library is needed for the SDM debug authentication. Choose
between:

Manifest file
Specify the location of a manifest file (.xml) that points out the actual library
file.

Library file
Specify explicitly the path to the library file (.dll) used for SDM debug
authentication.

AFE1_AFE2-1:1

Debugger options

591

Apply authentication if status cannot be determined

Use this option if, for some reason, the detection mechanism fails and you want to force
using the authentication procedure. This could be the case if you are using a device that
is not explicitly supported yet by IAR Embedded Workbench.

Extra Options
The Extra Options page provides you with a command line interface to C-SPY.

Use command line options

Specify command line arguments that are not supported by the IDE to be passed to
C-SPY.

Note that it is possible to use the /args option to pass command line arguments to the
debugged application.

The syntax is:

/args arg0 arg1 ...

Multiple lines with /args are allowed, for example:

/args --logfile log.txt

/args --verbose

AFE1_AFE2-1:1

592

Reference information on general debugger options

C-SPY® Debugging Guide
for Arm

If you use /args, these variables must be defined in your application:

/* __argc, the number of arguments in __argv. */
__no_init __root int __argc;

/* __argv, an array of pointers to strings that holds the
arguments; must be large enough to fit the number of
parameters.*/
__no_init __root const char * __argv[MAX_ARGS];

/* __argvbuf, a storage area for __argv; must be large enough to
hold all command line parameters. */
__no_init __root char __argvbuf[MAX_ARG_SIZE];

Plugins
The Plugins options select the C-SPY plugin modules to be loaded and made available
during debug sessions.

Select plugins to load

Selects the plugin modules to be loaded and made available during debug sessions. The
list contains the plugin modules delivered with the product installation.

Description

Describes the plugin module.

Location

Informs about the location of the plugin module.

Generic plugin modules are stored in the common\plugins directory. Target-specific
plugin modules are stored in the arm\plugins directory.

AFE1_AFE2-1:1

Debugger options

593

Originator

Informs about the originator of the plugin module, which can be modules provided by
IAR or by third-party vendors.

Version

Informs about the version number.

Reference information on C-SPY hardware debugger driver options
Reference information about:

● CADI — Setup, page 594

● CMSIS-DAP — Setup, page 595

● CMSIS-DAP — Interface, page 598

● E2 — Setup, page 600

● GDB Server, page 601

● G+LINK — Setup, page 601

● I-jet — Setup, page 602

● I-jet — Interface, page 605

● I-jet — Trace, page 607

● J-Link/J-Trace — Setup, page 611

● J-Link/J-Trace — Connection, page 615

● Nu-Link — Setup, page 617

● PE micro — Setup, page 617

● ST-LINK — Setup, page 618

● ST-LINK — Communication, page 621

● ST-LINK — Multicore, page 622

● TI MSP-FET — Setup, page 623

● TI MSP-FET — Download, page 624

● TI Stellaris — Setup, page 625

● TI XDS — Setup, page 627

● TI XDS — Communication, page 629

● Third-Party Driver options, page 630

For reference information about the Breakpoints options page, see Breakpoints options,
page 154.

AFE1_AFE2-1:1

594

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

CADI — Setup
The Setup options control the C-SPY CADI driver:

Name or PID of server to connect to

To use the C-SPY CADI driver, you must start an Arm Fast model virtual platform with
a CADI server running (using the -S command when starting the Fast model). If
multiple Fast model platforms are running, use this option to specify the name or the
Process ID of the Fast model server to connect to.

Memory

The memory type of the Fast model platform. Choose between Physical and Virtual.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

Debugger options

595

CMSIS-DAP — Setup
The Setup options control the C-SPY CMSIS-DAP driver.

Reset

Selects the reset strategy to be used when the debugger starts. Note that the Reset option
is only applicable for Cortex-M devices. Based on your hardware, one of the strategies
is the default. Choose between:

Disabled (no reset)
No reset is performed.

Software
Sets PC to the program entry address. This is a software reset.

Hardware
The probe toggles the nSRST/nRESET line on the JTAG connector to reset the
device. This reset usually also resets the peripheral units. The reset pulse timing
is controlled by the Duration and Delay after options.

The processor should stop at the reset handler before executing any instruction.
Some processors might not stop at the reset vector, but will be halted soon after,
executing some instructions.

Core
Resets the core via the VECTRESET bit—the peripheral units are not affected.

System
Resets the core and peripherals. This is the default reset strategy.

Connect during reset
CMSIS-DAP connects to the target while keeping Reset active. Reset is pulled
low and remains low while connecting to the target.

AFE1_AFE2-1:1

596

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Custom
Device-specific hardware reset. Some devices might require a special reset
procedure or timing to enable debugging, or to bring the processor to a halt
before it has executed any instruction.

A watchdog timer might be disabled.

Special debug modes, such as debugging in power-saving modes, might be
turned on.

This option is only available for some devices.

Reset by watchdog or reset register
Resets the processor using a software reset register or a watchdog reset.
Peripheral units might not be reset.

This reset strategy is recommended when the processor cannot be stopped at the
reset vector using the hardware reset.

Device-specific software reset. This option is only available for some devices.

Reset and halt after bootloader
Some devices have a ROM bootloader that executes before the processor jumps
to your application code. Use this reset strategy to let the bootloader code
execute and to halt the processor at the entry of the application code.

Depending on the device, this reset strategy is implemented using the hardware,
core, or system reset.

This option is only available for some devices.

Reset and halt before bootloader
This reset strategy is complementary to the Reset and halt after bootloader
strategy. Depending on the device, it is implemented using the hardware, core,
or system reset.

This option is only available for some devices.

All of these strategies are available for both the JTAG and the SWD interface, and all
strategies halt the CPU after the reset.

A software reset of the target does not change the settings of the target system—it only
resets the program counter.

Normally, a C-SPY reset is a software reset only. If you use the Hardware option,
C-SPY will generate an initial hardware reset when the debugger is started. This is
performed once before download, and if the option Use flash loader(s) is selected, also
once after flash download. See Debugging code in flash, page 65, and Debugging code
in RAM, page 66.

AFE1_AFE2-1:1

Debugger options

597

Hardware resets can be a problem if the low-level setup of your application is not
complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset() is suitable. For a similar example where
execUserPreload() is used, see Remapping memory, page 63.

Duration

The time in milliseconds that the hardware reset asserts the reset signal (line
nSRST/nRESET) low to reset the device.

Some devices might require a longer reset signal than the default 200 ms.

This option applies to the hardware reset, and to those custom reset strategies that use
the hardware reset.

Delay after

The delay time, in milliseconds, after the reset signal has been de-asserted, before the
debugger attempts to control the processor.

The processor might be kept internally in reset for some time after the external reset
signal has been de-asserted, and thus inaccessible for the debugger.

This option applies to the hardware reset, and to those custom reset styles that use the
hardware reset.

Emulator

These options are used for identifying the debug probe to use.

Always prompt for probe selection
Makes C-SPY always ask you to confirm which probe to use, if more than one
debug probe is connected to the host computer.

Serial no
Enter the serial number of the debug probe you are using.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

598

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

CMSIS-DAP — Interface
The Interface options specify the interface between CMSIS-DAP and the target system.

Probe config

Auto
The CMSIS-DAP driver automatically identifies the target CPU. It uses the
default probe configuration file, if there is one. This works best if there is only
one CPU present.

From file
Specifies that the probe configuration file needs to be overridden, or that there
are several target CPUs.

Explicit
Specify how to find the target CPU.

Interface

Selects the communication interface between the debug probe and the target system.
Choose between:

JTAG
Uses the JTAG interface.

SWD
Uses the SWD interface.

Interface speed

Specifies the JTAG and SWD communication speed. Choose between:

Auto detect
Automatically uses the highest possible frequency for reliable operation.

AFE1_AFE2-1:1

Debugger options

599

Adaptive
Synchronizes the clock to the processor clock outside the core. Works only with
Arm devices that have the RTCK JTAG signal available.

n MHz
Sets the JTAG and SWD communication speed to the selected frequency.

If there are JTAG communication problems or problems in writing to target
memory (for example during program download), these problems might be
resolved if the speed is set to a lower frequency.

Probe configuration file

Override default
Specify a probe configuration file to be used instead of the default probe
configuration file that comes with the product package.

Select
Specify how to find the target CPU.

Explicit probe configuration

Multi-target debug system
Specifies that the debug system consists of more than one CPU.

Target number (TAP or Multidrop ID)
If the debug system is a multi-drop SWD, specify the Multidrop ID (in
hexadecimal notation) of the DAP where your CPU is located.

If the debug system is a JTAG scan chain, specify the Target number TAP (Test
Access Port) position of the device you want to connect to. The TAP numbers
start from zero. If there are several CPUs at the TAP position, you also need to
specify the CPU number on target.

Target with multiple CPUs
Specifies that the target has several CPUs.

CPU number on target
If the debug system is a multicore SWD, specify the CPU number on the DAP.

If the debug system is a JTAG scan chain and there are several CPUs at the TAP
position, specify the CPU number on the TAP.

AFE1_AFE2-1:1

600

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

E2 — Setup
The Setup options control the E2/E2Lite interface.

Target power

Select From the probe to specify that the supply voltage to your target device will be
supplied by the probe.

Emulator

If more than one debug probe is connected to the host computer, use the Serial no option
to select the correct one.

ID code (hex)

The hexadecimal ID code protects certain devices with an authentication check before
the debug session is started. If an incorrect ID code is entered, a connection error will
occur.

For more information, see the hardware manual for your device.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

Debugger options

601

GDB Server
The GDB Server options control the C-SPY GDB Server for the STR9-comStick
evaluation board.

TCP/IP address or hostname

Specify the IP address and port number of a GDB server—by default the port number
3333 is used. The TCP/IP connection is used for connecting to a J-Link server running
on a remote computer.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

G+LINK — Setup
The Setup options specify the G+LINK interface.

AFE1_AFE2-1:1

602

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

I-jet — Setup
The Setup options control the I-jet and I-jet Trace in-circuit debugging probes.

Reset

Selects the reset strategy to be used when the debugger starts. Note that Cortex-M uses
a different set of strategies than other devices. Based on your hardware, one of the
strategies is the default. Choose between:

Disabled (no reset)
No reset is performed.

Software
Sets PC to the program entry address and SP to the initial stack pointer value.
This is a software reset.

Hardware
The probe toggles the nSRST/nRESET line on the JTAG connector to reset the
device. This reset usually also resets the peripheral units. The reset pulse timing
is controlled by the Duration and Delay after options.

The processor should stop at the reset handler before executing any instruction.
Some processors might not stop at the reset vector, but will be halted soon after,
executing some instructions.

Core
Resets the core via the VECTRESET bit—the peripheral units are not affected.
For Cortex-M devices only.

AFE1_AFE2-1:1

Debugger options

603

System
Resets the core and peripheral units by setting the SYSRESETREQ bit in the
AIRCR register. Reset vector catch is used for stopping the CPU at the reset
vector before the first instruction is executed. For Cortex-M devices only.

Connect during reset
I-jet connects to the target while keeping Reset active. Reset is pulled low and
remains low while connecting to the target. This is the recommended reset
strategy for STM32 devices.

Custom
Device-specific hardware reset. Some devices might require a special reset
procedure or timing to enable debugging, or to bring the processor to a halt
before it has executed any instruction.

A watchdog timer might be disabled.

Special debug modes, such as debugging in power-saving modes, might be
turned on.

This option is only available for some devices.

Reset by watchdog or reset register
Resets the processor using a software reset register or a watchdog reset.
Peripheral units might not be reset.

This reset strategy is recommended when the processor cannot be stopped at the
reset vector using the hardware reset.

Device-specific software reset. This option is only available for some devices.

Reset and halt after bootloader
Some devices have a ROM bootloader that executes before the processor jumps
to your application code. Use this reset strategy to let the bootloader code
execute and to halt the processor at the entry of the application code.

Depending on the device, this reset strategy is implemented using the hardware,
core, or system reset.

This option is only available for some devices.

All of these strategies are available for both the JTAG and the SWD interface, and all
strategies halt the CPU after the reset.

A software reset of the target does not change the settings of the target system—it only
resets the program counter and the mode register CPSR to its reset state. For some
Arm9, Arm11, and Cortex-A devices, it also resets the CP15 system control

AFE1_AFE2-1:1

604

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

coprocessor, effectively disabling the virtual memory (MMU), caches and memory
protection.

Normally, a C-SPY reset is a software reset only. If you use the Hardware option,
C-SPY will generate an initial hardware reset when the debugger is started. This is
performed once before download, and if the option Use flash loader(s) is selected, also
once after flash download. See Debugging code in flash, page 65, and Debugging code
in RAM, page 66.

Hardware resets can be a problem if the low-level setup of your application is not
complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset() is suitable. For a similar example where
execUserPreload() is used, see Remapping memory, page 63.

Duration

The time in milliseconds that the hardware reset asserts the reset signal (line
nSRST/nRESET) low to reset the device.

Some devices might require a longer reset signal than the default 200 ms.

This option applies to the hardware reset, and to those custom reset strategies that use
the hardware reset.

Delay after

The delay time, in milliseconds, after the reset signal has been de-asserted, before the
debugger attempts to control the processor.

The processor might be kept internally in reset for some time after the external reset
signal has been de-asserted, and thus inaccessible for the debugger.

This option applies to the hardware reset, and to those custom reset styles that use the
hardware reset.

Target power

If power for the target system is supplied from the probe, this option specifies the status
of the power supply after debugging. Choose between:

Leave on after debugging
Continues to supply power to the target even after the debug session has been
stopped.

Switch off after debugging
Turns off the power to the target when the debug session stops.

AFE1_AFE2-1:1

Debugger options

605

Emulator

These options are used for identifying the debug probe to use.

Always prompt for probe selection
Makes C-SPY always ask you to confirm which probe to use, if more than one
debug probe is connected to the host computer.

Serial no
Enter the serial number of the debug probe you are using.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

I-jet — Interface
The Interface options specify the interface between I-jet or I-jet Trace and the target
system.

Probe config

Auto
The I-jet driver automatically identifies the target CPU. It uses the default probe
configuration file, if there is one. This works best if there is only one CPU
present.

From file
Specifies that the probe configuration file needs to be overridden, or that there
are several target CPUs.

Explicit
Specify how to find the target CPU.

AFE1_AFE2-1:1

606

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Interface

Selects the communication interface between the debug probe and the target system.
Choose between:

JTAG
Uses the JTAG interface.

SWD
Uses the SWO interface, which uses fewer pins than JTAG. Select SWD if you
want to use the serial-wire output (SWO) communication channel. Note that if
you select stdout/stderr via SWO on the General Options>Library
Configuration page, SWD is selected automatically. For more information
about SWO settings, see SWO Trace Window Settings dialog box, page 223.

cJTAG
Uses the cJTAG interface.

Interface speed

Specifies the JTAG and SWD communication speed. Choose between:

Auto detect
Automatically uses the highest possible frequency for reliable operation.

Adaptive
Synchronizes the clock to the processor clock outside the core. Works only with
Arm devices that have the RTCK JTAG signal available.

n MHz
If there are JTAG communication problems or problems in writing to target
memory (for example during program download), these problems might be
resolved if the speed is set to a lower frequency.

Probe configuration file

Override default
Specify a probe configuration file to be used instead of the default probe
configuration file that comes with the product package.

Select
Specify how to find the target CPU.

Explicit probe configuration

Multi-target debug system
Specifies that the debug system consists of more than one CPU.

AFE1_AFE2-1:1

Debugger options

607

Target number (TAP or Multidrop ID)
If the debug system is a multi-drop SWD, specify the Multidrop ID (in
hexadecimal notation) of the DAP where your CPU is located.

If the debug system is a JTAG scan chain, specify the Target number TAP (Test
Access Port) position of the device you want to connect to. The TAP numbers
start from zero and are counted from the TDO end (TAP number 0 is the one
connected to the TDO line). If there are several CPUs at the TAP position, you
also need to specify the CPU number on target.

Target with multiple CPUs
Specifies that the target has several CPUs.

CPU number on target
If the debug system is a multicore SWD, specify the CPU number on the DAP.

If the debug system is a JTAG scan chain and there are several CPUs at the TAP
position, specify the CPU number on the TAP.

JTAG scan chain contains non-Arm devices
Enables JTAG scan chains that mix Arm devices with other devices like, for
example, FPGA.

Preceding bits
Specify the number of IR bits preceding the Arm core to connect to.

I-jet — Trace
The Trace options specify the trace behavior for I-jet.

AFE1_AFE2-1:1

608

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Mode

Power measurement (either TrgPwr as provided by the probe or via I-scope) does not
depend on a particular trace mode and is always possible (if the probe supports it).

The Debug Log window will include messages about the currently used trace mode. If
a particular mode cannot be used, either due to probe or board/device limitations, trace
will be disabled and a warning message will be displayed in the Debug Log window.
This is how the support of a particular trace mode is checked:

● The probe must support the particular mode.

