

Migration guide

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 1 of 26

Migrating from the CS+ CA78K0R toolchain for RL78 to IAR Embedded Workbench®

for RL78

Use this guide as a guideline when converting source code written for the CS+ CA78K0R toolchain for
RL78 to IAR Embedded Workbench® for RL78.

 Product Version number

Migrating from CS+ CA78K0R (CA78K0R) 1.20 to 1.7x

Migrating to IAR Embedded Workbench for RL78 (EWRL78) 2.x

Migration overview

Migrating an existing project from Renesas toolchain for RL78 requires that you collect information about your current project

and then apply this information to the new IAR EWRL78 project. In addition, you need to make some changes in the actual

source code. The information in this document is intended to simplify this process.

Note: If you are new to using IAR Embedded Workbench, we suggest that you first look at the user guides and tutorials which

you can find in the IAR Information Center.

Project conversion

To migrate existing CS+ applications to IAR EWRL78 there is a tool called Convert To IAR. This is a GUI application

included with IAR Embedded Workbench, available via the Tools menu.

The Convert To IAR tool converts CS+ project files

into EWRL78 project files without changing the original

project file. Information about source files, include

paths, defined symbols and build configuration is

transferred. As an option, also source code text

substitutions are performed and you can add your own

substitution rules including support for regular

expressions.

Procedure

1. Start EWRL78.

2. Start Convert To IAR available in the Tools

menu.

3. Navigate to the CS+ project to convert by

clicking the browse button.

4. Click the Execute button and a new EWRL78

project file will be created.

5. Add the new project to a EWRL78 workspace

by choosing Project>Add Existing

Project….

6. Set the relevant project options by choosing

Project>Options….

Hint: Open the original project in CS+, walk

through the options and set the corresponding

options in EWRL78 as suggested in the

section Important tool settings below.

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 2 of 26

Important tool settings

To change project settings, choose Project>Options.... Below is an overview of the most important tool settings.

Device selection and Byte-order Stack/Heap size

Language settings Defined symbols and include directories

Include directories Linker configuration file

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 3 of 26

Linker symbols Additional output format

Note: We recommend that you verify all settings to make sure they match your project needs.

Building your project

After successfully converting the Renesas project and considered the basic code differences described above, you will still most

likely need to fine-tune parts of the source code so that it follows the EWRL78 syntax.

1. Select your device under Project>Options>General Options.

2. Choose Project>Make.

3. To find the different errors/warnings, press F4 (Next Error/Tag).

This will bring you to the location in the source code that generated this error/warning.

4. For each error/warning, modify the source code to match the EWRL78 syntax.

Note: See the Reference information section below for this step.

5. After correcting one or more errors/warnings, repeat the procedure.

Note: It is always a good idea to correct the first couple of errors/warnings in different source files first.

This is because errors and warnings later in the source code might just be effects of faulty syntax at the beginning of the source.

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 4 of 26

Reference information

Locate a feature in the left-hand column; then you can find the IAR Systems counterpart to the right. For detailed information

about this feature specific to IAR Embedded Workbench®, see the relevant documentation. For a complete list of guides, see

IAR Information Center in the IDE.

Compiler-specific details

CS+ (CA78K0R) IAR Systems

Programming languages

Assembler, ANSI C Supported programming languages: assembler, C, Embedded

C++, Extended Embedded C++, and C++.

Processor configuration

 All RL78 devices(Core 0, 1 and 2 automatically

selected by device)

 Little endian

 Bit order (in bit fields) left or right (option -rb)

--core={s1|s2|s3}

s1 Generates code for S1, the RL78 core with only one
register
bank and a multiplexed 8-bit bus.

s2 Generates code for S2, the core without instructions to
support a hardware multiplier/divider.

s3 (default) Generates code for S3, the core with
instructions to support
a hardware multiplier/divider.

Memory models/Data models/Code models

 Small model (-ms option)

Data model: near (64KB address range)

Code model: near (64KB address range)

 Medium model (-mm option)

Data model: near (64KB address range)

Code model: far (1MB address range)

 Large model (-ml option)

Data model: far (1MB address range)

Code model: far (1MB address range)

Supported code models (option --code_model):

near (default): Function calls reach the first 64 Kbytes of

memory.

far: Function calls reach the entire 1 Mbyte memory.

Supported data models (option --data_model):

near (default): Data is by default placed in the highest 64

Kbytes of memory

far: Data is by default placed in the entire 1 Mbyte of

memory

The linker automatically selects appropriate libraries. The linker automatically selects appropriate libraries.

Overriding default placement of given code/data model

To override default placement of the selected code model,

use any of these memory attributes:

__far

__near

Example (function placement to the far area):

__far void my_func(void)

{

}

To override default placement of the selected code model,

use any of these memory attributes:

__callt

__near_func (default)

__far_func

__far

__near

Example (variable placement to the far area):

__far int my_var;

To override default placement of the selected data model,

use any of these memory attributes:

__near (default) : The highest 64 Kbytes

__far : The entire 1 Mbyte of memory

For example:

__near int i = 3;

__far unsigned u;

Absolute placement of variables

Use __directmap for absolute placement. Please note that
this variables will be treated as static variables and they also
cannot be initialized.

__directmap char c = 0xffe00 ;

__directmap struct x {

 char a ;

 char b ;

} c = { 0xffe00 } ;

or

__no_init char a @0x80;

or

#pragma location=0x80

__no_init const int a;

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 5 of 26

Memory model: SMALL/MEDIUM
#pragma section @@DATA MY_DAT AT 0x0FFE00

volatile char c;

Memory model: LARGE
#pragma section @@DATAL MY_DAT AT 0x0FFE00

volatile char c;

Please note, that the segment name length is max. 8

characters

In case of constants:

Memory model: SMALL/MEDIUM
#pragma section @@CNST MY_DAT AT 0x03000

const char my_const;

Memory model: LARGE
#pragma section @@CNSTL MY_DAT AT 0x03000

const my_const;

Please note, that

 the segment name length is max. 8 characters

 Compiler option -s/-sa has to be used in order to

allow segment switching. If this option is not used

the #pragma has to be used at the beginning of the

file which is valid for all data within the file.

