
GSEW-2:1

Getting Started
with IAR Embedded Workbench®

GSEW-2

GSEW-2:1

COPYRIGHT NOTICE
Copyright © 2009–2010 IAR Systems AB.

No part of this document may be reproduced without the prior written consent of
IAR Systems AB. The software described in this document is furnished under a
license and may only be used or copied in accordance with the terms of such a
license.

DISCLAIMER
The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information
contained herein is assumed to be accurate, IAR Systems assumes no
responsibility for any errors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses,
costs, charges, claims, demands, claim for lost profits, fees, or expenses of any
nature or kind.

TRADEMARKS
IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, From Idea To
Target, IAR KickStart Kit, IAR PowerPac, IAR YellowSuite, IAR Advanced
Development Kit, IAR, and the IAR Systems logotype are trademarks or
registered trademarks owned by IAR Systems AB. J-Link is a trademark licensed
to IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

All other product names are trademarks or registered trademarks of their
respective owners.

EDITION NOTICE

Second edition: May 2010

Part number: GSEW-2

Internal reference: 5.5.0, ISUD.

Contents
Preface .. 5

About this guide .. 5

Document conventions .. 5

Introduction ... 7

Product portfolio overview ... 7

Device support ... 9

Tutorials .. 9

User documentation .. 10

More resources .. 10

IAR Embedded Workbench tools overview 11

The IDE ... 11

IAR C/C++ Compiler ... 14

IAR Assembler ... 15

The IAR Linker and related tools 15

The IAR C-SPY Debugger ... 17

Developing embedded applications ... 19

The development cycle .. 19

Commonly used software models 20

The build process .. 22

Programming for performance .. 25

Considering hardware and software factors 27

Application execution ... 30

Creating an application project ... 35

Creating a workspace ... 35

Creating a new project ... 36

Setting project options ... 37

Adding source files to the project 37
GSEW-2:1

Contents 3

Setting tool-specific options ... 38

Compiling ... 40

Linking ... 41

Debugging ... 43

Setting up for debugging .. 43

Starting the debugger ... 44

Executing your application ... 46

Inspecting variables ... 47

Monitoring memory and registers 49

Using breakpoints ... 50

Viewing terminal I/O ... 52

Analyzing your application’s runtime behavior 53
GSEW-2:1

4 Getting Started with IAR Embedded Workbench

Preface
Welcome to Getting Started with IAR Embedded Workbench®.

ABOUT THIS GUIDE
The purpose of this guide is to provide an introduction to IAR Embedded
Workbench, how to work in the IDE, and how to use the tools for developing
embedded systems software. By highlighting selected features, the guide explores
the purpose and capabilities of the tools.

Note that you should have working knowledge of the C or C++ programming
language, application development for embedded systems, the architecture and
instruction set of the microcontroller you are using (refer to the chip
manufacturer's documentation), and finally the operating system of your host
computer.

Note: Some descriptions in this guide only apply to certain product packages of
IAR Embedded Workbench, depending on for example, the microcontroller or
your specific variant of the product package. For example, not all packages
support C++.

DOCUMENT CONVENTIONS
When this text refers to the programming language C, the text also applies to C++,
unless otherwise stated.

When referring to a directory in your product installation, for example
target\doc, the full path to the location is assumed, for example c:\Program
Files\IAR Systems\Embedded Workbench N.n\target\doc.
GSEW-2:1

Preface 5

GSEW-2:1

6 Getting Started with IAR Embedded Workbench

Introduction
● Product portfolio overview

● Device support

● Tutorials

● User documentation

● More resources

For information about installation and licensing, see the Quick Reference
booklet that is provided in the product box.

PRODUCT PORTFOLIO OVERVIEW
IAR Systems provides several products that integrate different sets of tools or
middleware that work together right out of the box.

This figure shows the various tools from IAR Systems and third-party vendors and
how they interact with each other:
GSEW-2:1

Introduction 7

IAR Embedded Workbench provides an integrated development
environment that allows you to develop and manage complete application
projects for embedded systems. The environment comprises tools for
compiling, linking, and debugging and they have comprehensive and specific
target support. You will have the same user interface regardless of which
microcontroller you use.

IAR visualSTATE integrates a set of development tools for designing,
testing, and implementing embedded applications based on state machines.
It provides formal verification and validation tools and generates C source
code from your design. To get started, the product installation provides
tutorials, a Getting Started guide and several examples, where some are
generic and some are adapted for certain evaluation boards.

IAR PowerPac is an integrated middleware family that combines a small
memory footprint RTOS, a versatile file system, USB protocol stacks for
both the host and the device, a TCP/IP protocol stack, and a library for
graphical interfaces. To get started, there are ready-to-go example projects
and board support packages for a wide range of devices.

IAR KickStart Kits are integrated kits for developing embedded
applications for certain microcontrollers. Each kit contains an evaluation
board, software development tools with sample projects, and a hardware
debug probe or emulator.

IAR J-Link is a JTAG hardware debug probe which connects via USB to the
host PC. IAR J-Trace is a high-speed hardware trace probe that also
connects via USB to the host PC.

Third-party tools and utilities

There is a wide range of third-party tools and utilities that can be integrated
with IAR Embedded Workbench. Examples of such products are version
control systems, editors, C-SPY plugin modules for RTOS-aware debugging
and different ICEs, protocol stacks, etc.
GSEW-2:1

8 Getting Started with IAR Embedded Workbench

Interoperability with other build tools
Compilers for certain microcontrollers generate output that is compatible with
toolchains from other vendors. Likewise, C-SPY for certain microcontrollers
can read output generated from toolchains from other vendors, just as tools from
other vendors can read output generated from C-SPY.

DEVICE SUPPORT
To get a smooth start with your product development, the IAR product installation
includes preconfigured files for different devices:

Header files for peripheral I/O are device-specific I/O header files that define
peripheral units.

Linker configuration files contain the information required by the linker to
place code and data in memory. Depending on your product package, either
templates for linker configuration files, or ready-made linker configuration files
for supported devices are provided.

Device description files handle several of the device-specific details required
by the debugger, such as definitions of peripheral registers and groups of these,
which means that you can view SFR addresses and bit names while debugging.

A flash loader is an agent that is downloaded to the target. A flash loader fetches
your application from the debugger and programs it into flash memory. Depending
on your product package, flash loaders are available for a selection of devices. If
your device is not among them, you can build your own flash loader. Note that
some debug probes provide the corresponding functionality, which means that a
dedicated flash loader is not needed.

Examples for getting started with your software development are available to
give you a smooth start. Depending on your product package, there are either a few
or several hundreds of working source code examples where the complexity
ranges from simple LED blink to USB mass storage controllers. You can access
the examples via the Information Center, available from the Help menu.

TUTORIALS
The tutorials give you hands-on training to help you get started using the IAR
Embedded Workbench IDE and its tools. The tutorials are divided into different
parts and you can work through all tutorials as a suite or you can choose to go
through the tutorials individually. The tutorials are set up for the C-SPY simulator
so that you can get started using the debugger without any hardware available.
9

GSEW-2:1

Introduction

You can access the tutorials from the Information Center available from the
Help menu in the IDE. You can find all the files needed for the tutorials in
the target\tutor directory.

USER DOCUMENTATION
User documentation is available as hypertext PDFs and as a context-sensitive
online help system in HTML format. You can access the documentation from
the Information Center or from the Help menu in the IAR Embedded
Workbench IDE. The online help system is also available via the F1 key in
the IDE.

For last minute changes, we recommend that you read the release
notes—also available from the Help menu—for recent information that
might not be included in the user documentation.

All documentation is located in the directories target\doc and
common\doc.

MORE RESOURCES
On the IAR Systems web site www.iar.com/support you can find technical
notes and application notes.

If you have a software update agreement (SUA) you can also access the latest
product information, and download product updates and support files for
new devices from MyPages on the IAR Systems web site.

Requesting technical assistance

If you discover a problem with the IAR Systems tools, work through this list
of troubleshooting tips:

1 Learn more about the topic in the user documentation. For guidelines, see
the Information Center.

2 Read the section Known Problems in the release notes to see if you can find
something related that has already been reported.

