
User’s Manual
OKI ARMTM BASED MICROCONTROLLER PRODUCTS

AME-51 Sample Programs
 Revision 1.0

July 01, 2005

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 ii

Table of Contents

Preface...6

1. Sample Program Overview ..7

1.1. Sample Programs Included...7

1.2. Operating Environment ...8

1.3. Operating Conditions ..9
1.3.1. AME-51 Board Settings...9
1.3.2. Development Host ...10

2. IRQ Interrupt Requests...11

2.1. IRQ Handler ..11

2.2. IRQ Handler Table ..12

2.3. Individual IRQ Handlers ..13

2.4. Interworking ARM and Thumb Modes..13
2.4.1. Interworking in Assembly Language ...13
2.4.2. Interworking In C...13

3. Sample Programs Specifications..14

3.1. Shared Specifications..14
3.1.1. LED Patterns..14
3.1.2. Configuring Clock Gear...14

3.2. Initializing Microcontroller ..15
3.2.1. Modules Used ..15
3.2.2. Operational Description ...15
3.2.3. Flowchart ...16

3.3. External Memory Controller (SRAM and ROM) ...17
3.3.1. Modules Used ..17
3.3.2. Operational Description ...17
3.3.3. Flowcharts..18

3.4. System Timer ...19
3.4.1. Functions Used ..19
3.4.2. Description of Operation..19
3.4.3. Flowcharts..20

3.5. IRQ Exception Handler ..21
3.5.1. Modules Used ..21
3.5.2. Operational Description ...21

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 iii

3.5.3. Flowchart ...22

3.6. I/O Ports ..23
3.6.1. Modules Used ..23
3.6.2. Operational Description ...23
3.6.3. Flowchart ...24

3.7. Buffered Asynchronous Serial Interface (UART)25
3.7.1. Modules Used ..25
3.7.2. Operational Description ...25
3.7.3. Flowcharts..26
3.7.4. Calculating Frequency Divider ..29

3.8. Asynchronous Serial I/O (SIO)..30
3.8.1. Modules Used ..30
3.8.2. Operational Description ...30
3.8.3. Flowcharts..31
3.8.4. Specifying the Reload Value in SIOBT ...33

3.9. Power Management ...34
3.9.1. Modules Used ..34
3.9.2. Operational Description ...34
3.9.3. Flowchart ...36

3.10. Direct Memory Access Controller (DMAC) ..37
3.10.1. Modules Used ..37
3.10.2. Operational Description ...37
3.10.3. Flowcharts..39

3.11. Analog-to-Digital Converter...41
3.11.1. Modules Used ..41
3.11.2. Operational Description ...41
3.11.3. Flowcharts..42

3.12. Pulse Width Modulation (PWM) Generator ..43
3.12.1. Modules Used ..43
3.12.2. Operational Description ...43
3.12.3. Flowcharts..44

3.13. Capture Function ...45
3.13.1. Functions Used...45
3.13.2. Description of Operation..45
3.13.3. Flowchart ...46

3.14. Real-Time Clock (RTC) ..48
3.14.1. Functions Used...48
3.14.2. Description of Operation..48

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 iv

3.14.3. Flowchart ...50

3.15. FIQ Interrupt Requests ..53
3.15.1. Functions Used...53
3.15.2. Description of Operation..53
3.15.3. Flowchart ...54

3.16. Scatter Loading..55
3.16.1. Modules Used ..55
3.16.2. Operational Description ...55
3.16.3. Memory Maps..55
3.16.4. Flowchart ...56

3.17. Memory Remapping...57
3.17.1. Modules Used ..57
3.17.2. Operational Description ...57
3.17.3. Memory Maps..58
3.17.4. Flowcharts..60

3.18. Watchdog Timer (WDT) ...61
3.18.1. Modules Used ..61
3.18.2. Operational Description ...61
3.18.3. Flowcharts..62

3.19. I2C Interface ...63
3.19.1. Modules Used ..63
3.19.2. Operational Description ...63
3.19.3. Flowcharts..66

3.20. Auto Reload Timers ...73
3.20.1. Modules Used ..73
3.20.2. Operational Description ...73
3.20.3. Flowcharts..74

3.21. I2S ...75
3.21.1. Modules Used ..75
3.21.2. Operational Description ...75
3.21.3. Flowcharts..77

3.22. SPI Interface ...81
3.22.1. Functions Used...81
3.22.2. Description of Operation..81
3.22.3. Flowcharts..84

3.23. Demo and Self-Test Program ..93
3.23.1. Functions Used...93
3.23.2. Description of Operation..93

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 v

3.23.3. Setup ..93
3.23.4. LED Test (1)...94
3.23.5. Memory Test (2)...94
3.23.6. I2C Test (3) ...95
3.23.7. UART Test (4)..95
3.23.8. Switch Demo/Test (5) ..95
3.23.9. ADC Demo/Test (6) ...95
3.23.10. RTC Demo (7)..96
3.23.11. I2C Demo (3) ..96
3.23.12. UART Demo (4)...96

4. Running Sample Programs..97

4.1. Procedure ...97

Revision History ...98

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 6

Preface
About This Document

This document describes the sample programs that Oki provides for AME-51 board.

This document uses the following terms.

• Sample programs: The AME-51 Board Sample Programs

• IAR: IAR Embedded Workbench

• ADS: ARM® Developer Suite

• RVDK: RealView® Developer Kit for Oki

• AME-51: AME-51 CPU board

Related Documents
The file readme.txt included with the source code files contains reference material for the
sample programs. Read that reference material in conjunction with this document.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 7

1. Sample Program Overview
The sample programs in this document run on the AME-51 CPU board.
These sample programs can be built with RVDK, ADS, or IAR Embedded Workbench.
To run the results on the target board, download them to the RAM on the target with the debugger
or to the Flash memory.

1.1. Sample Programs Included
The set of sample programs is used for evaluating the following board components.

• External memory controller (SRAM, ROM)

* ML67Q4051 only
• System timer
• Interrupt controller
• General-purpose I/O ports (GPIO)
• Buffered asynchronous serial interface (UART)
• Asynchronous serial interface (SIO)*
• Power management
• Direct memory access controller (DMAC)
• Analog-to-digital converter
• PWM output
• Capture function
• Real-time clock (RTC)
• FIQ interrupt requests
• Distributed loading (Not used with IAR tools)
• Remapping
• Watchdog timer (WDT)
• I2C interface
• Auto reload timer
• I2S interface
• SPI interface

*SIO sample program does not readily run on AME-51 board.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 8

1.2. Operating Environment
Figures 1.2.1 illustrates the setup for typical ARM software development environment. This is
the typical setup used for running these sample programs on Oki target CPU-boards.

Figure 1.2.1 Software Development Environment

A complete ARM development environment consists of the following elements:

• Software development tools such as IAR EWARM or RVDK running on a host PC

• JTAG debugger interface hardware such as JLINK, RVI-ME or ARM Multi-ICE for
debugging

• Target board such as AME-51 or customer own designed board

In the AME-51 Kit, IAR EWARM software development suite is provided with JLINK JTAG
probe and AME-51 CPU-board.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 9

1.3. Operating Conditions
1.3.1. AME-51 Board Settings

The following are the default settings for running these sample programs on the AME-51
board. Note, however, that Section 3 “Sample Program Specifications” sometimes specifies
different settings for particular programs.

• System clock: 32.768 MHz

• DIP switch settings: Figure 1.3.1 shows switch settings for placing AME-51 in Debug Mode.
This is the recommended mode for running the sample programs. In this mode, external
on-board RAM is used as emulation memory. . Figure 1.3.2 shows switch settings for
placing AME-51 into Stand Alone mode. In this mode of operation, the code programmed
into internal Flash of the MCU will execute. This mode is used if sample programs have
been programmed into internal Flash to run independent of development tools.

FWJ
ROMSEL
EXBUSE
EXIROME
BOOT1
BOOT0
BOOTCLK
JTAGE

Fig. 1.3.1 SW1 switch settings for AME-51 board in Debug Mode

POSITION

OFF
ON
ON
OFF
ON
OFF

X
ON

 FWJ
 ROMSEL
 EXBUSE
 EXIROME
 BOOT1
 BOOT0
 BOOTCLK
 JTAGE

Fig. 1.3.2 SW1 switch setting for Stand Alone Mode

POSITION

OFF
ON
ON
OFF
OFF
OFF

X
X

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 10

1.3.2. Development Host
The following are the default requirements for the development host. Note, however, that
Section 3 “Sample Program Specifications” sometimes specifies additional requirements for
particular programs.

Using IAR

• IAR Embedded Workbench must be installed and operating. J-LINK JTAG-ICE is required.

• USB port: One required

• Serial port: One required

Using RVDK

• RVDK must be installed and operating.

• USB port: One required

• Serial port: One required

Using ADS

• ADS and Multi-ICE server must be installed and operating.

• Parallel port: One required

• Serial port: One required

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 11

2. IRQ Interrupt Requests
An ARM exception transfers control to the exception vector for the exception type. This
address normally has a branch instruction to an exception handler. These sample programs
follow this approach.

2.1. IRQ Handler

These sample programs use an IRQ handler that processes an IRQ exception by looking up its
interrupt number in an IRQ handler table (See Section 2.2.) and call the handler for that
interrupt source. (See Section 2.3.)

IRQ handlers generally come in two types: ones that permit nesting, pre-emption by interrupt
requests with higher priority, and ones that do not relinquish control until they complete.
These sample programs use both types.

Figure 2.1.1 shows the operation flow for an IRQ interrupt request.

 Vector address

B IRQ_Handler

 IRQ handler
 :

Read IRQ number (N)

Look up entry in IRQ handler table

Branch to N_Handler

 N_Handler
(source-specific handler)

 :
N_Handler processing

 :

IRQ_HANDLER_TABLE [0] A_handler
 [1] B_handler
 : :
 [N] N_handler
 : :
 IRQ handler table

 Interrupt request

 End of IRQ
processing

Figure 2.1.1 IRQ Operation Flow

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 12

2.2. IRQ Handler Table
Each IRQ interrupt source is assigned an IRQ number. The IRQ handler table lists the
interrupt handler addresses for these IRQ numbers. The source code defines this table as an
array.

typedef IRQ_HANDLER *pIRQ_HANDLER;
pIRQ_HANDLER IRQ_HANDLER_TABLE[IRQ_SIZE];

The interrupt handler address for IRQ interrupt source n is therefore in
IRQ_HANDLER_TABLE[n]. Note, however, that interrupt handlers written in Thumb mode
require that their table entries be one more than the starting address. *1

These sample programs fill the slots for unused IRQ numbers with the address for null_
handler, a handler that does nothing but return.

Figure 2.2.1 gives an example of addresses in an IRQ handler table.

The IRQ handler table is the same regardless of whether interrupts are nested.

Table 2.2.A Individual IRQ Handlers
Function

name
IRQ

number Address ARM/Thumb

timer_handler 0 0x0000_1000 ARM

sio_handler 10 0x0000_2000 Thumb

uart_handler 9 0x0000_3000 Thumb

null_handler — 0x0000_4000 ARM

 IRQ_HANDLER_TABLE [0] = 0x1000

[1] = 0x4000

[2] = 0x4000

[3] = 0x4000

[4] = 0x4000

[5] = 0x4000

[6] = 0x4000

[7] = 0x4000

[8] = 0x4000

[9] = 0x3001

 [10] = 0x2001

Figure 2.2.A IRQ Handler Table

Figure 2.2.1 Storing Addresses in IRQ Handler Table

*1 Specifying interworking to the C/C++ compiler (RVDK or ADS) with the -apcs /interwork command line

option automatically performs this adjustment, so there is no need to overtly add one in the source code.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 13

2.3. Individual IRQ Handlers
These functions process IRQ interrupt requests from particular sources. They must be
functions of type IRQ_HANDLER, defined by the following:
typedef void IRQ_HANDLER(void);

This Manual adopts the naming convention of adding the suffix _handler to the interrupt
source name--timer_handler, for example.

These individual IRQ handlers are the same regardless of whether interrupts are nested.
Section 3 “Sample Program Specifications” describes the individual IRQ handlers used by the
sample programs.

2.4. Interworking ARM and Thumb Modes
2.4.1. Interworking in Assembly Language

Calling a subroutine in assembly language requires two things: storing the return address in
the link register and branching to the requested subroutine address. A single BL instruction
normally accomplishes both, but a subroutine call with interworking must provide the
following extras at both the call and return stages.

The call must be with BX, the branch and change state instruction. The caller must first load
the return address into the link register, however, because the BX instruction differs from the
BL instruction in not automatically providing this step.

The return must always be with a BX lr instruction.
These sample programs use the following sequences.