Absolute placement of functions

Memory model: SMALL

#pragma section @@CODE MY_SEG AT 0x2400

or without address (will be defined in linker file)

#pragma section @@CODE MY_SEG

Memory model: MEDIUM/LARGE

#pragma section @@CODEL MY_SEG AT 0x2400

or without absolute address (will be defined in linker file)

#pragma section @@CODEL MY_SEG

Please note, that

 user has to define this #pragma at the beginning of

the file before any C code.

 all functions within one file will be placed to the

defined segment. Switching of segments within

one file is not possible.

 segment name length is max. 8 characters

void f(void) @ "MyFunctions";

or

void f(void) @ "MyFunctions"

{

}

or

#pragma location="MyFunctions"

void f(void);

The section MY_SEG must be placed by customizing the

linker configuration file in case the absolute address is not

used within the #pragma.

The section MyFunctions must be placed by customizing

the linker configuration file. See the compiler guide section

Customizing the linker configuration file.

Constants in ROM

const unsigned short constants[] = {0x1234,

0x5678}

const unsigned short constants[] = {0x1234,

0x5678}

Interrupt functions

#pragma interrupt INTWDTI r_wdt_interrupt

__interrupt static void r_wdt_interrupt(void)

{

/* Do something here.*/

}

#pragma vector = 0x17

__interrupt void MyInterruptRoutine(void)

{

 /* Do something here.*/

}

or

#pragma vector = UART1_R_RXNE_vector /*

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 6 of 26

#pragma vect INTWDTI r_wdt_interrupt

__interrupt static void r_wdt_interrupt(void)

{

/* Do something here.*/

}

Please note, that the #pragma shall be declared at the

beginning of the file.

Symbol from I/O header file */

__interrupt void MyInterruptRoutine(void)

{

 /* Do something here. */

}

Note that an interrupt function must have the return type

void, and it cannot specify any parameters.

Inline assembler

__asm("NOP");

OR

#asm

...

NOP

...

#endasm

asm["movw ax, sp"];

asm["mov a, 0xff"];

CS+ (CA78K0R) IAR Systems

Sizes on integers and floating-point

8 bits char 8 bits

16 bits int 16 bits

16 bits short 16 bits

32 bits float 32 bits

32 bits long 32 bits

Not available long long 32 bits

32 bits double 32 bits (treated as float)

Extended keywords

 __callt

 callt

(Only if non ANSI functions are

allowed. See –za option.)

Call functions via callt table __callt

 __sreg

 sreg

(Only if non ANSI functions are

allowed. See –za option.)

Allocate variables in saddr area __saddr

 __boolean

 boolean

(Only if non ANSI functions are

allowed. See –za option)

Variables defined with this

attribute will be placed within

SADDR or SFR and are

accessible via 1bit access.

-

 bit

(Only if non ANSI functions are

allowed. See –za option)

Variables defined with this

attribute will be placed within

SADDR or SFR and are

accessible via 1bit access.

-

 __interrupt Hardware interrupt __interrupt

 __interrupt_brk Software interrupt

 __asm Inline assembler asm, __asm

 __rtos_interrupt RTOS interrupt handlers. For

RI78V4 RTOS.

-

 __directmap Absolute placement of variables __no_init char a @0x80;

or

#pragma location=0x80

__no_init const int a;

 __near data:0F0000H to 0FFFFFH

code:000000H to 00FFFFH

__near

__near_func

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 7 of 26

 __far data:000000H to 0FFFFFH

code:000000H to 0FFFFFH

__far, __huge

__far_func

Pragma directives

#pragma sfr Use SFR names in C source

files.

#pragma vector (or

interrupt) <interrupt-

request-name> <function-

name>

Write interrupt service routines

in C. See above.

#pragma di

#pragma ei

void main (void) {

 DI();

 EI();

}

Allows the usage of the intrinsic

functions enable and disable

interrupts in C.

#include <intrinsics.h>

void main (void){

 __disable_interrupt();

 __enable_interrupt();

}

#pragma halt

#pragma stop

#pragma brk

#pragma nop

void main (void) {

 HALT ();

 STOP ();

 BRK ();

 NOP ();

}

Allows the usage of the intrinsic

functions halt, stop, brk and nop

in C.

#include <intrinsics.h>

void main (void) {

 __halt();

 __stop();

 __no_operation();

 __break();

}

#pragma section <compiler-

output-section-name> <news-

section-name> [AT startaddr]

Switches sections -

#pragma name <module-name> Change the module name. -

#pragma rot Use the inline rotation

functions.

e.g.

#pragma rot

unsigned char rorb (x, y) ;

unsigned char x ;

unsigned char y ;

Rotates x to right for y times

unsigned int rorw (x, y) ;

unsigned int x ;

unsigned char y ;

Rotates x to right for y times.

-

#pragma div

unsigned int divuw (x, y) ;

unsigned int x ;

unsigned char y ;

Performs unsigned division of x and

y and returns the quotient.

unsigned char moduw (x, y) ;

unsigned int x ;

unsigned char y ;

Performs unsigned division of x and

y and returns the remainder.

Use optimized division

functions.

#pragma mul

unsigned int mulu (x, y) ;

unsigned char x ;

Use the inline multiplication

function.

See above.

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 8 of 26

unsigned char y ;

Performs unsigned multiplication of

x and y.

unsigned long muluw (x, y) ;

unsigned int x ;

unsigned int y ;

Performs unsigned multiplication of

x and y.

#pragma mac

e.g.

unsigned long macuw (x, y, z) ;

unsigned long x ;

unsigned int y ;

unsigned int z ;

Performs unsigned sum-of-products

calculation of x + (y * z) and

returns the result.

signed long macsw (x, y, z) ;

signed long x ;

signed int y ;

signed int z ;

Performs signed sum-of-products

calculation of x + (y * z) and

returns the result.

Use optimized sum-of-products

calculation functions.

rl78\src\lib\hw_multiply_division_units

#pragma opc Insert data at the current code

address.

e.g.

void main (void) {

 __OPC (0xa7) ;

}

Insert the opcode with inline assembler.

asm["opcode"];

#pragma rtos_interrupt Write RI78V4 (real-time OS)

interrupt handlers in C.