● The probe must support the particular mode on a specific core. For example, ETM
on Arm9 is not supported by the I-jet Trace probe.

● The specific core must support the particular mode. For example, Cortex-M0 does
not support SWO/ETM/ETB at all and Arm9 does not support SWO.

● The used adapter must support the specified mode. For example, ETM trace is not
possible when the Arm20 adapter is used with I-jet Trace.

● The specific device must support the particular mode. For example, ETM trace is
not possible on a Cortex-M3 without ETM, which cannot be detected until reading
the on-chip TPIU configuration register.

The Mode option specifies the mechanism and interface for trace data collection.
Choose between:

Auto
Automatically selects the best possible mechanism and interface, depending on
probe and board/device capabilities.

The basic modes are tried in probe-dependent order:

● I-jet—first SWO, then ETB (ETM is not supported).

● I-jet Trace—first ETM, then SWO, then ETB.

If none of these modes are available, trace will be disabled (as when None is
selected). In Auto mode, more initial accesses to trace-related on-chip resources
might be made. So, if you are using a specific probe and a specific mode, you
might want to set the mode explicitly which will make C-SPY
initialize/configure trace resources more efficiently.

None
Disables trace. In this mode, C-SPY will not access any trace-related on-chip
resources. You can use this mode when:

● You are experiencing connectivity problems. It might be easier to diagnose
the reason for connectivity problems without the interference from
initialization of trace resources.

AFE1_AFE2-1:1

Debugger options

609

● Trace might change some internal clocking and/or GPIO mux settings and
as a result some applications might not work well with a specific trace
mode.

● You want to exercise low-power modes. Internal on-chip trace logic and
toggling trace pins will require some additional current and it might
interfere with low-power measurements. In extreme cases, enabling clocks
for trace/GPIO might prevent the CPU from actually entering low-power
modes, because some clocks inside the CPU must be kept active.

Serial (SWO)
Collects trace data through the serial (SWO) interface.

Parallel (ETM)
Collects trace data through the parallel (ETM) interface.

On-chip (ETB/MTB)
Collects trace data through the on-chip (ETB/MTB) interface.

Allow ETB

Allows simultaneous on-chip (ETB) trace. This option is only available when Mode is
Serial (SWO).

Buffer limit

Limits probe memory use. This option is only available if parallel (ETM) mode is used,
either explicitly through Parallel (ETM) or implicitly through Auto.

Collected trace data is stored in probe memory.

Because reading and decoding large amounts of trace data takes time, it is possible to
limit what portion of ETM memory will actually be read by C-SPY once trace data
collection is stopped (either because the CPU stopped or because the buffer got full).
Using the Buffer limit option limits the buffer use to a percentage of the total memory
size. Using more probe memory yields more trace data, but will take longer to see results
and use up more host memory. C-SPY will retrieve the most recent samples from the
trace probe, and the rest of the collected trace data will be discarded.

There is no simple correlation between the number of raw ETM samples and the number
of PC samples visible in the ETM Trace window. The ETM protocol itself is highly
compressed, and the probe provides additional compression of ETM idle cycles, so it is
not possible to guess how many instructions can be decoded from a certain number of
raw ETM samples collected by the trace probe. If your application changes PC a lot,
ETM will need to use more samples to send more PC bits and as such, trace data will
not compress well. For a particular application profile, this number is usually constant
(between 0.5 and 2 instructions for a 4-bit sample), so you must use your own judgment

AFE1_AFE2-1:1

610

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

to see what buffer limit that provides a good balance between the size of decoded data
and C-SPY performance.

SWO protocol

Specifies the communication protocol for the SWO channel. Choose between:

Auto
Automatically selects the best possible protocol and speed, depending on the
device you are using.

Manchester
Specifies the Manchester protocol.

UART
Specifies the UART protocol.

CPU clock

Specifies the exact clock frequency used by the internal processor clock, HCLK, in MHz.
The value can have decimals. This value is used for configuring the SWO
communication speed and for calculating timestamps.

SWO prescaler

Specifies the clock prescaler of the SWO communication channel in KHz. The
prescaler, in turn, determines the SWO clock frequency.

Auto automatically uses the highest possible frequency that the I-jet or I-jet Trace debug
probe can handle. Use this setting if data packets are lost during transmission.

To override the SWO clock setup options, use the Override project default option in
the SWO Configuration dialog box, see SWO Configuration dialog box, page 225.

SWO on the TraceD0 pin

Specifies that SWO trace data is output on the trace data D0 pin. When using this option,
both the SWD and the JTAG interface can handle SWO trace data.

Note that both the device and the board you are using must support this pin.

AFE1_AFE2-1:1

Debugger options

611

J-Link/J-Trace — Setup
The Setup options specify the J-Link/J-Trace probe.

Reset

Selects the reset strategy to be used when the debugger starts. Note that Cortex-M uses
a different set of strategies than other devices. The actual reset strategy type number is
specified for each available choice. Choose between:

Normal (0, default)
This is the default strategy. It does whatever is the best way to reset the target
device, which for most devices is the same as the reset strategy Core and
peripherals (8). Some special handling might be needed for certain devices, for
example devices which have a ROM bootloader that needs to run after reset and
before your application is started.

Core (1)
Resets the core via the VECTRESET bit—the peripheral units are not affected.

Core and peripherals (8)
Resets the core and the peripherals.

Reset Pin (2)
J-Link pulls its RESET pin low to reset the core and the peripheral units.
Normally, this causes the CPU RESET pin of the target device to go low as well,
which results in a reset of both the CPU and the peripheral units.

Connect during reset (3)
J-Link connects to the target while keeping Reset active (reset is pulled low and
remains low while connecting to the target). This is the recommended reset
strategy for STM32 devices. This strategy is only available for STM32 devices.

AFE1_AFE2-1:1

612

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Halt after bootloader (4 or 7)
NXP Cortex-M0 devices. This is the same strategy as the Normal strategy, but
the target is halted when the bootloader has finished executing. This is the
recommended reset strategy for LPC11xx and LPC13xx devices.

Analog Devices Cortex-M3 devices (7), Resets the core and peripheral units by
setting the SYSRESETREQ bit in the AIRCR. The core is allowed to perform the
ADI kernel (which enables the debug interface) but the core is halted before the
first instruction after the kernel is executed to guarantee that no user application
code is performed after reset.

Halt before bootloader (5)
This is the same strategy as the Normal strategy, but the target is halted before
the bootloader has started executing. This strategy is normally not used, except
in situations where the bootloader needs to be debugged. This strategy is only
available for LPC11xx and LPC13xx devices.

Normal, disable watchdog (6, 9, or 10)
First performs a Normal reset, to reset the core and peripheral units and halt the
CPU immediately after reset. After the CPU is halted, the watchdog is disabled,
because the watchdog is by default running after reset. If the target application
does not feed the watchdog, J-Link loses connection to the device because it is
permanently reset. This strategy is available for Freescale Kinetis devices (6),
for NXP LPC 1200 devices (9), and for Samsung S3FN60D devices (10).

All of these strategies are available for both the JTAG and the SWD interface, and all
strategies halt the CPU after the reset.

For other cores, choose between these strategies:

Hardware, halt after delay (ms) (0)
Specify the delay between the hardware reset and the halt of the processor. This
is used for making sure that the chip is in a fully operational state when C-SPY
starts to access it. By default, the delay is set to zero to halt the processor as
quickly as possible.

This is a hardware reset.

Hardware, halt using Breakpoint (1)
After reset, J-Link continuously tries to halt the CPU using a breakpoint.
Typically, this halts the CPU shortly after reset—in most systems, the CPU can
execute some instructions before it is halted.

This is a hardware reset.

AFE1_AFE2-1:1

Debugger options

613

Hardware, halt at 0 (4)
Halts the processor by placing a breakpoint at the address zero. Note that this is
not supported by all Arm microcontrollers.

This is a hardware reset.

Hardware, halt using DBGRQ (5)
After reset, J-Link continuously tries to halt the CPU using DBGRQ. Typically,
this halts the CPU shortly after reset—in most systems, the CPU can execute
some instructions before it is halted.

This is a hardware reset.

Software (-)
Sets PC to the program entry address.

This is a software reset.

Software, Analog devices (2)
Uses a reset sequence specific for the Analog Devices ADuC7xxx family. This
strategy is only available if you have selected such a device from the Device
drop-down list on the General Options>Target page.

This is a software reset.

Hardware, NXP LPC (9)
This strategy is only available if you have selected such a device from the
Device drop-down list on the General Options>Target page.

This is a hardware reset specific to NXP LPC devices.

Hardware, Atmel AT91SAM7 (8)
This strategy is only available if you have selected such a device from the
Device drop-down list on the General Options>Target page.

This is a hardware reset specific for the Atmel AT91SAM7 family.

For more information about different reset strategies, see the IAR J-Link and IAR
J-Trace User Guide for JTAG Emulators for ARM Cores available in the arm\doc
directory.

A software reset of the target does not change the settings of the target system—it only
resets the program counter and the mode register CPSR to its reset state. Normally, a
C-SPY reset is a software reset only. If you use the Hardware reset option, C-SPY will
generate an initial hardware reset when the debugger is started. This is performed once
before download, and if the option Use flash loader(s) is selected, also once after flash
download, see Debugging code in flash, page 65, and Debugging code in RAM, page 66.

AFE1_AFE2-1:1

614

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Hardware resets can be a problem if the low-level setup of your application is not
complete. If the low-level setup does not set up memory configuration and clocks, the
application will not work after a hardware reset. To handle this in C-SPY, the setup
macro function execUserReset() is suitable. For a similar example where
execUserPreload() is used, see Remapping memory, page 63.

JTAG/SWD speed

Specify the JTAG communication speed in kHz. Choose between:

Auto
Automatically uses the highest possible frequency for reliable operation. The
initial speed is the fixed frequency used until the highest possible frequency is
found. The default initial frequency—1000 kHz—can normally be used, but in
cases where it is necessary to halt the CPU after the initial reset, in as short time
as possible, the initial frequency should be increased. If the CPU starts at a low
clock speed, you might need to set a lower initial value, for example 32 kHz.

A high initial speed is necessary, for example, when the CPU starts to execute
unwanted instructions—for example power down instructions—from flash or
RAM after a reset. A high initial speed would in such cases ensure that the
debugger can quickly halt the CPU after the reset.

The initial value must be in the range 1–50000 kHz.

Fixed
Sets the JTAG communication speed in kHz. The value must be in the range 1–
50000 kHz.

If there are JTAG communication problems or problems in writing to target
memory (for example during program download), these problems might be
resolved if the speed is set to a lower frequency.

Adaptive
Synchronizes the clock to the processor clock outside the core. Works only with
Arm devices that have the RTCK JTAG signal available. For information about
adaptive speed, see the J-Link/J-Trace User Guide in the arm\doc directory.

Clock setup

Specifies the CPU clock. Choose between:

CPU clock
Specifies the exact clock frequency used by the internal processor clock, HCLK,
in MHz. The value can have decimals. This value is used for configuring the
SWO communication speed and for calculating timestamps.

AFE1_AFE2-1:1

Debugger options

615

SWO clock
Specifies the clock frequency of the SWO communication channel in kHz.

Auto
Automatically uses the highest possible frequency that the debug probe can
handle. If Auto is not selected, the wanted SWO clock value can be input in the
text box. The value can have decimals. Use this option if data packets are lost
during transmission.

To override the Clock setup options, use the Override project default option in the
SWO Configuration dialog box, see SWO Configuration dialog box, page 225.

ETM/ETB

The Prefer ETB option selects ETB trace instead of ETM trace, which is the default.

Note: This option only applies to J-Trace.

J-Link/J-Trace — Connection
The Connection options specify the connection with the J-Link/J-Trace probe.

Communication

Selects the communication channel between C-SPY and the J-Link debug probe.
Choose between:

USB
Selects the USB connection. If Serial number is selected in the drop-down list,
the J-Link debug probe with the specified serial number is chosen.

TCP/IP
Specify the IP address of a J-Link server. The TCP/IP connection is used for
connecting to a J-Link server running on a remote computer.

AFE1_AFE2-1:1

616

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

IP address, specify the IP address of a J-Link probe connected to LAN.

Auto detect, automatically scans the network for J-Link probes. Use the dialog
box to choose among the detected J-Link probes.

Serial number, connects to the J-Link probe on the network with the serial
number that you specify.

Interface

Selects the communication interface between the J-Link debug probe and the target
system. Choose between:

JTAG (default)
Uses the JTAG interface.

SWD
Uses fewer pins than JTAG. Select SWD if you want to use the serial-wire
output (SWO) communication channel. Note that if you select stdout/stderr via
SWO on the General Options>Library Configuration page, SWD is selected
automatically. For more information about SWO settings, see SWO Trace
Window Settings dialog box, page 223.

JTAG scan chain

Specifies the JTAG scan chain. Choose between:

JTAG scan chain with multiple targets
Specifies that there is more than one device on the JTAG scan chain.

TAP number
Specify the TAP (Test Access Port) position of the device you want to connect
to. The TAP numbers start from zero.

Scan chain contains non-Arm devices
Enables JTAG scan chains that mix Arm devices with other devices like, for
example, FPGA.

Preceeding bits
Specify the number of IR bits before the Arm device to be debugged.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

Debugger options

617

Nu-Link — Setup
The Setup options specify the Nu-Link interface.

For information about this driver, see the file NuMicro Cortex-M IAR ICE driver
user manual.pdf available in the arm\bin\Nu-Link directory.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

PE micro — Setup
The Setup options specify the PE micro interface.

Show settings dialog

Displays the P&E Connection Manager dialog box. For more information, see the file
PEMicroSettings.pdf, available in the arm\doc directory.

AFE1_AFE2-1:1

618

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

ST-LINK — Setup
The Setup options specify the ST-LINK interface.

Emulator

Specify the emulator you are using. Choose between Auto (default) where the ST-LINK
driver automatically selects the first emulator, or ST-LINK/V1, ST-LINK/V2 or
ST-LINK/V3.

Serial no
If more than one debug probe is connected to the host computer, enter the serial
number of the debug probe to identify the correct one.

Always prompt for probe selection
Makes C-SPY always ask you to confirm which probe to use, if more than one
debug probe is connected to the host computer.

AFE1_AFE2-1:1

Debugger options

619

Reset

Selects the reset strategy to be used when the debugger starts. The actual reset strategy
type number is specified for each available choice. Choose between:

System (0, default)
Resets the core and peripheral units by setting the SYSRESETREQ bit in the
AIRCR register. Reset vector catch is used for stopping the CPU at the reset
vector before the first instruction is executed. Only available for Cortex-M
devices.

Hardware (1)
The probe toggles the nSRST/nRESET line on the JTAG connector to reset the
device. This reset usually also resets the peripheral units. Only available for
ST-LINK version 2.

Connect during reset (2)
ST-LINK connects to the target while keeping the reset pin active (the reset pin
is pulled low and remains low while connecting to the target). Only available for
ST-LINK version 2 and when debugging Cortex-M devices.

Core (3)
Resets the core via the VECTRESET (Cortex-M) or CWRR (Cortex-A) bit—the
peripheral units are not affected.

Software reset (4)
Sets the PC to program entry address and SP to the initial stack pointer value.

Interface

Selects the communication interface between the ST-LINK debug probe and the target
system. Choose between:

JTAG (default)
Uses the JTAG interface.

SWD
Uses fewer pins than JTAG.

Access port

Use this option to specify the access port when using devices with more than one core—
shared mode debugging. Choose between:

Auto (default)
A predefined value for the device is used. For most devices, the access port
defaults to 0.

AFE1_AFE2-1:1

620

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Specify
For devices with more than one core, you can specify the number of the access
port on the device you want to connect to, 0-3.

Target power

Select From the probe to specify that the supply voltage to your target device will be
supplied by the probe. Use Target Vcc to specify the voltage.

Interface speed

Specify the JTAG and SWD communication speed. Choose between:

Default
Automatically uses the highest possible frequency for reliable operation. This is
the only option for ST-LINK version 1.

n MHz
For ST-LINK version 2 and ST-LINK version 3, sets the JTAG and SWD
communication speed to the selected frequency. This option is not available for
ST-LINK version 1.

If the selected frequency is not supported by the specified probe, the closest and
lowest supported frequency is automatically selected.

If there are JTAG communication problems or problems in writing to target
memory (for example, during program download), these problems might be
resolved if the speed is set to a lower frequency.

AFE1_AFE2-1:1

Debugger options

621

ST-LINK — Communication
The Communication options specify the ST-LINK interface.

Clock setup

Specifies the CPU clock. Choose between:

CPU clock
Specifies the exact clock frequency used by the internal processor clock, HCLK,
in MHz. The value can have decimals. This value is used for configuring the
SWO communication speed and for calculating timestamps.

SWO clock
Specifies the clock frequency of the SWO communication channel in kHz.