• Subroutine call example (from init.s)
 :
Reset_Handler
 :
 LDR r4, =main ; get address of main function
 MOV lr, pc ; set link register
 BX r4 ; branch to main function
 :

• Return from subroutine example (from reentrant_irq_handler.s)
 :
irq_dis
 SWI SWI_IRQ_DIS
 BX lr ; return
 :

• In IAR Embedded Workbench, a set of interrupt related APIs are provided in the library.
Thus, irq_dis() and irq_en() are replaced by IAR library calls such as_disable_interrupt()
and _enable_interrupt(). You can still use OKI defined SWI APIs to enable or disable
interrupt. But, it is not recommended. Be aware of the difference in the directives,
symbols between the ADS assembler and IAR assembler if you want to use the SWIs in
the IAR environment.

2.4.2. Interworking In C
Interworking in C requires specifying the -apcs /interwork command line option to the
C/C++ compiler (RVDK or ADS).

In IAR Embedded Workbench, interworking can be enabled or disabled by checking or
unchecking “Generate Interwork Code” option under “General Options”.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 14

3. Sample Programs Specifications
3.1. Shared Specifications
3.1.1. LED Patterns

Table 3.1.1 gives the LED patterns that these sample programs all use at the start of
execution and after normal termination.

Table 3.1.1 Standard LED Patterns (White (): Dark; Red (): Lit)

 LED pattern

Program start

Normal program
termination

3.1.2. Configuring Clock Gear
These sample programs derive both CPU_CLK and APB_CLK from the 32 MHz main clock
signals (SYSCLK_P and SYSCLK_N). Note, however, that operation starts at the ring
oscillator frequency (maximum 16 MHz) and switches to the main clock signals after an
approximately 10 ms wait following microcontroller initialization.

The power management sample program uses the clock gear to modify the CPU_CLK and
APB_CLK frequencies.

SYSCLK_P
SYSCLK_N

CLK_GEN

CPU_CLK

APB_CLK

1/1

1/2

1/4

1/1

1/2

1/4

1/8

1/16

1/32

ring_osc

DIVA_CLK

CLKDIVA

APBDIV

Figure 3.1.1 Clock Gear Settings

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 15

3.2. Initializing Microcontroller
3.2.1. Modules Used

• Initializing microcontroller

3.2.2. Operational Description
The start-up routine for the Initializing Microcontroller provides the following processing
steps as shown in the flowchart below.

• Setting up the stacks in the various modes

• Initializing the memory spaces

• Branching to the main routine

All sample programs capable of operating as standalone (independent of a debugger or any
other code) use this module as their start-up routine.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 16

3.2.3. Flowchart

Microcontroller
initialization

Set up IRQ mode stack

Set up SVC mode stack

Set up FIQ mode stack

Branch to main routine

Initialize memory spaces
used by program

Set up USR mode stack

Starting with ring
oscillator?

Yes

No

Set system timer to 10 ms

Starting with ring
oscillator?

Yes

No

Has system timer
overflowed?

Yes

No

Switch from ring oscillator to
main clock oscillator

10 ms: Main clock oscillator stabilization interval

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 17

3.3. External Memory Controller (SRAM and ROM)
* ML67Q4051 only

3.3.1. Modules Used
• Initializing microcontroller

• External memory controller (SRAM and ROM)

3.3.2. Operational Description
This sample program initializes external SRAM and ROM and then performs read/write tests
for all addresses in external SRAM with the following procedure. This function is only
available for the ML67Q4051.

In order to test the external SRAM, the code is programmed and executed in internal flash,
the temporary variables and stacks are allocated in the internal SRAM. Thus, it leaves the
entire external SRAM area for testing.

• The program fills the entire external SRAM region with a write pattern, reads the data back,
and checks it against the write pattern.

• The program repeats this test cycle for four different write patterns (00h, 55h, AAh, and FFh)
and three access sizes (8, 16, and 32 bits) for a total of twelve tests. Note that the 16- and
32-bit access tests repeat the same byte to create a larger pattern.

• At the first error, the program terminates, displaying the test number (see Table 3.3.1) on the
7-segment LED.

Table 3.3.1 LED Patterns for Error Codes (White: Dark; Red: Lit)

Write pattern at
time of error

Access size
at time of error

00 55 AA FF

8 bits

16 bits

32 bits

The program initializes external SRAM and ROM by setting the following registers.

• Bus width control register (BWC)

— Bus width to ROM region

— Bus width to SRAM region

• External ROM access control register (ROMAC)

— ROM access timing

• External SRAM access control register (RAMAC)

— SRAM access timing

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 18

3.3.3. Flowcharts

Main routine

Display starting LED pattern

Test external SRAM

End

Initialize external
SRAM and ROM

Display LED pattern for
success

Display LED pattern for
error

Any errors?
Yes

No

Initialize LED display

Initialize external
SRAM and ROM

Configure bus control (BWC)
register

End

Configure ROM access
control (ROMAC) register

Configure RAM access
control (RAMAC) register

Memory test

i = 0 ;
i < 4

i++

Create write data table
write_pattern[4]

Fill SRAM
with write pattern !=
write_pattern[i]

Fill SRAM with write pattern ←
write_pattern[i]

Set return value to pattern
number for success

End

Set return value to
pattern number for error

Test external SRAM

Memory test
(8 bit)

Memory test
(16 bit)

Memory test
(32bit)

Any errors?

Any errors?

Any errors?

Set return value to pattern
number for error

Set return value to pattern
number for success

End

YES

NO

YES

NO

YES

NO

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 19

3.4. System Timer
3.4.1. Functions Used

• Microcontroller initialization

• Interrupt handlers (nesting disabled)

• System timer

3.4.2. Description of Operation
System timer interrupts increment the variable COUNTER every 30 ms.
The program operates in an infinite loop.
Note that IRQ initialization and configuration is the same when interrupt nesting is enabled.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 20

3.4.3. Flowcharts

Main routine

COUNTER ← 0

Configure IRQ
interrupt requests

Configure
system timer

Start system timer
TMEN ← 1

END

Set up IRQ
handler table

Enable IRQ interrupt
requests

Light LED

Infinite loop

IRQ source-specific
handler for system timer

COUNTER++

Clear TMOVF register
TMOVF ← 1

END

Configure system
timer

Clear TMOVF register
TMOVF ← 1

END

Clear TMOVF register
TMRLR ← 0x15A0(30ms)

Stop system timer
TMEN ← 0

Read IRQ number

Call handler
corresponding to

irn

END

Push work and link
registers

Configure IRQ
interrupt requests

Release software IRQ
interrupt requests

IRQS ← 0

END

Mask all IRQ interrupt
requests
ILC0 ← 0
ILC1 ← 0

EXILCA ← 0
EXILCB ← 0
EXILCC ← 0

i ← 0

i < IRQSIZE

IRQ_HANDLER_TABLE[i] ←
null_handler

i ← i + 1

Initialize CIL register
CIL ← 0xFE

No

Yes

Set up IRQ
handler table

Specify priority for
each handler

Specify detection
mode and polarity for

each handler

END

Fill table with handler
addresses

IRQ handler

Clear highest 1 bit in
CIL register

Pop work and link
registers

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 21

3.5. IRQ Exception Handler
3.5.1. Modules Used

• IRQ exception handler

3.5.2. Operational Description
This sample program illustrates the use of nested interrupts.
Figure 3.5.1 shows register usage in this sample program.

Enter IRQ

handler
Switch to SYS mode

and enable IRQ
exception requests

Call handler
corresponding to

IRQ number

Return from
handler for IRQ

number
Return from
IRQ handler

r1

r2

r3

r4

r5

r6-r11

r12

lr_IRQ

lr_USR

spsr_IRQ

r0

r1

r2

r3

r4

r5

r6-r11

r12

lr_IRQ

lr_USR

spsr_IR

r0

IRQ mode (IRQ exception
requests disabled)

SYS mode
(IRQ exception requests enabled)

IRQ mode (IRQ exception
requests disabled)

Register write Register read Read/write access to register

Interval over which register contents do not change (Thick line)
Register hidden in current mode

(Dotted line)

Value altered inside handler[n]Value preserved inside handler[n]

Handler for current
IRQ number

Figure 5. Register Usage in IRQ Handler
The IRQ handler in this sample program saves the following registers to the stack.
(1) Registers used inside the IRQ handler (r0-r5, lr_USR)
 The IRQ handler saves registers r0-r5 to the stack near the beginning. Saving lr_USR has

to wait, however, for the switch to the SYS mode because that register is not accessible
in IRQ mode.

(2) Registers not preserved by handler[n] (r0-r3, r12)
 Before calling handler[n], the IRQ handler saves only r12 to the stack because it does not

matter if handler[n] changes the contents of r0-r3.
(3) Registers automatically modified by IRQ exception acceptance (lr_IRQ, spsr_IRQ)
 The IRQ handler must save these registers to the stack or other registers before enabling

IRQ exceptions because such exceptions automatically overwrite the current contents.
 This sample program saves r0-r5 from (1) and lr_IRQ from (3) to the stack

simultaneously. Later, it saves lr_USR from (1) and r12 from (2) to the stack
simultaneously.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 22

3.5.3. Flowchart

Save r0-r5 and
lr_IRQ (r14) to stack

Calculate return
address

Read IRQ number

Switch to SYS mode and
enable IRQ exception

requests

Save spsr_IRQ
contents in r4

A

Call handler
corresponding to

IRQ number

Switch to IRQ mode
and disable IRQ

exception requests

END

Restore r12 and
lr_USR (r14) from stack

Restore spsr_IRQ
contents from r4

Reset highest "1" bit in
CIL register to "0"

Restore work registers
from stack

A B

B

IRQ number <
IRQSIZE?

Yes

No

Save r12 and
lr_USR (r14) to stack

C

Spsr_IRQ
I bit == 0?

No

IRQ handler

C

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 23

3.6. I/O Ports
3.6.1. Modules Used

• Initialize microcontroller

• IRQ exception handler

• System timer interrupt handler

• I/O port interrupt handlers

3.6.2. Operational Description
This sample program changes the 7-segment LED display pattern every 500 ms. The
7-segment LED display repeatedly goes through the same cycle in an infinite loop:
hexadecimal digits 0 to F, all segments on, all segments off.

The 500 ms is based on timer interrupts (10 ms per interrupt × 50 interrupts) .

7seg LED

Starting LED
pattern

500 ms 500 ms500 ms

…

500 ms 500 ms

Figure 3.6.1 LED Patterns

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 24

3.6.3. Flowchart

Stop system timer
TMEN ← 0

Clear TMOVF register
TMOVF ← 1

END

Main routine

Initialize IRQ
exceptions

Configure system
timer

COUNTER ← 0

Enable IRQ exceptions

Start timer

Update LED
display

COUNTER
>= 50?

Yes

No

Display starting LED
pattern

COUNTER ← 0

END

Initialize LEDs

IRQ source-specific
handler for timer

END

COUNTER++

Clear TMOVF register

LED loop
(Loop

indefinitely)

Write interrupt handler entry
point to IRQ handler table

LED loop

Configure system timer

Update LED display

Write value for producing
corresponding display in

GPIO4

END

Read from GPIO4

Read from GPIO5

Write value corresponding to
pattern in GPIO5

Load TMRLR register
TMRLR ←

0xB1E0 (10 ms)

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 25

3.7. Buffered Asynchronous Serial Interface (UART)
3.7.1. Modules Used

• Initialize microcontroller

• IRQ exception handler

• Buffered asynchronous serial interface (UART)

3.7.2. Operational Description
This sample program uses either UART0 or UART1 to echo data received from the PC via
the UART interface back to the PC.
The sample program uses generic modules to support both UART0 and UART1 ports. By
default, UART0 is used for the testing. In order to test UART1, simply change the definition
in the beginning of the uart_sample.c file from “#define PORT 0” to “#define PORT 1”.

Sending an ESC code (1Bh) from the PC exits the program.

Terminal software

(Tere Term)

UART

Receive buffer

Transmit buffer

(2)

PC ML67Q4051/ ML67Q4061
CPU Board

(1)

(3)

(1) The PC transmits data to the CPU board via the UART interface.
(2)
(3)
(4)

Ring buffer

(4)

The program stores the incoming data from the receive buffer in the ring buffer.
The program loads data from the ring buffer into the transmit buffer.
The CPU board sends the data back to the PC via the UART interface.

Figure 3.7.1 Data Flow

• Terminal Emulator Settings

Table 3.7.1 Serial Interface Settings

Parameter Setting
Baud rate 115,200
Parity None
Data length 8 bits
Stop bits 1 bit
Flow control None

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 26

3.7.3. Flowcharts
• Ring Buffer Components

.

Ring buffer, 256 bytes

Data write pointer

Data read pointer

Figure 3.7.2 Ring Buffer

• Error Indications

Table 3.7.2 Error Indications

State Error
code

String
transmitted Error description

No error 0 — —
1 “\n OERR \n” Overrun error
2 “\n PERR \n” Parity error
3 “\n FERR \n” Framing error

Error
indication Error

4 “\n OVFD \n” Overflow error

• Overflow Error

This error indicates that the ring buffer has no empty byte in which to store the incoming
data byte.

• Transmit Counter

This counter increments each time that the program writes data to the transmit data
register.
Incrementing continues until the count reaches 15, one less than the transmit buffer
capacity.*1

*1 This last byte is held in reserve just in case the last byte received is an Enter character, which produces a

two-byte sequence in the output.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 27

Main routine

Initialize IRQ exceptions

Write UART handler entry
point to IRQ handler table

Initialize UART interface

Transmit queue
empty?