-

#pragma rtos_task Write RI78V4 (real-time OS)

tasks in C.

-

#pragma ext_func Call flash area functions by

using a branch table from the

boot area.

-

#pragma inline Inline the standard library

functions memcpy and memset

in order to improve

performance.

-

Intrinsic functions

HALT(); Activate halt mode __halt();

STOP(); Activate stop mode __stop();

BRK(); Use software interrupt __break();

NOP(); Add NOP instruction __no_operation();

EI(); Enable interrupts __enable_interrupt();

DI() Disable interrupts __disable_interrupt();

Preprocessor symbols

__LINE__ Current source line number of

the file being compiled

__LINE__

__FILE__ File name of the file being

compiled

__FILE__

__DATE__ Date of compilation __DATE__

__TIME__ Translation time of source file __TIME__

__STDC__ Conformance to the ANSI __STDC__

__STDC_VERSION__

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 9 of 26

standard

__K0R_SMALL__

__K0R_MEDIUM__

Specifies which model is used. __DATA_MODEL_NEAR__

__DATA_MODEL_FAR__

__CODE_MODEL_NEAR__

__CODE_MODEL_FAR__

__CHAR_UNSIGNED__ Char treated as unsigned. When

the -qu option was specified

-

__RL78__ RL78 family is specified -

__RL78_1__ Core 1 is selected __S1__

__RL78_2__ Core 2 is selected __S2__

__RL78_3__ Core 3 is selected __S3__

__CA78K0R__ Compiler identification __ICCRL78__

Compiler options

-cdevice-type

Target device definition.

Example:

R5F100LE device

-cf100le

Specfied with the linker file and device header

files.

-o[output-file-name] Specify object output file

including path information

--output {filename|directory}

-o { filename|directory }

-no Specify not to output an object

file. See above –o option

-

-rprocess-type

process-type:

 a = Performs indirect reference

in 1-byte units.

 b = Assigns a bit field from the

most significant bit (MSB).

 d[n][m] = assigns an external

variable/external static variable

(except for the const-type

variable) automatically to the

saddr area

n = 1: char, unsigned char

n = 2: char, unsigned char,

short, unsigned short, int,

unsigned int, enum, near pointer

n = 4: char, unsigned char,

short, unsigned short, int,

unsigned int, enum, long,

unsigned long, pointer

m = Structure, union, array

n/m not defined = All variables

are assigned to saddr if n/m not

defined

 s[n][m] = Assigns a static auto

variable automatically to the

saddr area

n = 1: char, unsigned char

n = 2: char, unsigned char,

short, unsigned short, int,

unsigned int, enum, near pointer

n = 4: char, unsigned char,

short, unsigned short, int,

unsigned int, enum, long,

Specification of program

assignment to a memory

--code_model{near|n|far|f}

--data_model{near|n|far|f}

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 10 of 26

unsigned long, pointer

m = Structure, union, array

n/m not defined = All variables

are assigned to saddr if n/m not

defined

 c = Performs indirect reference

in 1-byte units. Packs a structure

and aligns the structure

members to 1 byte. Since the

compiler handles data within

arrays as pointers, byte access is

used when the -rc option is

specified.

 f = Assigns ROM data in the far

area.

 n = Assigns ROM data in the

near area

-nr

The -nr option disables the -r option.

Process types are interpreted as

follows:

a = Does not perform indirect

reference in 1-byte units.

b = Assigns a bit field from the least

significant bit (LSB).

d = Does not automatically assign

any variable to the saddr area.

s = Does not automatically assign

any variable to the saddr area.

c = Do not perform indirect reference

in 1-byte units.

Does not pack a structure and does

not align the structure members to 1

byte.

Use default program assignment

to the memory. See option –r.

-

-g[n]

n = 1: Add debug information to the
object module file only. No debug
information is added to the assembler
source file.

n = 2: Adds debug information to the
object module file and the assembler
source module file.

Debug information can be

added to the object files by

using this option.

--debug

-r

-ng Disable adding of debug

information to the object files.

See –g option.

-

-p[output-file-name] Specify preprocess list file --preprocess[=[c][n][l]] {

filename|directory }

-k[process-type]

process-type:

not specified = will be set as default

–kfln

Specify contents of the

preprocess list file. See option –

p.

-l[a|A|b|B|c|C|D][N][H] {

filename|directory }

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 11 of 26

c = Delete comments

d = Expand definitions defined by

#define

f = Performs conditional

compilations of #if, #ifdef, and

#ifndef.

i = Expands #include

l = Performs #line processing

n = Performs line number and paging

processing.

-dmacro-name[=definition-

name][,macro-

name[=definition-name]] ...

Define macro -D symbol[=value]

-umacro-name[,macro-name]

...

Un-define macro -

-ifolder[,folder] ... Add search path for include

files

-I path

-a[output-file-name] Specify the output of assembler

source file

-la

-sa[output-file-name] C source code will be added as

comment within the generated

assembler source files. See

option –a.

-lA

-e[output-file-name] Specify error list file -l[c|C|D]

-se[output-file-name] C source code will be added to

error list file. See option –a.

-l[c|C|D]

-x[output-file-name] Specify the output of a cross

reference list file

Information can be seen in the assembler output.

-lw[number-of-characters] Specify the character counter

per line for each list file.

-

-ll[number-of-lines] Specify the number of lines per

page for each list file.

-

-lt[number-of-characters] Specify number of spaces to be

used instead of tabulator.

Not using tabs.

-lf Add form feed to the end of

each list file.

-

-li Add the C source code to the

include files used by the

assembler. See also –sa option

-

-w[level]

level:

0 = No warning messages are output.

1 = Normal warning messages are

output.

2 = Detailed warning messages are

output.

Specify whether to output the

warning message to the console

or not.

--no_warnings

-v Output the execution state of

the current compilation to the

console

Default

-nv Disable option –v. --silent

-ffile-name Use input file for passing

options to the compiler.