3 If the problem remains, try to isolate it as much as possible. A small code
example, project settings, and a description about how to reproduce the
problem will significantly help in providing timely support.

4 Send in a report either via the web site or by contacting your local IAR
Systems representative. Make sure also to include information about
product name, product version, and the license number.
GSEW-2:1

10 Getting Started with IAR Embedded Workbench

IAR Embedded
Workbench tools
overview
This chapter gives an overview of the different tools in IAR Embedded
Workbench®.

THE IDE
The IDE is the framework where all tools needed to build your application are
integrated: a C/C++ compiler, an assembler, a linker, library tools, an editor, a
project manager, and the IAR C-SPY® Debugger.

The toolchain that comes with your product package is adapted for a certain
microcontroller. However, the IDE can simultaneously manage multiple
toolchains for various microcontrollers. This means that if you have IAR
Embedded Workbench installed for several microcontrollers, you can choose
which microcontroller to develop for in the IDE.

Note: The compiler, assembler, linker, and the C-SPY debugger can also be run
from a command line environment, if you want to use them as external tools in an
already established project environment.

To start the IDE:
Click the start button on the Windows taskbar, or double-click a workspace
filename (filename extension eww), or use the file IarIdePm.exe, located in the
common\bin directory of your IAR Embedded Workbench installation.
GSEW-2:1

IAR Embedded Workbench tools overview 11

The IDE main window is opened:

When you first open IAR Embedded Workbench, the IDE main window
displays the IAR Information Center. Here you can find all the information
you need to get started: tutorials, example projects, user guides, support
information, and release notes.

Configuring the IDE

To make the IDE suit your preferences and requirements, there are many
possibilities:

● Organizing the windows—you can dock windows at specific places, and
organize them in tab groups. You can also make a window floating,
which means it is always on top of other windows. If you change the size
or position of a floating window, other currently open windows are not

Menu bar Toolbar

Language selection—in product
packages where alternative
languages are available

Status bar

Information Center

Workspace window
GSEW-2:1

12 Getting Started with IAR Embedded Workbench

affected. The status bar, located at the bottom of the main window, contains
useful help about how to arrange windows.

● Extending the toolchain with an external tool, for example a revision control
system or an editor of your choice. You can also add IAR visualSTATE to the
toolchain, which means that you can add state machine diagrams directly to
your project in the IDE.

● Invoking external tools from the Tools menu

● Customizing the IDE, with commands for example for:

● Configuring the editor

● Changing common fonts

● Changing key bindings

● Using an external editor of your choice

● Configuring the project build command

● Configuring the amount of output to the Messages window.

To view the online help system:
Choose Help>Content or click in a window or a dialog box in the IDE and press
F1.

The online help system is displayed:

Here you can find context-sensitive help about:

● The IDE and C-SPY

● The compiler
13

GSEW-2:1

IAR Embedded Workbench tools overview

● The library

● MISRA C.

IAR C/C++ COMPILER

Programming languages

There are two high-level programming languages you can use with the IAR
C/C++ Compiler:

● C, the most widely used high-level programming language in the
embedded systems industry. You can build freestanding applications
that follow these standards:

● Standard C—the standard ISO/IEC 9899:1999 (including up to
technical corrigendum No.3), also known as C99. Hereafter, this
standard is referred to as Standard C in this guide.

● C89—the standard ISO 9899:1990 (including all technical corrigenda
and addenda), also known as C94, C90, C89, and ANSI C. Hereafter,
this standard is referred to as C89 in this guide. This standard is
required when MISRA C is enabled.

● C++ (depends on your product package). IAR Systems supports two
levels of the C++ language:

● Embedded C++ (EC++), a subset of the C++ programming standard.
It is defined by an industry consortium, the Embedded C++ Technical
committee.

● IAR Extended Embedded C++, with additional features such as full
template support, multiple inheritance (depending on your product
package), namespace support, the new cast operators, as well as the
Standard Template Library (STL).

MISRA C

MISRA C is a set of rules, suited for use when developing safety-critical
systems. The rules that make up MISRA C are meant to enforce measures for
stricter safety in the ISO standard for the C programming language.
Depending on your product package, there is support for both MISRA
C:2004 and MISRA C:1998.

Compiler extensions

The compiler provides the standard features of the C and C++ languages,
as well as a wide range of extensions:
GSEW-2:1

14 Getting Started with IAR Embedded Workbench

C language extensions can be divided in three groups:

● Extensions for embedded systems programming—extensions specifically
tailored for efficient embedded programming for the specific microcontroller
you are using, typically to meet memory restrictions or to declare special
function types such as interrupts.

● Relaxations to Standard C—that is, the relaxation of some minor Standard C
issues and also some useful but minor syntax extensions.

Pragma directives is a mechanism defined by the C standard to be used for
vendor-specific extensions in a controlled way to make sure that the source code
is still portable. The predefined directives control the behavior of the compiler, for
example how it allocates memory, whether it allows extended keywords, and
whether it outputs warning messages.

The pragma directives are always enabled in the compiler.

Preprocessor features, for example:

● Predefined preprocessor symbols which let you inspect your compile-time
environment, for example time of compilation, and different compiler settings.

● User-defined preprocessor symbols defined either by a compiler option or in
the IDE, in addition to the #define directive.

Accessing low-level features of the microcontroller is essential. The
compiler supports several ways of doing this: intrinsic functions—which provide
direct access to low-level processor operations—mixing C and assembler
modules, and inline assembler. It might be tempting to use simple inline
assembler, but you should carefully choose which method to use.

IAR ASSEMBLER
The IAR Assembler is a relocating macro assembler with a versatile set of
directives and expression operators for the microcontroller you are using. The
assembler features a built-in C language preprocessor and supports conditional
assembly.

The assembler translates symbolic assembler language mnemonics into
executable machine code. To write efficient assembler applications, you should be
familiar with the architecture and instruction set of the microcontroller you are
using.

Even if you do not intend to write a complete application in assembler language,
there might be situations where you find it necessary to write parts of the code in
assembler, for example, when using mechanisms in the microcontroller that
require precise timing and special instruction sequences.
15

GSEW-2:1

IAR Embedded Workbench tools overview

THE IAR LINKER AND RELATED TOOLS
Depending on your product package, IAR Embedded Workbench comes
with either the XLINK linker or the ILINK linker.

They are both equally well suited for linking small, single-file, absolute
assembler applications as for linking large, relocatable, multi-module,
C/C++, or mixed C/C++ and assembler applications.

Both linkers use a configuration file where you can specify separate
locations for code and data areas of your target system memory map, to give
you full control of code and data placement.

Before linking, the linker performs a full dependency resolution of all
symbols in all input files, independent of input order (except for libraries). It
also checks for consistent compiler settings for all modules and makes sure
that the correct version and variant of the C or C++ runtime library is used.

The linker will automatically load only those library modules—user libraries
and standard C or C++ library variants—that are actually needed by the
application you are linking. More precisely, only the functions of the library
module that are actually used will be loaded.

The IAR ILINK Linker combines one or more relocatable object files
with selected parts of one or more object libraries to produce an executable
image.

The final output produced by ILINK is an absolute object file containing the
executable image in the ELF (including DWARF for debug information)
format. The file can be downloaded to C-SPY or any other debugger that
supports ELF/DWARF, or it can be programmed into EPROM after it has
been converted to any suitable format.

To handle ELF files various utilities are included, such as an archiver, an ELF
dumper, and a format converter.

The IAR XLINK Linker combines one or more relocatable object files
produced by the IAR Systems compiler or assembler to produce machine
code for the microcontroller you are using. XLINK can generate more than
30 industry-standard loader formats, in addition to UBROF which is used by
the C-SPY debugger.

Before linking, XLINK perform a a full C-level type checking across all
modules.
GSEW-2:1

16 Getting Started with IAR Embedded Workbench

The final output from XLINK is an absolute, target-executable object file that can
be downloaded to the microcontroller or to a hardware emulator. Optionally, the
output file might contain debug information depending on the output format you
choose.