Zero transmit counter

No

Yes

Enable UART IRQ exceptions

Zero error code

Yes

Write
"\nOERR\n"
sequence to
transmit data

register

Yes

Add character to queue

Enter?

Add 0x0D, 0x0A
sequence to queue

No
Yes

No
Ready to send?

No Esc?

Yes

Any data to
transmit?

Get byte to transmit

Error?

No

Yes

Increment transmit
counterAdd 2 to transmit counter

Loop 2
(transmit counter < 15)

1 2 4 3

Display starting LED pattern

Disable UART IRQ exceptions

Display LED pattern for normal
program termination

Return to loop 1

END

Loop 1 (Esc to break out)

Loop 2

Transmit queue
empty?

Error code
nonzero?

No

Write
"\nPERR\n"
sequence to
transmit data

register

Write
"\nFERR\n"
sequence to
transmit data

register

Write
"\nOVFD\n"
sequence to
transmit data

register

End_fig ← 1

Zero error
code

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 28

Configure UART
interface

Configure port pins PB0 and PB1 for
their secondary functions

Configure FIFO control register
(enable buffered operation, enable

receive and transmit interrupts,
specify DMA single transfer mode, set

receive interrupt trigger level at 14
bytes)

Initialize registers used by
UART interface

(8 data bits, 1 stop bit, no parity,
modem unused)

END

Loop

UART IRQ exception
handler

Interrupt request
type?

Store byte from
queue in ring

buffer
Store byte from
queue in ring

buffer

Loop

END

Receive line
status

interrupt

Yes

No

Yes

Error code nonzero?
Empty space in

ring buffer?
No

Clear receive
queue

Set error
code to 1

Set error
code to 2

Set error
code to 3

Set error code
to 4

Read byte from
receive queue

Empty space in
ring buffer?

Loop until trigger
level reached

Loop until
receive queue

empty

Data valid
interrupt

Timeout
interrupt

Overrun
error

Parity
error

Framing
error

Specify baud rate in frequency divider
latch registers (115,200 bps)

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 29

3.7.4. Calculating Frequency Divider
The following is the formula for calculating D, the value written to the frequency divider
latch registers.

SYSCLK [Hz] D = 16 × baud rate [bps]

For a CCLK frequency of 32 MHz and baud rate of 115,200 baud, the frequency divider is

 D ≈ 17.36 = 17 = 0x11

For further details on specifying D, the frequency divider setting for the frequency divider
latch registers, refer to the ML67Q4051/ML67Q4061 Series User’s Manual.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 30

3.8. Asynchronous Serial I/O (SIO)
In AME-51 board, the SIO port is not connected with a transceiver and a RS-232C connector.
The sample program is attached to demonstrate the use of this peripheral. This program is not
designed for running on AME-51 board since AME-51 does not have its SIO port connected
to any of the DB9 connectors.

3.8.1. Modules Used
• Initialize microcontroller

• IRQ exception handler

• Asynchronous serial interface (SIO)

3.8.2. Operational Description
This sample program echoes data received via the asynchronous serial interface back to the
development host.
Sending an ESC code (1Bh) from the PC exits the program.

Terminal software

(Tere Term Pro)

SIO

Receive buffer

Transmit buffer

(2)

PC ML67Q4051/ ML67Q4061
CPU Board

(1)

(3)

(1) The PC transmits data to the CPU board via the SIO interface.
(2)
(3)
(4)

Ring buffer

(4)

The program stores the incoming data from the receive buffer in the ring buffer.
The program loads data from the ring buffer into the transmit buffer.
The CPU board sends the data back to the PC via the SIO interface.

Figure 3.8.1 Data Flow

• Terminal Emulator Settings

Table 3.8.1 Serial Interface Settings

Parameter Setting
Baud rate 9,600
Parity None
Data length 8 bits
Stop bits 1 bit
Flow control None

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 31

3.8.3. Flowcharts
• Ring Buffer Components

Ring buffer, 256 bytes

.
Data read pointer

Data write pointer

Figure 3.8.2 Ring Buffer

• Error Indications

Table 3.8.2 Error Indications

State Error
code

String
transmitted Error description

No error 0 — —
1 “\n OERR \n” Overrun error
2 “\n PERR \n” Parity error
3 “\n FERR \n” Framing error

Error
indication Error

4 “\n OVFD \n” Overflow error

• Overflow Error

This error indicates that the ring buffer has no empty byte in which to store the incoming
data byte.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 32

END

Stop baud rate timer
counter

SIO input loop
YES

No

No

YES

No

Save character in
ring buffer
(SIOBUF) Write 0x0D, 0x0A

sequence to transmit
data register

SIOBUF
empty?

SIOBUF empty?

Write "\nOERR\n"
sequence to
transmit data

register

YES

Zero error code

Error code
nonzero?

YES

No

Start baud rate timer
counter

Enable SIO IRQ exceptions

Initialize IRQ exceptions

Main routine

Ready to send?

Error?

Disable SIO IRQ exceptions

ESC Printable ASCII
character

(0x20 to 0x7E)

Enter Other 1 3 2

SIOBUF
empty?

Zero error code

Display starting LED pattern

Display LED pattern for
normal program termination

Character code?

4

Configure asynchronous
serial interface

Start SIO input loop
(Loop indefinitely)

YES

Write "\nPERR\n"
sequence to
transmit data

register

Write "\nFERR\n"
sequence to
transmit data

register

Write "\nOVFD\n"
sequence to
transmit data

register

Write interrupt handler entry point
to IRQ exception handler table

No

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 33

Set error code to
2

SIO IRQ exception
handler

Interrupt
request type?

Error
detected?

Save incoming
data byte in ring

buffer

No

END

Reset
corresponding ID
flag in SIOSTA to

"0"

Reset corresponding
error flag in SIOSTA

to "0"

Yes

Read received
data from
SIOBUF

Error type?

Set error code to
1

Set error code to
3

Reset
corresponding ID
flag in SIOSTA to

"0"

Set error code to
4

Overrun error Parity error Framing error Overflow error

Transmit
complete
interrupt

Receive
interrupt Set baud rate to

9600 bps

Configure SIOCON: 1
stop bit, 8 data bits,

no parity

Configure SIO

END

Configure port pins
PB4 and PB5 for their

tertiary functions

3.8.4. Specifying the Reload Value in SIOBT
The following formula is used for calculating the reload value to write to the SIOBT register.

• Formula

 baud rate = (SYSCLK × clock gear) × (1/(256-D)) × (1/16)
where
 D: reload value (0 to 255)
 Clock gear = 1/1, 1/2, 1/4, 1/8, or 1/16.

To obtain the default baud rate of 9600 baud,
 9600 baud = (32000000 Hz × (1/1)) × (1/256-D)) × (1/16)
 D is approximately 48.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 34

3.9. Power Management
3.9.1. Modules Used
• Initialize microcontroller
• IRQ exception handler
• Buffered asynchronous serial interface interrupt handler (UART0)
• Power management

3.9.2. Operational Description
This sample program, in response to input from the asynchronous UART0 interface or
EXINT1 button presses on the board, shifts through the three states RUN, HALT, and STOP
and changes DIVA_CLK and APB_CLK clock speeds.
Table 3.9.1 lists the LED patterns indicating the operating status.

Table 3.9.1 LED Patterns Indicating Operating Status (White: Dark; Red: Lit)

A. LED patterns for HALT and
STANBY states

State LED pattern
RUN See B.

HALT

STANDBY

 B. LED patterns for RUN state

Clock speed
Clock signal

1/1 1/2 1/4 1/8 1/16

DIVA_CLK

APB_CLK
speed relative
to DIVA_CLK

* The final pattern Ors the ones for DIVA_CLK and APB_CLK.

Terminal software
(HyperTerminal)

PC

ML67Q4051/ ML67Q4061
CPU Board

DIVA_CLK
Gear ratio: 1/1 to 1/16

APB_CLK
Gear ratio: 1/1 to 1/4

RUN state

HALT state STANDBY state

External interrupt button EXINT1

UART0

— Keystrokes received via the UART0 interface change the DIVA_CLK and APB_CLK clock speeds.
—
—

—

Keystrokes received via the UART0 interface switch to the HALT or STANDBY state.
While in the HALT state, receiving input on the UART0 interface, or pressing the external interrupt button
EXINT1, switches the device back to the RUN state.
In the STOP state, pressing the external interrupt button EXINT1 switches back to the RUN state.

Figure 3.9.1 Power Management Sample Program Specifications

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 35

• Terminal Emulator Settings

Table 3.9.1 Serial Interface Settings

Parameter Setting
Baud rate 9,600
Parity None
Data length 8 bits
Stop bits 1 bit
Flow control None

• RUN State

The program starts in this state. All module clock signals are operational.
Input from the UART0 interface cycles through the six DIVA_CLK multipliers and three
APB_CLK multipliers available: 1/1, 1/2, 1/4, 1/8, and 1/16for DIVA_CLK/SYSCLK and
1/1, 1/2, and 1/4 for APB_CLK/DIVA_CLK. These multipliers start at 1/1.
Sending ‘o’ speeds up DIVA_CLK by one step; sending ‘p’ slows it down by one step.
Note that sending ‘o’ when the multiplier is 1/1 or ‘p’ when it is 1/16, has no effect.
Sending ‘[‘ speeds up APB_CLK by one step; sending ‘]’ slows it down by one step. Note
that sending ‘[‘ when the multiplier is 1/1 or ‘]’ when it is 1/4, has no effect.
Sending ‘h’ or ‘H’ shifts to the HALT state; ‘s’ or ‘S’, to the STOP state.
Please also note that, in order to test APB_CLK, the DIVA_CLK needs to be set to
multiplier 1/1 first. In order to test DIVA_CLK, the APB_CLK needs to be set to
multiplier 1/1 first.

Note: In power management specification DIVA_CLK can be changed into 1/32. But, in this
sample program DIVA_CLK is not changed into 1/32,since communication of UART0
becomes impossible.

• HALT State

This mode stops clock signals to the CPU group. Input from the external interrupt button
(EXINT1), or the expiration of the system timer, shifts the device back to the RUN state.
The CPU group consists of the following modules: CPU, AHBIF, IMEMC, INTRC,
APBIF, DEFSLV, and ARBITER.
For further details, refer to the ML67Q4051/ML67Q4061 Series User’s Manual.

• STOP State

All chip clock signals stop except for SYSCLK, for the real-time clock (RTC).
Pressing the external interrupt button (EXINT1) shifts back to the RUN state.
Note that this sample program’s interrupt routine for returning from the STOP state
resumes operation using the ring oscillator.

Notes:
1. The JTAG interface does not support shifting back from either HALT or STOP state.

As the JTAG clock will be stopped once the MCU is in one of these modes. So, the
program will be executed in the flash.

2. To distinguish CPU shifts back from HALT or STOP mode to RUN mode, in either
case in the sample program, both system timer are enabled and executed, HALT
mode will shift to the RUN mode when the system timer expires, STOP mode will
not respond unless the external interrupt button is pressed.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 36

3.9.3. Flowchart

Main routine

Input from
SIO?

Write interrupt handler entry
point to IRQ handler table

Initialize IRQ
exceptions

Enable IRQ exceptions

Configure
asynchronous serial

interface (SIO)

Character
code?

Yes

No

Light LEDs

Configure external interrupts

‘h’ or ‘H’ ‘s’ or ‘S’ ‘ o ’ ‘ p ’Other ‘] ’‘ [’

Lower
DIVA_CLK
clock speed

Update LED display

Boost
APB_CLK

clock speed

Lower
APB_CLK

clock speed

Boost
DIVA_CLK
clock speed

Update LED
display

Update LED
display

Shift to HALT
state until next
input from
asynchronous
serial interface
or external
interrupt switch
EXINT1

Shift to STOP
state until next
input from
external
interrupt switch
EXINT1

Switch to
ring

oscillator

Wait 10 ms to
allow the system
clock oscillator
time to stabilize

Switch from ring
oscillator to main

clock signals

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 37

3.10. Direct Memory Access Controller (DMAC)
3.10.1. Modules Used

• Initialize microcontroller

• IRQ exception handler

• Direct memory access controller (DMAC)

3.10.2. Operational Description
This sample program copies the contents of built-in Flash memory addresses 0x800_0000 to
0x801_FFFF to buffers allocated by the program in built-in SRAM. The program then exits,
leaving a completion code on the LED display. (See Table 3.10.2.)

• Using DMA channel 0, the program repeatedly (2048 times) copies the contents of
built-in Flash memory addresses 0x800_0000 to 0x800_0FFF to a 4-kilobyte buffer in
built-in SRAM.

• Using DMA channel 1, the program repeatedly (2048 times) copies the contents of
built-in Flash memory addresses 0x800_1000 to 0x800_1FFF to a 4-kilobyte buffer in
built-in SRAM.