-f filename

-tfolder Define destination folder for -

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 12 of 26

temporary files.

-ztype

type:

p = The characters after "//" before

the line feed code are interpreted as a

comment.

c = Nesting of comments is

permitted.

s = Interprets the kanji code in

comments as SJIS

e = Interprets the kanji code in

comments as EUC.

n = Interprets comments as not

containing kanji codes.

b = char-/unsigned char-type

argument and return value are not

int-extended.

a = Functions not in the ANSI

standard are invalid.

f = Outputs objects for flash.

taddress = Specifies the start

address of the flash area branch table.

zaddress = Specifies the start address

of the flash area.

x = Outputs the object for the RAM

allocation

Enables extended functions. -

-nz Disable option –z. -

-yfolder Define search path for device

files

User includes the device file. Its either under

INSTALL_DIR/rl78/inc or in a directory specified

as an include path with –I path

-mtype

type:

s = small model

m = medium model

l = large model

Memory model specification --code_model

--data_model

-mi[MAA]

MAA:

0 = 0 to FFFFF0000 to FFFFF

1 = 10000 to 1FFFFF0000 to

FFFFF

Specify mirror area --near_const_location[RAM|ROM0|ROM1]

RAM:

0xF0000 0xFFFFF

ROM0:
0x00000 0x0FFFF

0xF0000 0xFFFFF

ROM1:
0x10000 0x1FFFF

0xF0000 0xFFFFF

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 13 of 26

-common output common object file for

78K0R and RL78

-

-mafile-name[-mafile-name]

-mafile-name[,file-name]

Specify variables and functions

by using an specific file

-

--

-?

-h

Help information on options for

the command line.

Call iccrl78.exe with no input.

Assembler-specific details

CS+ (CA78K0R) IAR Systems

Limitations in source code structure

Interrupt functions in assembler

To insert an entry in the interrupt vector table, define the

destination with the DW directive, for example like this:

@@BASE CSEG BASE

_r_wdt_interrupt:

 ...

 ...

 RETI

@@VECT04 CSEG AT 0004H

 DW _r_wdt_interrupt

Interrupt functions should be declared as ROOT so that they

cannot be discarded by the linker even if no symbols in the

segment are referred to. To insert an entry in the interrupt

vector table, define the destination with the DW directive, for

example like this:

 COMMON INTVEC:CODE:ROOT(1)

 ORG 0x08 ;INTP0

branchToInter0:

 DW inter0

Code segments and data segments are defined by
using the following assembler directive:

CSEG: In internal or external ROM address area
DSEG: In internal or external RAM address area
BSEG: In internal RAM saddr area

relocatable

[segment-name] CSEG [relocation-attribute]

Possible relocation attributes:

 CALLT0

Place segments to the CALLT area of the device

Default segment: ?CSEGT0

 FIXED

Place segment within the range 0x000C0 to 0x0FFFF

Default segment: ?CSEGFX

 BASE

Place segment within the range 0x000C0 to 0x0FFFF

Default segment: ?CSEGB

 AT absolute-expression

Place the segment to an absolute segment

Default segment: -

 UNIT

Place the segment on odd or even address within the

address range 0x000C0 to 0xEFFFF

Default segment: ?CSEG

 UNITP

Place the segment on even address within the address

range 0x000C0 to 0xEFFFF

Default segment: ?CSEGUP

 IXRAM

Place the segment on odd or even address within the

address range 0x000C0 to 0xEFFFF

Default segment: ?CSEGIX

 SECUR_ID

SECTION section [:type] [:flag] [(align)]

- align

0

- flag

ROOT NOROOT

ROOT

NOROOT

REORDER NOREORDER NOREORDER

REORDER

- section

- type

CODE

CONST DATA

- value

- type-expr

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 14 of 26

Place the segment within the security id address range

000C4H to 000CDH.

Default segment: ?CSEGSI

 PAGE64KP

Place a segment within a 64KB page. Same named

segment used in different files will not be combined.

Default segment: ?CSEGP64

 UNIT64KP

Place a segment within a 64KB page. Same named

segment will be combined.

Default segment: ?CSEGU64

 MIRRORP

Place the segment to the mirror area.

Default segment: ?CSEGMIP

 OPT_BYTE

Place the segment within the option byte address range

000C0H to 000C3H.

Default segment: ?CSEGOB0

[segment-name] DSEG [relocation-attribute]

Possible relocation attributes:

 SADDR

Place segment to the saddr area of the device 0x0FFE20

to 0xFFEFF

Default segment: ?DSEGS

 SADDRP

Place segmentsto the saddr area of the device

0x0FFE20 to 0xFFEFF on even address

Default segment: ?DSEGSP

 AT absolute-expression

Place the segment to an absolute segment

Default segment: -

 UNIT

Place the segment on odd or even address within the

RAM

Default segment: ?DSEG

 UNITP

Place the segment on even address within the RAM

Default segment: ?DSEGUP

 BASEP

Place the segment on even address within the RAM

(except saddr area)

Default segment: ?DSEGBP

 PAGE64KP

Place a segment within a 64KB page in RAM. Same

named segment used in different files will not be

combined.

Default segment: ?DSEGP64

 UNIT64KP

Place a segment within a 64KB page in RAM. Same

named segment will be combined.

Default segment: ?DSEGU64

[segment-name] BSEG [relocation-attribute]

Possible relocation attributes:

 AT absolute-expression

Place the segment to an absolute segment

- flags-expr

The section name can be referenced in the linker file in

order to place the section at a specific address otherwise it

will get a default placement.

Ex:

Assembler file:

SECTION my_section:CODE:NOROOT(2)

__start

;code...

Link file:

define symbol start_of_my_section = 0x0160;

place at address mem:start_of_my_section{

readonly section my_section};

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 15 of 26

Default segment: -

 UNIT

Place the segment on odd or even address within the

RAM (0xFFE20 to 0xFFEFF)

Default segment: ?BSEG

Bit segments can be defined by using the BSEG assembler
directive. See above.

Bit segments cannot be defined explicitly, but can easily be

defined using bit operators in code or data segments. As a

byte is the smallest allocable memory segment, no memory

is lost or gained using either tool.