To handle libraries, the library tools XAR and XLIB are included.

THE IAR C-SPY DEBUGGER
The IAR C-SPY Debugger is a high-level-language debugger for embedded
applications development.

It is designed for use with the IAR Systems compilers and assemblers, and it is
completely integrated in the IDE, providing seamless switching between
development and debugging. This will give you possibilities such as:

● Editing while debugging. During a debug session, you can make corrections
directly in the same source code window that is used to control the debugging.
Changes will be included in the next project rebuild.
17

GSEW-2:1

IAR Embedded Workbench tools overview

● Setting source code breakpoints before starting the debugger.
Breakpoints in source code will be associated with the same piece of
source code even if additional code is inserted.

C-SPY consists both of a general part which provides a basic set of debugger
features, and of a driver. The C-SPY driver is the part that provides
communication with and control of the target system. The driver also
provides a user interface—special menus, windows, and dialog boxes—to
the features that the target system provides, for instance, special breakpoints.

This figure shows an overview of C-SPY and possible target systems.

Depending on your product package, C-SPY is available with a simulator
driver and optional drivers for various hardware debugger systems.

C-SPY is explored in more detail in this guide, see Debugging, page 43.
GSEW-2:1

18 Getting Started with IAR Embedded Workbench

C-SPY plugin modules

C-SPY is designed as a modular architecture. An SDK (Software Development
Kit) is available for implementing additional functionality to the debugger in the
form of plugin modules. These modules can be integrated in the IDE.

Plugin modules are provided by IAR Systems, and can be supplied by third-party
vendors. Examples of such modules are:

● Code Coverage, Profiling, Symbols and the Stack plugin, all well integrated in
the IDE.

● The various C-SPY drivers for debugging using certain debug systems.

● RTOS plugin modules for real-time OS-awareness debugging.

● C-SPYLink that bridges IAR visualSTATE and IAR Embedded Workbench to
make true high-level state machine debugging possible directly in C-SPY, in
addition to the normal C level symbolic debugging.

For more information about the C-SPY SDK, contact IAR Systems.
19

GSEW-2:1

IAR Embedded Workbench tools overview

GSEW-2:1

20 Getting Started with IAR Embedded Workbench

Developing embedded
applications
Before you start developing your embedded
application software, you should read about these
concepts:

● The development cycle

● Commonly used software models

● The build process

● Programming for performance

● Considering hardware and software factors

● Application execution.

THE DEVELOPMENT CYCLE
Before the actual development starts you must gather
requirements and design and specify your application
architecture (manually or using automated code
generation tools, such as visualSTATE). Then, you are
ready to start the IAR Embedded Workbench IDE.

This is a typical development cycle:

● Set up a project, which includes general and
tool-specific options

● Create your source code files in C, C++, or assembler

● Build—compile and link—your project for
debugging

● Correct any errors in your source code

● Test and debug your application

● Build for release

● Load the image to flash or PROM memory.
GSEW-2:1

Developing embedded applications 19

COMMONLY USED SOFTWARE MODELS
These are some commonly used software models:

● Superloop systems (tasks are performed in sequence)

● Multitask systems (tasks are scheduled by an RTOS)

● State machine models.

Typically, you have either a superloop system or a multitask system, and a
popular way of organizing the logic of your application is to design it using
state machines.

Superloop systems

Without a multitasking kernel, only one task can be executed by the CPU at
a time. This is called a single-task system or a superloop; basically a program
that runs in an endless loop and executes the appropriate operations in
sequence. No real-time kernel is used, so interrupt service routines (ISRs)
must be used for real-time parts of the software or critical operations
(interrupt level).

Superloops can become difficult to maintain if the program becomes too
large. Because one software component cannot be interrupted by another
component (only by ISRs), the reaction time of one component depends on
the execution time of all other components in the system. Real-time behavior
is therefore poor.

This type of system is typically used if real-time behavior is not critical.
GSEW-2:1

20 Getting Started with IAR Embedded Workbench

Preemptive multitasking systems

When a real-time operating system is used, multiple tasks can be executed
simultaneously on a single CPU. All tasks execute as if they completely "owned"
the entire CPU. The tasks are scheduled, meaning that the RTOS can activate and
deactivate every task. In a multitasking system, there are different scheduling
algorithms in which the calculation power of the CPU can be distributed among
tasks.

Real-time systems like IAR PowerPac RTOS operate with preemptive
multitasking. A real-time operating system needs a regular timer interrupt to
interrupt tasks at defined times and to perform task switches if necessary. The
highest-priority task in the READY state is therefore always executed, whether it
is an interrupted task or not. If an interrupt service routine (ISR) makes a higher
priority task ready, a task switch will occur and the task will be executed before
the interrupted task is returned to.

State machine models

A state machine model simply transforms incoming events to deduced outgoing
actions, that is a purely reactive engine or core, not to be confused with an
operating system. At any given point in time, the system is in one of several
possible states. The system can change states depending on input from the
environment. As a state change occurs, actions can be performed on the
environment.
21

GSEW-2:1

Developing embedded applications

For example, an electronic device
subsystem can be On or Off, a door can be
Open, or it can be ClosedAndUnlocked, etc.
A state machine does not have to map all the
possible physical states of the problem, only
the states that are important to the solution.

One very important feature of a state
machine model is its ability to handle
concurrency. In this context, the term
concurrency refers to the handling of
multiple parallel state systems
simultaneously.

For example, assume a vending machine
and all the cases that must be considered:

● What happens if a cup is removed before it is full?

● What happens to a credit card account if the customer cancels the order
while a payment is being processed?

● What happens if a new order is started before the previous order has
been completed?

● Will the money be correctly returned to the customer if one of the
electromechanical parts causes the machine to stop in the middle of
processing an order?

A statechart diagram provides a high-level view of the design that makes it
possible to maintain the overview needed to handle the complexity. Once the
statechart model has been created, it can be verified to make sure that it
behaves as intended. IAR visualSTATE also generates C/C++ source code
that is 100% consistent with your design.

The use of state machines is exceptionally beneficial for controlling
logic-oriented applications, such as monitoring, metering, and control
applications where reliability, size, and deterministic execution are the main
criteria.

THE BUILD PROCESS
This section gives an overview of the build process; how the various build
tools—compiler, assembler, and linker—fit together, going from source code
to an executable image. The build process can be further divided into:

● The translation process

● The linking process
GSEW-2:1

22 Getting Started with IAR Embedded Workbench

● After linking.

The translation process

There are two tools in the IDE that translate application source files to
intermediary object files: the IAR C/C++ Compiler and the IAR Assembler. Both
produce relocatable object files, in ELF/DWARF format for products using
ILINK, and in UBROF for products using XLINK.

Note: The compiler can also be used for translating C/C++ source code into
assembler source code. If required, you can then modify the assembler source code
and assemble it into object code.

This figure illustrates the translation process:

After the translation, you
can choose to organize
your files by packing any
number of modules into
an archive, or in other
words, a library.

The linking process

The relocatable modules,
in object files and
libraries, produced by the
IAR compiler and
assembler cannot be
executed as is. To become
an executable application,
they must be linked.

Note: Depending on
your product package, modules produced by a toolset from another vendor can be
included in the build as well. Be aware that this might also require a compiler
utility library from the same vendor.

The linker is used for building the final application. Normally, the linker requires
the following information as input:

● Several object files and possibly libraries

● A program start label (set by default in the ILINK linker and user-configurable
in the XLINK linker)

● The linker configuration file that describes placement of code and data in the
memory of the target system.
23

GSEW-2:1

Developing embedded applications

This figure illustrates the linking process:

Note: The standard C/C++ library contains support routines for the
compiler, and the implementation of the C/C++ standard library functions.

The ILINK linker produces an absolute object file in ELF format that
contains the executable image. XLINK can generate more than 30
industry-standard loader formats, in addition to the IAR Systems proprietary
debug format used by the C-SPY debugger—UBROF.