0x08000000

0x08002000

DATA1

DMA transfer
source

Buffer for CH0
transfer

DMA transfer
destination

Built-in Flash memory Built-in SRAM

CH0

DATA2

0x08001000

CH1

DATA1

DATA2 Buffer for CH1
transfer

Figure 3.10.1 Test DMA Transfers

• DMA Controller Settings

Table 3.10.1 DMA Controller Settings

Item CH0 CH1
Channel priority Fixed (CH0 has priority)
DMA transfer requests Auto requests
Transfer size Halfwords (16 bits)
Transfer source device Built-in Flash memory

(0x0800_0000)
Built-in Flash memory
(0x0800_0000)

Transfer source device type Incremental address device
Transfer destination device Built-in SRAM (4-kilobyte buffer

allocated by the program)
Built-in SRAM (4-kilobyte buffer
allocated by the program)

Transfer destination device type Incremental address device
Transfer count 2,048
Bus access request mode Cycle steal mode Burst mode

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 38

• LED Patterns at End of Program

Table 3.10.2 LED Patterns at End of Program

State LED
pattern Channel (s) Timing Notes

Normal
termination

— — Error status *1
= 0x00

CH0 Error status *1
= 0x01

CH1

Cycle reading from transfer source

Error status *1
= 0x02

CH0 Error status *1
= 0x04

CH1

Cycle writing to transfer target

Error status *1
= 0x08

CH0: Cycle reading from transfer source
CH1: Cycle reading from transfer source

Error status *1
= 0x03

CH0: Cycle writing to transfer target
CH1: Cycle reading from transfer source

Error status *1
= 0x06

CH0: Cycle reading from transfer source
CH1: Cycle writing to transfer target

Error status *1
= 0x09

Abnormal
termination

CH0 & CH1

CH0: Cycle writing to transfer target
CH1: Cycle writing to transfer target

Error status *1
= 0x0c

*1 See flowcharts starting on next page

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 39

3.10.3. Flowcharts

Display LED pattern for
normal program termination

Disable IRQ exceptions

Display corresponding
LED pattern*

0x00

Nonzero

Main routine

Initialize IRQ
exceptions

Write interrupt handler
entry point to IRQ

handler table

Configure DMA
channel 0

Specify DMA channel
priority

Display starting LED pattern

Initialize LED

Configure DMA
channel 1

Initiate CH0 transfer

Enable IRQ exceptions

Zero error status ← 0

Error status?

Yes

Initiate CH1 transfer

Interrupt
requests from both CH0 and

CH1?

No

END

• See Table 3.10.2 “LED Patterns at End of Program.”

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 40

Configure DMA
controller

Stop DMA controller

Clear interrupt status
register

Configure transfer
destination address

registers

Configure transfer
source address

registers

Configure transfer
count registers

END

Configure DMA transfer
mode registers

END

DMAC CH0 interrupt
handler

Yes

No

Stop DMA controller

Clear interrupt status
register

Normal
termination?

Error type?

Set error status to 1

Error during read
cycle

Error during write
cycle

Set CH0 interrupt
request flag to "1"

DMAC CH1 interrupt
handler

Yes

No

Stop DMA controller

Clear interrupt status
register

END

Error type?

Set error status to 2

Error during read
cycle

Set error status to 8

Error during write
cycle

Set CH1 interrupt
request flag to "1"

Set error status to 4

Normal
termination?

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 41

3.11. Analog-to-Digital Converter
3.11.1. Modules Used

• Initialize microcontroller

• IRQ exception handler

• Analog-to-digital converter

3.11.2. Operational Description
This sample program converts analog input from four analog input pins (PD0 to PD3) to
digital data. It uses both select and scan mode. It repeats conversion 10 times for each input
and stores their averages in global variables.

The program exits when the conversions on all channels are complete.

The analog inputs are all from the same fixed-voltage power supply.

• Select Mode

Channel used: ch0
The program uses interrupt requests to determine the end of the analog-to-digital
conversions.

• Scan Mode

Channels used: ch1 to ch3
The program uses interrupt requests to determine the end of the analog-to-digital
conversions.

The following Table gives the global variables for storing the averages.

Table 3.11.1 Global Variables for Storing Conversion Averages

Mode Variable Name Channel Input Pin
Select select_result ch0 PD0

scan_result[0] ch1 PD1
scan_result[1] ch2 PD2 Scan
scan_result[2] ch3 PD3

The following Figure shows the fixed-voltage power supply connections to the CPU board.

ML67Q4051/ML67Q4061
CPU Board

PD

0

7 RVI-ME

PC
Fixed-voltage power supply

GND

Figure 3.11.1 System Connections

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 42

3.11.3. Flowcharts

Analog-to-digital
converter cleanup

Disable select and scan
mode interrupts

END

Analog-to-digital
converter interrupt

handler

Set termination flag
to "1"

END

Store conversion
result

Mode?

Select mode

Store conversion
result

Scan mode

Clear select mode
interrupt request

Stop analog-to-digital
converter

Clear scan mode
interrupt request

Start scan mode
conversion on
channels 1 to 3

Loop 3: while number
of conversions > specified

number of samples

Zero analog-to-digital
converter termination flag

End loop 3

End loop 4

Loop 4: wait for
termination flag to

change

END

Analog-to-digital
converter cleanup

A

Calculate average

Add up conversion
results

Display LED pattern
for normal program

termination

Initialize
analog-to-digital

Specify analog-to-digital
converter operating clock

Enable select and
scan mode interrupts

END

Configure port pins
PD0 to PD3 for their
secondary functions

Main routine

Initialize IRQ
exceptions

Write interrupt
handler entry point

to IRQ handler table

Initialize
analog-to-digital

t

Zero analog-to-digital
converter termination flag

Start select mode
conversion on

channel 0

Add conversion result to
running total

Calculate average

Display starting
LED pattern

Loop 1: while number
of conversions > specified

number of samples

End loop 1

End loop 2

Loop 2: wait for
termination flag to

change

A

Initialize LED display

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 43

3.12. Pulse Width Modulation (PWM) Generator
3.12.1. Modules Used

• Initialize microcontroller

• IRQ exception handler

• PWM generator interrupt handler

3.12.2. Operational Description
This sample program uses PWM interrupts to vary the length of the first half of PWM output
cycles and thus the brightness of the corresponding LED segment. (See Figure 3.12.1.)

This sample program cycles in an infinite loop.

The length of the first half is determined by the duty setting for the PWM output.

Channel 0

Channel 1

Figure 3.12.1 LED Segments for PWM Outputs

The sample program uses the following PWM settings.

Table 3.12.1 PWM Settings

 Period Output duty setting Interrupt source
PWM0 10ms See Figure 4.12.2 FTM0C overflow (at PWM0 output rising edge)
PWM1 10ms See Figure 4.12.3 FTM1C overflow (at PWM1 output rising edge)

0

duty (%)

50

51

100

10

time (ms)10

n (cycle)250 500

###

Figure 3.12.2 PWM0 Output Duty Settings

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 44

duty (%)

0 time (ms)10

n (cycle)250 500

###

1 5

100

10

50

Figure 3.12.3 PWM1 Output Duty Settings

3.12.3. Flowcharts

PWM0 interrupt
handler*

Clear PWM0 interrupt

Reload FTM0GR

END

Main routine

Setup IRQ exceptions

Initialize IRQ
exceptions

Configure PWM
generator

Start PWM
generator

END

Write interrupt
handler entry point to

IRQ handler table

Initialize LED display

Loop indefinitely

Enable IRQ

Configure PWM0

Configure FTM0CON
for PWM output

Calculate duty setting

END

Clear PWM interrupt
requests

Configure port pin PF0 for
its secondary function

Load period into
FTM0R

Specify interrupt
source and input clock

Create buffer for length
of first half

Load length of first
half into FTM0GR

* The PWM1 handler and settings are the same as those for PWM0.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 45

3.13. Capture Function
3.13.1. Functions Used

• Microcontroller initialization

• Interrupt controller

• PWM output

• Capture function

3.13.2. Description of Operation
This sample program measures the pulse widths for PWM output. It uses FTM0 for PWM
output (PWM0) and FTM1 for data capture (CAP1).

Externally connect CPU board pin PF0 (TIMER0) to pin PF1 (TIMER1) to feed the PWM0
output from TIMER0 to TIMER1 pin input.

The program stores the pulse width measured in the global variable PW_VALUE and then
exits. PM_VALUE can be viewed in the debugger Watch window.

The PWM0 output using the following fixed period and duty settings.

Table 3.13.1 PWM Settings

 Setting
Period (ms) 10

Duty (%) 70

This sample program measures the following pulse.

Pulse width measured

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 46

3.13.3. Flowchart

Main routine

Start PWM output

Configure IRQ
interrupt requests

Configure PWM
generator

Disable IRQ
interrupt requests

END

Set up IRQ
handler table

Enable IRQ interrupt
requests

Display completion LED
pattern

Clear interrupt request
judgment flag

int_flg ← 0

Configure PWM
output

Configure FTM0CON
for PWM output

Load length of first half
into FTM0GR

END

Load period into
FTM0R

Configure port pin PF0 for
its secondary function

Specify PWM clock

Display starting LED
pattern

Set capture

Measure pulse
width

Configure capture

Configure FTM1CON
for capture input

Clear capture interrupt
requests

END

Specify rising edge
detection in FTM1IOLV

Configure port pin PF1 for
its secondary function

Enable capture interrupt
requests

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 47

Measure pulse width

Calculate pulse width
from global variables

A and B and store
result in PW_VALUE

End

int_flg
== 2

Yes

No

IRQ interrupt request
handler for CAP1

int_flg ← 1

Clear capture interrupt
requests

Store contents of FTM1GR
register in global variable A

End

int_flg == 0

Yes

No

Specify falling edge
detection in FTM1IOLV

int_flg ← 2

Disable capture
interrupt requests

Store contents of FTM1GR
register in global variable A

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 48

3.14. Real-Time Clock (RTC)
3.14.1. Functions Used

• Microcontroller initialization

• Interrupt controller

• Buffered asynchronous serial interface (UART)

• Real-time clock (RTC)

3.14.2. Description of Operation
This sample program configures and starts the real-time clock with data from the PC via the
UART0 interface. It then reads data from the RTC and sends it back via the UART interface
to the PC for display in the terminal emulator window. Pressing the external interrupt switch
(EXINT1) repeats this readout.

This sample program waits in an infinite loop for external interrupt requests.

Figure 3.14.1 RTC Sample Program Specifications

• Terminal Emulator Settings

Table 3.14.1 UART0 Settings

Parameter Setting
Baud rate 115,200
Parity None
Data length 8 bits
Stop bits 1 bit
Flow control None

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 49

The program displays the following messages during execution.

• Message 1

Please send setting data in the following format.
Year-Month-Day-Hour-Minute-1 or 0 (24hour = 1 or 12hour with PM/AM = 0)
For example...
05-01-31-14-30-1

• Message 2

Please push EXINT1 button on CPU board to display RTC data.

• Message 3

YY/MoMo/DD HH:MM:SS

YY: year
MoMo: Month
DD: Day
HH: Hours
MM: Minutes
SS: Seconds

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 50

3.14.3. Flowchart

Main routine

Receive RTC
configuration data

from PC

Initialize UART

Initialize RTC

Send RTC data
via UART

Send RTC data
via UART

External interrupt
request?

No

Yes

Send message 1

Send message 2

Configure IRQ interrupt
requests and set up
IRQ handler table

Enable external
interrupt requests

Display starting LED
pattern

Initialize RTC

Configure frequency divider latch
registers for 115,200 bps

Configure buffer control registers:
enable buffering both ways, enable
send/receive buffering, receive
interrupt request trigger level of 14

Initialize registers used by UART for
sending:

8 data bits, 1 stop bit, no parity, and
modem unused

End

Configure port pins PB0 and PB1 for
their secondary functions

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 51

Receive RTC configuration
data from PC

Convert byte from UART
to binary

Counter
contents?

Zero counter ← 0

Save as Y10

Save as Y1

Save as MO10

Save as MO1

Save as D10

Save as D1

Save as H10

Save as H1

Save as M10

Save as M1

Save as 24/12bit

0

1

3

4

6

7

9

10

12

13

15

Other

Increment counter

counter
== 16?

Yes

No

End

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 52

Initialize RTC

Configure control F (CF)
register

Configure CF register
24/12 bit

Copy settings to RTC

Start RTC

End

Send RTC data via
UART

HOLD bit ← 1

Read BUSY bit

BUSY == 0

Yes

No

Get Y10 digit

Get Y1 digit

Get MO10 digit

Get MO1 digit

Get D10 digit

Get D1 digit

Get H10 digit

Get H1 digit

Get M10 digit

Get M1 digit

Get S10 digit

Get S1 digit

HOLD bit ← 0

HOLD bit ← 0

62 µs WAIT

Format binary data as
string

Send message 3

End

IRQ source-specific
handler for external
interrupt request 1

Set flag to 1

Clear external interrupt
request flag

End

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 53

3.15. FIQ Interrupt Requests
3.15.1. Functions Used

• Microcontroller initialization

• General-purpose I/O ports (GPIO)

• FIQ interrupt requests

3.15.2. Description of Operation
The 7-segment LED display repeatedly cycles through hexadecimal digits 0 to F in an infinite
loop.