Binary representation

 Not supported, should be replaced by 0x0f.

CS+ (CA78K0R) IAR Systems

Integer constants

1010B, 1010Y Binary 1010b, b'1010

1234O, 1234Q Octal 1234q, q'1234, 01234

1234, -1, 1234D, 1234T Decimal 1234, -1, d'1234, 1234d

8FFFH, 0FFFFH Hexadecimal 0FFFFh, 0xFFFF, h'FFFF

Operand modifiers in assembler

+ Addition of values of first and second

terms

e.g.

BR !$ + 6

+

- Subtraction of value of first and second

terms

e.g.

BACK : BR BACK - 6H

-

* Multiplication of value of first and

second terms.

e.g.

TEN EQU 10H

MOV A, #TEN * 3

*

/ Divides the value of the 1st term of an

expression by the value of its 2nd term

and returns the integer part of the

result.

MOV A, #256 / 50

/

MOD Obtains the remainder in the result of

dividing the value of the 1st term of an

expression by the value of its 2nd term.

e.g.

MOV A, #256 MOD 50

MOD

%

+sign Returns the value of the term as it is.

e.g.

FIVE EQU +5

+sign

-sign The term value 2 complement is sought.

e.g.

NO EQU -1

-sign

NOT Obtains the logical negation (NOT) by

each bit.

e.g.

MOVW AX, #LOWW (NOT 3H)

BINNOT

-

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 16 of 26

AND Obtains the logical AND operation for

each bit of the first and second term

values.

e.g.

MOV A, #6FAH AND 0FH

BINAND

&

OR Obtains the logical OR operation for

each bit of the first and second term

values.

e.g.

MOV A, #0AH OR 1101B

BINOR

|

XOR Obtains the exclusive OR operation for

each bit of the first and second term

values.

e.g.

MOV A, #9AH XOR 9DH

BINXOR

^

EQ (=) Compares whether values of first term

and second term are equivalent. Return

true (0xFF) if equal and false (0x00) if

not.

e.g.

A1 EQU 12C4H

A2 EQU 12C0H

MOV A, #A1 EQ (A2 + 4H)

EQ

=

==

NE(<>) Compares whether values of first term

and second term are not equivalent.

Return true (0xFF) if not equal and

false (0x00) if equal.

e.g.

A1 EQU 12C4H

A2 EQU 12C0H

MOV A, #A1 EN A2

NE

<>

!=

GT(>) Compares whether value of first term is

greater than value of the second.

Return true (0xFF) if value of first

operand is greater than the second one

and false (0x00) if not.

e.g.

A1 EQU 12C4H

A2 EQU 12C0H

MOV A, #A1 GT A2

GT

>

GE(>=) Compares whether value of first term is

greater than or equivalent to the value

of the second term. Return true (0xFF)

if value of first operand is greateror

equal than the second one and false

(0x00) if not.

e.g.

A1 EQU 12C4H

A2 EQU 12C0H

MOV A, #A1 GE A2

GE

>=

LT(<) Compares whether value of first term is LT

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 17 of 26

smaller than value of the second.

Return true (0xFF) if value of first

operand is less than the second one and

false (0x00) if not.

e.g.

A1 EQU 12C4H

A2 EQU 12C0H

MOV A, #A1 LT A2

<

LE(<=) Compares whether value of first term is

smaller than or equivalent to the value

of the second term. Return true (0xFF)

if value of first operand is less than or

equal the second one and false (0x00)

if not.

e.g.

A1 EQU 12C4H

A2 EQU 12C0H

MOV A, #A1 LE A2

LE

<=

SHR Shift right.

e.g.

MOV A, #01AFH SHR 5

SHR

>>

SHL Shift left.

e.g.

MOV A, #21H SHL 2

SHL

<<

HIGH Returns the high-order 8-bit value of a

term.

e.g.

MOV A, #HIGH 1234H

HIGH

LOW Returns the low-order 8-bit value of a

term.

e.g.

MOV A, #LOW 1234H

LOW

HIGHW Returns the high-order 16-bit value of a

term.

e.g.

MOVW AX, #HIGHW 12345678H

MOV ES, #HIGHW LAB

MOVW AX, ES:!LAB

HWRD

LOWW Returns the low-order 16-bit value of a

term.

e.g.

MOVW AX, #LOWW 12345678H

LWRD

MIRHW Obtains the 16 higher-order bits of an

address in the mirror destination area

specified as the operand in the mirror

source area.

e.g.

MOVW RP0, #MIRLW PM0

-

MIRLW Obtains the 16 lower-order bits of an

address in the mirror destination area

specified as the operand in the mirror

-

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 18 of 26

source area.

e.g.

MOVW RP0, #MIRLW PM0

DATAPOS Obtains the address part of a bit

symbol.

e.g.

SYM EQU 0FE68H.6

MOV A, !DATAPOS SYM

; return value 0FE68H

-

BITPOS Obtains the bit part of a bit symbol.

e.g.

SYM EQU 0FE68H.6

CLR1 [HL].BITPOS SYM

-

MASK Obtains a 16-bit value in which the

specified bit positions are 1 and all

others are 0.

e.g.

MOVW AX,#MASK

(0,3,0FE00H.7,15)

-

() Prioritizes the calculation within ()

e.g.
MOV A, #(4+3)*2

()

Assembler directives

CSEG Code segment placement. See above. RSEG MY_SECTION:CODE

SECTION MY_SECTION:CODE

DSEG Data segment placement. See above. RSEG MY_SECTION:DATA

SECTION MY_SECTION:DATA

BSEG Bit segment placement. See above. -

EQU

name EQU expression

Defines a symbol with numerical data EQU

SET

name SET expression

Defines a symbol with numerical data.

Bit symbol cannot be defined

SET

VAR

DB

label: DB size

label: DB initial-value

Initialize byte area DS

DS8

DW

label: DW size

label: DW initial-value

Initialize word area DS16

DG

label: DG size

label: DG initial-value

Initialization of 20 bit area in 32 bits (4

bytes)

-

DS

label: DS absolute-expression

Reserve number of bytes specified by

the operand.