During the linking, the linker might produce error messages on stdout and
stderr. The ILINK linker also produces log messages, which are useful for
understanding why an application was linked the way it was, for example,
why a module was included or a section removed.

After linking

After linking, the produced absolute executable image can be used for:

● Loading into the IAR C-SPY Debugger or any other external debugger
that reads the produced format.

● Programming a flash/PROM memory using a flash/PROM programmer.
When linking using ILINK, before this is possible, the actual bytes in the
GSEW-2:1

24 Getting Started with IAR Embedded Workbench

image must be converted into the standard Motorola S-record format or the
Intel-hex format. XLINK can generate any of these formats directly; thus, no
extra conversion is needed.

This figure illustrates the possible uses of the output:

PROGRAMMING FOR PERFORMANCE
This section provides some hints for:

● Using data types appropriately

● Facilitating register allocation

● Facilitating compiler transformations.

Using data types appropriately
Data sizes should be used appropriately. 8-bit operations are often less efficient
on 32-bit CPUs. Conversely, 32-bit operations are inefficient for 8-bit CPUs. If
you use integer constants, make sure to add appropriate suffixes, for example 36L.

Signed values means that negative values can be used. However, when the
compiler modifies such values, arithmetic operations are used. For unsigned
values, the compiler instead uses bit and shift operations which are usually
cheaper than arithmetic operations. If you do not need negative values, make sure
to use unsigned types.
25

GSEW-2:1

Developing embedded applications

Floating-point operations are usually very expensive as they might
require large library functions. Consider replacing such operations with
integer operations (which are more efficient).

Memory placement and pointer types on 8- and 16-bit architectures
become more efficient and generate less code if you strive for: small memory
areas, small addresses, and small pointers. Avoid using the largest memory
types or pointers.

Casting to and from pointers should be avoided, as well as mixed types in
expressions. This generates inefficient code and there is a risk for
information loss.

Padding in structures occurs when the CPU requires alignment. To avoid
this memory waste, order fields by size to ensure that the amount of memory
used for padding is reduced to a minimum.

Facilitating register allocation

Function parameters and local variables (as opposed to global
variables) reduces memory consumption because they can be placed in
registers and only need to exist while they are in scope. The use of global
variables introduces overhead because they must be updated whenever a
function that accesses them is called.

Variable arguments (printf-style) should be avoided, because they force
arguments to the stack. These arguments would otherwise be passed in
registers.

Facilitating compiler transformations
Function prototypes should be used because that makes it easier to find
problems in the source code as type promotion (implicit casting) is not
needed. Prototyping also makes it easier for the compiler to generate more
efficient code.

Static-declared variables and functions should only be used in the file
or module where they are declared, to achieve the best optimizations.

Inline assembler is a major obstacle for the compiler when optimizing the
code. Instead, place assembler instructions in separate assembler modules.
Alternatively, if available, use intrinsic functions to access special processor
features.

"Clever” source code should be replaced with clear code, as clear code is
easier to maintain, less likely to contain programming errors, and usually
much easier for the compiler to optimize.
GSEW-2:1

26 Getting Started with IAR Embedded Workbench

The volatile keyword should be used for protecting simultaneously accessed
variables, that is, variables accessed asynchronously by, for example, interrupt
routines or code executing in separate threads. The compiler will then always read
from and write to memory when such variables are accessed.

Empty loops, that is, code that has no effect other than to achieve delays, might
be removed by the compiler. Instead, use OS services, intrinsic functions, CPU
timers, or access volatile declared variables.

Long basic blocks should be created if possible. A basic block is an
uninterrupted sequence of source code with no function calls. This facilitates more
efficient register allocation and better optimization results.

CONSIDERING HARDWARE AND SOFTWARE FACTORS
Typically, embedded software written for a dedicated microcontroller can be
designed as an endless loop waiting for some external events to happen. The
software is located in ROM and executes on reset. You must consider several
hardware and software factors when you write this kind of software.

CPU features and constraints
The features available in the microcontroller you are using, for example
instruction set interworking, different processor modes, and alignment constraints
need to be fully understood. To configure them correctly, it is important to read and
understand the hardware documentation.

The compiler supports such features by means of, for example, extended
keywords, pragma directives, and compiler options.

When you set up your project in the IDE, you must select a device option that suits
the device you are using. This selection will automatically:

● Set the CPU-specific options to match the device you are using

● Determine the default linker configuration file (depending on your product
package)

Depending on your product package, the target\config directory contains
either templates for linker configuration files, or ready-made linker
configuration files for some or all supported devices. The files have the
filename extension xcl or icf, for XLINK and ILINK respectively.

● Determine the default device description file

These files are located in the target\config directory and have the filename
extension ddf.
27

GSEW-2:1

Developing embedded applications

Mapping internal and external memory

Embedded systems typically contain various types of memory, such as
on-chip RAM, external DRAM or SRAM, ROM, EEPROM, or flash
memory.

As an embedded software developer, you must understand the features of the
different memory types. For example, on-chip RAM is often faster than other
types of memories, and variables that are accessed often would in
time-critical applications benefit from being placed here. Conversely, some
configuration data might be accessed seldom but must maintain its value
after power off, so it should be saved in EEPROM or flash memory.

For efficient memory usage, the compiler provides several mechanisms for
controlling placement of functions and data objects in memory. The linker
places code and data in memory according to the directives you specify in
the linker configuration file.

Communication with peripheral units

If external devices are connected to the microcontroller, you might need to
initialize and control the signalling interface, for example by using chip
select pins, and detecting and handling external interrupt signals. Typically,
this must be initialized and controlled at runtime. The normal way to do this
is to use special function registers, or SFRs. These are typically available at
dedicated addresses, containing bits that control the chip configuration.

Standard peripheral units are defined in device-specific I/O header files with
the filename extension h, located in the target\inc directory. Make sure to
include the appropriate include file in your application source files. If you
need additional I/O header files, they can be created using one of the
provided files as a template.

Interrupt handling

In embedded systems, using interrupts is a method for handling external
events immediately; for example, detecting that a button was pressed. In
general, when an interrupt occurs in the code, the microcontroller stops
executing the code that currently is running and starts executing an interrupt
routine instead.

The compiler supports processor exception types with dedicated keywords,
which means that you can write your interrupt routines in C.
GSEW-2:1

28 Getting Started with IAR Embedded Workbench

System startup

In all embedded systems, system startup code is executed to initialize the
system—both the hardware and the software system—before the main function of
the application is called.

As an embedded software developer, you must ensure that the startup code is
located at the dedicated memory addresses, or can be accessed using a pointer
from the vector table. This means that startup code and the initial vector table must
be placed in non-volatile memory, such as ROM, EPROM, or flash memory.

A C/C++ application must initialize all global variables. This initialization is
handled by the linker and the system startup code in conjunction. For more
information, see Application execution, page 30.

The runtime libraries

Depending on your product package, either one of the following two libraries is
provided or both. You must choose which library to use:

● The IAR DLIB Library, which supports Standard C and C++. This library also
supports floating-point numbers in IEEE 754 format and it can be configured
to include different levels of support for locale, file descriptors, multibyte
characters, etc.

● The IAR CLIB Library is a light-weight library, which is not fully compliant
with Standard C. Neither does it fully support floating-point numbers in IEEE
754 format or does it support Embedded C++. If the legacy CLIB library is
provided, it is for backward compatibility. It should not be used for new
application projects.

Note: Note that if your project only contains assembler source code, you do not
need to choose a runtime library.

The runtime library is delivered as prebuilt libraries which are built for different
project configurations. The IDE automatically uses the library that matches your
project configuration. Depending on your product package, there might not be a
prebuilt library for the configuration that you are using, in that case you must build
a library yourself.

Depending on your product package, the library is also delivered as source files,
and you can find them in the directory target\src\lib. This means that you can
customize the library and build it yourself. The IDE provides a library project
template that you can use for building your own library version.
29

GSEW-2:1

Developing embedded applications

The runtime environment

The runtime environment is the environment in which your application
executes. This environment depends on the selected runtime library, target
hardware, the software environment, and the application source code.