7seg LED

Starting LED
pattern

…

Pressing the FIQ switch (EFIQ_N) cycles between the following update intervals for the LED
display.

200ms → 300ms → 400ms → 500ms → 600ms → 700ms → 800ms → (Back to 200 ms)

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 54

3.15.3. Flowchart

Main routine IRQ source-specific
handler for timer

Configure IRQ
interrupt

Set up IRQ
handler table

Configure system
timer

COUNTER ← 0
LED COUNT ←0

Enable IRQ
interrupt requests

Start timer

Light LED display

Yes

No

Display starting
LED pattern

Begin infinite
LED loop

End infinite
LED loop

COUNTER ← 0

End

Initialize LED display

COUNTER++

Clear TMOVF bit

End

COUNT_TIME ← 20

Enable FIQ
interrupt requests

 COUNTER >=
COUNT_TIME ?

FIQ interrupt
request handler

Push return address
and registers onto

stack

COUNT_TIME← +10

FIQ switch
pressed?

No

Yes

Pop registers off stack

End

LED_COUNT++

LED_COUNT
>= 17

LED_COUNT ← 0

Yes

No

Configure system
timer

Clear TMOVF bit
TMOVF ← 1

Load TMRLR register
TMRLR ←

0xB1E0(10ms)

End

Stop system timer
TMEN ← 0

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 55

3.16. Scatter Loading
This sample program is for ARM RealView or ADS only. It doesn’t apply to the IAR
Embedded Workbench.

3.16.1. Modules Used

• Initialize microcontroller

• System timer

• Distributed loading

3.16.2. Operational Description
This sample program uses scatter loading to copy code regions into executable regions and
then execute them. The microcontroller initialization module uses scatter loading to initialize
memory regions in the following order.

• It copies code and RW data from their load regions to their executable regions.

• It zeros all remaining portions of the executable regions.

This sample program is loaded into banks 2 and 0. Program execution ‘ping-pongs’ between
these two memories, executing first from the RAM, and then from the ROM. The execution
time is controlled by a counter that increments every 30 ms (as measured with the system
timer). Each time the counter increments, program execution switches from one memory to
the other. This sequence continues in an endless loop.

— Bank 0: ML67Q4051 external ROM region, ML67Q4061 built-in Flash region

— Bank 2: Internal RAM region

The debugger can access these counter variables using the following global symbols.

(1) counter_ram counter in internal RAM

(2) counter_rom counter in external ROM

3.16.3. Memory Maps
The following Figure gives the memory map for distributed loading.

 ZI data
 RW data
 0x10000000 RAM code

 Bank 2

 RW data
 RAM code
 ROM code ROM code
 0x00000000 Start-up routine Start-up routine

 Bank 0

 Loading Execution

Figure 3.16.1 Scatter Loading Memory Map

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 56

3.16.4. Flowchart
System timer IRQ
exception handler

Stop system timer

Set timer interrupt
request flag to "1"

Clear TMOVF register

END

Main routine

Initialize IRQ
exceptions

Display starting LED
pattern

Set up IRQ
exception

handler table

RAM-based
count-up routine

ROM-based
count-up routine

Count-up functions*

Set timer interrupt
request flag to "0"

Initialize counter to 0

Initialize system
timer

Enable
IRQ exceptions

Start system timer

Loop:
Loop until timer

interrupt request flag
goes to "1"

Increment counter

Loop

Disable IRQ
exceptions

ENDInitialize
memory regions*

Initialize
RAM_CODE

region

Initialize
RW_DATA

region

Initialize
ZI_DATA
region

END

Initialize system
timer

Clear TMOVF register
TMOVF ← 1

Configure timer reload
value to produce
interrupt requests

every 30 ms

Stop system timer
TMEN ← 0

END

Initialize
executable region

Copy data from load
region to executable

region

Zero specified
portions of

executable region

END

* The two are functionally identical except that one runs in a ROM region and the other in a

RAM region.

* The routine for initializing memory regions is called by the microcontroller initialization

module.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 57

3.17. Memory Remapping
This sample program is for ARM RealView or ADS only. It doesn’t apply to the IAR
Embedded Workbench.

3.17.1. Modules Used
• Initialize microcontroller

• System timer

• Distributed loading

• Remapping

3.17.2. Operational Description
This sample program uses memory remapping to run a count-up function incrementing a
counter variable every 30 ms (as measured with the system timer) in internal RAM.

The program uses the following procedure.

1. Initializes IRQ exception handlers.
2. Copies a code region from bank 0 to bank 2.
3. Remaps bank 2 to bank 0.
4. Calls the count-up function running in internal RAM.

— Bank 0: ML67Q4051 external ROM region, ML67Q4061 built-in Flash region
— Bank 2: Internal RAM region

The debugger can access this counter variable using the global symbol counter_ram.

A timer interrupt request terminates the sample program.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 58

3.17.3. Memory Maps
The following Figure gives the memory maps before and after remapping.

• ML67Q4051

 0xFFFF_FFFF

External ROM (Count-up function, etc.)
 0xC800_0000 (Start-up routine)

 0x1000_4000
 Stack,

 RAM regions, etc.
 Main routine Internal RAM
 (Copies of count-up function, etc.)

 0x1000_0000 (Copies of start-up routine)

 Count-up function, etc. Remappable

ROM/RAM
 0x0000_0000 Start-up routine

• ML67Q4061

 0xFFFF_FFFF

 0x1000_4000
 Stack,

 RAM regions, etc.
 Main routine Internal RAM
 (Copies of count-up function, etc.)

 0x1000_0000 (Copies of start-up routine)

Internal FLASH (Count-up function, etc.)
 0x0800_0000 (Start-up routine)

 Count-up function, etc. Remappable

ROM/RAM
 0x0000_0000 Start-up routine

Figure 3.17.1 Memory Map Before Remapping

Same
memory

Same
memory

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 59

• ML67Q4051

 0xFFFF_FFFF

External ROM (Count-up function, etc.)
 0xC800_0000 (Start-up routine)

 0x1000_4000
 Stack,

 RAM regions, etc.
 Main routine Internal RAM
 (Copies of count-up function, etc.)

 0x1000_0000 (Copies of start-up routine)

 Count-up function, etc. Remappable

ROM/RAM
 0x0000_0000 Start-up routine

• ML67Q4061

 0xFFFF_FFFF

 0x1000_4000
 Stack,

 RAM regions, etc.
 Main routine Internal RAM
 (Copies of count-up function, etc.)

 0x1000_0000 (Copies of start-up routine)

Internal FLASH (Count-up function, etc.)
 0x0800_0000 (Start-up routine)

 Count-up function, etc. Remappable

ROM/RAM
 0x0000_0000 Start-up routine

Figure 3.17.2 Memory Map After Remapping

Same
memory

Same
memory

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 60

3.17.4. Flowcharts

Remap memory

Write to remapping
control register

Enable writes to
remapping control

register

END

Count-up function

Set timer interrupt
request flag to "0"

Initialize counter to 0

Initialize system
timer

Enable IRQ
exceptions

Start system timer

Loop:
Loop until timer

interrupt request flag
goes to "1"

Increment counter

Loop

Disable IRQ
exceptions

END

System timer IRQ
exception handler

Stop system timer

Set timer interrupt
request flag to "1"

Clear TMOVF register

END

Main routine

Initialize IRQ
exceptions

Display starting LED
pattern

Set up IRQ
exception

handler table

Copy bank 0 code
region to bank 2
(internal RAM)

Remap
bank 2 to bank 0

Count-up
function

Display LED pattern
for normal program

termination

END

Initialize memory
regions*

Initialize bank 2
region

Initialize RAM
region

END

Initialize
executable region

Copy data from load
region to executable

region

Zero specified
portions of

executable region

END

Initialize system
timer

Clear TMOVF register

Configure timer reload
value to produce
interrupt requests

every 30 ms

Stop system timer

END

* The routine for initializing memory regions is called by the microcontroller initialization

module.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 61

3.18. Watchdog Timer (WDT)
3.18.1. Modules Used

• Initialize microcontroller

• System timer interrupt handler

• IRQ exception handler (with nesting)

• Watchdog timer (WDT) interrupt handler

3.18.2. Operational Description
The system timer interrupt handler in this sample program clears the watchdog timer every
30 ms and increments a counter. When that counter reaches 100, however, the handler
disables system timer interrupts. Eventually, the watchdog timer overflows, and the watchdog
timer interrupt handler displays the appropriate LED pattern on the CPU board’s 7-segment
LED.

Table 3.18.1 lists the LED patterns indicate the program’s completion status.

Table 3.18.1 LED Patterns at End of Program

Completion
Status

LED Pattern
(White : Dark; Red : Lit) Description

Normal
termination

System timer interrupt counter
100 or more

Abnormal
termination

System timer interrupt counter
99 or less

The sample program uses the following watchdog timer settings.
• Operating mode: Watchdog timer mode

• Operating clock frequency: APB_CLK/256, for overflow after approximately 500 ms

• Action on overflow: Interrupt request

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 62

3.18.3. Flowcharts

Main routine

Initialize IRQ
exceptions

Configure system
timer

Start system timer
TMEN ← 1

Write interrupt handler
entry point to IRQ

handler table

Enable IRQ exceptions

Display starting LED
pattern

Configure
watchdog timer

Start watchdog timer
WDTCON ← 0x3C

Stop system timer
TMEN ← 0

Disable IRQ exceptions

Stop watchdog timer
WDHLT ← 1

Loop while
termination flag

nonzero

Loop

Initialize variables

Enable writes to timer
base counter control

register
TBGCON ← 0x5A

A

Display exit status on LED
display

Set exit status to 0
(success)

count ≥ 100?

Yes

No

Set exit status to error code

END

A

IRQ source-specific
handler for

watchdog timer

Clear WDTIST bit

termination flag ← 1

END

count ← 0

termination flag ← 0

Initialize variables

END

Enable writes to timer base
counter control register
TBGCON ← 0x5A

Configure timer base counter
control register:

Overflow interrupt requests
every 256 APB_CLK cycles

Configure
watchdog timer

END

Clear TMOVF register

count++

END

Stop system timer

count ≥ 100?

Clear watchdog timer
register

Yes

No

System timer interrupt
handler

Clear TMOVF bit
TBGCON ← 0x5A

Configure TMRIR
register

TMRIR ← 15A0

Configure system
timer

END

Stop system timer
TMEN ← 0

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 63

3.19. I2C Interface
3.19.1. Modules Used

• Initialize microcontroller

• I2C

3.19.2. Operational Description
The sample program includes two different sample applications to test the I2C interface. The
two scenarios are detailed below.

Scenario One; Reading temperature from the I2C temp sensor on AME-51 board
(default)
This is a sample module to access the I2C temperature sensor on the AME-51 board. In this
example, AME-51 board acts as the I2C master, while the temperature sensor acts as the I2C
slave. The I2C packet format is shown below. A Repeated Start condition has been added to
test the device. This scenario of the I2C communication is executed if “__AME_51__” is
defined in the project or the code. This is the default setting when sample programs are
shipped in AME-51 Kit.

For various I2C devices, the communication protocols are different. A simple sample program
cannot cover all the I2C devices. For more details of the I2C temperature sensor on-board
from Texas Instrument, TMP100/101, read the reference material and the data sheet in
conjunction with this document.

The I2C packet format for reading the temperature from the device is as below:

Start Slave Address
(write, 0x90)

Command:
Temp
reading
(0x00)

Repeated
Start

Slave
Address
(read, 0x91)

Temp.
byte 1

Temp.
byte 2

Stop

I2C packet format returned from the temp sensor

The read temperature from the I2C temp sensor is being saved into the array
I2C_ReceivData[x]. This buffer is filled in the function AME_51_Temp_Test(). Using a
debugger, placing a breakpoint in line 232 of module i2c_sample_master.c and
watching I2C_ReceivData[x] allows the user to monitor the read temperature data from the
sensor.

Scenario Two; Using one AME-51 as master I2C and another as slave I2C.
A sample module requiring two CPU boards, a master and a slave, to transmits data in both
directions. These 16-byte data transfers are from a global variable, the transmit data buffer
(I2C_SendData), at one end to another global variable, the receive data buffer
(I2C_ReceivData), at the other. This version of the sample codes is executed when
“__AME_51__” environment variable is not defined in the project or the sample codes. This
mode is by default disabled in the factory shipped sample codes.

In this scenario, when the transfers are complete, the master and slave both check whether the
buffer contents match, and the program exits.

Note that the slave must start before the master.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 64

ML67Q4051/ML67Q4061 CPU Board

Transmit register

I2C (Master)

Transmit data buffer

Receive register

I2C (Slave)

2

7

6

3

5

4

1

8 Strage for
receive data

Transmit register Transmit data buffer

Receive register
Strage for

receive data

 Load the byte to send into the master I2CDR register.
 Specify the slave address and transfer the data from the master to the slave using write
mode.