Auto
Automatically uses the highest possible frequency that the debug probe can
handle. If Auto is not selected, the wanted SWO clock value can be input in the
text box. The value can have decimals. Use this option if data packets are lost
during transmission.

To override the Clock setup options, use the Override project default option in the
SWO Configuration dialog box, see SWO Configuration dialog box, page 225.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

622

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

ST-LINK — Multicore
The Multicore options enable multicore and shared mode debugging for the ST-LINK
interface.

Enable multicore debugging/shared mode

Enables multicore and shared mode debugging where two or more instances of IAR
Embedded Workbench or an external tool share the same debug probe. Each instance
accesses one core on the target device.

Multicore and shared mode debugging requires that you have installed the ST-LINK
server. To install the server, run
arm\drivers\ST-LINK\st-stlink-server.1.0.6-1.msi.

See also, the option Access Port at ST-LINK — Setup, page 618.

For more information, see the application note from ST Microelectronics,
STM32H7x5/x7 dual-core microcontroller debugging at st.com.

AFE1_AFE2-1:1

Debugger options

623

TI MSP-FET — Setup
The Setup options specify the TI MSP-FET interface.

Connection

Controls the communication between C-SPY and the target device.

The C-SPY TI MSP-FET debugger can communicate with the target device via a
number of different debug probes. Select the probe you are using. If you select
Automatic, the debugger will automatically connect to the correct port.

Some emulator drivers support multiple emulators connected to the same host computer.
Each emulator requires its own instance of IAR Embedded Workbench and each
instance must identify its emulator. To identify an emulator, click the browse button to
display a list of all detected emulators. To identify a connection, click the port in the list
and the Mode LED on the attached emulator will light up.

Target VCC

Specify the voltage provided by the USB interface:

Override default
Overrides the default voltage. The default voltage is displayed in the Target
VCC text box, when you deselect the Override default option.

Target VCC
Specify the voltage with one decimal’s precision in the range 1.0-4.0 V. This
option can only be used when your target device is powered by the debug probe.

Settling time
Specify a delay (in milliseconds) that will be used between switching on the
target VCC and starting the identification of the Arm device.

AFE1_AFE2-1:1

624

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Reset

Selects the reset strategy to be used when the debugger starts.

Normal (0)
This is the default strategy. It does whatever is the best way to reset the target
device.

Interface

Determines the debug interface to use:

Auto
Selects the debug interface automatically.

JTAG
Selects the JTAG interface.

SWD
Selects the SWD interface. SWD uses fewer pins than JTAG.

Interface speed

Sets the JTAG communication speed. Choose between Fast, Medium, and Slow.

TI MSP-FET — Download
The Download options specify the TI MSP-FET interface.

Erase main memory

Erases only the main flash memory before download. The Information memory is not
erased.

AFE1_AFE2-1:1

Debugger options

625

Erase main and Information memory

Erases both flash memories—main and Information memory—before download.

Erase main and Information memory inc. IP PROTECTED area

Erases the main and Information flash memories, including the IP protected area before
download.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

TI Stellaris — Setup
The Setup options specify the TI Stellaris interface.

Emulator

These options are used for identifying the debug probe to use.

Always prompt for probe selection
Makes C-SPY always ask you to confirm which probe to use, if more than one
debug probe is connected to the host computer.

Serial no
Enter the serial number of the debug probe you are using.

AFE1_AFE2-1:1

626

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Reset

Selects the reset strategy to be used when the debugger starts. Based on your hardware,
one of the strategies is the default. Choose between:

Software (core) (0)
Resets the core. Sets PC to the program entry address and SP to the initial stack
pointer value.

System (1)
Resets the core and peripheral units. Sets PC to the program entry address and
SP to the initial stack pointer value.

Interface

Selects the communication interface between the TI Stellaris debug probe and the target
system. Choose between:

JTAG (default)
Uses the JTAG interface.

SWD
Uses fewer pins than JTAG. Select SWD if you want to use the serial-wire
output (SWO) communication channel. Note that if you select stdout/stderr via
SWO on the General Options>Library Configuration page, SWD is selected
automatically. For more information about SWO settings, see SWO Trace
Window Settings dialog box, page 223.

JTAG/SWD speed

Specify the JTAG communication speed in kHz.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

Debugger options

627

TI XDS — Setup
The Setup options control the TI XDS interface.

Emulator

Specify the emulator you are using. If more than one debug probe is connected to the
host computer, use the Serial no option to select the correct one.

To force the Debug Probe Selection dialog box to be displayed each time you start a
debug session, use the option Always prompt for probe selection.

To override the default board file, first select the menu command Specify custom board
file in the Emulator drop-down menu and then specify a board file using the Board file
option.

Reset

Selects the reset strategy to be used when the debugger starts. Based on your hardware,
one of the strategies is the default. Choose between:

For Cortex-M devices:

CPU (0)
Resets the CPU.

System (1)
Resets the core and peripheral units.

Board (2)
Uses the reset pin to reset the device. Only available for CC26xx and CC13xx
devices.

AFE1_AFE2-1:1

628

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Board (3)
Uses the reset pin to reset the device. Run and halt with delay. Available for all
other Cortex-M devices.

For non-Cortex-M devices:

Software (0)
Sets PC to the program entry address.

Hardware (1)
Uses the reset pin to reset the device.

Interface

Select the communication interface between the XDS debug probe and the target
system.

Target power

Select From the probe to specify that the supply voltage to your target device will be
supplied by the probe. Use Target Vcc to specify the voltage.

This option is only available for the stand-alone TI XDS110 debug probe.

JTAG/SWD speed

Specify the JTAG communication speed.

TI emulation package installation path

Select Override default to override the default installation path of the Texas
Instruments emulation package.

AFE1_AFE2-1:1

Debugger options

629

TI XDS — Communication
The Communication options control the TI XDS interface.

Clock setup

Specifies the CPU clock. Choose between:

CPU clock
Specifies the exact clock frequency used by the internal processor clock, HCLK,
in MHz. The value can have decimals. This value is used for configuring the
SWO communication speed and for calculating timestamps.

SWO clock
Specifies the clock frequency of the SWO communication channel in KHz.

Auto
Automatically uses the highest possible frequency that the debug probe can
handle. If Auto is not selected, the wanted SWO clock value can be input in the
text box. The value can have decimals. Use this option if data packets are lost
during transmission.

To override the Clock setup options, use the Override project default option in the
SWO Configuration dialog box, see SWO Configuration dialog box, page 225.

COM port for SWO

Specifies the COM port to use for the SWO communication. Choose between:

Auto
The debugger automatically identifies the COM port that is associated with the
debug probe.

AFE1_AFE2-1:1

630

Reference information on C-SPY hardware debugger driver options

C-SPY® Debugging Guide
for Arm

Specify
Specify the number of the COM port, 1-256.

None
The debugger leaves the COM port unused and SWO trace is disabled.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

Third-Party Driver options
The Third-Party Driver options are used for loading any driver plugin provided by a
third-party vendor. These drivers must be compatible with the C-SPY debugger driver
specification.

In addition to the options you can set here, you can set options for the third-party driver
using the Project>Options>Debugger>Extra Options page.

IAR debugger driver plugin

Specify the file path to the third-party driver plugin DLL file. A browse button is
available for your convenience.

Log communication

Logs the communication between C-SPY and the target system to a file. To interpret the
result, detailed knowledge of the interface is required.

AFE1_AFE2-1:1

631

Additional information on
C-SPY drivers
This chapter describes the additional menus and features provided by the
C-SPY® drivers. You will also find some useful hints about resolving problems.

Reference information on C-SPY driver menus
This section gives reference information on the menus specific to the C-SPY drivers.
More specifically, this means:

● C-SPY driver, page 631

● Simulator menu (IAR native), page 632

● Simulator menu (Imperas), page 634

● CADI menu, page 636

● CMSIS-DAP menu, page 637

● E2 menu, page 639

● GDB Server menu, page 640

● G+LINK menu, page 641

● I-jet menu, page 642

● J-Link menu, page 646

● Nu-Link menu, page 650

● ST-Link menu, page 650

● TI MSP-FET menu, page 653

● TI Stellaris menu, page 655

● TI XDS menu, page 656

C-SPY driver
Before you start the C-SPY debugger, you must first specify a C-SPY driver in the
Options dialog box, using the option Debugger>Setup>Driver.

When you start a debug session, a menu specific to that C-SPY driver will appear on the
menu bar, with commands specific to the driver.

AFE1_AFE2-1:1

632

Reference information on C-SPY driver menus

C-SPY® Debugging Guide
for Arm

When we in this guide write “choose C-SPY driver>” followed by a menu command,
C-SPY driver refers to the menu. If the feature is supported by the driver, the command
will be on the menu.

Simulator menu (IAR native)
The C-SPY simulator uses one of two debugger drivers. Which driver depends on which
core or device you have selected for your application project, see The IAR C-SPY
Simulator, page 48. When you use the IAR native simulator driver, this Simulator menu
is added to the menu bar:

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box where you configure C-SPY to match the memory of your
device, see Memory Configuration dialog box for the C-SPY simulator, page
196.

Trace
Opens a window which displays the collected trace data, see Trace window,
page 229.

Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 238.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

633

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 301.

Data Log
Opens a window which logs accesses to up to four different memory locations
or areas, see Data Log window, page 266.

Data Log Summary
Opens a window which displays a summary of data accesses to specific memory
location or areas, see Data Log Summary window, page 269.

Interrupt Log
Opens a window which displays the status of all defined interrupts, see Interrupt
Log window, page 416.

Interrupt Log Summary
Opens a window which displays a summary of the status of all defined
interrupts, see Interrupt Log Summary window, page 420.

Timeline
Opens a window which gives a graphical view of various kinds of information
on a timeline, see The application timeline, page 257.

Simulated Frequency
Opens the Simulated Frequency dialog box where you can specify the
simulator frequency used when the simulator displays time information, for
example in the log windows. Note that this does not affect the speed of the
simulator. For more information, see Simulated Frequency dialog box, page
635.

Interrupt Configuration
Opens a window where you can configure C-SPY interrupt simulation, see
Interrupt Configuration window, page 410.

Available Interrupts
Opens a window with an overview of all available interrupts. You can also force
an interrupt instantly from this window, see Available Interrupts window, page
413.

Interrupt Status
Opens a window from where you can instantly trigger an interrupt, see Interrupt
Status window, page 414.

AFE1_AFE2-1:1

634

Reference information on C-SPY driver menus

C-SPY® Debugging Guide
for Arm

Breakpoint Usage
Displays a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

Simulator menu (Imperas)
The C-SPY simulator uses one of two debugger drivers. Which driver depends on which
core or device you have selected for your application project, see The IAR C-SPY
Simulator, page 48. When you use the Imperas simulator driver, this Simulator menu is
added to the menu bar:

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for the C-SPY
simulator, page 196.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

635

Reference information on the C-SPY simulator
This section gives additional reference information on the C-SPY simulator, and
reference information not provided elsewhere in this documentation.

Reference information about:

● Simulated Frequency dialog box, page 635

Simulated Frequency dialog box
The Simulated Frequency dialog box is available from the C-SPY driver menu.

Use this dialog box to specify the simulator frequency used when the simulator displays
time information.

Requirements

The C-SPY simulator. Not available for all cores and devices.

Frequency

Specify the frequency in Hz.

Reference information on the C-SPY hardware debugger drivers
This section gives additional reference information on the C-SPY hardware debugger
drivers, reference information not provided elsewhere in this documentation.

Reference information about:

● CADI menu, page 636

● CMSIS-DAP menu, page 637

● E2 menu, page 639

● GDB Server menu, page 640

● I-jet menu, page 642

● J-Link menu, page 646

AFE1_AFE2-1:1

636

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

● Nu-Link menu, page 650

● ST-Link menu, page 650

● TI MSP-FET menu, page 653

● TI Stellaris menu, page 655

● TI XDS menu, page 656

CADI menu
When you are using the C-SPY CADI driver, the CADI menu is added to the menu bar:

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

637

CMSIS-DAP menu
When you are using the C-SPY CMSIS-DAP driver, the CMSIS-DAP menu is added
to the menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

AFE1_AFE2-1:1

638

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

ETM Trace Settings
Displays a dialog box, see ETM Trace Settings dialog box (I-jet), page 219.

ETM Trace Save
Displays a dialog box, see Trace Save dialog box, page 256.

ETM Trace
Opens the ETM Trace window, see Trace window, page 229.

Function Trace
Opens a window, see Function Trace window, page 238.

Vector Catch
Displays a dialog box for setting a breakpoint directly on a vector in the interrupt
vector table, see Vector Catch dialog box, page 157. Note that this command is
not available for all Arm cores.

Timeline
Opens a window, see The application timeline, page 257.

This menu command is only available when the SWD/SWO interface is used.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 301.

Session Overview
Displays a window that lists information about the debug session, such as details
about project settings, session settings, and the session state. To save the
contents of the window to a file, choose Save As from the context menu.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

639

E2 menu
When you are using the C-SPY E2/E2Lite driver, the E2 menu is added to the menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

AFE1_AFE2-1:1

640

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

GDB Server menu
When you are using the C-SPY GDB Server driver, the GDB Server menu is added to
the menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

641

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

G+LINK menu
When you are using the C-SPY G+LINK driver, the G+LINK menu is added to the
menu bar:

For information about G+LINK, see the file G+ IAR EWARM ICE Driver Pack.pdf,
available in the arm\bin\G+LinkPro directory.

AFE1_AFE2-1:1

642

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

I-jet menu
When you are using the C-SPY I-jet driver, the I-jet menu is added to the menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

643

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

CPU Halt on Breakpoint Set
Makes it possible to set a breakpoint in an executing application on hardware
that does not support setting breakpoints while running. Setting a breakpoint
halts the core, sets the breakpoint, and starts the core again.

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

ETM Trace Settings
Displays a dialog box, see ETM Trace Settings dialog box (I-jet), page 219.

ETM Trace Save
Displays a dialog box, see Trace Save dialog box, page 256.

ETM Trace
Opens the ETM Trace window, see Trace window, page 229.

AFE1_AFE2-1:1

644

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Function Trace
Opens the Function Trace window, see Function Trace window, page 238.

SWO Configuration
Displays a dialog box, see SWO Configuration dialog box, page 225.

This menu command is only available when the SWD/SWO interface is used.

SWO Trace Window Settings
Displays a dialog box, see SWO Trace Window Settings dialog box, page 223.

SWO Trace
Opens the SWO Trace window to display the collected trace data, see Trace
window, page 229.

This menu command is only available when the SWD/SWO interface is used.

Interrupt Log
Opens a window, see Interrupt Log window, page 416.

This menu command is only available when the SWD/SWO interface is used.

Interrupt Log Summary
Opens a window, see Interrupt Log Summary window, page 420.

This menu command is only available when the SWD/SWO interface is used.

Data Log
Opens a window, see Data Log window, page 266.

This menu command is only available when the SWD/SWO interface is used.

Data Log Summary
Opens a window, see Data Log Summary window, page 269.

This menu command is only available when the SWD/SWO interface is used.

Event Log
Opens a window, see Event Log window, page 271.

Event Log Summary
Opens a window, see Event Log Summary window, page 274.

Power Log Setup
Opens a window, see Power Log Setup window, page 331.

Power Log
Opens a window, see Power Log window, page 334.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

645

Vector Catch
Displays a dialog box for setting a breakpoint directly on a vector in the interrupt
vector table, see Vector Catch dialog box, page 157. Note that this command is
not available for all Arm cores.

Timeline
Opens a window, see Reference information on application timeline, page 265.

This menu command is only available when the SWD/SWO interface is used.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 301.

Performance Monitoring
Opens a window which shows event counters or CPU clock cycles through the
Performance Monitoring Unit (PMU), see Performance Monitoring window,
page 316.

Session Overview
Displays a window that lists information about the debug session, such as details
about project settings, session settings, and the session state. To save the
contents of the window to a file, choose Save As from the context menu.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

EmuDiag
Starts the EmuDiag application where you can diagnose the connection
between the host computer, the probe, and the board.

AFE1_AFE2-1:1

646

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

J-Link menu
When you are using the C-SPY J-Link driver, the J-Link menu is added to the menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

647

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Watchpoints
Displays a dialog box for setting watchpoints, see Code breakpoints dialog box,
page 141.

Vector Catch
Displays a dialog box for setting a breakpoint directly on a vector in the interrupt
vector table, see Vector Catch dialog box, page 157. Note that this command is
not available for all Arm cores.

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

ETM Trace Settings
Displays a dialog box to configure ETM trace data generation and collection,
see ETM Trace Settings dialog box (J-Link/J-Trace), page 221.

This menu command is only available when using either ETM or J-Link with
ETB.

ETM Trace Save
Displays a dialog box to save the collected trace data to a file, see Trace Save
dialog box, page 256.

AFE1_AFE2-1:1

648

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

This menu command is only available when using either ETM or J-Link with
ETB.

ETM Trace
Opens the ETM Trace window to display the collected trace data, see Trace
window, page 229.