To configure the most code-efficient runtime environment, you must
determine your application and hardware requirements. The more
functionality you need, the larger your code will become.

To get the required runtime environment, you might want to customize it by:

● Setting library options, for example, for choosing scanf input and
printf output formatters.

● Specifying the size of the stack (or stacks if there are several, which
depends on your microcontroller).

Depending on the microcontroller, you must also specify whether
non-static auto variables should be placed on the stack or in a static
overlay area. The stack is dynamically allocated at runtime, whereas the
static overlay area is statically allocated at link time.

● Specifying the size of the heap and where in memory it should be placed.
Depending on your product package, you can also use more than one
heap, and place the heaps in different memory areas.

● Overriding certain library functions, for example cstartup, with your
own customized versions.

● Choosing the level of support for certain standard library functionality,
for example, locale, file descriptors, and multibyte characters, by
choosing a library configuration: Normal or Full (only possible for the
DLIB library). You can also make your own library configuration, but
that requires that you rebuild the library. This allows you to get full
control of the runtime environment.

To run the application on hardware, you must implement low-level routines
for character-based input and output (typically, putchar and getchar for
CLIB, and __read and __write for DLIB).

APPLICATION EXECUTION
This section gives an overview of how the execution of an embedded
application is divided into three phases:

● Initialization

● Execution

● Termination.
GSEW-2:1

30 Getting Started with IAR Embedded Workbench

The initialization phase

Initialization is executed when an application is started (the CPU is reset) but
before the main function is entered. The initialization phase can, somewhat
simplified, be divided into:

● Hardware initialization, for example initializing the stack pointer

The hardware initialization is typically performed by the system startup code
cstartup and if required, by an extra low-level routine that you provide. It
might include resetting/starting the rest of the hardware, setting up the CPU,
etc, in preparation for the software C/C++ system initialization.

● Software C/C++ system initialization

Typically, this includes making sure that every global (statically linked) C/C++
object receives its proper initialization value before the main function is called.

● Application initialization

This depends entirely on your application. Typically, it can include setting up
an RTOS kernel and starting initial tasks for an RTOS-driven application. For
a bare-bone application, it can include setting up various interrupts, initializing
communication, initializing devices, etc.

For a ROM/flash-based system, constants and functions are already placed in
ROM. All symbols placed in RAM must be initialized before the main function is
called. The linker has already divided the available RAM into different areas for
variables, stack, heap, etc.
31

GSEW-2:1

Developing embedded applications

The following sequence of figures gives a simplified overview of the
different stages of the initialization. Note that the memory layout is
generalized in these figures.

1 When an applica-
tion is started, the
system startup
code first per-
forms hardware
initialization, such
as initialization of
the stack pointer
to point at either
the start or the
end—depending
on your microcon-
troller—of the
predefined stack
area.

2 Then, memories
that should be
zero-initialized are
cleared, in other
words, filled with
zeros. Typically, this
is data referred to as
zero-initialized data;
variables declared as,
for example, int i =
0;
GSEW-2:1

32 Getting Started with IAR Embedded Workbench

3 For initialized data, data declared
with a non-zero value, like
int i = 6;, the initializers are
copied from ROM to RAM.

4 Finally, the main function is called.

The execution phase

The software of an embedded application is typically implemented as a loop which
is either interrupt-driven or uses polling for controlling external interaction or
internal events. For an interrupt-driven system, the interrupts are typically
initialized at the beginning of the main function.
33

GSEW-2:1

Developing embedded applications

In a system with real-time behavior and where responsiveness is critical, a
multi-task system might be required. This means that your application
software should be supplemented with a real-time operating system. In this
case, the RTOS and the different tasks must also be initialized at the
beginning of the main function.

The termination phase

Typically, an embedded application should never stop executing. If it does,
you must define a proper end behavior.

To terminate an application in a controlled way, either call one of the
standard C library functions exit, _Exit, or abort, or return from main. If
you return from main, the exit function is executed, which means that C++
destructors for static and global variables are called (C++ only) and all open
files are closed.
GSEW-2:1

34 Getting Started with IAR Embedded Workbench

Creating an application
project
This chapter demonstrates a development cycle for setting up your
application project in the IDE. Typically, the cycle consists of these steps:

● Creating a workspace

● Creating a new project

● Setting project options

● Adding source files to the project

● Setting tool-specific options

● Compiling

● Linking.

If you instead want to work through one of the step-by-step tutorials, you
can access them from the Information Center available from the Help
menu.

CREATING A WORKSPACE
1 Choose File>New>Workspace to create a workspace to which you can add one

or several projects. An empty workspace window appears.

Note: When you start the IDE for the first time, there is a ready-made workspace,
which you can use for your project instead.

Now you are ready to create a project and add it to the workspace.

Examples for getting started are available to give you a smooth start. Depending
on your product package, there are either a few or several hundreds of working
source code examples where the complexity ranges from simple LED blink to
USB mass storage controllers. Depending on your product package, there are
examples for most of the supported devices. You can access the examples via the
Information Center, available from the Help menu.
GSEW-2:1

Creating an application project 35

CREATING A NEW PROJECT
1 Choose

Project>Create
New Project.

From the Tool
chain drop-down
list, choose the
toolchain you are
using. If you have
the IDE installed for
several
microcontrollers,
they will all appear
in the drop-down
list.

In the list of project
templates, select a template to base your new project on. For example, select
Empty project, which simply creates an empty project that uses default
project settings.

2 Save your project.

3 The project will appear in the
Workspace window.

By default, two build configurations
are created—Debug and
Release—which let you define
variants of your project (project
settings and files part of the build).
You can also define your own build
configurations. You choose
configuration from the drop-down menu at the top of the window.

4 Before you add any files to your project, you should save the workspace.

Project-related files have now been created:

● A workspace file with the filename extension eww. This file lists all
projects that you have added to the workspace.

● Project files with the filename extensions ewp and ewd. These files
contain information about your project-specific settings, such as build
options.
GSEW-2:1

36 Getting Started with IAR Embedded Workbench

● Information related to the current session, such as the placement of windows
and breakpoints, is located in the files created in the projects\settings
directory.

SETTING PROJECT OPTIONS

To set options that must be the same for the whole build
configuration:

1 Select the project folder icon in the
Workspace window, right-click, and
choose Options.

2 The General Options category
provide options for target, output,
library, and runtime environment. The
settings you make here must be the
same for the whole build
configuration.

Note specifically that your choice of device on the Target page will
automatically determine the default debugger device description file, and
depending on your product package, also the default linker configuration file. In
addition, other options will be set automatically to suit the selected device.

ADDING SOURCE FILES TO THE PROJECT
1 In the Workspace window, select the

destination to which you want to add a
source file—a group or, as in this case,
directly to the project.

2 Choose Project>Add Files to open a
standard browse dialog box. Locate the
files and click Open to add them to your
project.

You can create several groups of files to
organize your source files logically
according to your project needs.

To create a new document:
Click New Document on the toolbar. The file is displayed in the editor window.
You can create or open one or several text files, and if you open several files, they
are organized in a tab group. Several editor windows can be open at the same time.
37

GSEW-2:1

Creating an application project

To look up a function reference:
In the editor window, select the item for which you want help and press F1.
The online help system is displayed.

In the editor window, you can get help for any C or Embedded C++ library
function, and for any compiler language extension, such as keywords,
intrinsic functions etc.

To configure the editor:
Choose Tools>Options and select the appropriate category of options in the
IDE Options dialog box.

SETTING TOOL-SPECIFIC OPTIONS
1 In the Workspace window, select the project, a group of files, or an

individual file. Choose Project>Options to open the Options dialog box.
GSEW-2:1

38 Getting Started with IAR Embedded Workbench

2 Select a tool in the Category list, and make your settings on the appropriate
pages. Note that the tools available in the list depend on your product package.

In addition to the standard tools part of the toolchain, you can set options for
prebuild and postbuild actions and invoke external tools.

Before you set specific
compiler options, you can
decide if you want to use
multi-file compilation. If
the compiler compiles multiple source files in one invocation, it can in many cases
optimize more efficiently. However, this might affect the build time. Thus, it can
be advisable to disable this option during the development phase of your work.