 Write the confirmed data received from the master into the slave I2CDR register.
 Store the data in the slave I2CDR register into the receive buffer.
 When the slave receive operation is complete, load the byte to send in the slave I2CDR
register.

 Transmit the data from the slave to the master in response to the transmit request from the
master.

 Write the confirmed data received from the slave into the master I2CDR register.
 Store the data in the master I2CDR register in the receive buffer.

Figure 3.19.1 I2C Data Flow

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 65

The following Table gives the I2C operating conditions.

Table 3.19.1 I2C Interface Settings

Master/Slave Master/slave

Addressing format 7 bits

Communications mode Fast (400 kHz)

Baud rate 400 kbps

The following Table gives the LED patterns for errors.

Table 3.19.2 LED Patterns for Errors

Error Type LED pattern Description

Missing ACK for
data transmit

There was no acknowledge in response
to data transmitted.

Missing ACK for
address transmit

There was no acknowledge in response
to address transmitted.

Arbitration lost error

Program lost access to the bus.

Data compare error

The received data failed to match.

• Connecting Two CPU Boards

Master Slave
SCL (PB4) SCL (PB4)
SDA (PB5) SDA (PB5)

Note: Connect both CPU boards to the same ground.

These are signal names (pin names).

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 66

3.19.3. Flowcharts

Enable this module
I2CMEN ← 1

Initialize I2C interface (master)

Load I2CBC counter
I2CBC ← 0xA

Configure I2CCTL for 400 kHz
I2CMD0 ← 1

Configure port pins PB4 and
PB5 for their secondary

functions

Initialize error number
err_status ← 0

End

Enable this module
I2CMEN ← 1

Initialize I2C interface (slave)

Load I2CBC counter
I2CBC ← 0xA

Configure I2CCTL for 400 kHz
I2CMD0 ← 1

Initialize error number
err_status ← 0

End

Specify slave address
I2CSADR ← 0x30

Configure port pins PB4 and PB5
for their secondary functions

Main routine (master)

Initialize I2C interface
(master)

Display starting LED pattern

Send as master

Receive as master

End

err_status == 0?
No

Yes

Display LED pattern for
success

Display LED pattern
corresponding to error

number

Compare data

Success?

Yes

No

Success?

Yes

No

Error?

Yes

No

err_status ← 4

Clear receive buffer

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 67

Receive as slave Send as slave

End

err_status == 0?
No

Yes

Display LED pattern for
success

Display LED pattern
corresponding to error number

Compare data

Success?

Yes

No
Success?

Yes

No

Error?
Yes

No
err_status ← 4

Detect slave address

Send or receive?

Receive

Send

Repeat loop twice

Main routine (slave)

Initialize I2C interface (slave)

Display starting LED pattern

Clear receive buffer

Repeat loop twice

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 68

No

All data sent?

Yes

No

Clear status
I2CSR ← 0

Send stop sequence
I2CMSTA ← 0

End

Clear status
I2CSR ← 0

Specify master send
I2CCMTX ← 1

Starting master send

Yes

Wait for free bus

Send address

NoACK received?
I2CRXAK == 0?

Yes

Send one byte of data

Address ACK not received

Master send failed

Data ACK not received

Master send failed

Set parameter to 0
(write mode)

Yes
Error?

No

Clear transfer
complete flag
I2CMCF ← 0

ACK received?
I2CRXAK == 0?

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 69

Send stop sequence
I2CMSTA ← 0

Load byte into I2CDR

Send one byte of data

End

Wait for transfer of data
byte to complete

Clear I2CSR register
I2CSR ← 0

End

err_status ← 1

Address ACK not received

Send stop sequence
I2CMSTA ← 0

Clear I2CSR register
I2CSR ← 0

End

err_status ← 2

Data ACK not received

I2CMBB == 0?

Yes

Wait for free bus

End

No

Send start sequence
I2CMSTA ← 1

Specify read mode
I2CSRW ← 1

Specify slave address in
I2CDR

End

Send address

Clear I2CSR register
I2CSR ← 0

Master receive failed

err_status ← 3

No Bus
access acquired?

I2CMAL = 0?
Yes

Parameter
specifies read mode?

Yes

Specify write mode
I2CSRW ← 0

No

Wait for transfer of data
byte to complete

I2CMCF == 1?

Yes

Wait for transfer of data
byte to complete

End

No

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 70

No ACK received?
I2CRXAK == 0?

Clear status
I2CSR ← 0

End

Clear status
I2CSR ← 0

Specify master receive
I2CMTX ← 0

Starting master receive

Yes

Wait for free bus

Send address

Wait for transfer of data
byte to complete

Address ACK not received

Master receive failed

Yes
Last byte?

No

Read data from I2CDR

Specify NACK after receive
I2CTXAK ← 1

Read data from I2CDR

Clear I2CTXAK
I2CTXAK ← 1

Send stop sequence
I2CMSTA ← 0

Yes
Error?

No

Set parameter to 1 (read mode)

Wait for transfer of data
byte to complete

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 71

Send as slave

Send one byte of data

Clear status
I2CSR ← 0

End

ACK received?
I2CRXAK == 1?

Yes Clear I2CMCF register
I2CMCF ← 0

Data load ready?
I2CDR_LD== 1?

Yes

No

No

I2CMAAS == 1?

Yes

No

Detect slave address

End

Receive as slave

Clear status
I2CSR ← 0

Read data from I2CDR

Data
receive complete?

I2CMCF == 1?
No

Send as slave

Yes

Receive
as slave complete?

I2CSTP == 1?

Yes

Clear status
I2CSR ← 0

No

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 72

No

All data sent?

Yes

No

Clear status
I2CSR ← 0

Send repeated Start
I2CRSTA ← 1

Master Recv./Reading

Clear status
I2CSR ← 0

Specify master send
I2CCMTX ← 1

Starting Temp Reading

Yes

Wait for free bus

Send address

NoACK received?
I2CRXAK == 0?

Yes

Send index byte 0x00

Address ACK not received

Temp reading failed

Data ACK not received

Temp reading failed

Set parameter to 0
(write mode)

Yes
Error?

No

Clear transfer
complete flag
I2CMCF ← 0

ACK received?
I2CRXAK == 0?

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 73

3.20. Auto Reload Timers
3.20.1. Modules Used

• Initialize microcontroller

• IRQ exception handler (with nesting)

• Auto reload timer interrupt handlers

3.20.2. Operational Description
This sample program uses interrupts from six auto reload timers to increment an array of six
counter variables. The ‘COUNTER’ array values can be viewed in a “watch” window in the
debugger.

The variables count interrupt requests from the corresponding timers. (See Table 3.20.1.)

The program operates in an infinite loop.

Table 3.20.1 lists the timer settings.

Table 3.20.1 Timer Settings

 Variable
Incremented

Interrupt
spacing

Interrupt
Level

Timer Operating
Mode

Timer 0 COUNTER[0] 10ms 3 Interval
Timer 1 COUNTER[1] 20ms 3 Interval
Timer 2 COUNTER[2] 30ms 2 Interval
Timer 3 COUNTER[3] 40ms 2 Interval
Timer 4 COUNTER[4] 50ms 1 Interval
Timer 5 COUNTER[5] 60ms 1 Interval

The following is the formula for the timer reload value.

reload value = 65536 – (interrupt period [ms]) × clock frequency (MHz) × 1000 / 32

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 74

3.20.3. Flowcharts
 Main routine

Initialize counters

Initialize IRQ
exceptions

Configure auto
reload timers

Start auto reload
timers

FTMEN ← 0x3F

END

Write interrupt
handler entry point to

IRQ handler table

Enable IRQ exceptions

Display starting LED pattern

Timer 0 IRQ exception
handler*

Clear timer status
register 0

Increment counter
variable

END

Configure auto
reload timers

Clear timer status registers
FTMnCON ←

ART mode + APB_CLK/32

Configure timer base
registers

FTMnC ← reload value

END

Configure timer control
registers

OVFIE ← 1

Stop timers
FTMDIS ← 0x3F

Loop indefinitely

* The IRQ handlers for timers 1 to 5 are similar to that for timer 0.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 75

3.21. I2S
3.21.1. Modules Used

• Initialize microcontroller

• I2C

• Direct access memory controller

• Interrupt controller

• System timer

3.21.2. Operational Description
This sample program uses two CPU boards, a master and a slave, and transmits data in both
directions using DMA transfers.

The master transmitter sends the data from global variables, the transmit data buffers
(I2S_SendData1 and I2S_SendData2).

The slave receiver stores the incoming data in global variables, receive data buffers
(I2S_ReceivData1 and I2S_ReceivData2). You can examine the receive data with the
debugger.

This sample program features two data transfers of 4Kbytes each. When the transfers are
complete, the program exits.

Note that the slave must start before the master.

ML67Q4051/ML67Q4061 CPU Board

Transmit FIFO

I2C (Master)

Transmit data buffer

Receive register

I2C (Slave)

Receive FIFO

Strage for
receive data

2

3 4

1
Transmit register

 Write the data to transmit to the master I2S FIFO output register using DMA transfers.
(The hardware automatically queues the data for transfer.)

 Transmit the data to the slave.
 Queue the data received from the master.
 Save the data in the slave FIFO input register to the receive buffer using DMA transfers.

Figure 3.21.1 I2S Data Flow

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 76

The following Table gives the I2S operating conditions.

Table 3.21.1 I2S Settings

Audio sampling reference frequency 16 kHz

Transmitter SCK frequency 32 FS

Data bits 16

Data format I2S

The following Table gives the LED patterns for errors.

Table 3.21.2 LED Patterns for Errors

Error Type LED pattern Description
DMA transfer error during transfer to
transmit register

There was an error during a
DMA transfer to the transmit
register.

DMA transfer error during transfer
from receive register

There was an error during a
DMA transfer from the receive
register.

• Connecting Two CPU Boards

Master Slave
SD (PE4) SD (PE4)
WS (PE5) WS (PE5)

SCK (PE6) SCK (PE6)

Note: Connect both CPU boards to the same ground.

These are signal names (pin names).

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 77

3.21.3. Flowcharts

Specify DMA interrupt
request handler

Configure IRQ
interrupt requests

Main routine (master)

Configure DMA (master)

Disable IRQ interrupt
requests

End

Specify source address
tp ← I2S_SendData1

Clear variables
end_flg ← 0

err_status ← 0

Display starting LED pattern

Configure I2S interface
(master)

Start transmitter
tset_isrun ← 1

Error status == 0?
No

Yes

Display LED pattern for success
Display LED pattern

corresponding to error number

Enable IRQ interrupt
requests

DMA data transfer

Error?
No

Yes

Specify source address
tp ← I2S_SendData2

DMA data transfer

Clear flag
end_flg ← 0

DMA
data transfer complete?

end_flg == 1

Yes

No

DMA data transfer

End

DMA data transfer

End

Remove channel mask
DMACMSK0 ← 0

Enable DMA send requests
I2SIMRI ← 0xF

Specify source address
DMACSAD0 ← tp

Wait for DMA transfer
to complete

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 78

Specify DMA interrupt
request handler

Configure IRQ
interrupt requests

Main routine (slave)

Configure DMA
(slave)

Disable IRQ interrupt
requests

End

Remove channel mask
DMACMSK1 ← 0

Enable DMA send requests
I2SIMRI ← 0xF

Specify destination address
rp ← I2S_ReceivData1

Display starting LED pattern

Specify destination address
DMACDAD1 ← rp

Configure I2S interface
(slave)

Start receiver
rset_isrun ← 1

Specify destination address
rp ← I2S_ReceivData2

Error status == 0?
No

Yes

Display LED pattern for success Display LED pattern
corresponding to error number

Specify handler for system
timer interrupt requests

Enable IRQ interrupt
requests

Get remaining data

Configure system timer

Clear variables
end_flg ← 0

err_status ← 0

Start DMA data receive

Start DMA data receive

End

Check for DMA data
receive complete

(timeout)

Timeout?
No

Yes

Clear variables
counter ← 0
end_flg ← 0

Get remaining data

Start DMA data receive

Check for DMA data
receive complete

(timeout)

Timeout?
No

Yes

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 79

DMA interrupt request handler

Mask channel
DMACMSK1 ← 1

Mask DMA
I2SIMRI ← 0x10

Clear DMA end status register

Successful completion?
ISTA0==1 & ISTP==1

Yes

No

End

Set error number
err_status ← 1

Successful completion?
ISTA0==1 & ISTP==0

Yes

No

Set error number
err_status ← 2

Specify end flag
end_flg ← 1

I2SCONO ← 0x40

Configure I2S (master)

Specify threshold
I2SAFR0 ← 0x3E

Specify master mode
I2SCLK0 ← 0

End

- I2S
32fs
16-bit data

- 62 = almost full

Specify threshold
I2SAER0 ← 0x20

- 32 = almost empty

Specify audio clock signal
PLL1 ← 250C_3308
PLL2 ← 0019_0101

AUDIOSEL ← 2

- Reference frequency = 32 kHz
AUDIO_CLK = 8.192MHz
PLLB output

Clear transmit buffer
tset_isclr ← 1

Configure port pins PE4 and PE6
for their secondary functions

Specify transfer mode
DMACTMOD0 ← 0x6C

- Interrupt request mask,
cycle steal transfers,
destination address fixed,
source address increment,
word transfers,
DREQ transfer requests

Mask channel
DMACMSK0 ← 1

Clear end status
DMACCINT0 ← 0

Specify destination address
DMACDAD0←0xB790_0000

- I2SFIFOOregister

Specify number of transfers
DMACSIZ0 ← 0x1000

End

Select DMA requests
DMARQCNT ← 0x8

Configure DMA (master)

DMA data receive complete?
end_flg == 1

Yes

No

counter > 100

Yes

No

Check for DMA data
receive complete (timeout)

End

Time out

counter ← 0

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 80

Configure I2SCONO
I2SCONO ← 0x900

Configure I2S (slave)

Specify threshold
I2SAFRI ← 0x20

Specify slave mode
I2SCLKI ← 0x4

End

 I2S
32fs
16-bit data

 32 = almost full

Specify threshold
I2SAERI ← 1

 1 = almost empty

Specify transfer mode
DMACTMOD1 ← 0x74

 Interrupt request mask,
cycle steal transfers,
destination address increment,
source address fixed,
word transfers,
DREQ transfer requests

Mask channel
DMACMSK1 ← 1

Clear end status
DMACCINT1 ← 0

Specify source address
DMACSAD1 ← 0xB790_0000

 I2SFIFOO register

Specify source address
DMASIZ1 ← 0x1000

End

Select DMA requests
DMARQCNT ← 0x90

Configure DMA (slave)

Clear receive buffer
rset_isclr ← 1

Get remaining data

Get data count
data ← rfifolvl

data == 0?