This menu command is only available when using either ETM or J-Link with
ETB.

Function Trace
Opens a window which displays the trace data for function calls and function
returns, see Function Trace window, page 238.

This menu command is only available when using either ETM or J-Link with
ETB.

SWO Configuration
Displays a dialog box, see SWO Configuration dialog box, page 225.

This menu command is only available when the SWD/SWO interface is used.

SWO Trace Window Settings
Displays a dialog box, see SWO Trace Window Settings dialog box, page 223.

This menu command is only available when the SWD/SWO interface is used.

SWO Trace Save
Displays a dialog box to save the collected trace data to a file, see Trace Save
dialog box, page 256.

This menu command is only available when the SWD/SWO interface is used.

SWO Trace
Opens the SWO Trace window to display the collected trace data, see Trace
window, page 229.

This menu command is only available when the SWD/SWO interface is used.

Interrupt Log
Opens a window, see Interrupt Log window, page 416.

This menu command is only available when the SWD/SWO interface is used.

Interrupt Log Summary
Opens a window, see Interrupt Log Summary window, page 420.

This menu command is only available when the SWD/SWO interface is used.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

649

Data Log
Opens a window, see Data Log window, page 266.

This menu command is only available when the SWD/SWO interface is used.

Data Log Summary
Opens a window, see Data Log Summary window, page 269.

This menu command is only available when the SWD/SWO interface is used.

Event Log
Opens a window, see Event Log window, page 271.

Event Log Summary
Opens a window, see Event Log Summary window, page 274.

Power Log Setup
Opens a window, see Power Log Setup window, page 331.

Power Log
Opens a window, see Power Log window, page 334.

Timeline
Opens a window, see The application timeline, page 257.

This menu command is available when using ETM or SWD/SWO.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 301.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

Performance Monitoring
Opens a window which shows event counters or CPU clock cycles through the
Performance Monitoring Unit (PMU), see Performance Monitoring window,
page 316.

AFE1_AFE2-1:1

650

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Nu-Link menu
When you are using the C-SPY Nu-Link driver, the Nu-Link menu is added to the menu
bar:

For information about the Nu-Link driver, contact Nuvoton Technology Corporation.

ST-Link menu
When you are using the C-SPY ST-Link driver, the ST-Link menu is added to the menu
bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

651

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Vector Catch
Opens a dialog box for setting a breakpoint directly on a vector in the interrupt
vector table, see Vector Catch dialog box, page 157. Note that this command is
not available for all Arm cores.

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

SWO Configuration1

Displays a dialog box, see SWO Configuration dialog box, page 225.

SWO Trace Window Settings1

Displays a dialog box, see SWO Trace Window Settings dialog box, page 223.

SWO Trace Save1

Displays a dialog box to save the collected trace data to a file, see Trace Save
dialog box, page 256.

AFE1_AFE2-1:1

652

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

SWO Trace1

Opens the SWO Trace window to display the collected trace data, see Trace
window, page 229.

Interrupt Log1

Opens a window, see Interrupt Log window, page 416.

Interrupt Log Summary1

Opens a window, see Interrupt Log Summary window, page 420.

Data Log1

Opens a window, see Data Log window, page 266.

Data Log Summary1

Opens a window, see Data Log Summary window, page 269.

Event Log
Opens a window, see Event Log window, page 271.

Event Log Summary
Opens a window, see Event Log Summary window, page 274.

Power Log Setup1

Opens a window, see Power Log Setup window, page 331.

Power Log1

Opens a window, see Power Log window, page 334.

Timeline2

Opens a window, see The application timeline, page 257.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 301.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

1 Only available when the SWD/SWO interface is used.

2 Available when using either ETM or SWD/SWO.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

653

TI MSP-FET menu
When you are using the C-SPY TI MSP-FET driver, the TI MSP-FET menu is added
to the menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

AFE1_AFE2-1:1

654

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Release JTAG on Go
Sets the JTAG drivers in tri-state so that the device is released from JTAG
control when the Go button is activated.

Secure Device
Activates the flash memory protection lock. After this command has been
executed, you must terminate the debug session and then reconnect the power to
make it take effect.

Power Log Setup
Opens a window, see Power Log Setup window, page 331.

Power Log
Opens a window, see Power Log window, page 334.

State Log
Opens a window, see State Log window, page 339.

State Log Summary
Opens a window, see State Log Summary window, page 341.

Timeline
Opens a window, see The application timeline, page 257.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

655

TI Stellaris menu
When you are using the C-SPY TI Stellaris driver, the TI Stellaris menu is added to the
menu bar.

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Vector Catch
Opens a dialog box for setting a breakpoint directly on a vector in the interrupt
vector table, see Vector Catch dialog box, page 157. Note that this command is
not available for all Arm cores.

AFE1_AFE2-1:1

656

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

TI XDS menu
When you are using the C-SPY TI XDS driver, the TI XDS menu is added to the menu
bar.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

657

Menu commands

These commands are available on the menu:

Memory Configuration
Displays a dialog box, see Memory Configuration dialog box for C-SPY
hardware debugger drivers, page 200.

Enforce Memory Configuration
Prevents the driver from accessing any memory ranges in the zone Memory that
have not been defined in the Memory Configuration dialog box.

Disable Debugger Cache
Disables memory caching and memory range checking in C-SPY.

Normally, C-SPY uses the memory range information in the Memory
Configuration dialog box both to restrict access to certain parts of target
memory and to cache target memory contents for improved C-SPY
performance. Under certain rare circumstances, this is not appropriate, and you
can choose Disable Debugger Cache to turn off the caching and memory range
checking completely. All accesses from C-SPY will then result in corresponding
accesses to the target system. Some of those circumstances are:

● When memory is remapped at runtime and cannot be specified as a fixed set
of ranges.

● When the memory range setup is incorrect or incomplete.

Vector Catch
Opens a dialog box for setting a breakpoint directly on a vector in the interrupt
vector table, see Vector Catch dialog box, page 157. Note that this command is
not available for all Arm cores.

Disable Interrupts When Stepping
Ensures that only the stepped statements will be executed. Interrupts will not be
executed. This command can be used when not running at full speed and some
interrupts interfere with the debugging process.

Leave Target Running
Leaves the application running on the target hardware after the debug session is
closed.

Because existing breakpoints might not be automatically removed, consider
disabling all breakpoints before using this menu command.

SWO Configuration
Displays a dialog box, see SWO Configuration dialog box, page 225.

AFE1_AFE2-1:1

658

Reference information on the C-SPY hardware debugger drivers

C-SPY® Debugging Guide
for Arm

SWO Trace Window Settings
Displays a dialog box, see SWO Trace Window Settings dialog box, page 223.

SWO Trace Save
Displays a dialog box to save the collected trace data to a file, see Trace Save
dialog box, page 256.

SWO Trace
Opens the SWO Trace window to display the collected trace data, see Trace
window, page 229.

Interrupt Log
Opens a window, see Interrupt Log window, page 416.

Interrupt Log Summary
Opens a window, see Interrupt Log Summary window, page 420.

Data Log
Opens a window, see Data Log window, page 266.

Data Log Summary
Opens a window, see Data Log Summary window, page 269.

Event Log
Opens a window, see Event Log window, page 271.

Event Log Summary
Opens a window, see Event Log Summary window, page 274.

Power Log Setup
Opens a window, see Power Log Setup window, page 331.

Power Log
Opens a window, see Power Log window, page 334.

State Log
Opens a window, see State Log window, page 339.

State Log Summary
Opens a window, see State Log Summary window, page 341.

Timeline
Opens a window, see The application timeline, page 257.

Function Profiler
Opens a window which shows timing information for the functions, see
Function Profiler window, page 301.

AFE1_AFE2-1:1

Additional information on C-SPY drivers

659

Breakpoint Usage
Opens a window which lists all active breakpoints, see Breakpoint Usage
window, page 140.

Resolving problems
Debugging using the C-SPY hardware debugger systems requires interaction between
many systems, independent from each other. For this reason, setting up this debug
system can be a complex task. If something goes wrong, it might be difficult to locate
the cause of the problem.

For information about the current debug session, choose Session Overview from the
driver menu. Note that this window might not be supported by the C-SPY driver you are
using.

This section includes suggestions for resolving the most common problems that can
occur when debugging with the C-SPY hardware debugger systems.

For problems concerning the operation of the evaluation board, refer to the
documentation supplied with it, or contact your hardware distributor.

NO CONTACT WITH THE TARGET HARDWARE

There are several possible reasons for C-SPY to fail to establish contact with the target
hardware. Do this:

● Check the communication devices on your host computer

● Verify that the cable is properly plugged in and not damaged or of the wrong type

● Make sure that the evaluation board is supplied with sufficient power

● Check that the correct options for communication have been specified in the IAR
Embedded Workbench IDE.

● Check that the correct reset strategy is used.

Examine the linker configuration file to make sure that the application has not been
linked to the wrong address.

AFE1_AFE2-1:1

660

Resolving problems

C-SPY® Debugging Guide
for Arm

AFE1_AFE2-1:1

Index

661

A
Abort (Report Assert option) . 95
__abortLaunch (C-SPY system macro). 448
absolute location, specifying for a breakpoint. 160
Access port (ST-LINK option) . 619
Access Type (Data breakpoints option) 144
Access type (Edit Memory Access option) 199
Access (Edit SFR option) . 195
accesses outside the bounds of arrays and other objects,
detecting . 361
Add Interrupt (Interrupt Configuration option) 412
Address Bus Pattern (Address setting) 144
Address Range (Find in Trace option) 255
Address (Edit SFR option) . 195
Address (JTAG Watchpoints option) 144
Advanced (multicore debugger option). 589
Allow ETB (I-jet option) . 609
Ambiguous symbol (Resolve Symbol Ambiguity option). 124
Any Size (Data setting). 145
Any (Access Type setting) . 144
Any (Extern setting) . 145
Any (Mode setting). 145
--application_args (C-SPY command line option) 527
application, built outside the IDE . 58
Apply authentication if status cannot be determined (multicore
debugger option). 591
__argCount (C-SPY system macro) 444
assembler labels, viewing . 102
assembler source code, fine-tuning 293
assembler symbols, in C-SPY expressions 99
assembler variables, viewing . 102
assumptions, programming experience 29
authentication of debugging . 63
Auto Scroll
(Timeline window context menu) . . . 279, 284, 288, 346, 424
Auto window . 104
Auto (Default breakpoint type setting) 155
Auto (Probe config setting). 598, 605

Autostep settings dialog box . 95
Available Interrupts window. 413

B
--attach_to_running_target
(C-SPY command line option) . 528
--backend (C-SPY command line option) 528
backtrace information, viewing in Call Stack window 88
batch mode, using C-SPY in . 515
--BE32 (C-SPY command line option) 519
--BE8 (C-SPY command line option) 519
Big Endian (Memory window context menu) 175
bit loss or undefined behavior when shifting, detecting . . 359
blocks, in C-SPY macros . 437
bold style, in this guide . 34
bounds of arrays and other objects, detect accesses
outside . 361
--bounds_table_size (linker option) 380
Break Condition (JTAG Watchpoints option). 143
breakpoint condition, example 136–137
breakpoint dialog box

Code . 141
Data . 147
Data Log . 151
Immediate . 156
Log . 146
Trace Start Trigger. 239
Trace Stop Trigger . 240

Breakpoint type (Code breakpoints option). 141
Breakpoint Usage window . 140
breakpoints

briefly about. 126
code, example . 486–487
connecting a C-SPY macro . 432
consumers of . 130
data . 147
data log . 151–152
description of . 126

Index

AFE1_AFE2-1:1

662
C-SPY® Debugging Guide
for Arm

disabling used by Stack window 130
icons for in the IDE . 129
in Memory window . 133
listing all . 140
reasons for using . 125
setting

in memory window . 133
using system macros . 134
using the dialog box . 132

single-stepping if not available 56
toggling . 132
types of . 126
useful tips. 136

Breakpoints dialog box
Data Log (C-SPY hardware drivers) 152
Trace Filter (I-jet) . 245
Trace Filter (J-Link). 251
Trace Start (I-jet and CMSIS-DAP). 241
Trace Start (J-Link/J-Trace). 246
Trace Stop (I-jet and CMSIS-DAP) 243
Trace Stop (J-Link/J-Trace) . 249

Breakpoints options (C-SPY options) 154
Breakpoints window . 138
Broadcast all branches (ETM Trace Settings option) 222
Browse (Trace toolbar) . 230
Buffer limit (I-jet Trace option) . 609
byte order, setting in Memory window 174
Byte (Data setting) . 145
__bytes2Word16 (C-SPY system macro) 444
__bytes2Word32 (C-SPY system macro) 444

C
C function information, in C-SPY. 81
C symbols, in C-SPY expressions. 99
C variables, in C-SPY expressions 99
Cache type (Edit Memory Range option) 204
call chain, displaying in C-SPY . 81
Call Stack graph (Timeline window) 277

call stack information . 81
Call Stack window . 88

for backtrace information. 81
Call Stack (Timeline window context menu) 279
__cancelAllInterrupts (C-SPY system macro) 449
__cancelInterrupt (C-SPY system macro). 449
Catch exceptions (Breakpoints option) 155
Chain (Break Condition setting) . 144
checked heap, using . 351
Clear Group
(Registers User Groups Setup window context menu) . . . 191
Clear trace data (Trace toolbar). 230
__clearBreak (C-SPY system macro) 450
clock frequency, simulated . 635
Clock setup (J-Link/J-Trace option) 614
Clock setup (ST-LINK option) . 621
Clock setup (TI XDS option) . 629
__closeFile (C-SPY system macro) 450
CMSIS-DAP communication problem 599
CMSIS-DAP (C-SPY driver), menu 637
code breakpoints

overview . 126
toggling . 132

code coverage
real-time. 84, 307

Code Coverage window . 308
--code_coverage_file (C-SPY command line option) 529
code, covering execution of . 309
COM port for SWO (TI XDS option) 629
command line options. 527

typographic convention . 33
command prompt icon, in this guide 34
communication problem

CMSIS-DAP . 599
I-jet . 606
J-Link. 614
ST-LINK . 620

Communication (J-Link/J-Trace option). 615
computer style (monospace font), typographic convention . 33
conditional statements, in C-SPY macros 437

AFE1_AFE2-1:1

Index

663

context menu, in windows . 102
conventions, used in this guide . 33
Copy Window Contents
(Disassembly window context menu) 87
copyright notice . 2
Core (Cores window) . 398
cores

debugging multiple . 391
inspecting state of . 397

Cores window. 397
CPI (Generate setting) . 224
--cpu (C-SPY command line option). 519
CPU clock (I-jet Trace option) . 610
CPU number on target
(Explicit probe configuration setting) 599, 607
cspybat . 515

reading options from file (-f) . 547
current position, in C-SPY Disassembly window 84
cursor, in C-SPY Disassembly window 84
Cycle accurate tracing (ETM Trace Settings option) 222
--cycles (C-SPY command line option) 529
Cycles (Cores window). 398
C-RUN

creating rules for messages . 355
detecting various runtime errors. 355
getting started . 353
in non-interactive mode . 353
in the IDE . 351
requirements for. 352
setting options for . 373
using . 353
using the checked heap . 351

C-RUN Messages Rules window 378
C-RUN Messages window . 376
C-RUN runtime error checking. 349
C-RUN runtime error checking, documentation 32
C-SPY

batch mode, using in . 515
debugger systems, overview of 43
differences between drivers . 46

environment overview . 39
plugin modules, loading. 57
scripting. See macros
setting up . 56–57
starting the debugger . 58

C-SPY drivers
overview . 45
specifying . 585
types of . 44

C-SPY expressions . 98
evaluating, using Macro Quicklaunch window 513
evaluating, using Quick Watch window. 118
in C-SPY macros . 436
Tooltip watch, using . 97
Watch window, using. 97

C-SPY hardware debugger driver
extending functionality of . 63

C-SPY hardware drivers, hardware installation 50
C-SPY macros

blocks. 437
conditional statements . 437
C-SPY expressions . 436
examples . 429

checking status of register. 432
creating a log macro . 433
execUserPreload, using. 63
remapping memory before download 63

executing . 429
connecting to a breakpoint 432
using Quick Watch . 432
using setup macro and setup file 431

functions . 100, 434
keywords . 435–436, 438
loop statements . 437
macro statements . 436
parameters . 435
setup macro file . 428

executing. 431

AFE1_AFE2-1:1

664
C-SPY® Debugging Guide
for Arm

setup macro functions . 428
summary . 439

system macros, summary of. 444
using . 427
variables. 100, 435

C-SPY options
Authentication

Authentication (C-SPY options) 590
Extra Options. 591
Images . 587
Multicore . 588
Plugins . 592
Setup . 585