Note: If your product package does not support multi-file compilation, the
Multi-file Compilation option is not available.
39

GSEW-2:1

Creating an application project

COMPILING

To compile one or several files:
1 Select the file in the Workspace window or click the editor window that

displays the file you want to compile.

2 Click the Compile button on the toolbar.

Alternatively, use any of these commands available from the Project menu:

Make—brings the current build configuration up to date by compiling,
assembling, and linking only the files that have changed since the last build.

Rebuild All—rebuilds and relinks all files in the active project
configuration.

Batch Build—displays a dialog box where you can configure named batch
build configurations, and build a named batch.

3 If any source code
errors are generated,
switch to the correct
position in the
appropriate source file
by double-clicking the
error message in the
Build window.

4 After you have
compiled or assembled one or more files, the IDE has created new
directories and files in your project directory. If the name of your build
configuration is Debug, a directory with the same name has been created
containing these directories:

● List—the destination directory for the list files, which have the
extensions lst, map, and log.

● Obj—the destination directory for the object files from the compiler and
the assembler. These files are used as input to the linker and their
extension is rnn (where nn depends on your product package) for
products with XLINK, and o for products with ILINK.

● Exe—the destination directory for the executable file. It is used as input
to C-SPY and its extension is dnn (where nn depends on your product
package) for products with XLINK, and out for products with ILINK.
Note that this directory is empty until you have linked the object files.
GSEW-2:1

40 Getting Started with IAR Embedded Workbench

To view the result in the Workspace window:
After compiling, click the plus icons in the
Workspace window to expand the view.

As you can see, the IDE has also created an
output folder icon in the Workspace window
containing any generated output files. All
included header files are displayed as well,
showing the dependencies between the files.

Note that the filename extensions on the
generated files depend on your product
package.

LINKING
1 Select the project in the Workspace window, right-click and choose Options from

the context menu. Then select Linker in the Category list to display the linker
option pages.

2 After you made your settings, choose Project>Make. The progress will be
displayed in the Build messages window. The result of the linking is an output
file that contains debug information (if you built with debug information).

When setting linker options, pay attention to the choice of output format, linker
configuration file, and the map and log files.

Output format

The XLINK linker can produce a number of formats. It is important to choose
the output format that suits your purpose. You might want to load your output to a
debugger—which means that you need output with debug information.
Alternatively, in your final application project, you might want to load the output
to a PROM programmer—in which case you need an output format supported by
the programmer, such as Intel-hex or Motorola S-records.

The ILINK linker produces an output file in the ELF format, including DWARF
for debug information. If you need to use the Motorola or Intel-standard format
instead, for example to load the file to a PROM memory, you must convert the file.
Choose the Converter category in the Options dialog box and set the appropriate
options.
41

GSEW-2:1

Creating an application project

Linker configuration file

Program code and data are placed in memory according to the configuration
specified in the linker configuration file (filename extension icf for ILINK
and xcl for XLINK). It is important to be familiar with its syntax for how
sections are placed in memory.

Depending on your product package, the target\config directory
contains either templates for linker configuration files, or ready-made linker
configuration files for some or all supported devices. You can use the files or
templates supplied with the product as they are with the C-SPY simulator,
but when you use them for your target system, you must adapt them to your
actual hardware memory layout.

To examine the linker configuration file, use a text editor, such as the IAR
Embedded Workbench editor, or print a copy of the file, and verify that the
definitions match the requirements of your hardware memory layout.

Linker map and log files file

XLINK and ILINK can both generate extensive listings:

● XLINK can generate a map file which optionally contains a segment
map, symbol listing, module summary, etc

● ILINK can generate a map file, which typically contains a placement
summary. ILINK can also generate a log file, which logs decisions made
by the linker regarding initializations, module selections, section
selections etc.

Typically, this information can be useful if you want to examine:

● How the segment/sections and code were placed in memory

● Which source files that actually contributed to the final image

● Which symbols that were actually included and their values

● Where individual functions were placed in memory.
GSEW-2:1

42 Getting Started with IAR Embedded Workbench

Debugging
By exploring some of the C-SPY debugger features, this chapter shows
their capabilities and how to use them:

● Setting up for debugging

● Starting the debugger

● Executing your application

● Inspecting variables

● Monitoring memory and registers

● Using breakpoints

● Viewing terminal I/O

● Analyzing your application’s runtime behavior.

Note that, depending on the product package you have installed, C-SPY
might or might not be included.

Depending on your hardware, additional features not explored here
might be available in the C-SPY driver you are using. Typically, this applies
to setting different types of watchpoints, additional breakpoint types,
various triggering systems, more complex trace systems etc.

SETTING UP FOR DEBUGGING
1 Before starting C-SPY, choose Project>Options>Debugger>Setup and select

the C-SPY driver that matches your debugger system: simulator or a hardware
debugger system.

2 In the Category list, select the appropriate C-SPY driver and review your
settings.

3 When you have made your C-SPY settings, click OK.

4 Choose Tools>Options to configure:

● The debugger behavior

● The debugger’s tracking of stack usage.
GSEW-2:1

Debugging 43

Setting up the hardware before C-SPY starts

If you are working with hardware that uses external memory that needs to be
enabled before code can be downloaded to it, C-SPY needs a macro to
perform this action before the application you want to debug can be
downloaded. For example:

1 Create a new text file and define your macro function. For example, a macro
that enables external SDRAM might look like this:

/* Your macro function. */
enableExternalSDRAM()
{
 __message "Enabling external SDRAM\n";
 __writeMemory32(/* Place your code here. */);
 /* And more code here, if needed. */
}

/* Setup macro determines time of execution. */
execUserPreload()
{
 enableExternalSDRAM();
}

Because the built-in execUserPreload setup macro function is used, your
macro function will be executed directly after the communication with the
target system is established but before C-SPY downloads your application.

2 Save the file with the filename extension mac.

3 Before you start C-SPY, choose Project>Options>Debugger and click the
Setup tab. Select the option Use Setup file and choose the macro file you
just created. Your startup macro will now be loaded during the C-SPY
startup sequence.

STARTING THE DEBUGGER

To start the debugger, you can either:
Download and Debug starts C-SPY and loads the current project to the
target system.

Debug without Downloading starts C-SPY without reloading the current
project to the target system. It is assumed that the code image is already on
the target and therefore this command is not applicable to the simulator.
GSEW-2:1

44 Getting Started with IAR Embedded Workbench

You can load multiple debug files (images) to the target system. To load an
additional debug file in the IDE, choose Project>Options>Debugger>Images.
This means that the complete program consists of several images. For example,
your application (one image) is started by a bootloader (another image). The
application image and the bootloader are built using separate projects and generate
separate output files.

C-SPY starts with the application loaded.

C-SPY must read from the target system to update the contents of the windows (for
windows that need to be updated, for example the Memory and Trace windows).
This affects the response time while debugging. If you have several windows open
at the same time and the response time is too long (especially if your application
executes on hardware), just close one or two windows to reduce the response time.

C-SPY windows available on
the View menu

Commands for downloadDriver-specific menu,
named after the driver Toggle breakpoint

Debug Log window
displays debugger output
45

GSEW-2:1

Debugging

To exit from C-SPY:

Click the Stop Debugging button on the Debug toolbar.

EXECUTING YOUR APPLICATION
You can find commands for executing on the Debug menu and on the Debug
toolbar, such as:

Step Over executes the next statement, function call, or instruction, without
entering C/C++ functions or assembler subroutines.

Step Into executes the next statement or instruction, entering C/C++
functions or assembler subroutines.

Next Statement executes directly to the next C/C++ statement without
stopping at individual functions calls.

You can also find commands like Go, Break, Reset, Run to Cursor,
Autostep, etc on the menu and the toolbar.

C-SPY allows more stepping precision than most other debuggers because it
is not line-oriented but statement-oriented, due to step points. The possibility
of stepping into an individual function call that is part of a more complex
statement is particularly useful when you use C source code that contains
many nested function calls. It is also very useful for C++, which tends to
have many implicit function calls, such as constructors, destructors,
assignment operators, and other user-defined operators.