Yes

No

Configure port pins PE4 to PE6 for
their secondary functions

Mask channel
DMACMSK1 ← 1

Mask DMA
I2SIMRI ← 0x10

Specify destination address
rp ← DMACDAD1

Get data
*rp ← I2SFIFOI

rp++
data--

End

Configure TMRLR register
TMRLR ← 0x15A0

Clear TMOVF bit
TMOVF ← 1

End

Stop system timer
TMEN ← 0

Configure system timer

 30msClear TMOVF bit
TMOVF ← 1

End

counter++

Handler for system timer

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 81

3.22. SPI Interface
3.22.1. Functions Used

• Microcontroller initialization
• Interrupt handlers (nesting enabled)
• SPI interface
• Direct access memory controller

3.22.2. Description of Operation
This sample program uses two CPU boards. The master sends data to the slave and performs
the same number of receive operations. The slave receives data from the master and performs
the same number of transmit operations. The slave must prepare for these transmit operations
by writing transmit data to the transmit buffer. All data transfers are 32 bytes long.

These data transfers are from a global variable, the transmit data buffer (SPI_SendData), at
one end to another global variable, the receive data buffer (SPI_ReceivData), at the other.

When the transfers are complete, the master and slave both check whether the buffer contents
match, and the program exits.

Note that the slave must start before the master.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 82

ML67Q4051/ML67Q4061 CPU Board

Transmit register

SPI (Master)

Transmit data buffer

Receive register

SPI (Slave)

Strage for
receive data

Transmit register Transmit data buffer

Receive register Strage for
receive data

4

6

3

7

2

8

1

5

Transmit buffer

Receive buffer

Transmit buffer

Receive buffer

 Write the data to transmit to the master transmit register SPDWR0. (The hardware
automatically queues the data for transfer.)

 Enabling master SPI transfers automatically transmits the queued data.
 In synchronization with the transmit operation, the master queues the data received from
the slave. (The hardware automatically queues the data received.)

 Store the data received from the slave from the master receive register SPDRR0 to the
receive buffer using DMA transfers.

 Write the data to transmit to the slave SPDWR0. (The hardware automatically queues the
data for transfer.)

 * This step must precede receiving data from the master.
 In synchronization with the receive operation, the slave automatically transmits the
queued data.

 Queue the data received from the master. (The hardware automatically queues the data
received.)

 Save the data in the slave receive register SPDRR0 to the receive buffer using DMA
transfers.

Figure 3.22.1 SPI Data Flow

The following Table gives the SPI operating conditions.

Table 3.22.1 SPI Settings

Master/slave Master/slave

Baud rate 2 Mbps

Transfer size 8 bits

Bit order LSB

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 83

The following Table gives the LED patterns for errors.

Table 3.22.2 LED Patterns for Errors

Error Type LED pattern Description
SPI transfer error

There was an error during
SPI transfers.

DMA transfer error during
transfer to transmit register

There was an error during a
DMA transfer to the transmit
register.

DMA transfer error during
transfer from receive register

There was an error during a
DMA transfer from the
receive register.

Receive data error

Data comparison detected
an error.

• Connecting Two CPU Boards

Master Slave
MISO0 (PC0) MISO0 (PC0)
MOSI0 (PC1) MOSI0 (PC1)
SCK0 (PC2) SCK0 (PC2)
SSN0 (PC3) SSN0 (PC3)

Note: Connect both CPU boards to the same ground.

These are signal names (pin names).

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 84

3.22.3. Flowcharts
3.22.3.1. Master

Specify master mode
MSTR ← 1

Configure SPI (master)

Clear buffers
FICLR ← 1 ← 0

Specify baud rate (2 Mbps)
SPBR[9:0] ← 0x04

Specify transfer size (8 bits)
SIZE ← 0

End

Configure port pins PC0 to PC3 for
their secondary functions

Specify SPI interrupt
request handler

Configure IRQ
interrupt requests

Main routine (master)

Configure SPI (master)

SPI (master) transfer
main routine

Successful completion?

Yes

No

Data comparison error?

No

Yes

Display LED pattern
corresponding to error number Display LED pattern for

success

End

Configure DMA0

Configure DMA1

Enable IRQ interrupt requests

Disable IRQ interrupt requests

* Specify 32-byte transfers
with parameter

Compare data received from
slave

Display starting LED pattern

IRQ source-specific handler
for SPI

Clear SPI interrupt requests

Set SPI interrupt request flag
to 1

End

Error?

Yes

No

Set error flag

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 85

Specify transfer mode
DMACTMOD0 ← 0x49

 Interrupt requests masked,
burst transfers,
destination address fixed,
source address increment,
byte transfers

Mask channel 1
DMACMSK0 ← 1

Clear end status
DMACCINT0 ← 0

Specify destination address
DMACDAD0 ← 0xB7B0_2000

 SPDWR register (SPI write data
register)

End

Configuring DMA0 for
transfers to transmit buffer

Specify transfer mode
DMACTMOD1 ← 0x51

 Interrupt requests masked,
burst transfers,
destination address increment,
source address fixed,
byte transfers

Mask channel 1
DMACMSK1 ← 1

Clear end status
DMACCINT1 ← 0

Specify source address
DMACSAD1 ← 0xB7B0_2010

 SPDRR register (SPI read data
register)

End

Configuring DMA1 for transfers
from receive buffer

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 86

Get transfer data size from parameter
TBYTE ← transfer data size

SPI (master) transfer main
routine

Specify DMA0 transfer source address
DMACSAD0 ← tp

tp is the address of the transmit data in SPI_SendData.

rp is the address of the receive data in SPI_ReceivData. Specify DMA1 transfer destination address
DMACDAD1 ← rp

Configure SPI (master)
transfer

SPI (master) receive
operation

DMA transfer error?
Yes

No

SPI receive error?
Yes

No

SPI (master) receive
data processing

DMA transfer error?
Yes

No

Transmit data end?
TBYTE==0?

No

Yes

Success:
Set return value to 0

End

DMA transfer error:
Set return value to 2

DMA transfer error:
Set return value to 1

DMA transfer error:
Set return value to 3

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 87

TBYTE > 12?

Yes

No

Set transmit interrupt request
threshold to 4 bytes

Specify 12 as DMA0 transfer
size

TBYTE ← TBYTE – 12

Specify TBYTE as DMA0
transfer size

DMA0 transfer error?
No

Yes

Start DMA0 transfers by
removing mask on channel 0

Start DMA0 transfers by
removing mask on channel 0

Set transmit interrupt request
threshold to 0 bytes

TBYTE ← 0

Configure SPI (master)
transmit data

End

Check for completion
of DMA0 transfers

DMA0 transfer error?
No

Yes

Check for completion
of DMA0 transfers

Error return

Successful completion

A

A

DMA0 transfers complete
(mask channel 0) DMA0 transfers complete

(mask channel 0)

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 88

DMA0 transfer error?

No

Yes

Error return
DMA0 transfer complete?

No

Yes

Successful completion

Check for completion of
DMA0 transfers

End

* The processing is the same as for DMA1.

SPI error?

No

Enable SPI transfers
SPE ← 1

SPI
interrupt request flag

== 1?

No

Yes

Disable SPI transfers
SPE ← 0

Yes

Clear SPI interrupt request flag

SPI (master) transmit

Error return

Successful completion

End

Enable SPI interrupt
TFIE ← 1

Disable SPI interrupt
TFIE ← 0

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 89

Specify that as DMA1 transfer
size

Start DMA1 transfers by
removing mask on channel 1

DMA1 transfers complete
(mask channel 1)

Get data count from receive buffer
RFD0 to 4

SPI (master) receive data
processing

DMA1 transfer error?

No

Yes

Check for completion
of DMA1 transfers

End

Error return Successful completion

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 90

3.22.3.2. Slave

Configure SPI (slave)

Clear buffers
FICLR ← 1 ← 0

Specify transfer size (8 bytes)
SIZE ← 0

End

Configure port pins PC0 to PC4 for
their secondary functions

Specify SPI interrupt
request handler

IRQ source-specific handler
for SPI

Clear SPI interrupt requests

Set SPI interrupt request flag
to 1

End

Error?

Yes

No

Set error flag

Configure IRQ
interrupt requests

Main routine (slave)

Configure SPI (slave)

SPI (slave) transfer
main routine

Transfers successfully
complete?
Yes

No

Comparison error?

No

Display LED pattern
corresponding to error number Display LED pattern for

success

End

Configure DMA0

Configure DMA1

Enable IRQ interrupt requests

Disable IRQ interrupt requests

* Get transfer data size (32)
from parameter

Enable SPI transfers
SPE ← 1

Disable SPI transfers
SPE ← 0

Yes

Compare data received from
master

Display starting LED pattern

The configuration for DMA0 and DMA1 is the same as for the master.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 91

Get transfer data size from parameter
TBYTE ← transfer data size

SPI (slave) transfer main
routine

Specify DMA0 transfer source address
DMACSAD0 ← tp

tp is the address of the transmit data in SPI_SendData.

rp is the address of the receive data in SPI_ReceivData. Specify DMA1 transfer destination address
DMACDAD1 ← rp

Configure SPI (slave)
transfer

SPI (slave) receive
operation

DMA transfer error?
Yes

No

SPI receive error?
Yes

No

SPI (slave) receive
data processing

DMA transfer error?
Yes

No

Transmit data end?
TBYTE==0?

No

Yes

Success:
Set return value to 0

End

DMA transfer error:
Set return value to 2

DMA transfer error:
Set return value to 1

DMA transfer error:
Set return value to 3

The transmit data configuration and get receive data routines for SPI (slave) operation are the
same as for the master.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 92

SPI error?

No

SPI interrupt request flag
== 1?

No

Yes

Yes

Clear SPI interrupt request
flag← 0

SPI (slave) receive

Error return

Successful completion

End

Enable SPI interrupt
TFIE ← 1

Disable SPI interrupt
TFIE ← 0

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 93

3.23. Demo and Self-Test Program
3.23.1. Functions Used

• Microcontroller initialization
• Interrupt handlers (nesting enabled)
• Demo
• UART_demo
• ADC_demo
• I2C_demo
• RTC_demo

3.23.2. Description of Operation
The demo program runs on the AME-51 board. The flash memory of the AME-51 board is
factory preprogrammed with a demo/test firmware which automatically runs a self test when
the board is first powered on.

3.23.3. Setup
To run the demo/test firmware the DIP switch must be set for stand-alone mode as shown in
Figure 4-1. The DIP switch settings can be modified while the board is powered up. After
setting the DIP switch push the RESET switch SW4 to activate the new settings. The self test
includes a UART loop back test for checking both UARTs. To perform the UART loop-back
test connect the serial cable between UART0 and UART1, connectors J1 and P1. If a cable is
not attached then the loop back test will fail. This is indicated by the LED display showing
“4” and LEDs D2, D4 and D5 will be blinking at the rate of 2.5 times per second. To advance
to the next demo push switches SW2 and SW3 at the same time.

After applying power to the board it will automatically perform an LED test, memory test,
I2C test and UART test. When the tests finish the LED display will show “5” indicating that
the switch demo is running. By pushing switches SW2 and SW3 at the same time the board
will advance to the next demo. There are five demos numbered 3 through 7. These are the I2C
demo, UART demo, Switch demo, ADC demo and the RTC demo. The demos operate in the
sequence shown in figure 4-2. The I2C demo is different from the I2C test and the UART
demo is different from the UART test. The tests take about 10 seconds to complete. After
completing the tests the serial cable should be reconnected from UART0 to the serial port on
your pc. A detailed description of each test and demo is explained in the following sections.