C-SPYLink . 45
C-STAT for static analysis, documentation for 32
C++ exceptions

debugging . 69–70
single stepping . 76

D
data breakpoints, overview . 127
Data Bus Pattern (Data setting). 145
Data Coverage (Memory window context menu) 175
data coverage, in Memory window. 173
data log breakpoints, overview . 127
Data Log Events (SWO Configuration option) 226
Data Log graph (Timeline window) 282
Data Log Summary window . 269
Data Log Summary (TI XDS menu) 658
Data Log window . 266
Data Log (TI XDS menu) . 658
Data Log (Timeline window context menu) 284
Data (JTAG Watchpoints option) 145
DCC (Debug Communications Channel) 90, 112
ddf (filename extension), selecting a file 57
debug authentication . 63
Debug Log window . 92
Debug menu (C-SPY main window). 68

Debug Probe Selection dialog box 51, 535–537
Debug (Report Assert option) . 95
--debug_file (cspybat option) . 531
debugger concepts, definitions of . 42
debugger drivers

See C-SPY drivers . 45
simulator . 48

Debugger Macros window . 511
debugger system overview . 43
debugging projects

externally built applications . 58
loading multiple images. 59

debugging, RTOS awareness . 41
--debug_auth_enforce (C-SPY command line option) . . . 530
--debug_auth_settings (C-SPY command line option) . . . 530
--debug_auth_type (C-SPY command line option) 531
--debug_heap (linker option) . 381
Default breakpoint type (Breakpoints option) 155
default_no_bounds (pragma directive) 383
define_without_bounds (pragma directive). 383
define_with_bounds (pragma directive) 383
__delay (C-SPY system macro) . 450
Delay after (CMSIS-DAP option). 597
Delay after (I-jet option) . 604
Delay (Autostep Settings option) . 96
Delete/revert All Custom SFRs
(SFR Setup window context menu) 193
Device description file (debugger option). 585
device description files . 57

definition of . 61
modifying . 61
specifying interrupts . 478

Device Support Module . 63
--device (C-SPY command line option) 532
--device_macro (C-SPY command line option) 532
Disable Debugger Cache (CADI menu) 634, 636
Disable Debugger Cache (CMSIS-DAP menu) 637
Disable Debugger Cache (GDB Server menu) 639–640
Disable Debugger Cache (I-jet menu). 643
Disable Debugger Cache (J-Link menu) 647

AFE1_AFE2-1:1

Index

665

Disable Debugger Cache (ST-Link menu) 651
Disable Debugger Cache (TI MSP-FET menu). 653
Disable Debugger Cache (TI Stellaris menu) 655
Disable Debugger Cache (TI XDS menu). 657
Disable Interrupts When Stepping (CMSIS-DAP menu) . 638
Disable Interrupts When Stepping (I-jet menu). 643
Disable Interrupts When Stepping (J-Link menu). 647
Disable Interrupts When Stepping (ST-Link menu) 651
Disable Interrupts When Stepping (TI MSP-FET menu) . 654
Disable Interrupts When Stepping (TI XDS menu). 657
__disableInterrupts (C-SPY system macro) 451
disable_check (pragma directive) 384
--disable_interrupts (C-SPY command line option) 532
Disassemble in Arm mode (Disassembly menu). 70
Disassemble in Arm64 mode (Disassembly menu). 71
Disassemble in Auto mode (Disassembly menu) 71
Disassemble in Current processor mode
(Disassembly menu) . 71
Disassemble in Thumb mode (Disassembly menu). 70
Disassembly menu (C-SPY main window). 70
Disassembly window . 83

context menu . 85, 398
disclaimer . 2
division by zero, detecting . 360
DLIB

consuming breakpoints . 130
naming convention. 34

do (macro statement) . 437
document conventions . 33
documentation

overview of guides. 31
overview of this guide . 30
this guide . 29

--download_only (C-SPY command line option) 533
Driver (debugger option) . 585
__driverType (C-SPY system macro) 451
--drv_catch_exceptions (C-SPY command line option) . . 533
--drv_communication (C-SPY command line option). . . . 534
--drv_communication_log (C-SPY command line option) 538
--drv_debugger_cache (C-SPY command line option) . . . 538

--drv_default_breakpoint (C-SPY command line option) . 539
-- drv_enforce_mem_config
(C-SPY command line option) . 540
--drv_exclude_from_verify
(C-SPY command line option) . 540
--drv_interface (C-SPY command line option) 541
--drv_interface_speed (C-SPY command line option) . . . 542
--drv_mem_ap (C-SPY command line option) 543
--drv_reset_to_cpu_start (C-SPY command line option) . 543
--drv_restore_breakpoints (C-SPY command line option) 544
--drv_suppress_download (C-SPY command line option) 519
--drv_swo_clock_setup (C-SPY command line option) . . 544
--drv_trace_settings (C-SPY command line option) 545
--drv_vector_table_base (C-SPY command line option). . 546
--drv_verify_download (C-SPY command line option) . . 519
Duration (CMSIS-DAP option) . 597
Duration (I-jet option). 604

E
Edit Breakpoint. 87
Edit Memory Range dialog box . 194
Edit Memory Range dialog box (C-SPY simulator) 198
Edit Memory Range dialog box
(C-SPY hardware debugger drivers) 203
Edit Nickname (Debug Probe Selection dialog box). 51
Edit Settings (Trace toolbar) . 230
edition, of this guide . 2
ELF entry point

disabling warning when 0x0 . 572
EmbeddedICE macrocell . 128
Emulator (TI XDS option) . 627
__emulatorSpeed (C-SPY system macro) 452
__emulatorStatusCheckOnRead (C-SPY system macro) . 453
Enable debug authentication (debugger option) 590
Enable interrupt simulation
(Interrupt Configuration option) . 412
Enable multicore debugging (ST-LINK option) 622
Enable runtime checking (C-RUN option) 374, 376
__enableInterrupts (C-SPY system macro) 453

AFE1_AFE2-1:1

666
C-SPY® Debugging Guide
for Arm

Enable/Disable Breakpoint
(Disassembly window context menu) 87
Enable/Disable (Trace toolbar) . 230
End address (Memory Save option) 176
--endian (C-SPY command line option) 519
endianness. See byte order
Enforce Memory Configuration (CMSIS-DAP menu) . . . 637
Enforce Memory Configuration (GDB Server menu)639–640
Enforce Memory Configuration (I-jet menu) 643
Enforce Memory Configuration (J-Link menu) 646
Enforce Memory Configuration (ST-Link menu) 651
Enforce Memory Configuration (TI MSP-FET menu) . . . 653
Enforce Memory Configuration (TI Stellaris menu) 655
Enforce Memory Configuration (TI XDS menu) 657
Enter Location dialog box. 159
Erase main and Information memory inc. IP PROTECTED
area (TI MSP-FET option) . 625
Erase main and Information memory
(TI MSP-FET option) . 625
Erase main memory (TI MSP-FET option). 624
error checking (C-RUN), documentation 32
ETB trace . 210
ETM trace. 210
ETM Trace Settings dialog box (I-jet) 219
ETM/ETB (J-Link/J-Trace option) 615
ETR trace . 210
__evaluate (C-SPY system macro) 454
Evaluate Now
(Macro Quicklaunch window context menu) 514
Event Log Summary window . 274
Event Log window . 271
Event Log (Timeline window context menu) 288
Events graph (Timeline window) 286
examples

C-SPY macros . 429
interrupts

interrupt logging . 409
timer . 406

macros
checking status of register. 432

creating a log macro . 433
using Quick Watch . 432

performing tasks and continue execution 137
tracing incorrect function arguments 136

EXC (Generate setting). 224
Exception Viewer window . 93
execConfigureTraceETM (C-SPY setup macro). 440
execConfigureTraceSWO (C-SPY setup macro) 440
execUserAttach (C-SPY setup macro) 441
execUserCoreConnect (C-SPY setup macro) 444
execUserExecutionStarted (C-SPY setup macro) 441
execUserExecutionStopped (C-SPY setup macro) 441
execUserExit (C-SPY setup macro) 443
execUserFlashExit (C-SPY setup macro) 443
execUserFlashInit (C-SPY setup macro). 442
execUserFlashReset (C-SPY setup macro) 442
execUserPreload (C-SPY setup macro) 441
execUserPreReset (C-SPY setup macro). 443
execUserReset (C-SPY setup macro) 443
execUserSetup (C-SPY setup macro) 442
executed code, covering . 309
execution history, tracing . 217
execution mode. 45
Execution state (Cores window) . 397
__expandVar (C-SPY system macro) 454
Explicit (Probe config setting) 598, 605
expressions. See C-SPY expressions
Extend to cover requested range
(Trigger range setting) . . . 149, 153, 243, 245, 247, 250, 252
extended command line file, for cspybat. 547
Extern (JTAG Watchpoints option) 145
Extra Options, for C-SPY . 591
E2 menu (C-SPY driver). 639
E2 setup options . 600

F
-f (cspybat option). 547
Factory ranges (Memory Configuration option) 201

AFE1_AFE2-1:1

Index

667

Fast model platform . 594
File format (Memory Save option) 176
file types

device description, specifying in IDE 57
macro . 57, 585

filename extensions
ddf, selecting device description file 57
mac, using macro file . 57

Filename (Memory Restore option) 177
Filename (Memory Save option) 177
Fill dialog box. 178
__fillMemory8 (C-SPY system macro) 455
__fillMemory16 (C-SPY system macro). 456
__fillMemory32 (C-SPY system macro). 457
__fillMemory64 (C-SPY system macro). 458
Find in Trace dialog box . 253
Find in Trace window. 255
Find in Trace (Disassembly window context menu) 87
Find (Memory window context menu) 175
Find (Trace toolbar) . 230
first activation time (interrupt property), definition of . . . 403
First activation (Interrupt Configuration option) 411
Flash breakpoints dialog box . 158
Flash breakpoints, overview . 128
flash loader

parameters to control . 580
specifying relocation . 580
specifying the path to . 580
using . 575

Flash Loader Overview dialog box 577
flash memory, load library module to 473
--flash_loader (C-SPY command line option). 547
__fmessage (C-SPY macro keyword) 438
Focus on Core (Cores window context menu) 398
FOLD (Generate setting) . 224
for (macro statement) . 437
Force Interrupt
(Available Interrupts window context menu) 414
Force (SWO Trace Window Settings option) 223
Forced Interrupts (Simulator menu) 633

Format
(Registers User Groups Setup window context menu) . . . 190
--fpu (C-SPY command line option) 520
From file (Probe config setting) 598, 605
From the probe (E2 setup option) 600
Function Profiler window . 301
Function Profiler (I-jet menu) . 645
Function Profiler (Simulator menu) 633
function profiling

real-time. 294
Function Trace window . 238
functions

C-SPY running to when starting 56, 585
most time spent in, locating . 293

--function_profiling (cspybat option) 548

G
GDB Server menu (C-SPY driver) 640
__gdbserver_exec_command (C-SPY system macro). . . . 459
--gdbserv_exec_command (C-SPY command line option)548
Generate (SWO Trace Window Settings option) 224
--generate_entries_without_bounds (compiler option) . . . 381
generate_entry__without_bounds (pragma directive) 384
__getArg (C-SPY system macro) 445
__getNumberOfCores (C-SPY system macro) 459
__getSelectedCore (C-SPY system macro). 459
__getTracePortSize (C-SPY system macro) 460
Go To Source
(Timeline window context menu) . . . 280, 285, 289, 347, 424
Go (Debug menu) . 79
G+LINK menu . 641
G+LINK, Setup options . 601

H
Halfword (Data setting) . 145
hardware setup, power consumption because of 327
Hardware (Default breakpoint type setting) 155

AFE1_AFE2-1:1

668
C-SPY® Debugging Guide
for Arm

__hasDAPRegs (C-SPY system macro) 461
heap . 351
heap integrity violations, detecting 370
heap memory leaks, detecting . 368
heap usage error, detecting . 367
highlighting, in C-SPY . 80
Hold time (Interrupt Configuration option). 411
hold time (interrupt property), definition of 403
__hwJetResetWithStrategy (C-SPY system macro) 461
__hwReset (C-SPY system macro) 462
__hwResetRunToBp (C-SPY system macro) 462
__hwResetWithStrategy (C-SPY system macro) 464
__hwRunToBreakpoint (C-SPY system macro) 464

I
IAR debugger driver plugin (debugger option) 630
icons, in this guide . 34
ID code (E2 setup option) . 600
if else (macro statement) . 437
if (macro statement) . 437
Ignore (Report Assert option) . 95
--ignore_uninstrumented_pointers (compiler option) 381
--ignore_uninstrumented_pointers (linker option). 382
Images window. 72
Images, loading multiple. 587
immediate breakpoints, overview 127
implicit or explicit integer conversion, detecting 355
Input Mode dialog box . 91
input, special characters in Terminal I/O window. 91
insert checks for (C-RUN option) 375
installation directory . 33
Instruction Profiling (Disassembly window context menu) 86
integer conversion, detect implicit or explicit 355
Intel-extended, C-SPY output format 44
Interface speed . 598
Interface speed (I-jet option). 606
Interface speed (ST-LINK option) 620
Interface (CMSIS-DAP option) . 598

Interface (I-jet option). 606
Interface (J-Link/J-Trace option) 616
Interface (ST-LINK option) . 619
Interface (TI Stellaris option) . 626
Interface (TI XDS option). 628
interference, power consumption because of 327
Interrupt Configuration window . 410
interrupt handling, power consumption during 326
Interrupt Log graph in Timeline window 422
Interrupt Log Summary window. 341, 420
Interrupt Log Summary (TI XDS menu). 658
Interrupt Log window . 416
Interrupt Log (TI XDS menu) . 658
Interrupt Logs (Force setting) . 224
Interrupt Status window . 414
interrupt system, using device description file 405
interrupts

adapting C-SPY system for target hardware 405
simulated, introduction to . 401
timer, example . 406
using system macros . 404

Interrupts (Timeline window context menu) 424
__isBatchMode (C-SPY system macro) 465
__isMacroSymbolDefined (C-SPY system macro). 466
italic style, in this guide . 33–34
ITM Log (Force setting) . 224
ITM Stimulus Ports (SWO Configuration option) 228
I-jet communication problem . 606
I-jet JTAG interface . 602
I-jet menu (C-SPY driver) . 642
I-jet Trace . 602

J
--jet_board_cfg (C-SPY command line option) 548
--jet_board_did (C-SPY command line option) 549
--jet_cpu_clock (C-SPY command line option) 550
--jet_disable_pmu (C-SPY command line option) 550
--jet_disable_pmu_dap (C-SPY command line option). . . 551

AFE1_AFE2-1:1

Index

669

--jet_ir_length (C-SPY command line option) 551
--jet_power_from_probe (C-SPY command line option) . 551
--jet_probe (C-SPY command line option) 552
--jet_script_file (C-SPY command line option) 552
--jet_standard_reset (C-SPY command line option) 553
--jet_startup_connection_timeout
(C-SPY command line option) . 554
--jet_swo_on_d0 (C-SPY command line option) 555
--jet_swo_prescaler (C-SPY command line option) 555
--jet_swo_protocol (C-SPY command line option) 555
--jet_tap_position (C-SPY command line option) 556
__jlinkExecCommand (C-SPY system macro) 466
__jlinkExecMacro (C-SPY system macro) 467
--jlink_dcc_timeout (C-SPY command line option) 556
--jlink_device_select (C-SPY command line option) 557
--jlink_exec_commmand (C-SPY command line option) . 557
--jlink_initial_speed (C-SPY command line option) 558
--jlink_ir_length (C-SPY command line option). 558
--jlink_reset_strategy (C-SPY command line option) 559
--jlink_script_file (C-SPY command line option) 559
--jlink_trace_source (C-SPY command line option) 560
JTAG interfaces

I-jet . 602
J-Link. 611, 615

JTAG scan chain contains non-ARM devices
(Explicit probe configuration setting) 607
JTAG scan chain (CMSIS-DAP option) 599
JTAG scan chain (I-jet option) . 606
JTAG scan chain (J-Link/J-Trace option) 616
JTAG Watchpoints dialog box . 143
JTAG watchpoints, overview . 128
__jtagCommand (C-SPY system macro) 467
__jtagCP15IsPresent (C-SPY system macro) 468
__jtagCP15ReadReg (C-SPY system macro) 468
__jtagCP15WriteReg (C-SPY system macro). 468
__jtagData (C-SPY system macro) 469
__jtagRawRead (C-SPY system macro) 469
__jtagRawSync (C-SPY system macro) 470
__jtagRawWrite (C-SPY system macro). 471
__jtagResetTRST (C-SPY system macro) 472

JTAG/SWD speed (CMSIS-DAP option) 598
JTAG/SWD speed (J-Link/J-Trace option). 614
JTAG/SWD speed (TI Stellaris option) 626
JTAG/SWD speed (TI XDS option) 628
J-Link communication problem . 614
J-Link JTAG interface . 611, 615
J-Link menu (C-SPY driver). 646