DS expr [,expr]...

Ex:

buffer DS 25

DBIT

[name] DBIT

Reserve one bit of memory area in bit

segment

-

EXTRN

[label:] EXTRN symbol-name[,]

[label:] EXTRN BASE(symbol-

name[,...])

External symbol definition. Meaning of

the BASE attribute is that the symbol is

located within 64KB area (0x0 to

0xFFFF)

EXTERN symbol [,symbol]...

EXTBIT

[label:] EXTBIT bit-symbol-

name[,...]

External bit definition. -

PUBLIC

[label:] PUBLIC symbol-

name[,...]

Define symbol to be referenced by

other module.

PUBLIC symbol [,symbol]...

PUBWEAK symbol [,symbol]...

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 19 of 26

NAME

[label:] NAME object-module-

name[,...]

Define object module name. MODULE symbol

PROGRAM symbol

NAME symbol

BR

[label:] BR expression

Tells the assembler to automatically

select a 2-, 3-, or 4-byte BR branch

instruction according to the value range

of the expression specified in the

operand field.

-

CALL

[label:] CALL expression

Tells the assembler to automatically

select a 3- or 4-byte CALL branch

instruction according to the value range

of the expression specified in the

operand field.

-

MACRO

[macro-name:] MACRO formal-

parameter[,...]

Executes a macro definition by

assigning the macro name specified in

the symbol field to a series of

statements described between MACRO

directive and the ENDM directive.

name MACRO [argument]

[,argument]...

ENDMAC

LOCAL

LOCAL symbol-name

Define symbol which is valid within a

macro body only.

LOCAL symbol [,symbol] ...

REPT

[label:] REPT absolute-

expression

Tells the assembler to repeatedly

expand a series of statements described

between this directive and the ENDM

directive the number of times

equivalent to the value of the

expression specified in the operand

field.

REPT expr

REPTC formal,actual

REPTI formal,actual [,actual]

...

IRP

[label:] IRP formal-

parameter, [actual-parameter]

Tells the assembler to repeatedly

expand a series of statements described

between IRP directive and the ENDM

directive the number of times

equivalent to the number of actual

parameters while replacing the formal

parameter with the actual parameters

(from the left, the order) specified in

the operand field.

-

EXITM

[label:] EXITM

Forcibly terminates the expansion of

the macro body defined by the

MACRO directive and the repetition

by the REPT-ENDM or IRP-ENDM

block.

ENDR

EXITM

ENDM Instructs the assembler to terminate the

execution of a series of statements

defined as the functions of the macro.

ENDM

END Declares termination of the source

module

END

$PROCESSOR Specifies in a source module file the

assemble target type.

e.g.

$PROCESSOR (f1166a0)

-

$DEBUG Adds local symbol information in the

object module file.

compiler option

--debug

-r

$NODEBUG Does not add local symbol information

in the object module file.

-

$DEBUGA Adds assembler source debug

information in the object module file.

compiler option

--debug

-r

$NODEBUGA Does not add assembler source debug -

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 20 of 26

information in the object module file.

$XREF Outputs a cross-reference list to an

assemble list file.

LSTXRF+

$NOXREF Does not output a cross-reference list

to an assemble list file.

LSTXRF-

$SYMLIST Outputs a symbol list to a list file LSTOUT+

$NOSYMLIST Does not output a symbol list to a list

file.

LSTOUT-

$INCLUDE(filename) Include a file. #include {"filename" |

<filename>}

$EJECT Indicates an assembly list page break. -

$LIST Indicates starting location of output of

assembly list.

-

$NOLIST Indicates stop location of output of

assembly list.

-

$GEN Outputs macro definition lines,

reference line and also macro-

expanded lines to assembly list.

LSTMAC+

$NOGEN Does not output macro definition lines,

reference line and also macro-

expanded lines to assembly list.

LSTMAC-

$COND Outputs approved and failed sections

of the conditional assemble to the

assembly list.

Lists only the source code within

positive condition blocks:

LSTCND+

Lists all source code:

LSTCND-

$NOCOND Does not output approved and failed

sections of the conditional assemble to

the assembly list.

-

$TITLE(‘title-string’) Prints character strings in the TITLE

column at each page header of an

assembly list, symbol table list, or

cross-reference list.

-

$SUBTITLE(‘title-string’) Prints character strings in the

SUBTITLE column at header of an

assembly list.

-

$FORMFEED Outputs form feed at the end of a list

file.

-

$NOFORMFEED Does not output form feed at the end of

a list file.

-

$WIDTH Specifies the maximum number of

characters for one line of a list file.

-

$LENGTH Specifies the number of lines for 1

page of a list file

-

$TAB Specifies the number of characters for

list file tabs.

-

$IF(switch-name)

...

$ELSEIF (switch-name)

...

$ELSE

...

$ENDIF

Sets conditions in order to limit the

assembly target source statements.

-

$_IF conditional-expression

...

$_ELSEIF conditional-

expression

...

$ELSE

...

$ENDIF

Sets conditions in order to limit the

assembly target source statements. The

IF and ELSEIF control instructions are

used for true/false condition judgment

with switch name(s), whereas the _IF

and _ELSEIF control instructions are

used for true/false condition judgment

with a conditional expression. See

#if cond

...

#elif cond

...

#else

...

#endif

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 21 of 26

above.

$SET(switch-name) Sets value 0xFF for switch name

specified by IF/ELSEIF control

instruction.

-

$RESET(switch-name) Sets value 0x00 for switch name

specified by IF/ELSEIF control

instruction.

-

$KANJICODE kanji-code Interprets Kanji character code for

specified Kanji characters described in

the comment.

-

$RAM_ALLOCATE (segment-name) Allocate the segment with the specified

segment name to the memory area

name "RAM".

RSEG MY_SECTION:DATA

SECTION MY_SECTION:DATA

or in the linker file.

Assembler options

-cdevice-type

The -c option specifies the target

device for performing assembly

Can only specify core.