 FWJ
 ROMSEL
 EXBUSE
 EXIROME
 BOOT1
 BOOT0
 BOOTCLK
 JTAGE

Figure. 4-1 DIP switch setting for stand-alone mode

POSITION

OFF
ON
ON
OFF
OFF
OFF

X
X

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 94

Figure. 4-2 Test/Demo Sequence

3.23.4. LED Test (1)
The first test sequentially turns on and off each LED on the board. The sequence for turning
on the LEDs is D5, D4, D2 and then each segment of LED1. The segments of LED1 are
turned on in the following sequence: a, b, c, d, e, f, g, dp. Finally all the segments of LED1
will be turned on and then off. The entire test completes in about four seconds. While
performing this test the user needs to visually confirm that each LED turns on.

3.23.5. Memory Test (2)
The memory test checks the external SRAM by writing and verifying all memory locations with 0x55
and 0xAA. During this test the LED display, LED1, will show a “2”. The test firmware will
automatically advance to the next test when the memory test has successfully finished. If this test fails
then LEDs D5, D4 and D2 will continuously blink at the rate of 2.5 times per second. The memory test
is described in the following steps:

1. Display “2” on the LED display LED1.
2. Turn on the red LED D5.
3. Write 0x55 to all memory locations.
4. Turn off the red LED D5.
5. Turn on the green LED D2.
6. Read all memory locations.
7. If any memory location does not read 0x55 then blink the LEDs D5, D4, D2.
8. Turn off the green LED D2.
9. Turn on the yellow LED D4.
10. Write 0xAA to all memory locations.
11. Turn off the yellow LED D4.
12. Turn on the green LED D2.
13. Read all memory locations.
14. If any location does not read 0xAA then blink the LEDs D5, D4, D2.
15. Exit this test.

TEST 1
LEDs

TEST 2
Memory TEST 3

I2C

TEST 4
UART

Demo 5
Switches

Demo 6
ADC

Demo 7
RTC

Demo 3
I2C

Demo 4
UART

Power-on
or Reset

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 95

3.23.6. I2C Test (3)
During this test the LED display (LED1) shows a “3”. The I2C bus is connected to a
temperature sensor, U8. The microcontroller is the master, and the temperature sensor is the
slave device. When the temperature sensor is accessed, it performs an A/D conversion of the
internal sensing element after which a 9-bit value is read from the device. If the result is 0x00
or 0xFF, the test fails and LEDs D5, D4 and D2 blink at 2.5 times per second. If the result is
valid, not 0x00 or 0xFF, the test automatically exits to the next test.

3.23.7. UART Test (4)
This is a loop-back test of UART0 and UART1. During this test the LED display, LED1,
shows a “4”. To successfully perform this test, attach the serial cable between UART0 and
UART1, connectors J1 and P1. If the serial cable is not attached, this test will fail. UART0
transmits an ASCII “t”, and UART1 confirms that it received an ASCII “t”. Then UART1
transmits an ASCII “s”, and UART0 confirms that it received an ASCII “s”. After
successfully completing this test, it automatically advances to the switch demo/test. If this
test fails, LEDs D5, D4 and D2 blink at 2.5 times per second. To advance to the next test,
once this test fails, push switches SW2 and SW3 at the same time.

3.23.8. Switch Demo/Test (5)
This test continually monitors the state of switches SW2 and SW3. During this test the LED
display, LED1, shows a “5”. When switch SW2 is pushed, the red LED, D5, turns on. When
switch SW3 is pushed, the green LED, D2, turns on. To exit this test, push both switches
SW2 and SW3 at the same time. These switches are de-bounced in software by the 10-ms
timer interrupt. Every 10 ms the state of each switch is stored in a buffer. If the switch was in
the closed state for the last three states, the switch is set to the closed state. If the switch was
in the open state for the last three states, the switch is set to the open state. If the last three
states of the switch do not all agree, the state of the switch does not change. To exit this test,
push switches SW2 and SW3 at the same time.

3.23.9. ADC Demo/Test (6)
During this test the LED display, LED1, shows a “6”. The potentiometer, RP1, is connected
to the A/D converter at channel 0, AIN0. This test performs a conversion of channel 0 four
times per second. After each conversion the value is transmitted through UART0. To view
this data connect the serial cable from UART0, J1, to the serial port of your pc. Run “Hyper
Terminal” with the protocol set at 115,200 baud, 8 data bits, no parity and 1 stop bit. The
flow control should be set to Xon/Xoff. Also, the result of the A/D conversion is displayed on
LEDs D5, D4 and D2 as shown in Table 4-1. To exit this demo/test, push switches SW2 and
SW3 at the same time.

Table 4-1 Potentiometer Display

ADC LEDs
Result D5 D4 D2

 value <256 -- -- --
 256< value <512 on -- --
 512< value <768 on on --
 768< value on on on

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 96

3.23.10. RTC Demo (7)
During this test the LED display, LED1, shows a “7”. To run this demo a serial cable must be
connected from UART0, J1, to the serial port of your pc. Run “Hyper Terminal” with the
protocol set at 115,200 baud, 8 data bits, no parity and 1 stop bit. The flow control should be
set to Xon/Xoff. The board sends the following message from UART0:
 “Do you want to set the Real Time Clock y/n)?”

If the response is “y”, then you are prompted to enter date and time information. After the
date and time information has been sent to the board, the current date and time is displayed at
a rate of once per second as shown:
 “The time is 05/06/10 01:22:00 PM”

If no date and time information is entered, then the RTC is not modified and the existing date
and time are displayed. To exit this test, push switches SW2 and SW3 at the same time.

3.23.11. I2C Demo (3)
During this test the LED display, LED1, shows a “3”. This demo is similar to the I2C test
explained in Section 3.3. The microcontroller reads the temperature sensor, U8, twice per
second. The result is transmitted through UART0. To view this data a serial cable must be
connected from UART0, J1, to the serial port of your pc. Run “Hyper Terminal” with the
protocol set at 115,200 baud, 8 data bits, no parity and 1 stop bit. The flow control should be
set to Xon/Xoff. The result is also displayed on LEDs D5, D4 and D2 as shown in Table 4-2.
To exit this demo, push switches SW2 and SW3 at the same time.

Table 4-2 Temperature Display

Temperature LEDs
 D5 D4 D2

 T <20oC -- -- --
 20oC< T <22oC on -- --
 22oC< T <24oC -- on --
 24oC< T <26oC on on --
 26oC< T <28oC -- -- on
 28oC< T <30oC on -- on
 30oC< T <32oC -- on on
 32oC< T on on on

3.23.12. UART Demo (4)
During this test the LED display, LED1, shows a “4”. To run this demo, connect the serial
cable from UART0, J1, to the serial port of your pc. Run “Hyper Terminal” with the protocol
set at 115,200 baud, 8 data bits, no parity and 1 stop bit. The flow control should be set to
Xon/Xoff. Whatever is typed at the keyboard is displayed on the monitor of the pc. The data
typed at the keyboard is sent to the AME-51 board and received through UART0. This data is
then transmitted through UART0 and is displayed on the monitor. To exit this demo, push
switches SW2 and SW3 at the same time or press the escape key (ESC) on the keyboard of
the pc.

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 97

4. Running Sample Programs
4.1. Procedure

1. Copy Files

 Copy the sample program files in the file hierarchy SAMPLE_PROGRAM from the
CD-ROM to the PC hard disk. Remove the Read-Only attributes of the file.

Note: Do not modify the directory structure under SAMPLE_PROGRAM. Doing so can
interfere with compiling, assembling, and linking the sample programs below.

2. Build Sample Programs

 The files under SAMPLE_PROGRAM include project files for use with IAR EWARM,
RVDK and ADS. Use these project files to build (compile, assemble, and link) the sample
program files.

3. Running Sample Programs

 Builds create image (AXF) files for the programs.

(1) AME-51 board with ML67Q4051 MCU mounted

 Load the IAR, RVDK or ADS debugger, download the desired image file (In Debug
Mode), and use the GO command to run the program.

(2) AME-51 board with ML67Q4061 MCU mounted

 Here you must first write the program to the built-in Flash memory.

 Using IAR EWARM
 Load IAR EWARM. Launch and connect to target using CSPY debugger. Use the

Flash loader utility built into CSPY debugger to program the internal Flash of the
MCU. Alternatively, Boot-ROM or other utilities such as Oki ISFP (In System Flash
Programmer) may be used to program the MCU. See documents “IAR EWARM for
AME-51 Getting Started Guide” and “ML67Q4050/4060 Series Boot Program User’s
Manual”.

Using RVDK

 Load the RVDK debugger, download the desired image file, and then use the RVDK
Flash write function (FME) to write this program to the built-in Flash memory.

 Finally, use the GO command to run the program. For further details on FME, refer to
the Oki ML67Q4051/61 CPU Board Flash Memory Write Guide.

 Using ADS
 Convert the desired image file to plain binary format and write the result to the built-in

Flash memory with the Flash memory write utility. Use the debugger’s Load debug
Symbols command to download debugging information from the desired image file.

 Finally, use the GO command to run the program.

 For further details on converting image files plain binary format, refer to the ARM
Developer Suite Linker and Utilities Guide.

 For further details on the Flash memory write utility, refer to the
ML67Q4051/ML67Q4061 CPU Board Flash Memory Write Utility User’s Manual.

4. Ending Sample Programs

 Once started, the sample programs execute continuously. To terminate a program, use the
STOP command.

AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 98

Revision History
Document

No. Date Description Rev.

AME-51_sample_
programs_UM-1

July 01,
2005 Initial Release of this document 1.0

Reference Documents
Refer to the following documents for more detailed information regarding the major components of this
design. Check on-line at http://www.okisemi.com/us, or with your Oki Sales representative.

• ML67Q4050/ML67Q4060 Series 32-Bit Microcontroller Data Sheet
• ML67Q4050/ML67Q/4060 Series 32-Bit Microcontroller User’s Manual
• ML67Q4050/4060 Series Boot Program User’s Manual
• AME-51 Evaluation-Kit Hardware User’s Manual
• AME-51 Quick Start Guide
• Oki ISFP Quick Start Guide
• AME-51 IAR-EWARM Start Up Guide

 AME-51 Sample Programs User’s Manual

7/1/2005 – Revision 1.0 99

Notice

The information contained herein can change without notice due to product and/or technical improvements.
Please make sure that the information you are referring to is up-to-date before using the product.
The outline of action and examples of application circuits described herein have been chosen as an explanation of the standard action and
performance of the product. When you actually plan to use the product, please ensure that the outside conditions are reflected in the actual
circuit and assembly designs.
Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect,
improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to,
exposure to parameters outside the specified maximum ratings or operation outside the specified operating range.
Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the
use of product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third
party's right which may result from the use thereof.
When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges,
including but not limited to operating voltage, power dissipation, and operating temperature.
The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office
automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically
authorized by Oki, authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor
in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury
to humans. Such applications include, but are not limited to: traffic control, automotive, safety, aerospace, nuclear power control, and
medical, including life support and maintenance.
Certain parts in this document may need governmental approval before they can be exported to certain countries. The purchaser assumes
the responsibility of determining the legality of export of these parts and will take appropriate and necessary steps, at their own expense, for
export to another country.
Oki Semiconductor reserves the right to make changes in specifications at anytime and without notice. This information furnished by Oki
Semiconductor in this publication is believed to be accurate and reliable. However, no responsibility is assumed by Oki Semiconductor for its
use; nor for any infringements of patents or other rights of third parties resulting from its use. No license is granted under any patents or
patent rights of Oki.

Trademarks:
Advantage and µPlat are trademarks of Oki Semiconductor. ARM, ARM7TDMI, and the ARM Powered Logo are registered trademarks, and
AMBA, ARM7, and Multi-ICE are trademarks of Advanced RISC Machines, Ltd.

Copyright 2004 and 2005
Oki Semiconductor

Sales Offices

Northwest Area
785 N. Mary Avenue
Sunnyvale, CA 94085
Tel: 408/720-1900
Fax: 408/720-8965

Northeast Area
Shattuck Office Center
138 River Road
Andover, MA 01810
Tel: 978/688-8687
Fax: 978/688-8896

North Central Area
1450 East American Lane, Suite
1400
Schaumburg, IL 60143
Tel: 847/330-4494
 847/330-4498
Fax: 847/330-4491

Southwest and
South Central Area
1902 Wright Place, Suite 200
Carlsbad, CA 92008
Tel: 760/918-5830
Fax: 760/918-5505

Southeast Area
4800 Whitesburg Drive # 30
PMB 263
Huntsville, AL 35802
Tel: 256/520-8035

 Oki Web Site:
http://www.okisemi.com/us

Corporate Headquarters
785 N. Mary Avenue
Sunnyvale, CA 94085-2909
Tel: 408/720-1900
Fax: 408/720-1918