L
labels (assembler), viewing. 102
Leave Target Running (CMSIS-DAP menu) 638
Leave Target Running (GDB Server menu) 639–640
Leave Target Running (I-jet menu). 643
Leave Target Running (J-Link menu) 647
Leave Target Running (ST-Link menu) 651
Leave Target Running (TI MSP-FET menu) 654
Leave Target Running (TI Stellaris menu) 656
Leave Target Running (TI XDS menu). 657
--leave_target_running (C-SPY command line option). . . 560
Length (Fill option). 178
library functions

C-SPY support for using, plugin module 565
lightbulb icon, in this guide. 34
Link condition (Trace Start option). 248
Link condition (Trace Stop option). 251, 253
linker options

typographic convention . 33
consuming breakpoints . 130

Little Endian (Memory window context menu) 174
Live Watch window . 112
--lmiftdi_reset_strategy (C-SPY command line option) . . 561
__loadImage (C-SPY system macro) 472
loading multiple debug files, list currently loaded 72
loading multiple images . 59
Locals window . 106
log breakpoints, overview. 126
loop statements, in C-SPY macros 437
low-power mode, power consumption during. 324

AFE1_AFE2-1:1

670
C-SPY® Debugging Guide
for Arm

LSU (Generate setting) . 224

M
mac (filename extension), using a macro file 57
--macro (C-SPY command line option) 561
macro files, specifying . 57, 585
Macro Quicklaunch window. 513
Macro Registration window . 509
macro statements . 436
macros

executing . 429
using . 427

--macro-param (C-SPY command line option) 562
main function, C-SPY running to when starting 56, 585
__makeString (C-SPY system macro) 446
--mapu (C-SPY command line option) 562
Mask (Address setting) . 144
Mask (Data setting). 145
Mask (Match data setting) 150, 242, 244, 248, 250, 253
master project (multicore debugging) 392
Match data (Data breakpoints option) 150
Match data (Trace Start option) 242, 244, 248
Match data (Trace Stop option). 250, 253
Memory access checking (Memory Access Setup option) 197
Memory Configuration dialog box (C-SPY simulator) . . . 196
Memory Configuration dialog box
(C-SPY hardware debugger drivers) 200
Memory Configuration (CADI menu) 634, 636
Memory Configuration (CMSIS-DAP menu) 637
Memory Configuration (GDB Server menu). 639–640
Memory Fill (Memory window context menu) 175
Memory Restore dialog box . 177
Memory Restore (Memory window context menu) 175
Memory Save dialog box . 176
Memory Save (Memory window context menu). 175
Memory window. 172
memory zones. 165
Memory (CADI option) . 594

__memoryRestore (C-SPY system macro) 473
__memorySave (C-SPY system macro) 474
menu bar, C-SPY-specific . 67
__message (C-SPY macro keyword) 438
__messageBoxYesCancel (C-SPY system macro) 475
__messageBoxYesNo (C-SPY system macro) 476
Messages window, amount of output 92
migration, from earlier IAR compilers 32
Mixed Mode (Disassembly window context menu) 87
Mode (JTAG Watchpoints option) 145
monospace font, meaning of in guide. See computer style
Motorola, C-SPY output format . 44
Move to PC (Disassembly window context menu) 85
--mspfet_erase_flash (C-SPY command line option) 562
--mspfet_interface_speed (C-SPY command line option) . 563
--mspfet_reset_strategy (C-SPY command line option) . . 563
--mspfet_settlingtime (C-SPY command line option) 564
--mspfet_vccvoltage (C-SPY command line option). 564
MTB trace. 210
multicore debugging . 391

asymmetric multicore debugging 392
session file . 399

Multicore toolbar . 399
Multicore (C-SPY options) . 588
--multicore_nr_of_cores (C-SPY command line option). . 564
Multi-target debug system (Explicit probe
configuration setting) . 606
Multi-target debug system
(Explicit probe configuration setting) 599

N
Name or PID of server to connect to (CADI option). 594
Name (Edit SFR option) . 194
naming conventions . 34
Navigate
(Timeline window context menu) . . . 279, 283, 287, 345, 423
Next Symbol (Symbolic Memory window context menu) 181
Non User (Mode setting) . 145
Normal (Break Condition setting). 143

AFE1_AFE2-1:1

Index

671

no_arith_checks (pragma directive) 385
no_bounds (pragma directive). 385
Number of cores (debugger option) 588
Nu-Link . 46

Setup options . 617
Nu-Link menu. 650

O
OP Fetch (Access Type setting) . 144
Open Setup Window (Timeline window context menu) . . 347
__openFile (C-SPY system macro). 476
Operation (Fill option) . 178
operators, sizeof in C-SPY . 100
optimizations, effects on variables 101
options

in the IDE . 583
on the command line . 527, 591

Options (Stack window context menu) 185
__orderInterrupt (C-SPY system macro). 477
Originator (debugger option) . 593
overflow, signed or unsigned . 357
Override default .board file (debugger option) 587
Override default (Probe configuration file setting) . . 599, 606
Override project default (SWO Configuration option) . . . 227
overriding the default stack setup 182

P
-p (C-SPY command line option) 565
__param (C-SPY macro keyword) 436
parameters

list of passed to the flash loader 578
tracing incorrect values of . 81
typographic convention . 33

part number, of this guide . 2
partner project (multicore debugging). 392
PC samples (Force setting) . 224
PC Sampling (SWO Configuration option). 226

PC (Cores window). 398
#PC (symbol) in C-SPY macros 99, 437
#PC32 (symbol) in C-SPY macros 99, 437
#PC64 (symbol) in C-SPY macros 99, 437
Perform mass erase before flashing (debugger option) . . . 587
performance monitoring . 313

setting up . 315
Performance Monitoring (I-jet menu) 645
peripheral units

debugging power consumption for. 321
detecting mistakenly unattended 325
detecting unattended . 325
device-specific . 61
displayed in Registers window. 164
in an event-driven system . 326
in C-SPY expressions . 99
initializing using setup macros. 428

peripheral units, in Register window. 164
Please select one symbol
(Resolve Symbol Ambiguity option) 124
--plugin (C-SPY command line option) 565
plugin modules (C-SPY). 44

loading . 57
Plugins (C-SPY options). 592
__popSimulatorInterruptExecutingStack
(C-SPY system macro) . 478
pop-up menu. See context menu
power consumption, measuring 294, 321
Power Log Setup window. 331
Power Log window. 334
Power Log (Timeline window context menu) 346
power sampling. 294
Power Sampling (SWO Configuration option) 229
Preceding bits (JTAG scan chain setting) 607
prerequisites, programming experience 29
Previous Symbol
(Symbolic Memory window context menu) 181
probability (interrupt property) . 412

definition of . 403
Probability % (Interrupt Configuration option). 412

AFE1_AFE2-1:1

672
C-SPY® Debugging Guide
for Arm

Probe config (CMSIS-DAP option) 598
Probe config (I-jet option) . 605
Probe configuration file (CMSIS-DAP option). 599
Probe configuration file (I-jet option) 606
__probeType (C-SPY system macro) 479
--proc_stack_xxx (C-SPY command line option) 566
Profile Selection (Timeline window context menu) . 281, 347
profiling

analyzing data . 296
on function level . 296
on instruction level. 298

profiling information, on functions and instructions 293
profiling sources

sampling . 294
trace (calls) . 294
trace (flat) . 294

program counter symbol, in C-SPY macros 99, 437
program execution

breaking . 126–127
in C-SPY . 75
multiple cores in C-SPY . 391

programming experience . 29
program. See application
Progress bar (Trace toolbar) . 230
projects, for debugging externally built applications. 58
PTM trace . 210
publication date, of this guide . 2
P&E Micro . 46

Setup options . 617

Q
Quick Watch window . 118

executing C-SPY macros . 432

R
RAM (Edit Memory Access option) 204
Range for (Viewing Range option) 290

Range (Break Condition setting). 144
Read (Access Type setting). 144
__readAPReg (C-SPY system macro) 480
__readDPReg (C-SPY system macro) 480
__readFile (C-SPY system macro) 481
__readFileByte (C-SPY system macro) 481
reading guidelines. 29
__readMemoryBuffer (C-SPY system macro) 447
__readMemoryByte (C-SPY system macro) 482
__readMemory8 (C-SPY system macro) 482
__readMemory16 (C-SPY system macro) 482
__readMemory32 (C-SPY system macro) 483
__readMemory64 (C-SPY system macro) 483
reference information, typographic convention. 34
register groups . 164

predefined, enabling. 186
Register User Groups Setup window 189
registered trademarks . 2
__registerMacroFile (C-SPY system macro) 484
Registers window . 186
registers, displayed in Registers window 186
Release JTAG on Go (TI MSP-FET menu) 654
Removal All Groups
(Registers User Groups Setup window context menu) . . . 191
Removal
(Registers User Groups Setup window context menu) . . . 190
Remove All (Macro Quicklaunch window context menu) 514
Remove (Macro Quicklaunch window context menu) . . . 514
Repeat interval (Interrupt Configuration option). 411
repeat interval (interrupt property), definition of 403
Replace (Memory window context menu) 175
Report Assert dialog box . 94
reset vector, specifying location of 546
Reset (CMSIS-DAP option) . 595
Reset (I-jet option) . 602
Reset (J-Link/J-Trace option) . 611
Reset (ST-Link option) . 619
Reset (TI Stellaris option) . 626
Reset (TI XDS option) . 627
__resetFile (C-SPY system macro) 484

AFE1_AFE2-1:1

Index

673

--reset_style (C-SPY command line option) 566
Resolve Source Ambiguity dialog box 161
Restore software breakpoints at (Breakpoints option). . . . 155
Restore (Memory Restore option). 177
__restoreSoftwareBreakpoints (C-SPY system macro). . . 484
return (macro statement) . 437
ROM-monitor, definition of . 44
ROM/Flash (Edit Memory Access option) 205
RTOS awareness debugging . 41
RTOS awareness (C-SPY plugin module) 42
Run to Cursor (Disassembly window context menu) 85
Run to Cursor, command for executing 80
Run to (C-SPY option) . 56, 585
runtime checking, setting options for C-RUN. 373
runtime error checking . 349

getting started
requirements for . 353

requirements for. 352
using C-RUN . 350

runtime error checking, documentation. 32
--runtime_checking (compiler option) 382
Run/Step/Stop affect all cores
(Cores window context menu) . 398
Run/Step/Stop affect current core only
(Cores window context menu) . 398
R/W (Access Type setting) . 144

S
sampling, profiling source . 294
Save Custom SFRs (SFR Setup window context menu) . . 194
Save to File (Timeline window context menu) 280
Save to File
(Register User Groups Setup window context menu) 191
Save (Memory Save option) . 177
Save (Trace toolbar) . 230
Scale (Viewing Range option) . 291
scripting C-SPY. See macros
--sdm_debug_architecture (C-SPY command line option) 568
--sdm_library (C-SPY command line option) 568

--sdm_library_hint (C-SPY command line option) 569
--sdm_manifest (C-SPY command line option) 569
Secure Debug Manager. 63
Secure Debug Manager (debugger options) 590
Secure Device (TI MSP-FET menu) 654
Select Graphs
(Timeline window context menu) . . . 281, 285, 289, 347, 425
Select plugins to load (debugger option). 592
Select (Probe configuration file setting) 599, 606
__selectCore (C-SPY system macro) 485
--semihosting (C-SPY command line option) 570
Serial no (E2 setup option) . 600
session file (multicore debugging) 399
Session Overview (CMSIS-DAP menu) 638
Session Overview (I-jet menu) . 645
Set Data Breakpoint (Memory window context menu) . . . 175
Set Data Log Breakpoint
(Memory window context menu) 176
Set Next Statement (Disassembly window context menu) . 87
__setCodeBreak (C-SPY system macro). 486
__setDataBreak (C-SPY system macro) 487
__setDataLogBreak (C-SPY system macro) 489
__setLogBreak (C-SPY system macro) 490
__setSimBreak (C-SPY system macro) 492
__setTraceStartBreak (C-SPY system macro) 493
__setTraceStopBreak (C-SPY system macro). 495
setup macro file, registering . 57
setup macro functions . 428

reserved names. 439
Setup macros (debugger option) . 585
Setup (C-SPY options) . 585
SFR

in Registers window. 187
using as assembler symbols . 99

SFR Setup window . 191
SFR/Uncached (Edit Memory Access option) 205
shared mode debugging, ST-LINK 619
shifting, detecting bit loss or undefined behavior 359
shortcut menu. See context menu
Show All (SFR Setup window context menu). 193

AFE1_AFE2-1:1

674
C-SPY® Debugging Guide
for Arm

Show Custom SFRs only
(SFR Setup window context menu) 193
Show Factory SFRs only
(SFR Setup window context menu) 193
Show Numerical Value
(Timeline window context menu) 285, 289, 347
Show offsets (Stack window context menu) 184
Show timestamp (ETM Trace Settings option) 222
Show Timing (Timeline window context menu). 280
Show variables (Stack window context menu) 184
signed or unsigned overflow, detecting. 357
--silent (C-SPY command line option) 570
Simple (multicore debugger option) 588
Simulated Frequency dialog box. 635
simulating interrupts, enabling/disabling 412
Simulator menu. 632, 634
simulator, introduction . 48
64-bit mode

definition . 45
Size (Edit SFR option) . 195
Size (Timeline window context menu) . . . 285, 289, 346–347
Size (Trace Filter option) . 252
Size (Trace Start option) . 243, 247
Size (Trace Stop option) . 245, 249
sizeof . 100
slave. See partner
SLEEP (Generate setting) . 224
Smart Analog

displaying collected data . 286
__smessage (C-SPY macro keyword). 438
--sockets (C-SPY command line option). 571
software delay, power consumption during. 324
Software (Default breakpoint type setting) 155
Solid Graph (Timeline window context menu) 285
Sort by (Timeline window context menu). 424
__sourcePosition (C-SPY system macro) 496
special function registers (SFR)

in Registers window. 187
using as assembler symbols . 99

Stack window . 182

stack.mac . 427
Stall processor on FIFO full (ETM Trace Settings option) 222
standard C, sizeof operator in C-SPY 100
Start address (Fill option) . 178
Start address (Memory Save option) 176
Start Core (Cores window context menu) 398
State Log graph (Timeline window) 344
State Log window. 339
static analysis tool, documentation for 32
Statics window . 115
Status (Cores window) . 398
Step Into, description . 77
Step Out, description. 78
Step Over, description. 77
step points, definition of . 76
--stlink_reset_strategy (C-SPY command line option) . . . 571
Stop Core (Cores window context menu) 398
__strFind (C-SPY system macro) 497
ST-LINK communication problem 620
ST-LINK menu (C-SPY driver) . 650
__subString (C-SPY system macro) 497
Suppress download (debugger option) 586
--suppress_entrypoint_warning
(C-SPY command line option) . 572
SWD interface, information in Trace window 213
switch, detect unhandled cases . 360
SWO communication channel

enabling . 541, 606, 616, 626
for timestamps in trace. 223

SWO Configuration dialog box . 225
SWO on the TraceD0 pin (I-jet option). 610
SWO prescaler (I-jet option). 610
SWO protocol (I-jet option) 608, 610
SWO trace . 211
SWO Trace Settings dialog box . 223
SWO Trace Settings dialog box (I-jet) 223
Symbolic Memory window. 179
Symbols window . 121
symbols, in C-SPY expressions . 98
__system1 (C-SPY system macro) 498

AFE1_AFE2-1:1

Index

675

__system2 (C-SPY system macro) 499
__system3 (C-SPY system macro) 500

T
Target number (Explicit probe configuration setting)599, 607
Target power (I-jet option) . 604
Target power (ST-LINK option) . 620
target system, definition of . 43
Target with multiple CPUs
(Explicit probe configuration setting) 599, 607
__targetDebuggerVersion (C-SPY system macro) 500
TCP/IP address or hostname (GDB Server option) 601
Terminal IO Log Files (Terminal IO Log Files option) . . . 91
Terminal I/O Log Files dialog box 91
Terminal I/O window . 81, 90
Text search (Find in Trace option) 254
Third-Party Driver (debugger options) 630
TI emulation package installation path (TI XDS option) . 628
TI MSP-FET menu (C-SPY driver) 653
TI Stellaris menu (C-SPY driver) 655
TI XDS menu (C-SPY driver). 656
Time Axis Unit
(Timeline window context menu) . . . 281, 285, 289, 347, 425
time interval, in Timeline window 299
Time Stamps (Force setting) . 223
Timeline window . 422
Timeline window (Call Stack graph) 277
Timeline window (Data Log graph) 282
Timeline window (Events graph) 286
Timeline window (State Log graph) 344
--timeout (C-SPY command line option) 572
timer interrupt, example . 406
timestamps in SWO trace . 223
Toggle Breakpoint (Code)
(Disassembly window context menu) 86
Toggle Breakpoint (Log)
(Disassembly window context menu) 86
Toggle Breakpoint (Trace Start)
(Disassembly window context menu) 86