To inspect function calls:
1 Choose View>Call Stack to open the Call

Stack window. It displays the C/C++ function
call stack with the current function at the top.
Double-click on any function, and the contents
of all affected windows in the IDE are updated
to display the state of that particular call
frame.

Typically, this is useful for two purposes:

● Determining in what context the current function has been called

● Tracing the origin of incorrect values in variables or parameters, thus
locating the function in the call chain where the problem occurred.
GSEW-2:1

46 Getting Started with IAR Embedded Workbench

To debug in disassembly mode:
1 Choose View>Disassem-

bly to open the Disassembly
window, if it is not already
open. You will see the
assembler code correspond-
ing to the current C state-
ment.

Disassembly mode lets you
execute the application
exactly one assembler
instruction at a time. C/C++
mode, on the other hand,
executes your application
one statement or function at
a time. Regardless of which mode you are debugging in, you can display registers
and memory, and change their contents.

To switch modes:
Use the mouse pointer to make either the editor window or the Disassembly
window active, depending on which mode you want to use.

To view code coverage information:
Right-click in the Disassembly window and choose Code Coverage>Enable and
then Code Coverage>Show from the context menu. Code that has been executed
is marked with green diamonds. See also Code coverage, page 55.

INSPECTING VARIABLES
C-SPY allows you to watch variables or expressions in the source code, so that you
can keep track of their values as you execute your application. You can look at a
variable in several ways:

Tooltip watch provides the simplest way of viewing the value of a variable or
more complex expressions in the editor window. Just point at the variable with the
mouse pointer. The value is displayed next to the variable.

The Locals window, available from the View menu, automatically displays the
local variables, that is, auto variables and function parameters for the active
function.

The Watch window, available from the View menu, allows you to monitor the
values of C-SPY expressions and variables of your choice.
47

GSEW-2:1

Debugging

The Live Watch window, available from the View menu, repeatedly
samples and displays the values of expressions while your application is
executing. Variables in the expressions must be statically located, such as
global variables. Note that this window requires that the target system
supports reading memory during program execution.

The Statics window, available from the View menu, automatically
displays the values of variables with static storage duration. In addition, you
can make your own selection of such variables to be displayed.

The Auto window, available from the View menu, displays an automatic
selection of variables and expressions in, or near, the current statement.

The Quick Watch window, provides a fast method where you have
precise control of when to evaluate or watch the value of a variable or an
expression.

Collecting trace data, available from the driver-specific menu, can
collect a sequence of events in the target system, typically executed machine
instructions. Depending on your target system, additional types of trace data
can be collected. For example, read and write accesses to memory, and the
values of C-SPY expressions. See also Trace, page 58.

Note: When the optimization level None is used, all non-static variables
will live during their entire scope and thus, the variables are fully
debuggable. When higher levels of optimization are used, variables might
not be fully debuggable.

You can add, modify, and remove expressions, and change the display
format. A context menu is available with commands for operations in all
windows. Drag-and-drop between windows is supported where applicable.

To inspect the value of a variable:
1 For example, choose View>Watch to open the Watch window.

2 To select a variable, follow this procedure:

● Click the dotted rectangle in the Watch window.

● In the entry field that appears, type the name of the variable and press the
Enter key.

● You can also drag a variable from the editor window to the Watch
window.
GSEW-2:1

48 Getting Started with IAR Embedded Workbench

In this example, the
Watch window shows
the current value of the
variable i and the array
Fib. You can expand
the Fib array to watch
it in more detail.

3 To remove a variable from the Watch window, select it and press the Delete key.

MONITORING MEMORY AND REGISTERS
C-SPY provides many windows for monitoring memory and registers, each of
them available from the View menu:

The Memory window gives an up-to-date display of a specified area of
memory—in C-SPY referred to as a memory zone—and allows you to edit it.
Colors are used for indicating data coverage (depends on your product package)
and how your application executes. You can fill specified areas with specific
values and you can set breakpoints directly on a memory location or range. You
can open several instances of this window, to monitor different memory areas.

The Symbolic memory window displays how variables with static storage
duration are laid out in memory. This can be useful for a better understanding of
memory usage or for investigating problems caused by variables being
overwritten, for example by buffers that exceed their limits.

The Stack window displays the contents of the stack, including how stack
variables are laid out in memory. For more details, see Stack usage, page 56.

The Register window gives an up-to-date display of the contents of the
processor registers and SFRs, and allows you to edit them.

To view the memory contents for a specific variable, simply drag the variable to
the Memory window or the Symbolic memory window. The memory area where
the variable is located will appear.
49

GSEW-2:1

Debugging

USING BREAKPOINTS
Depending on the C-SPY driver you are using, you can set various kinds of
breakpoints:

Code breakpoints are used for code locations to investigate whether your
program logic is correct or to get trace printouts.

Log breakpoints provide a convenient way to add trace printouts without
having to add any code to your application source code.

Trace Start and Stop breakpoints start and stop trace data
collection—a convenient way to analyze instructions between two execution
points. See also Trace, page 58.

Data breakpoints are triggered for read or write memory accesses.
Typically, data breakpoints are used for investigating how and when the data
changes.

In addition to these breakpoints, the C-SPY driver might support more
complex or other breakpoints or triggers of different kinds, depending on the
debugging system you are using.

To set a breakpoint:
Position the insertion point in the left-side margin, or in or near a statement
and double click to toggle a code breakpoint.

Alternatively, use the Breakpoints dialog box available from the context
menus in the editor window, Breakpoints window, and the Disassembly
window. The dialog box gives you a more fine-grained way to set different
types of breakpoints and edit them.

Note: For most hardware debugger systems it is only possible to set
breakpoints when the application is not executing.
GSEW-2:1

50 Getting Started with IAR Embedded Workbench

A breakpoint is marked with an icon in the left margin of the editor window:

If the breakpoint icon does not appear, make sure the option Show bookmarks is
selected in the IDE Options>Editor dialog box.

Point at the breakpoint icon with the mouse pointer to get detailed tooltip
information about all breakpoints set on the same location. The first row gives user
breakpoint information, the following rows describe the physical breakpoints used
for implementing the user breakpoint. The latter information can also be seen in
the Breakpoint Usage dialog box.

To view all defined breakpoints:
Choose View>Breakpoints to open the
Breakpoints window, which lists all
breakpoints. Here you can conveniently
monitor, enable, and disable breakpoints; you
can also define new breakpoints, and modify
and delete existing breakpoints.

Code breakpoint

Log breakpoint

Tooltip information

Disabled code
breakpoint
51

GSEW-2:1

Debugging

To investigate breakpoint consumers:
1 Open the Breakpoints Usage window—available from the C-SPY

driver-specific menu—to get a low-level view of all breakpoints, both the
ones you have defined and the ones used internally by C-SPY.

Usually, target hardware has a limited amount of hardware breakpoints (used
by C-SPY to set breakpoints), sometimes as few as one or two. Exceeding
the number of available hardware breakpoints will force the debugger to
single step while executing. This will significantly reduce the execution
speed.

In a hardware debugger system with limited number of hardware
breakpoints, use the Breakpoint Usage window to:

● Identify all consumers of breakpoints

● Check that the number of active breakpoints is supported by the target
system

● Configure the debugger to use the available breakpoints in a better way,
if possible.

To execute up to a breakpoint:
1 Click the Go button on the toolbar.

The application will execute up to the next set breakpoint. The Debug Log
window will contain information about the breakpoint triggering.

2 Select the breakpoint, right-click and choose Toggle Breakpoint (xxx)
from the context menu to remove a breakpoint.

VIEWING TERMINAL I/O
Sometimes you might have to debug constructions in your application that
make use of stdin and stdout, without the possibility of having hardware
support. C-SPY lets you simulate stdin and stdout by using the Terminal
I/O window.