--core={s1|s2|s3}

-o[output-file-name]

Specifies the output of an object

module file

--output {filename|directory}

-o {filename|directory}

-no Disables the –o, -j, -g and –ga option -

-j The -j option specifies that the object

module file can be output even if a

fatal error occurs

-

-nj Disables the –j option -

-g The -g option specifies that debug

information (local symbol information)

is to be added to an object module file

--debug

-r

-ng Disables –g option -

-ga The -ga option specifies that assembler

source debug information is to be

added to an object module file.

--debug

-r

-nga The -nga option disables the -g and -ga

option

-

-ipath-name Include files path definition -Ipath

-p[output-file-name] The -p option specifies the output of an

assemble list file.

-l[a][d][e][m][o][x][N][H]

{filename|directory}

 a

 d LSTOUT

-ld

 e

 m

 o

 x

 N

 H

 filename

 directory

i

-np The -np option disables the -p, -ka, -ks,

-kx, -lw, -ll, -lh, -lt, and -lf option

-

-ka The -ka option outputs an assemble list

into an assemble list file.

See above.

-nka The -nka option disables the -ka

option.

-

-ks The -ks option outputs a symbol list See above.

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 22 of 26

followed by an assemble list into an

assemble list file.

-nks The -nks option disables the -ks option. -

-kx The -kx option outputs a cross

reference list followed by an assemble

list into an assemble list file.

-lx

-nkx The -nka option disables the -kx

option.

-

-lw[number-of-characters] The -lw option specifies the number of

characters per line in a list file

-

-ll[number-of-lines] The -ll option specifies the number of

lines per page in an assemble list file.

-

-lhcharacter-string The -lh option specifies the character

string printed in the title column of the

header of an assemble list file

-

-lt[number-of-characters] Spaces used for tabulator. Always spaces.

-lf The -lf option inserts a form feed (FF)

code at the end of an assemble list file

-

-nlf The -nlf option disables the -lf option -

-e[output-file-name] The -e option specifies the output of an

error list file.

Part of the assembler list file.

-ne The -ne option disables the -e option. -

-ffile-name File with options to be used from

command-line.

-f filename

-tpath-name Folder for temporary files. -

-zs

-ze

-zn

Allow comments with following codes:

-zs: Shift-JIS code

-ze: EUC code

-zn: Not interpreted as kanji

-

-ypath-name Device file path -

-dsymbol-

name[=value][,symbol-

name[=value] ...]

The -d option defines symbols. -Dsymbol[=value]

-common Generate common object file for RL78

and 78K0R

-

-mirchk The -mirchk option checks the range of

the address for a label in the mirror

area.

(From v1.60)

-

-- The -- option outputs a help message

on the display.

Call iasmrl78.exe with no input.

Linker and library details

CS+ (CA78K0R) IAR Systems

Device-specific header files

All SFRs are accessible by adding the “#pragma sfr” to

the file.

All SFRs are defined in ioxxx.h files.

CS+ (CA78K0R) IAR Systems

Linker options

-o[output-file-name] Define the debug file. --output/-o {filename/directory}

-no The -no option disables the -o, -j,

and -g option.

-

-j Generate debug file even if a fatal

error occurs.

--force_ouput

-nj The -nj option disables the -j option -

-g The -g option specifies that debug

information (local symbol

information) is to be added to a load

module file

Debug information is included by default and

removed by –strip.

Debug information with terminal:

--debug_lib

-ng The -ng option disables the -g, -kp, --strip

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 23 of 26

and -kl option.

-s[area-name] The -s option generates the stack

decision public symbols

"_@STBEG" and "_@STEND".

Specified in the linker file.

-ns The -ns option disables the -s option. -

-dfile-name The -d option specifies that the

specified file is to be input as a link

directive file.

--config filename

-p[output-file-name] The -p option specifies the output of

a link list file. It also specifies the

location to which it is output and the

file name.

--log topic[,topic,...]

--log_file filename

-np The -np option disables the -p, -km,

-kd, -kp, -kl, -ll, and -lf option.

-

-km The -km option outputs a map list

into a link list file.

--map {filename|directory}

map

-nkm The -nkm option disables the -kd

and -km option.

-

-kd The -kd option outputs a link

directive into a link list file.

-

-nkd The -nkd option disables the -kd

option.

-

-kp The -kp option outputs a public

symbol list into a link list file.

-log sections

-nkp The -nkp option disables the -kp

option.

-

-kl The -kl option outputs a local

symbol list into a link list file.

-log sections

-nkl The -nkl option disables the -kl

option.

-

-ll[number-of-lines] The -ll option specifies the number

of lines per page in a link list file

-

-lf The -lf option inserts a form feed

(FF) code at the end of a link list

file.

-

-nlf The -nlf option disables the -lf

option.

-

-e[file-name] The -e option specifies the output of

an error list file. It also specifies the

location to which it is output and the

file name

-

-ne The -ne option disables the -e

option.

-

-bfile-name The -b option specifies that the

specified file is to be input as a

library file.

No separate option. Enter library names

separated with blanks.

-ipath-name[,path-name] ... The -i option specifies that a library

file is to be input from the specified

path.

No separate option. Enter library names

separated with blanks.

-ffile-name Command line options to be passed

via file

-f filename

-tpath-name The -t option specifies a path in

which a temporary file is created.

-

-ypath-name Device file path -

-w[level]

level:
0: No warning message is output.
1: A normal warning message is

Define warning level. --no_warnings

--warnings_affect_exit_code

--warnings_are_errors

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 24 of 26

output.
2: A detailed warning message is
output.

-zbaddress Define flash start address in case e.g.

a bootloader is used.

e.g.

bootloader located in flash from

address 0x0000 to 0x1FFFF

Application could use the option

–z2000h in order to start from the

address 0x2000

Done in the linker. Can only half way be done

with option:

--place_holder

symbol[,size[,section[,alignment]]]

symbol

size

section

.text

alignment

1

-gocontrol-value,

start-address[,size]

control-value = value of option byte

C3

start-address = OCD monitor start

address

size = OCD monitor size

Configure on-chip debugging.

-

-gisecurity-id Security ID specification. Defined as section .security_id in the

linker.