Toggle Breakpoint (Trace Stop)
(Disassembly window context menu) 86
Toggle source (Trace toolbar). 230
__toLower (C-SPY system macro) 501
tools icon, in this guide . 34
__toString (C-SPY system macro) 501
__toUpper (C-SPY system macro) 502
trace . 209, 257
Trace Filter breakpoints dialog box (I-jet) 245
Trace Filter breakpoints dialog box (J-Link). 251
Trace Save dialog box. 256
Trace Start breakpoints dialog box (J-Link/J-Trace) 246
Trace Start breakpoints dialog box
(I-jet and CMSIS-DAP) . 241
Trace Start Trigger breakpoint dialog box 239
trace start/stop trigger breakpoints, overview 126
Trace Stop breakpoints dialog box (J-Link/J-Trace) 249
Trace Stop breakpoints dialog box
(I-jet and CMSIS-DAP) . 243
Trace Stop Trigger breakpoint dialog box. 240
Trace window . 229
trace (calls), profiling source . 294
trace (flat), profiling source . 294
trademarks . 2
Trigger at (Trace Start option) 242, 244, 246–247
Trigger at (Trace Stop option). 249
Trigger range (Data breakpoints option) 149
Trigger range (Data Log breakpoints option) 153
Trigger range (Trace Start option) . . 243, 245, 247, 250, 252
typographic conventions . 33

U
Unavailable, C-SPY message . 101
unhandled cases in switch statements, detecting 360
__unloadImage (C-SPY system macro) 502
Use command line options (debugger option). 591
Use Extra Images (debugger option). 587
Use flash loader (debugger option) 586
Use manual ranges (Memory Access Setup option) 197

AFE1_AFE2-1:1

676
C-SPY® Debugging Guide
for Arm

Use ranges based on (Memory Access Setup option) 196
Used ranges (Memory Configuration option) 202
user application, definition of . 43
User (Mode setting) . 145
using checked variant . 351

V
Value (Address setting). 144
Value (Data setting) . 145
Value (Fill option) . 178
Value (Match data setting) 150, 242, 244, 248, 250, 253
__var (C-SPY macro keyword). 435
variables

effects of optimizations . 101
in C-SPY expressions . 99
information, limitation on . 101

variance (interrupt property), definition of 403
Variance % (Interrupt Configuration option) 411
Vector Catch dialog box . 157
Vector Catch (CMSIS-DAP menu). 638
Vector Catch (I-jet menu) . 645
Vector Catch (J-Link menu) . 647
Vector Catch (ST-Link menu) . 651
Vector Catch (TI Stellaris menu) 655
Vector Catch (TI XDS menu) . 657
Verify download (debugger option) 586
version number

of this guide . 2
Viewing Range dialog box . 290
Viewing Range
(Timeline window context menu) 284, 288, 346
virtual platform . 594
Visual State, C-SPY plugin module for 45

W
waiting for device, power consumption during 324
__wallTime_ms (C-SPY system macro) 503

warnings icon, in this guide . 34
Watch window . 109

using . 97
web sites, recommended . 32
while (macro statement) . 437
windows, specific to C-SPY . 71
Word (Data setting) . 145
Write (Access Type setting) . 144
__writeAPReg (C-SPY system macro) 504
__writeDPReg (C-SPY system macro) 505
__writeFile (C-SPY system macro) 505
__writeFileByte (C-SPY system macro) 506
__writeMemoryBuffer (C-SPY system macro). 448
__writeMemoryByte (C-SPY system macro) 506
__writeMemory8 (C-SPY system macro) 506
__writeMemory16 (C-SPY system macro) 506
__writeMemory32 (C-SPY system macro) 507
__writeMemory64 (C-SPY system macro) 508

X
--xds_board_file (C-SPY command line option). 572
--xds_reset_strategy (C-SPY command line option) 573
--xds_rootdir (C-SPY command line option) 574

Z
zone

in C-SPY . 165
part of an absolute address . 160

Zone (Edit SFR option). 195
Zoom
(Timeline window context menu) . . . 279, 284, 288, 346, 424

Symbols
__abortLaunch (C-SPY system macro). 448
__argCount (C-SPY system macro) 444
__as_get_base (operator) . 385

AFE1_AFE2-1:1

Index

677

__as_get_bound (operator) . 385
__as_make_bounds (operator) . 386
__bytes2Word16 (C-SPY system macro) 444
__bytes2Word32 (C-SPY system macro) 444
__cancelAllInterrupts (C-SPY system macro) 449
__cancelInterrupt (C-SPY system macro). 449
__clearBreak (C-SPY system macro) 450
__closeFile (C-SPY system macro) 450
__delay (C-SPY system macro) . 450
__disableInterrupts (C-SPY system macro) 451
__driverType (C-SPY system macro) 451
__emulatorSpeed (C-SPY system macro) 452
__emulatorStatusCheckOnRead (C-SPY system macro) . 453
__enableInterrupts (C-SPY system macro) 453
__evaluate (C-SPY system macro) 454
__expandVar (C-SPY system macro) 454
__fillMemory8 (C-SPY system macro) 455
__fillMemory16 (C-SPY system macro). 456
__fillMemory32 (C-SPY system macro). 457
__fillMemory64 (C-SPY system macro). 458
__fmessage (C-SPY macro keyword) 438
__gdbserver_exec_command (C-SPY system macro). . . . 459
__getArg (C-SPY system macro) 445
__getNumberOfCores (C-SPY system macro) 459
__getSelectedCore (C-SPY system macro). 459
__getTracePortSize (C-SPY system macro) 460
__hasDAPRegs (C-SPY system macro) 461
__hwJetResetWithStrategy (C-SPY system macro) 461
__hwReset (C-SPY system macro) 462
__hwResetRunToBp (C-SPY system macro) 462
__hwResetWithStrategy (C-SPY system macro) 464
__hwRunToBreakpoint (C-SPY system macro) 464
__isBatchMode (C-SPY system macro) 465
__isMacroSymbolDefined (C-SPY system macro) 466
__jlinkExecCommand (C-SPY system macro) 466
__jlinkExecMacro (C-SPY system macro) 467
__jtagCommand (C-SPY system macro) 467
__jtagCP15IsPresent (C-SPY system macro) 468
__jtagCP15ReadReg (C-SPY system macro) 468

__jtagCP15WriteReg (C-SPY system macro). 468
__jtagData (C-SPY system macro) 469
__jtagRawRead (C-SPY system macro) 469
__jtagRawSync (C-SPY system macro) 470
__jtagRawWrite (C-SPY system macro). 471
__jtagResetTRST (C-SPY system macro) 472
__loadImage (C-SPY system macro) 472
__makeString (C-SPY system macro) 446
__memoryRestore (C-SPY system macro) 473
__memorySave (C-SPY system macro) 474
__message (C-SPY macro keyword) 438
__messageBoxYesCancel (C-SPY system macro) 475
__messageBoxYesNo (C-SPY system macro) 476
__openFile (C-SPY system macro). 476
__orderInterrupt (C-SPY system macro). 477
__param (C-SPY macro keyword) 436
__popSimulatorInterruptExecutingStack
(C-SPY system macro) . 478
__probeType (C-SPY system macro) 479
__readAPReg (C-SPY system macro) 480
__readDPReg (C-SPY system macro) 480
__readFile (C-SPY system macro) 481
__readFileByte (C-SPY system macro) 481
__readMemoryBuffer (C-SPY system macro) 447
__readMemoryByte (C-SPY system macro) 482
__readMemory8 (C-SPY system macro) 482
__readMemory16 (C-SPY system macro) 482
__readMemory32 (C-SPY system macro) 483
__readMemory64 (C-SPY system macro) 483
__registerMacroFile (C-SPY system macro) 484
__resetFile (C-SPY system macro) 484
__restoreSoftwareBreakpoints (C-SPY system macro). . . 484
__selectCore (C-SPY system macro) 485
__setCodeBreak (C-SPY system macro). 486
__setDataBreak (C-SPY system macro) 487
__setDataLogBreak (C-SPY system macro) 489
__setLogBreak (C-SPY system macro) 490
__setSimBreak (C-SPY system macro) 492
__setTraceStartBreak (C-SPY system macro) 493
__setTraceStopBreak (C-SPY system macro). 495

AFE1_AFE2-1:1

678
C-SPY® Debugging Guide
for Arm

__smessage (C-SPY macro keyword). 438
__sourcePosition (C-SPY system macro) 496
__strFind (C-SPY system macro) 497
__subString (C-SPY system macro) 497
__system1 (C-SPY system macro) 498
__system2 (C-SPY system macro) 499
__system3 (C-SPY system macro) 500
__targetDebuggerVersion (C-SPY system macro) 500
__toLower (C-SPY system macro) 501
__toString (C-SPY system macro) 501
__toUpper (C-SPY system macro) 502
__unloadImage (C-SPY system macro) 502
__var (C-SPY macro keyword). 435
__wallTime_ms (C-SPY system macro) 503
__writeAPReg (C-SPY system macro) 504
__writeDPReg (C-SPY system macro) 505
__writeFile (C-SPY system macro) 505
__writeFileByte (C-SPY system macro) 506
__writeMemoryBuffer (C-SPY system macro). 448
__writeMemoryByte (C-SPY system macro) 506
__writeMemory8 (C-SPY system macro) 506
__writeMemory16 (C-SPY system macro) 506
__writeMemory32 (C-SPY system macro) 507
__writeMemory64 (C-SPY system macro) 508
-f (cspybat option). 547
-p (C-SPY command line option) 565
--application_args (C-SPY command line option) 527
--attach_to_running_target
(C-SPY command line option) . 528
--backend (C-SPY command line option) 528
--BE32 (C-SPY command line option) 519
--BE8 (C-SPY command line option) 519
--bounds_table_size (linker option) 380
--code_coverage_file (C-SPY command line option) 529
--cpu (C-SPY command line option). 519
--cycles (C-SPY command line option) 529
--debug_auth_enforce (C-SPY command line option) . . . 530
--debug_auth_settings (C-SPY command line option) . . . 530
--debug_auth_type (C-SPY command line option) 531
--debug_file (cspybat option) . 531

--debug_heap (linker option) . 381
--device (C-SPY command line option) 532
--device_macro (C-SPY command line option) 532
--disable_interrupts (C-SPY command line option) 532
--download_only (C-SPY command line option) 533
--drv_catch_exceptions (C-SPY command line option) . . 533
--drv_communication (C-SPY command line option). . . . 534
--drv_communication_log
(C-SPY command line option) . 538
--drv_debugger_cache (C-SPY command line option) . . . 538
--drv_default_breakpoint (C-SPY command line option) . 539
--drv_enforce_mem_config
(C-SPY command line option) . 540
--drv_exclude_from_verify
(C-SPY command line option) . 540
--drv_interface (C-SPY command line option) 541
--drv_interface_speed (C-SPY command line option) . . . 542
--drv_mem_ap (C-SPY command line option) 543
--drv_reset_to_cpu_start (C-SPY command line option) . 543
--drv_restore_breakpoints
(C-SPY command line option) . 544
--drv_suppress_download
(C-SPY command line option) . 519
--drv_swo_clock_setup
(C-SPY command line option) . 544
--drv_trace_settings
(C-SPY command line option) . 545
--drv_vector_table_base (C-SPY command line option). . 546
--drv_verify_download (C-SPY command line option) . . 519
--endian (C-SPY command line option) 519
--flash_loader (C-SPY command line option). 547
--fpu (C-SPY command line option) 520
--function_profiling (cspybat option) 548
--gdbserv_exec_command
(C-SPY command line option) . 548
--generate_entries_without_bounds (compiler option) . . . 381
--ignore_uninstrumented_pointers (compiler option) 381
--ignore_uninstrumented_pointers (linker option). 382
--jet_board_cfg (C-SPY command line option) 548
--jet_board_did (C-SPY command line option) 549

AFE1_AFE2-1:1

Index

679

--jet_cpu_clock (C-SPY command line option) 550
--jet_disable_pmu (C-SPY command line option) 550
--jet_disable_pmu_dap (C-SPY command line option). . . 551
--jet_ir_length (C-SPY command line option) 551
--jet_power_from_probe (C-SPY command line option) . 551
--jet_probe (C-SPY command line option) 552
--jet_script_file (C-SPY command line option) 552
--jet_standard_reset (C-SPY command line option) 553
--jet_startup_connection_timeout
(C-SPY command line option) . 554
--jet_swo_on_d0 (C-SPY command line option) 555
--jet_swo_prescaler (C-SPY command line option) 555
--jet_swo_protocol (C-SPY command line option) 555
--jet_tap_position (C-SPY command line option) 556
--jlink_dcc_timeout (C-SPY command line option) 556
--jlink_device_select (C-SPY command line option) 557
--jlink_exec_commmand (C-SPY command line option) . 557
--jlink_initial_speed (C-SPY command line option) 558
--jlink_ir_length (C-SPY command line option). 558
--jlink_reset_strategy (C-SPY command line option) 559
--jlink_script_file (C-SPY command line option) 559
--jlink_trace_source (C-SPY command line option) 560
--leave_target_running (C-SPY command line option). . . 560
--lmiftdi_reset_strategy (C-SPY command line option) . . 561
--macro (C-SPY command line option) 561
--macro_param (C-SPY command line option). 562
--mapu (C-SPY command line option) 562
--mspfet_erase_flash (C-SPY command line option) 562
--mspfet_interface_speed (C-SPY command line option) . 563
--mspfet_reset_strategy (C-SPY command line option) . . 563
--mspfet_settlingtime (C-SPY command line option) 564
--mspfet_vccvoltage (C-SPY command line option). 564
--multicore_nr_of_cores (C-SPY command line option). . 564
--plugin (C-SPY command line option) 565
--proc_stack_xxx (C-SPY command line option) 566
--reset_style (C-SPY command line option) 566
--rtc_enable (cspybat option)) . 387
--rtc_output (cspybat option)) . 387
--rtc_raw_to_txt (cspybat option)) 387
--rtc_rules (cspybat option)) . 388

--runtime_checking (compiler option) 382
--sdm_debug_architecture (C-SPY command line option) 568
--sdm_library (C-SPY command line option) 568
--sdm_library_hint (C-SPY command line option) 569
--sdm_manifest (C-SPY command line option) 569
--semihosting (C-SPY command line option) 570
--silent (C-SPY command line option) 570
--sockets (C-SPY command line option). 571
--stlink_reset_strategy (C-SPY command line option) . . . 571
--suppress_entrypoint_warning
(C-SPY command line option) . 572
--timeout (C-SPY command line option) 572
--xds_board_file (C-SPY command line option). 572
--xds_reset_strategy (C-SPY command line option) 573
--xds_rootdir (C-SPY command line option) 574
#PC (symbol) in C-SPY macros 99, 437
#PC32 (symbol) in C-SPY macros 99, 437
#PC64 (symbol) in C-SPY macros 99, 437

Numerics
1x Units (Symbolic Memory window context menu) 181
32-bit mode

definition . 45
64-bit mode

definition . 45
8x Units (Memory window context menu) 174

	Brief contents
	Contents
	Tables
	Preface
	Who should read this guide
	Required knowledge

	How to use this guide
	What this guide contains
	Part 1. Basic debugging
	Part 2. Analyzing your application
	Part 3. Advanced debugging
	Part 4. Additional reference information

	Other documentation
	User and reference guides
	The online help system
	Web sites

	Document conventions
	Typographic conventions
	Naming conventions

	Part 1. Basic debugging
	The IAR C-SPY Debugger
	Introduction to C-SPY
	An integrated environment
	General C-SPY debugger features
	RTOS awareness

	Debugger concepts
	C-SPY and target systems
	The debugger
	The target system
	The application
	C-SPY debugger systems
	The ROM-monitor program
	Third-party debuggers
	C-SPY plugin modules

	Execution modes
	C-SPY drivers overview
	Differences between the C-SPY drivers

	The IAR C-SPY Simulator
	Two simulator drivers
	Supported features

	The C-SPY hardware debugger drivers
	Communication overview
	Hardware installation
	USB driver installation

	Getting started using C-SPY
	Setting up C-SPY
	Setting up for debugging
	Executing from reset
	Using a setup macro file
	Selecting a device description file
	Loading plugin modules

	Starting C-SPY
	Starting a debug session
	Loading executable files built outside of the IDE
	Starting a debug session with source files missing
	Loading multiple debug images
	Editing in C-SPY windows

	Adapting for target hardware
	Modifying a device description file
	Initializing target hardware before C-SPY starts
	Remapping memory
	Using predefined C-SPY macros for device support
	Debug authentication

	An overview of the debugger startup
	Debugging code in flash
	Debugging code in RAM

	Reference information on starting C-SPY
	C-SPY Debugger main window
	Images window
	Get Alternative File dialog box

	Executing your application
	Introduction to application execution
	Briefly about application execution
	Source and disassembly mode debugging
	Single stepping
	Troubleshooting slow stepping speed
	Running the application
	Highlighting
	Viewing the call stack
	Terminal input and output
	Debug logging