To use the Terminal I/O window:
1 Build your application using these options:

Category Setting

Linker>Config
(for XLINK)

With I/O emulation modules

General Options>Library Configuration
(for ILINK)

Library low-level interface implementation
GSEW-2:1

52 Getting Started with IAR Embedded Workbench

This means that some low-level routines are linked that direct stdin and stdout
to the Terminal I/O window.

2 Build your application and start C-SPY.

3 Choose View>Terminal I/O to
open the Terminal I/O window,
which displays the output from the
I/O operations.

ANALYZING YOUR APPLICATION’S RUNTIME BEHAVIOR
C-SPY provides various features that you can use to analyze your application’s
runtime behavior, to locate any bottlenecks and verify that all parts of your
application have been tested:

● Profiling

● Code coverage

● Stack usage

● Trace.

Profiling

Depending on the C-SPY driver you are using, one or two profilers are available:

Breakpoint-based profiling, which you enable on the Plugins page in the
Options dialog box. When debugging on hardware, profiling requires that enough
hardware breakpoints are available, or that the application is executed in RAM.

Trace-based profiling, which you enable after you start C-SPY. The setup
differs between the various C-SPY drivers, depending on the target system.
53

GSEW-2:1

Debugging

The profiler will help you find the functions where most of the execution
time is spent. Those functions are the parts you should focus on when you
optimize your code. A simple method of optimizing a function is to compile
it using speed optimization. Alternatively, you can move the function into the
memory that uses the most efficient addressing mode.

The profiler measures the time between the entry and return of a function.
This means that time consumed in a function is not added until the function
returns or another function is called. You will only notice this if you are
stepping into a function.

Trace-based profiling also works on instruction level which can help you
fine-tune your code on a very detailed level, especially for assembler source
code.

To use profiling:
1 Build your application using these options:

2 Build your application and start C-SPY.

3 Before you can use the trace-based profiling, you must set it up. The setup
depends on the C-SPY driver.

4 To open the Profiler window, choose:

● View>Profiling (breakpoint-based profiling)

● Profiling from the driver-specific menu (trace-based profiling).

5 Click the Enable button to turn on the profiler.

6 Start executing your application to collect profiling information.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker
(for XLINK)

Format>Debug information for C-SPY

Linker
(for ILINK)

Output>Include debug information in output

Debugger
(for breakpoint-based profiling)

Plugins>Profiling
GSEW-2:1

54 Getting Started with IAR Embedded Workbench

7 Profiling information is displayed in the Profiling window (breakpoint-based
profiling) and in the Function profiler window (trace-based profiling).

To sort the information, click on the relevant column header.

8 Before you start a new sampling, click the Clear button.

9 Click the Graph button to toggle the percentage columns to be displayed either
as numbers or as bar charts.

10 Click the Show details button (breakpoints-based profiling only) to display more
detailed information about the function selected in the list. A window is opened
showing information about callers and callees for the selected function.

Code coverage

The code coverage functionality is useful when you design your test procedure to
make sure that all parts of your code have been executed. It also helps you identify
parts of your code that are not reachable.

Note: When you debug on hardware, code coverage might have limitations; in
particular, cycle counter statistics might not be available.

To use code coverage:
1 Build your application using these options:

2 Build your application and start C-SPY.

Category Setting

C/C++ Compiler Output>Generate debug information

Linker (for XLINK) Format>Debug information for C-SPY

Linker (for ILINK) Output>Include debug information in output

Debugger Plugins>Code Coverage
55

GSEW-2:1

Debugging

3 Choose
View>Code
Coverage to
open the Code
Coverage
window.

4 Click the
Activate button
to turn on the
code coverage
analyzer.

5 Start the
execution. When the execution stops, for instance because the program exit
is reached or a breakpoint is triggered, click the Refresh button to view the
code coverage information.

The Code Coverage window now reports the status of the current code
coverage analysis, that is, which parts of the code that were executed at least
once since the start of the analysis. The compiler generates detailed stepping
information in the form of step points at each statement, and at each function
call. The report includes information about all modules and functions. It
reports the amount of all step points, in percentage, that were executed and
lists all step points that were not executed up to the point where the
application was stopped.

6 The coverage will continue until turned off.

Note: Code coverage can also be displayed in the Disassembly window.
Executed code is indicated with a green diamond.

Stack usage

The Stack window displays the contents of the stack, including how stack
variables are laid out in memory. In addition, some integrity checks of the
stack can be performed to detect and warn about problems with stack
overflow.

The Stack window shows the contents of the stack. This can be useful when:

● Investigating the stack usage when assembler modules are called from C
modules and vice versa

● Investigating whether the correct elements are located on the stack

● Investigating whether the stack is restored properly.
GSEW-2:1

56 Getting Started with IAR Embedded Workbench

To track stack usage:

1 Choose Project>Options>Debugger>Plugins and select Stack from the list of
plugins.

2 Choose Tools>Options>Stack to configure the stack tracking. Note specifically
that you might need to specify when the stack pointer(s) are valid.

3 Build your application and start C-SPY.

4 Choose View>Stack.

You can open several instances of the Stack window, each showing a different
stack—if several stacks are available—or the same stack with different display
settings.

Place the mouse pointer over the stack bar to get tooltip information about stack
usage.

To detect stack overflows:
Choose Tools>Options>Stack and select the option Enable stack checks.

This means that C-SPY can issue warnings for stack overflow when the
application stops executing. Warnings are issued either when the stack usage
exceeds a threshold that you can specify, or when the stack pointer is outside the
stack memory range.

Current
stack pointer

Unused stack memory,
in light gray

Current stack
pointer Used stack memory,

in dark gray
Stack view

The graphical
stack bar
with tooltip
information
57

GSEW-2:1

Debugging

Trace

By collecting trace data, you can analyze the program flow up to a specific
state, for instance an application crash, and use the trace data to locate the
origin of the problem. Trace data can be useful for locating programming
errors that have irregular symptoms and occur sporadically.

A trace is a collected sequence of executed machine instructions. Available
trace data heavily depends on the C-SPY driver you are using:

● The C-SPY simulator collects the values of C-SPY expressions that you
select in the Trace Expressions window. The Function Trace window
only shows trace data corresponding to calls to and returns from
functions, whereas the Trace window displays all instructions.

● C-SPY drivers for hardware debugger systems can collect trace data if
the hardware you are using supports this, for example if there are
dedicated communication channels or dedicated trace buffers for trace
collection. In this case, the Trace window will reflect the collected data.

To collect trace data:
1 No specific build settings are required for collecting trace data in the

simulator. If you are using a hardware debugger system, its trace data
generation must be configured first. Refer to the driver documentation for
information.

2 Build your application and start C-SPY.

3 Choose Trace from the driver-specific menu to open the Trace window, and
click the Activate button to turn on trace data collection.

4 Start the execution. When the execution stops, for instance because a
breakpoint is triggered, trace data is displayed in the Trace window.

To start trace data collection using breakpoints:
A convenient way to collect trace data between two execution points is to
start and stop data collection using dedicated breakpoints. In the editor or
Disassembly window, right-click, and toggle a Trace Start or Trace Stop
breakpoint from the context menu. In the C-SPY simulator, the C-SPY
system macros __setTraceStartBreak and __setTraceStopBreak
can also be used.
GSEW-2:1

58 Getting Started with IAR Embedded Workbench

	Contents
	Preface
	About this guide
	Document conventions

	Introduction
	Product portfolio overview
	Device support
	Tutorials
	User documentation
	More resources

	IAR Embedded Workbench tools overview
	The IDE
	IAR C/C++ Compiler
	IAR Assembler
	The IAR Linker and related tools
	The IAR C-SPY Debugger

	Developing embedded applications
	The development cycle
	Commonly used software models
	The build process
	Programming for performance
	Considering hardware and software factors
	Application execution

	Creating an application project
	Creating a workspace
	Creating a new project
	Setting project options
	Adding source files to the project
	Setting tool-specific options
	Compiling
	Linking

	Debugging
	Setting up for debugging
	Starting the debugger
	Executing your application
	Inspecting variables
	Monitoring memory and registers
	Using breakpoints
	Viewing terminal I/O
	Analyzing your application’s runtime behavior