-gbuser-option-byte-value Definition of user option byte 0xC0

to 0xC2

Defined as section .option_byte in the

linker.

-mi[MAA]

MAA:

0 = 0 to FFFFF0000 to FFFFF

1 = 10000 to 1FFFFF0000 to

FFFFF

Specify mirror area Done at the compiler level.

-ccza Use the -ccza option to specify

whether to allocate a segment to the

last byte of each 64 KB boundary

area.

-

-nccza Disable option -ccza -

-self/-selfw The -self and -selfw options specify

whether to restrict allocation to the

self RAM area. Self RAM is used by

code/data flash programming

libraries.

-

-ocdtr/-ocdtrw Use the -ocdtr and -ocdtrw options

to specify whether to restrict

allocation to the trace RAM area.

(From v1.40)

-

-ocdhpi/-ocdhpiw

The -ocdhpi and -ocdhpiw options

specify whether to restrict allocation

to the hot plug-in RAM area

(From v1.40)

-

-rcaddress Use the -rc option to specify the

address that the copy routine for

expanding ROMized segments in

RAM area is allocated.

-

-rastart-address,end-address The -ra option specifies the

ROMization target area.

-

-rrmstart-address The -rrm option specifies whether to

reserve the work area for the

RRM/DMM function.

-

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 25 of 26

-- The -- option outputs a help message

on the display.

Call ilinkrl78.exe with no input.

Segments/Sections

@@CODE Segment for code portion (allocated

to near area)

.text

@@CODEL Segment for code portion (allocated

to far area)

.textf

@@CODER Segment for code portion (allocated

to RAM)

Must create a user defined section and in the

linker file use:

initialize by copy { MY_SECTION };

@@LCODE Segment for library code (allocated

to near area)

.text

@@LCODEL Segment for library code (allocated

to far area)

.textf

@@LCODER Segment for library code portion

(allocated to RAM)

-

@@CNST ROM data (allocated to near area

within mirror)

.const

@@CNSTR Segment for ROM data portion

(allocated to RAM) (allocated to

near area within mirror).

.data_init

@@CNSTL ROM data (allocated to far area) .constf

@@CNSTLR Segment for ROM data portion

(allocated to RAM) (allocated to far

area)

.dataf_init

@@R_INIT Segment for near initialized data

(with initial value)

.data

@@RLINIT Segment for far initialized data (with

initial value)

.dataf

@@R_INIS Segment for initialized data (sreg

variable with initial value)

-

@@CALT Segment for callt function table .callt0

@@VECTnn

The value of nn changes depending
on the interrupt types

Segment for vector table .intvec

@@BASE Segment for callt function and

interrupt function

.text

@@LBASE Segment for library and callt

function

.text

@@INIT Segment for data area (with initial

value, allocated to near area)

.data

@@INITL Segment for data area (with initial

value, allocated to far area)

.dataf

@@DATA Segment for data area (without

initial value, allocated to near area)

.bss

@@DATAL Segment for data area (without

initial value, allocated to far area)

.bssf

@@INIS Segment for data area (sreg variable

with initial value)

-

@@DATS Segment for data area (sreg variable

without initial value)

-

@@BITS Segment for boolean type and bit

type variables

-

Runtime environment

CS+ (CA78K0R) IAR Systems

Calling convention

Migrating from CS+ CA78K0R for RL78 to IAR Embedded Workbench for RL78

Part number: EWRL78_MigratingFromRenesasCA78K0R-3 Page 26 of 26

Parameters passed on the stack
The second and following arguments are passed to functions
on the stack.

Parameters passed in registers
AX 8-bit values in: A, B, C, X, D, E
AX 16-bit values in: AX, BC, DE
AX, BC 24-bit values in: Stack
AX, BC 32-bit values in: BC:AX
AX, BC Floating-point values in: BC:AX

Return values
CY 1-bit
BC 8-bit values in: A
BC 16-bit values in: AX

BC (lower), DE (upper) 24-bit values in: A:HL

BC (lower), DE (upper) 32-bit values in: BC:AX

BC (lower), DE (upper) Floating-point values in: BC:AX

Preserved registers
HL BC and DE

Scratch registers
AX, BC, DE, ES, CS -The registers AX, HL, CS and ES.

-Registers that are used as register parameters and for
returning values by a function.

System startup and exit code

The system startup code is provided as a pre-compiled library
and is automatically included within the project. However,
the user has the possibility to include the ready-made

cstart.asm file and adapt it according to the needs.

Usually the user will use the standard library and just
implement the function hdwinit which will be automatically
called by the cstart library. Here the user can configure the
hardware before the application runs to the main function.

The system startup code is located in the ready-made

cstartup.s file. In addition, you specify additional settings,
for example for the stack and heap size.
It is likely that you need to customize the code for system
initialization. For example, your application need to initialize
memory-mapped special function registers, or omit the
default initialization of data segments performed by cstartup.
You can do this by providing a customized version of the

routine __low_level_init, which is called from cstartup

before the data segments are initialized. Modifying cstartup
directly should be avoided.

Global variable initialization

Static and global variables are initialized: zero-initialized
variables are cleared and the values of other initialized
variables are copied from ROM to RAM memory. This
initialization will be done by the so called ROMization
process.

Static and global variables are initialized: zero-initialized
variables are cleared and the values of other initialized
variables are copied from ROM to RAM memory. This
initialization can be overrided by returning 0 from the

__low_level_init function.

Variables declared __no_init which are not initialized at

all: __no_init int i;

Reentrancy and recursive functions

Most of the standard library functions are reentrant. Please
check the documentation for details.

The compiler is always reentrant when using the DLIB
library.

Other operations

IAR Systems, IAR Embedded Workbench, C-SPY, C-RUN, C-STAT, visualSTATE, Focus on Your Code, IAR KickStart Kit,
IAR Experiment!, I-jet, I-jet Trace, I-scope, IAR Academy, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB.

All information is subject to change without notice. IAR Systems assumes no responsibility for errors and shall not be liable for
any damage or expenses.

© 2015 IAR Systems AB. Part number: EWRL78_MigratingFromRenesasCA78K0R-3