	Reference information on application execution
	Disassembly window
	Call Stack window
	Terminal I/O window
	Terminal I/O Log File dialog box
	Debug Log window
	Fault exception viewer window
	Report Assert dialog box
	Autostep settings dialog box

	Variables and expressions
	Introduction to working with variables and expressions
	Briefly about working with variables and expressions
	C-SPY expressions
	Limitations on variable information

	Working with variables and expressions
	Using the windows related to variables and expressions
	Viewing assembler variables

	Reference information on working with variables and expressions
	Auto window
	Locals window
	Watch window
	Live Watch window
	Statics window
	Quick Watch window
	Symbols window
	Resolve Symbol Ambiguity dialog box

	Breakpoints
	Introduction to setting and using breakpoints
	Reasons for using breakpoints
	Briefly about setting breakpoints
	Breakpoint types
	Breakpoint icons
	Breakpoints in the C-SPY simulator
	Breakpoints in the C-SPY hardware debugger drivers
	Breakpoint consumers
	Breakpoint options

	Setting breakpoints
	Various ways to set a breakpoint
	Toggling a simple code breakpoint
	Setting breakpoints using the dialog box
	Setting a data breakpoint in the Memory window
	Setting breakpoints using system macros
	Setting a breakpoint on an exception vector
	Setting breakpoints in _ _ramfunc declared functions
	Useful breakpoint hints

	Reference information on breakpoints
	Breakpoints window
	Breakpoint Usage window
	Code breakpoints dialog box
	JTAG Watchpoints dialog box
	Log breakpoints dialog box
	Data breakpoints dialog box
	Data Log breakpoints dialog box
	Data Log breakpoints dialog box (C-SPY hardware drivers)
	Breakpoints options
	Immediate breakpoints dialog box
	Vector Catch dialog box
	Flash breakpoints dialog box
	Enter Location dialog box
	Resolve Source Ambiguity dialog box

	Memory and registers
	Introduction to monitoring memory and registers
	Briefly about monitoring memory and registers
	C-SPY memory zones
	Memory configuration for the C-SPY simulator
	Memory configuration for C-SPY hardware debugger drivers

	Monitoring memory and registers
	Defining application-specific register groups
	Monitoring stack usage

	Reference information on memory and registers
	Memory window
	Memory Save dialog box
	Memory Restore dialog box
	Fill dialog box
	Symbolic Memory window
	Stack window
	Registers window
	Register User Groups Setup window
	SFR Setup window
	Edit SFR dialog box
	Memory Configuration dialog box for the C-SPY simulator
	Edit Memory Range dialog box for the C-SPY simulator
	Memory Configuration dialog box for C-SPY hardware debugger drivers
	Edit Memory Range dialog box for C-SPY hardware debugger drivers

	Part 2. Analyzing your application
	Trace
	Introduction to using trace
	Reasons for using trace
	Briefly about trace
	Requirements for using trace

	Collecting and using trace data
	Getting started with ETM trace
	Getting started with SWO trace
	Getting started with MTB trace
	Setting up concurrent use of ETM and SWO
	Trace data collection using breakpoints
	Searching in trace data
	Browsing through trace data

	Reference information on trace
	ETM Trace Settings dialog box (I-jet)
	ETM Trace Settings dialog box (J-Link/J-Trace)
	SWO Trace Window Settings dialog box
	SWO Configuration dialog box
	Trace window
	Function Trace window
	Trace Start Trigger breakpoint dialog box
	Trace Stop Trigger breakpoint dialog box
	Trace Start breakpoints dialog box (I-jet and CMSIS-DAP)
	Trace Stop breakpoints dialog box (I-jet and CMSIS-DAP)
	Trace Filter breakpoints dialog box (I-jet)
	Trace Start breakpoints dialog box (J-Link/J-Trace)
	Trace Stop breakpoints dialog box (J-Link/J-Trace)
	Trace Filter breakpoints dialog box (J-Link/J-Trace)
	Find in Trace dialog box
	Find in Trace window
	Trace Save dialog box

	The application timeline
	Introduction to analyzing your application’s timeline
	Briefly about analyzing the timeline
	Requirements for timeline support

	Analyzing your application’s timeline
	Displaying a graph in the Timeline window
	Navigating in the graphs
	Analyzing performance using the graph data
	Getting started using data logging
	Getting started using event logging

	Reference information on application timeline
	Data Log window
	Data Log Summary window
	Event Log window
	Event Log Summary window
	Timeline window—Call Stack graph
	Timeline window—Data Log graph
	Timeline window—Events graph
	Viewing Range dialog box

	Profiling
	Introduction to the profiler
	Reasons for using the profiler
	Briefly about the profiler
	Requirements for using the profiler

	Using the profiler
	Getting started using the profiler on function level
	Analyzing the profiling data
	Getting started using the profiler on instruction level
	Selecting a time interval for profiling information

	Reference information on the profiler
	Function Profiler window

	Code coverage
	Introduction to code coverage
	Reasons for using code coverage
	Briefly about code coverage
	Requirements and restrictions for using code coverage

	Reference information on code coverage
	Code Coverage window

	Performance monitoring
	Introduction to performance monitoring
	Briefly about performance monitoring
	Requirements and restrictions for using performance monitoring
	Event types
	Detecting counter overflow

	Setting up performance monitoring
	Reference information on performance monitoring
	Performance Monitoring window

	Power debugging
	Introduction to power debugging
	Reasons for using power debugging
	Briefly about power debugging
	Requirements and restrictions for power debugging

	Optimizing your source code for power consumption
	Waiting for device status
	Software delays
	DMA versus polled I/O
	Low-power mode diagnostics
	CPU frequency
	Detecting mistakenly unattended peripherals
	Peripheral units in an event-driven system
	Finding conflicting hardware setups
	Analog interference

	Debugging in the power domain
	Displaying a power profile and analyzing the result
	Detecting unexpected power usage during application execution
	Changing the graph resolution

	Reference information on power debugging
	Power Log Setup window
	Power Log window
	Timeline window—Power graph
	State Log window
	State Log Summary window
	Timeline window—State Log graph

	C-RUN runtime error checking
	Introduction to runtime error checking
	Runtime error checking
	Runtime error checking using C-RUN
	The checked heap provided by the library
	Using C-RUN in the IAR Embedded Workbench IDE
	Using C-RUN in non-interactive mode
	Requirements for runtime error checking

	Using C-RUN
	Getting started using C-RUN runtime error checking
	Creating rules for messages

	Detecting various runtime errors
	Detecting implicit or explicit integer conversion
	Detecting signed or unsigned overflow
	Detecting bit loss or undefined behavior when shifting
	Detecting division by zero
	Detecting unhandled cases in switch statements
	Detecting accesses outside the bounds of arrays and other objects
	Detecting heap usage error
	Detecting heap memory leaks
	Detecting heap integrity violations

	Reference information on runtime error checking
	C-RUN Runtime Checking options
	C-RUN Messages window
	C-RUN Messages Rules window

	Compiler and linker reference for C-RUN
	--bounds_table_size
	--debug_heap
	--generate_entries_without_bounds
	--ignore_uninstrumented_pointers
	--ignore_uninstrumented_pointers
	--runtime_checking
	#pragma default_no_bounds
	#pragma define_with_bounds
	#pragma define_without_bounds
	#pragma disable_check
	#pragma generate_entry_without_bounds
	#pragma no_arith_checks
	#pragma no_bounds
	_ _as_get_base
	_ _as_get_bound
	_ _as_make_bounds

	cspybat options for C-RUN
	--rtc_enable
	--rtc_output
	--rtc_raw_to_txt
	--rtc_rules

	Part 3. Advanced debugging
	Multicore debugging
	Introduction to multicore debugging
	Briefly about multicore debugging
	Symmetric multicore debugging
	Asymmetric multicore debugging
	Requirements and restrictions for multicore debugging

	Debugging multiple cores
	Setting up for symmetric multicore debugging
	Setting up for asymmetric multicore debugging
	Starting and stopping a multicore debug session

	Reference information on multicore debugging
	Cores window
	Multicore toolbar
	The multicore session file

	Interrupts
	Introduction to interrupts
	Briefly about the interrupt simulation system
	Interrupt characteristics
	Interrupt simulation states
	C-SPY system macros for interrupt simulation
	Target-adapting the interrupt simulation system
	Briefly about interrupt logging

	Using the interrupt system
	Simulating a simple interrupt
	Simulating an interrupt in a multi-task system
	Getting started using interrupt logging

	Reference information on interrupts
	Interrupt Configuration window
	Available Interrupts window
	Interrupt Status window
	Interrupt Log window
	Interrupt Log Summary window
	Timeline window—Interrupt Log graph

	C-SPY macros
	Introduction to C-SPY macros
	Reasons for using C-SPY macros
	Briefly about using C-SPY macros
	Briefly about setup macro functions and files
	Briefly about the macro language

	Using C-SPY macros
	Registering C-SPY macros—an overview
	Executing C-SPY macros—an overview
	Registering and executing using setup macros and setup files
	Executing macros using Quick Watch
	Executing a macro by connecting it to a breakpoint
	Aborting a C-SPY macro

	Reference information on the macro language
	Macro functions
	Macro variables
	Macro parameters
	Macro strings
	Macro statements
	Formatted output

	Reference information on reserved setup macro function names
	execConfigureTraceETM
	execConfigureTraceSWO
	execUserAttach
	execUserPreload
	execUserExecutionStarted
	execUserExecutionStopped
	execUserFlashInit
	execUserSetup
	execUserFlashReset
	execUserPreReset
	execUserReset
	execUserExit
	execUserFlashExit
	execUserCoreConnect

	Reference information on C-SPY system macros
	_ _abortLaunch
	_ _cancelAllInterrupts
	_ _cancelInterrupt
	_ _clearBreak
	_ _closeFile
	_ _delay
	_ _disableInterrupts
	_ _driverType
	_ _emulatorSpeed
	_ _emulatorStatusCheckOnRead
	_ _enableInterrupts
	_ _evaluate
	_ _expandVar
	_ _fillMemory8
	_ _fillMemory16
	_ _fillMemory32
	_ _fillMemory64
	_ _gdbserver_exec_command
	_ _getNumberOfCores
	_ _getSelectedCore
	_ _getTracePortSize
	_ _hasDAPRegs
	_ _hwJetResetWithStrategy
	_ _hwReset
	_ _hwResetRunToBp
	_ _hwResetWithStrategy
	_ _hwRunToBreakpoint
	_ _isBatchMode
	_ _isMacroSymbolDefined
	_ _jlinkExecCommand
	_ _jlinkExecMacro
	_ _jtagCommand
	_ _jtagCP15IsPresent
	_ _jtagCP15ReadReg
	_ _jtagCP15WriteReg
	_ _jtagData
	_ _jtagRawRead
	_ _jtagRawSync
	_ _jtagRawWrite
	_ _jtagResetTRST
	_ _loadImage
	_ _memoryRestore
	_ _memorySave
	_ _messageBoxYesCancel
	_ _messageBoxYesNo
	_ _openFile
	_ _orderInterrupt
	_ _popSimulatorInterruptExecutingStack
	_ _probeType
	_ _readAPReg
	_ _readDPReg
	_ _readFile
	_ _readFileByte
	_ _readMemory8, _ _readMemoryByte
	_ _readMemory16
	_ _readMemory32
	_ _readMemory64
	_ _registerMacroFile
	_ _resetFile
	_ _restoreSoftwareBreakpoints
	_ _selectCore
	_ _setCodeBreak
	_ _setDataBreak
	_ _setDataLogBreak
	_ _setLogBreak
	_ _setSimBreak
	_ _setTraceStartBreak
	_ _setTraceStopBreak
	_ _sourcePosition
	_ _strFind
	_ _subString
	_ _system1
	_ _system2
	_ _system3
	_ _targetDebuggerVersion
	_ _toLower
	_ _toString
	_ _toUpper
	_ _unloadImage
	_ _wallTime_ms
	_ _whichCore
	_ _writeAPReg
	_ _writeDPReg
	_ _writeFile
	_ _writeFileByte
	_ _writeMemory8, _ _writeMemoryByte
	_ _writeMemory16
	_ _writeMemory32
	_ _writeMemory64

	Graphical environment for macros
	Macro Registration window
	Debugger Macros window
	Macro Quicklaunch window

	The C-SPY command line utility—cspybat
	Using C-SPY in batch mode
	Starting cspybat
	Output
	Invocation syntax

	Summary of C-SPY command line options
	General cspybat options
	Options available for all C-SPY drivers
	Options available for the simulator driver
	Options available for the C-SPY GDB Server driver
	Options available for the C-SPY I-jet driver
	Options available for the C-SPY CMSIS-DAP driver
	Options available for the C-SPY J-Link/J-Trace driver
	Options available for the C-SPY TI MSP-FET driver
	Options available for the C-SPY TI Stellaris driver
	Options available for the C-SPY TI XDS driver
	Options available for the C-SPY ST-LINK driver
	Options available for the C-SPY third-party drivers

	Reference information on C-SPY command line options
	--application_args
	--attach_to_running_target
	--backend
	--code_coverage_file
	--cycles
	--debug_auth_enforce
	--debug_auth_settings
	--debug_auth_type
	--debug_file
	--device
	--device_macro
	--disable_interrupts
	--download_only
	--drv_catch_exceptions
	--drv_communication
	--drv_communication_log
	--drv_debugger_cache
	--drv_default_breakpoint
	--drv_enforce_mem_config
	--drv_exclude_from_verify
	--drv_interface
	--drv_interface_speed
	--drv_mem_ap
	--drv_reset_to_cpu_start
	--drv_restore_breakpoints
	--drv_swo_clock_setup
	--drv_trace_settings
	--drv_vector_table_base
	-f
	--flash_loader
	--function_profiling
	--gdbserv_exec_command
	--jet_board_cfg
	--jet_board_did
	--jet_cpu_clock
	--jet_disable_pmu
	--jet_disable_pmu_dap
	--jet_ir_length
	--jet_power_from_probe
	--jet_probe
	--jet_script_file
	--jet_standard_reset
	--jet_startup_connection_timeout
	--jet_swo_on_d0
	--jet_swo_prescaler
	--jet_swo_protocol
	--jet_tap_position
	--jlink_dcc_timeout
	--jlink_device_select
	--jlink_exec_command
	--jlink_initial_speed
	--jlink_ir_length
	--jlink_reset_strategy
	--jlink_script_file
	--jlink_trace_source
	--leave_target_running
	--lmiftdi_reset_strategy
	--macro
	--macro_param
	--mapu
	--mspfet_erase_flash
	--mspfet_interface_speed
	--mspfet_reset_strategy
	--mspfet_settlingtime
	--mspfet_vccvoltage
	--multicore_nr_of_cores
	-p
	--plugin
	--proc_stack_stack
	--reset_style
	--sdm_debug_architecture
	--sdm_library
	--sdm_library_hint
	--sdm_manifest
	--semihosting
	--silent
	--sockets
	--stlink_reset_strategy
	--suppress_entrypoint_warning
	--timeout
	--xds_board_file
	--xds_reset_strategy
	--xds_rootdir

	Flash loaders
	Introduction to the flash loader
	Using flash loaders
	Setting up the flash loader(s)
	The flash loading mechanism
	Aborting a flash loader

	Reference information on the flash loader
	Flash Loader Overview dialog box
	Flash Loader Configuration dialog box

	Part 4. Additional reference information
	Debugger options
	Setting debugger options
	Reference information on general debugger options
	Setup
	Download
	Images
	Multicore
	Authentication
	Extra Options
	Plugins

	Reference information on C-SPY hardware debugger driver options
	CADI — Setup
	CMSIS-DAP — Setup
	CMSIS-DAP — Interface
	E2 — Setup
	GDB Server
	G+LINK — Setup
	I-jet — Setup
	I-jet — Interface
	I-jet — Trace
	J-Link/J-Trace — Setup
	J-Link/J-Trace — Connection
	Nu-Link — Setup
	PE micro — Setup
	ST-LINK — Setup
	ST-LINK — Communication
	ST-LINK — Multicore
	TI MSP-FET — Setup
	TI MSP-FET — Download
	TI Stellaris — Setup
	TI XDS — Setup
	TI XDS — Communication
	Third-Party Driver options

	Additional information on C-SPY drivers
	Reference information on C-SPY driver menus
	C-SPY driver
	Simulator menu (IAR native)
	Simulator menu (Imperas)

	Reference information on the C-SPY simulator
	Simulated Frequency dialog box

	Reference information on the C-SPY hardware debugger drivers
	CADI menu
	CMSIS-DAP menu
	E2 menu
	GDB Server menu
	G+LINK menu
	I-jet menu
	J-Link menu
	Nu-Link menu
	ST-Link menu
	TI MSP-FET menu
	TI Stellaris menu
	TI XDS menu

	Resolving problems
	No contact with the target hardware

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	Symbols
	Numerics

